xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/LoadQueue.scala (revision ae20d4f813bcc42178dcf493be4be500e5c7c0b9)
1package xiangshan.mem
2
3import chisel3._
4import chisel3.util._
5import freechips.rocketchip.tile.HasFPUParameters
6import utils._
7import xiangshan._
8import xiangshan.cache._
9import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants, TlbRequestIO}
10import xiangshan.backend.LSUOpType
11import xiangshan.mem._
12import xiangshan.backend.roq.RoqLsqIO
13import xiangshan.backend.fu.HasExceptionNO
14
15
16class LqPtr extends CircularQueuePtr(LqPtr.LoadQueueSize) { }
17
18object LqPtr extends HasXSParameter {
19  def apply(f: Bool, v: UInt): LqPtr = {
20    val ptr = Wire(new LqPtr)
21    ptr.flag := f
22    ptr.value := v
23    ptr
24  }
25}
26
27trait HasLoadHelper { this: XSModule =>
28  def rdataHelper(uop: MicroOp, rdata: UInt): UInt = {
29    val fpWen = uop.ctrl.fpWen
30    LookupTree(uop.ctrl.fuOpType, List(
31      LSUOpType.lb   -> SignExt(rdata(7, 0) , XLEN),
32      LSUOpType.lh   -> SignExt(rdata(15, 0), XLEN),
33      LSUOpType.lw   -> Mux(fpWen, rdata, SignExt(rdata(31, 0), XLEN)),
34      LSUOpType.ld   -> Mux(fpWen, rdata, SignExt(rdata(63, 0), XLEN)),
35      LSUOpType.lbu  -> ZeroExt(rdata(7, 0) , XLEN),
36      LSUOpType.lhu  -> ZeroExt(rdata(15, 0), XLEN),
37      LSUOpType.lwu  -> ZeroExt(rdata(31, 0), XLEN),
38    ))
39  }
40
41  def fpRdataHelper(uop: MicroOp, rdata: UInt): UInt = {
42    LookupTree(uop.ctrl.fuOpType, List(
43      LSUOpType.lw   -> recode(rdata(31, 0), S),
44      LSUOpType.ld   -> recode(rdata(63, 0), D)
45    ))
46  }
47}
48
49class LqEnqIO extends XSBundle {
50  val canAccept = Output(Bool())
51  val sqCanAccept = Input(Bool())
52  val needAlloc = Vec(RenameWidth, Input(Bool()))
53  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
54  val resp = Vec(RenameWidth, Output(new LqPtr))
55}
56
57// Load Queue
58class LoadQueue extends XSModule
59  with HasDCacheParameters
60  with HasCircularQueuePtrHelper
61  with HasLoadHelper
62  with HasExceptionNO
63{
64  val io = IO(new Bundle() {
65    val enq = new LqEnqIO
66    val brqRedirect = Flipped(ValidIO(new Redirect))
67    val flush = Input(Bool())
68    val loadIn = Vec(LoadPipelineWidth, Flipped(Valid(new LsPipelineBundle)))
69    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
70    val loadDataForwarded = Vec(LoadPipelineWidth, Input(Bool()))
71    val ldout = Vec(2, DecoupledIO(new ExuOutput)) // writeback int load
72    val load_s1 = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO))
73    val roq = Flipped(new RoqLsqIO)
74    val rollback = Output(Valid(new Redirect)) // replay now starts from load instead of store
75    val dcache = Flipped(ValidIO(new Refill))
76    val uncache = new DCacheWordIO
77    val exceptionAddr = new ExceptionAddrIO
78  })
79
80  val uop = Reg(Vec(LoadQueueSize, new MicroOp))
81  // val data = Reg(Vec(LoadQueueSize, new LsRoqEntry))
82  val dataModule = Module(new LoadQueueData(LoadQueueSize, wbNumRead = LoadPipelineWidth, wbNumWrite = LoadPipelineWidth))
83  dataModule.io := DontCare
84  val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), LoadQueueSize, numRead = 1, numWrite = LoadPipelineWidth))
85  vaddrModule.io := DontCare
86  val allocated = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // lq entry has been allocated
87  val datavalid = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // data is valid
88  val writebacked = RegInit(VecInit(List.fill(LoadQueueSize)(false.B))) // inst has been writebacked to CDB
89  val miss = Reg(Vec(LoadQueueSize, Bool())) // load inst missed, waiting for miss queue to accept miss request
90  // val listening = Reg(Vec(LoadQueueSize, Bool())) // waiting for refill result
91  val pending = Reg(Vec(LoadQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
92
93  val debug_mmio = Reg(Vec(LoadQueueSize, Bool())) // mmio: inst is an mmio inst
94  val debug_paddr = Reg(Vec(LoadQueueSize, UInt(PAddrBits.W))) // mmio: inst is an mmio inst
95
96  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new LqPtr))))
97  val deqPtrExt = RegInit(0.U.asTypeOf(new LqPtr))
98  val deqPtrExtNext = Wire(new LqPtr)
99  val allowEnqueue = RegInit(true.B)
100
101  val enqPtr = enqPtrExt(0).value
102  val deqPtr = deqPtrExt.value
103
104  val deqMask = UIntToMask(deqPtr, LoadQueueSize)
105  val enqMask = UIntToMask(enqPtr, LoadQueueSize)
106
107  val commitCount = RegNext(io.roq.lcommit)
108
109  /**
110    * Enqueue at dispatch
111    *
112    * Currently, LoadQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
113    */
114  io.enq.canAccept := allowEnqueue
115
116  for (i <- 0 until RenameWidth) {
117    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
118    val lqIdx = enqPtrExt(offset)
119    val index = lqIdx.value
120    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush)) {
121      uop(index) := io.enq.req(i).bits
122      allocated(index) := true.B
123      datavalid(index) := false.B
124      writebacked(index) := false.B
125      miss(index) := false.B
126      // listening(index) := false.B
127      pending(index) := false.B
128    }
129    io.enq.resp(i) := lqIdx
130  }
131  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
132
133  /**
134    * Writeback load from load units
135    *
136    * Most load instructions writeback to regfile at the same time.
137    * However,
138    *   (1) For an mmio instruction with exceptions, it writes back to ROB immediately.
139    *   (2) For an mmio instruction without exceptions, it does not write back.
140    * The mmio instruction will be sent to lower level when it reaches ROB's head.
141    * After uncache response, it will write back through arbiter with loadUnit.
142    *   (3) For cache misses, it is marked miss and sent to dcache later.
143    * After cache refills, it will write back through arbiter with loadUnit.
144    */
145  for (i <- 0 until LoadPipelineWidth) {
146    dataModule.io.wb.wen(i) := false.B
147    vaddrModule.io.wen(i) := false.B
148    when(io.loadIn(i).fire()) {
149      when(io.loadIn(i).bits.miss) {
150        XSInfo(io.loadIn(i).valid, "load miss write to lq idx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n",
151          io.loadIn(i).bits.uop.lqIdx.asUInt,
152          io.loadIn(i).bits.uop.cf.pc,
153          io.loadIn(i).bits.vaddr,
154          io.loadIn(i).bits.paddr,
155          io.loadIn(i).bits.data,
156          io.loadIn(i).bits.mask,
157          io.loadIn(i).bits.forwardData.asUInt,
158          io.loadIn(i).bits.forwardMask.asUInt,
159          io.loadIn(i).bits.mmio
160        )
161      }.otherwise {
162        XSInfo(io.loadIn(i).valid, "load hit write to cbd lqidx %d pc 0x%x vaddr %x paddr %x data %x mask %x forwardData %x forwardMask: %x mmio %x\n",
163        io.loadIn(i).bits.uop.lqIdx.asUInt,
164        io.loadIn(i).bits.uop.cf.pc,
165        io.loadIn(i).bits.vaddr,
166        io.loadIn(i).bits.paddr,
167        io.loadIn(i).bits.data,
168        io.loadIn(i).bits.mask,
169        io.loadIn(i).bits.forwardData.asUInt,
170        io.loadIn(i).bits.forwardMask.asUInt,
171        io.loadIn(i).bits.mmio
172      )}
173      val loadWbIndex = io.loadIn(i).bits.uop.lqIdx.value
174      datavalid(loadWbIndex) := (!io.loadIn(i).bits.miss || io.loadDataForwarded(i)) && !io.loadIn(i).bits.mmio
175      writebacked(loadWbIndex) := !io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio
176
177      val loadWbData = Wire(new LQDataEntry)
178      loadWbData.paddr := io.loadIn(i).bits.paddr
179      loadWbData.mask := io.loadIn(i).bits.mask
180      loadWbData.data := io.loadIn(i).bits.forwardData.asUInt // fwd data
181      loadWbData.fwdMask := io.loadIn(i).bits.forwardMask
182      dataModule.io.wbWrite(i, loadWbIndex, loadWbData)
183      dataModule.io.wb.wen(i) := true.B
184
185      vaddrModule.io.waddr(i) := loadWbIndex
186      vaddrModule.io.wdata(i) := io.loadIn(i).bits.vaddr
187      vaddrModule.io.wen(i) := true.B
188
189      debug_mmio(loadWbIndex) := io.loadIn(i).bits.mmio
190      debug_paddr(loadWbIndex) := io.loadIn(i).bits.paddr
191
192      val dcacheMissed = io.loadIn(i).bits.miss && !io.loadIn(i).bits.mmio
193      miss(loadWbIndex) := dcacheMissed && !io.loadDataForwarded(i)
194      pending(loadWbIndex) := io.loadIn(i).bits.mmio
195      uop(loadWbIndex).debugInfo.issueTime := io.loadIn(i).bits.uop.debugInfo.issueTime
196    }
197  }
198
199  when(io.dcache.valid) {
200    XSDebug("miss resp: paddr:0x%x data %x\n", io.dcache.bits.addr, io.dcache.bits.data)
201  }
202
203  // Refill 64 bit in a cycle
204  // Refill data comes back from io.dcache.resp
205  dataModule.io.refill.valid := io.dcache.valid
206  dataModule.io.refill.paddr := io.dcache.bits.addr
207  dataModule.io.refill.data := io.dcache.bits.data
208
209  (0 until LoadQueueSize).map(i => {
210    dataModule.io.refill.refillMask(i) := allocated(i) && miss(i)
211    when(dataModule.io.refill.valid && dataModule.io.refill.refillMask(i) && dataModule.io.refill.matchMask(i)) {
212      datavalid(i) := true.B
213      miss(i) := false.B
214    }
215  })
216
217  // Writeback up to 2 missed load insts to CDB
218  //
219  // Pick 2 missed load (data refilled), write them back to cdb
220  // 2 refilled load will be selected from even/odd entry, separately
221
222  // Stage 0
223  // Generate writeback indexes
224
225  def getEvenBits(input: UInt): UInt = {
226    require(input.getWidth == LoadQueueSize)
227    VecInit((0 until LoadQueueSize/2).map(i => {input(2*i)})).asUInt
228  }
229  def getOddBits(input: UInt): UInt = {
230    require(input.getWidth == LoadQueueSize)
231    VecInit((0 until LoadQueueSize/2).map(i => {input(2*i+1)})).asUInt
232  }
233
234  val loadWbSel = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W))) // index selected last cycle
235  val loadWbSelV = Wire(Vec(LoadPipelineWidth, Bool())) // index selected in last cycle is valid
236
237  val loadWbSelVec = VecInit((0 until LoadQueueSize).map(i => {
238    allocated(i) && !writebacked(i) && datavalid(i)
239  })).asUInt() // use uint instead vec to reduce verilog lines
240  val evenDeqMask = getEvenBits(deqMask)
241  val oddDeqMask = getOddBits(deqMask)
242  // generate lastCycleSelect mask
243  val evenSelectMask = Mux(io.ldout(0).fire(), getEvenBits(UIntToOH(loadWbSel(0))), 0.U)
244  val oddSelectMask = Mux(io.ldout(1).fire(), getOddBits(UIntToOH(loadWbSel(1))), 0.U)
245  // generate real select vec
246  val loadEvenSelVec = getEvenBits(loadWbSelVec) & ~evenSelectMask
247  val loadOddSelVec = getOddBits(loadWbSelVec) & ~oddSelectMask
248
249  def toVec(a: UInt): Vec[Bool] = {
250    VecInit(a.asBools)
251  }
252
253  val loadWbSelGen = Wire(Vec(LoadPipelineWidth, UInt(log2Up(LoadQueueSize).W)))
254  val loadWbSelVGen = Wire(Vec(LoadPipelineWidth, Bool()))
255  loadWbSelGen(0) := Cat(getFirstOne(toVec(loadEvenSelVec), evenDeqMask), 0.U(1.W))
256  loadWbSelVGen(0):= loadEvenSelVec.asUInt.orR
257  loadWbSelGen(1) := Cat(getFirstOne(toVec(loadOddSelVec), oddDeqMask), 1.U(1.W))
258  loadWbSelVGen(1) := loadOddSelVec.asUInt.orR
259
260  (0 until LoadPipelineWidth).map(i => {
261    loadWbSel(i) := RegNext(loadWbSelGen(i))
262    loadWbSelV(i) := RegNext(loadWbSelVGen(i), init = false.B)
263    when(io.ldout(i).fire()){
264      // Mark them as writebacked, so they will not be selected in the next cycle
265      writebacked(loadWbSel(i)) := true.B
266    }
267  })
268
269  // Stage 1
270  // Use indexes generated in cycle 0 to read data
271  // writeback data to cdb
272  (0 until LoadPipelineWidth).map(i => {
273    // data select
274    dataModule.io.wb.raddr(i) := loadWbSelGen(i)
275    val rdata = dataModule.io.wb.rdata(i).data
276    val seluop = uop(loadWbSel(i))
277    val func = seluop.ctrl.fuOpType
278    val raddr = dataModule.io.wb.rdata(i).paddr
279    val rdataSel = LookupTree(raddr(2, 0), List(
280      "b000".U -> rdata(63, 0),
281      "b001".U -> rdata(63, 8),
282      "b010".U -> rdata(63, 16),
283      "b011".U -> rdata(63, 24),
284      "b100".U -> rdata(63, 32),
285      "b101".U -> rdata(63, 40),
286      "b110".U -> rdata(63, 48),
287      "b111".U -> rdata(63, 56)
288    ))
289    val rdataPartialLoad = rdataHelper(seluop, rdataSel)
290
291    // writeback missed int/fp load
292    //
293    // Int load writeback will finish (if not blocked) in one cycle
294    io.ldout(i).bits.uop := seluop
295    io.ldout(i).bits.uop.lqIdx := loadWbSel(i).asTypeOf(new LqPtr)
296    io.ldout(i).bits.data := rdataPartialLoad
297    io.ldout(i).bits.redirectValid := false.B
298    io.ldout(i).bits.redirect := DontCare
299    io.ldout(i).bits.debug.isMMIO := debug_mmio(loadWbSel(i))
300    io.ldout(i).bits.debug.isPerfCnt := false.B
301    io.ldout(i).bits.debug.paddr := debug_paddr(loadWbSel(i))
302    io.ldout(i).bits.fflags := DontCare
303    io.ldout(i).valid := loadWbSelV(i)
304
305    when(io.ldout(i).fire()) {
306      XSInfo("int load miss write to cbd roqidx %d lqidx %d pc 0x%x mmio %x\n",
307        io.ldout(i).bits.uop.roqIdx.asUInt,
308        io.ldout(i).bits.uop.lqIdx.asUInt,
309        io.ldout(i).bits.uop.cf.pc,
310        debug_mmio(loadWbSel(i))
311      )
312    }
313
314  })
315
316  /**
317    * Load commits
318    *
319    * When load commited, mark it as !allocated and move deqPtrExt forward.
320    */
321  (0 until CommitWidth).map(i => {
322    when(commitCount > i.U){
323      allocated(deqPtr+i.U) := false.B
324    }
325  })
326
327  def getFirstOne(mask: Vec[Bool], startMask: UInt) = {
328    val length = mask.length
329    val highBits = (0 until length).map(i => mask(i) & ~startMask(i))
330    val highBitsUint = Cat(highBits.reverse)
331    PriorityEncoder(Mux(highBitsUint.orR(), highBitsUint, mask.asUInt))
332  }
333
334  def getOldestInTwo(valid: Seq[Bool], uop: Seq[MicroOp]) = {
335    assert(valid.length == uop.length)
336    assert(valid.length == 2)
337    Mux(valid(0) && valid(1),
338      Mux(isAfter(uop(0).roqIdx, uop(1).roqIdx), uop(1), uop(0)),
339      Mux(valid(0) && !valid(1), uop(0), uop(1)))
340  }
341
342  def getAfterMask(valid: Seq[Bool], uop: Seq[MicroOp]) = {
343    assert(valid.length == uop.length)
344    val length = valid.length
345    (0 until length).map(i => {
346      (0 until length).map(j => {
347        Mux(valid(i) && valid(j),
348          isAfter(uop(i).roqIdx, uop(j).roqIdx),
349          Mux(!valid(i), true.B, false.B))
350      })
351    })
352  }
353
354  /**
355    * Memory violation detection
356    *
357    * When store writes back, it searches LoadQueue for younger load instructions
358    * with the same load physical address. They loaded wrong data and need re-execution.
359    *
360    * Cycle 0: Store Writeback
361    *   Generate match vector for store address with rangeMask(stPtr, enqPtr).
362    *   Besides, load instructions in LoadUnit_S1 and S2 are also checked.
363    * Cycle 1: Redirect Generation
364    *   There're three possible types of violations. Choose the oldest load.
365    *   Prepare redirect request according to the detected violation.
366    * Cycle 2: Redirect Fire
367    *   Fire redirect request (if valid)
368    */
369  io.load_s1 := DontCare
370  def detectRollback(i: Int) = {
371    val startIndex = io.storeIn(i).bits.uop.lqIdx.value
372    val lqIdxMask = UIntToMask(startIndex, LoadQueueSize)
373    val xorMask = lqIdxMask ^ enqMask
374    val sameFlag = io.storeIn(i).bits.uop.lqIdx.flag === enqPtrExt(0).flag
375    val toEnqPtrMask = Mux(sameFlag, xorMask, ~xorMask)
376
377    // check if load already in lq needs to be rolledback
378    dataModule.io.violation(i).paddr := io.storeIn(i).bits.paddr
379    dataModule.io.violation(i).mask := io.storeIn(i).bits.mask
380    val addrMaskMatch = RegNext(dataModule.io.violation(i).violationMask)
381    val entryNeedCheck = RegNext(VecInit((0 until LoadQueueSize).map(j => {
382      allocated(j) && toEnqPtrMask(j) && (datavalid(j) || miss(j))
383    })))
384    val lqViolationVec = VecInit((0 until LoadQueueSize).map(j => {
385      addrMaskMatch(j) && entryNeedCheck(j)
386    }))
387    val lqViolation = lqViolationVec.asUInt().orR()
388    val lqViolationIndex = getFirstOne(lqViolationVec, RegNext(lqIdxMask))
389    val lqViolationUop = uop(lqViolationIndex)
390    // lqViolationUop.lqIdx.flag := deqMask(lqViolationIndex) ^ deqPtrExt.flag
391    // lqViolationUop.lqIdx.value := lqViolationIndex
392    XSDebug(lqViolation, p"${Binary(Cat(lqViolationVec))}, $startIndex, $lqViolationIndex\n")
393
394    // when l/s writeback to roq together, check if rollback is needed
395    val wbViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => {
396      io.loadIn(j).valid &&
397        isAfter(io.loadIn(j).bits.uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) &&
398        io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.loadIn(j).bits.paddr(PAddrBits - 1, 3) &&
399        (io.storeIn(i).bits.mask & io.loadIn(j).bits.mask).orR
400    })))
401    val wbViolation = wbViolationVec.asUInt().orR()
402    val wbViolationUop = getOldestInTwo(wbViolationVec, RegNext(VecInit(io.loadIn.map(_.bits.uop))))
403    XSDebug(wbViolation, p"${Binary(Cat(wbViolationVec))}, $wbViolationUop\n")
404
405    // check if rollback is needed for load in l1
406    val l1ViolationVec = RegNext(VecInit((0 until LoadPipelineWidth).map(j => {
407      io.load_s1(j).valid && // L1 valid
408        isAfter(io.load_s1(j).uop.roqIdx, io.storeIn(i).bits.uop.roqIdx) &&
409        io.storeIn(i).bits.paddr(PAddrBits - 1, 3) === io.load_s1(j).paddr(PAddrBits - 1, 3) &&
410        (io.storeIn(i).bits.mask & io.load_s1(j).mask).orR
411    })))
412    val l1Violation = l1ViolationVec.asUInt().orR()
413    val l1ViolationUop = getOldestInTwo(l1ViolationVec, RegNext(VecInit(io.load_s1.map(_.uop))))
414    XSDebug(l1Violation, p"${Binary(Cat(l1ViolationVec))}, $l1ViolationUop\n")
415
416    val rollbackValidVec = Seq(lqViolation, wbViolation, l1Violation)
417    val rollbackUopVec = Seq(lqViolationUop, wbViolationUop, l1ViolationUop)
418
419    val mask = getAfterMask(rollbackValidVec, rollbackUopVec)
420    val oneAfterZero = mask(1)(0)
421    val rollbackUop = Mux(oneAfterZero && mask(2)(0),
422      rollbackUopVec(0),
423      Mux(!oneAfterZero && mask(2)(1), rollbackUopVec(1), rollbackUopVec(2)))
424
425    XSDebug(
426      l1Violation,
427      "need rollback (l4 load) pc %x roqidx %d target %x\n",
428      io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, l1ViolationUop.roqIdx.asUInt
429    )
430    XSDebug(
431      lqViolation,
432      "need rollback (ld wb before store) pc %x roqidx %d target %x\n",
433      io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, lqViolationUop.roqIdx.asUInt
434    )
435    XSDebug(
436      wbViolation,
437      "need rollback (ld/st wb together) pc %x roqidx %d target %x\n",
438      io.storeIn(i).bits.uop.cf.pc, io.storeIn(i).bits.uop.roqIdx.asUInt, wbViolationUop.roqIdx.asUInt
439    )
440
441    (RegNext(io.storeIn(i).valid) && Cat(rollbackValidVec).orR, rollbackUop)
442  }
443
444  // rollback check
445  val rollback = Wire(Vec(StorePipelineWidth, Valid(new MicroOp)))
446  for (i <- 0 until StorePipelineWidth) {
447    val detectedRollback = detectRollback(i)
448    rollback(i).valid := detectedRollback._1
449    rollback(i).bits := detectedRollback._2
450  }
451
452  def rollbackSel(a: Valid[MicroOp], b: Valid[MicroOp]): ValidIO[MicroOp] = {
453    Mux(
454      a.valid,
455      Mux(
456        b.valid,
457        Mux(isAfter(a.bits.roqIdx, b.bits.roqIdx), b, a), // a,b both valid, sel oldest
458        a // sel a
459      ),
460      b // sel b
461    )
462  }
463
464  val rollbackSelected = ParallelOperation(rollback, rollbackSel)
465  val lastCycleRedirect = RegNext(io.brqRedirect)
466  val lastCycleFlush = RegNext(io.flush)
467
468  // S2: select rollback and generate rollback request
469  // Note that we use roqIdx - 1.U to flush the load instruction itself.
470  // Thus, here if last cycle's roqIdx equals to this cycle's roqIdx, it still triggers the redirect.
471  val rollbackGen = Wire(Valid(new Redirect))
472  val rollbackReg = Reg(Valid(new Redirect))
473  rollbackGen.valid := rollbackSelected.valid &&
474    !rollbackSelected.bits.roqIdx.needFlush(lastCycleRedirect, lastCycleFlush)
475
476  rollbackGen.bits.roqIdx := rollbackSelected.bits.roqIdx
477  rollbackGen.bits.ftqIdx := rollbackSelected.bits.cf.ftqPtr
478  rollbackGen.bits.ftqOffset := rollbackSelected.bits.cf.ftqOffset
479  rollbackGen.bits.level := RedirectLevel.flush
480  rollbackGen.bits.interrupt := DontCare
481  rollbackGen.bits.cfiUpdate := DontCare
482  rollbackGen.bits.cfiUpdate.target := rollbackSelected.bits.cf.pc
483
484  rollbackReg := rollbackGen
485
486  // S3: fire rollback request
487  io.rollback := rollbackReg
488  io.rollback.valid := rollbackReg.valid &&
489    !rollbackReg.bits.roqIdx.needFlush(lastCycleRedirect, lastCycleFlush)
490
491  when(io.rollback.valid) {
492    // XSDebug("Mem rollback: pc %x roqidx %d\n", io.rollback.bits.cfi, io.rollback.bits.roqIdx.asUInt)
493  }
494
495  /**
496    * Memory mapped IO / other uncached operations
497    *
498    * States:
499    * (1) writeback from store units: mark as pending
500    * (2) when they reach ROB's head, they can be sent to uncache channel
501    * (3) response from uncache channel: mark as datavalid
502    * (4) writeback to ROB (and other units): mark as writebacked
503    * (5) ROB commits the instruction: same as normal instructions
504    */
505  //(2) when they reach ROB's head, they can be sent to uncache channel
506  val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4)
507  val uncacheState = RegInit(s_idle)
508  switch(uncacheState) {
509    is(s_idle) {
510      when(io.roq.pendingld && pending(deqPtr) && allocated(deqPtr)) {
511        uncacheState := s_req
512      }
513    }
514    is(s_req) {
515      when(io.uncache.req.fire()) {
516        uncacheState := s_resp
517      }
518    }
519    is(s_resp) {
520      when(io.uncache.resp.fire()) {
521        uncacheState := s_wait
522      }
523    }
524    is(s_wait) {
525      when(io.roq.commit) {
526        uncacheState := s_idle // ready for next mmio
527      }
528    }
529  }
530  io.uncache.req.valid := uncacheState === s_req
531
532  dataModule.io.uncache.raddr := deqPtrExtNext.value
533
534  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XRD
535  io.uncache.req.bits.addr := dataModule.io.uncache.rdata.paddr
536  io.uncache.req.bits.data := dataModule.io.uncache.rdata.data
537  io.uncache.req.bits.mask := dataModule.io.uncache.rdata.mask
538
539  io.uncache.req.bits.id   := DontCare
540
541  io.uncache.resp.ready := true.B
542
543  when (io.uncache.req.fire()) {
544    pending(deqPtr) := false.B
545
546    XSDebug("uncache req: pc %x addr %x data %x op %x mask %x\n",
547      uop(deqPtr).cf.pc,
548      io.uncache.req.bits.addr,
549      io.uncache.req.bits.data,
550      io.uncache.req.bits.cmd,
551      io.uncache.req.bits.mask
552    )
553  }
554
555  // (3) response from uncache channel: mark as datavalid
556  dataModule.io.uncache.wen := false.B
557  when(io.uncache.resp.fire()){
558    datavalid(deqPtr) := true.B
559    dataModule.io.uncacheWrite(deqPtr, io.uncache.resp.bits.data(XLEN-1, 0))
560    dataModule.io.uncache.wen := true.B
561
562    XSDebug("uncache resp: data %x\n", io.dcache.bits.data)
563  }
564
565  // Read vaddr for mem exception
566  vaddrModule.io.raddr(0) := deqPtr + commitCount
567  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
568
569  // misprediction recovery / exception redirect
570  // invalidate lq term using robIdx
571  val needCancel = Wire(Vec(LoadQueueSize, Bool()))
572  for (i <- 0 until LoadQueueSize) {
573    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i)
574    when (needCancel(i)) {
575        allocated(i) := false.B
576    }
577  }
578
579  /**
580    * update pointers
581    */
582  val lastCycleCancelCount = PopCount(RegNext(needCancel))
583  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
584  val enqNumber = Mux(io.enq.canAccept && io.enq.sqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U)
585  when (lastCycleRedirect.valid || lastCycleFlush) {
586    // we recover the pointers in the next cycle after redirect
587    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
588  }.otherwise {
589    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
590  }
591
592  deqPtrExtNext := deqPtrExt + commitCount
593  deqPtrExt := deqPtrExtNext
594
595  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt)
596
597  allowEnqueue := validCount + enqNumber <= (LoadQueueSize - RenameWidth).U
598
599  // debug info
600  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt.flag, deqPtr)
601
602  def PrintFlag(flag: Bool, name: String): Unit = {
603    when(flag) {
604      XSDebug(false, true.B, name)
605    }.otherwise {
606      XSDebug(false, true.B, " ")
607    }
608  }
609
610  for (i <- 0 until LoadQueueSize) {
611    if (i % 4 == 0) XSDebug("")
612    XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr)
613    PrintFlag(allocated(i), "a")
614    PrintFlag(allocated(i) && datavalid(i), "v")
615    PrintFlag(allocated(i) && writebacked(i), "w")
616    PrintFlag(allocated(i) && miss(i), "m")
617    // PrintFlag(allocated(i) && listening(i), "l")
618    PrintFlag(allocated(i) && pending(i), "p")
619    XSDebug(false, true.B, " ")
620    if (i % 4 == 3 || i == LoadQueueSize - 1) XSDebug(false, true.B, "\n")
621  }
622
623}
624