1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 49 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 51} 52 53class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 54 val addr = UInt(PAddrBits.W) 55 val vaddr = UInt(VAddrBits.W) 56 val data = UInt(DataBits.W) 57 val mask = UInt((DataBits/8).W) 58 val wline = Bool() 59 val sqPtr = new SqPtr 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(8.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 73 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 74 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 75 val rob = Flipped(new RobLsqIO) 76 val uncache = new DCacheWordIO 77 // val refill = Flipped(Valid(new DCacheLineReq )) 78 val exceptionAddr = new ExceptionAddrIO 79 val sqempty = Output(Bool()) 80 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 81 val sqFull = Output(Bool()) 82 }) 83 84 println("StoreQueue: size:" + StoreQueueSize) 85 86 // data modules 87 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 88 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 89 val dataModule = Module(new SQDataModule( 90 numEntries = StoreQueueSize, 91 numRead = StorePipelineWidth, 92 numWrite = StorePipelineWidth, 93 numForward = StorePipelineWidth 94 )) 95 dataModule.io := DontCare 96 val paddrModule = Module(new SQAddrModule( 97 dataWidth = PAddrBits, 98 numEntries = StoreQueueSize, 99 numRead = StorePipelineWidth, 100 numWrite = StorePipelineWidth, 101 numForward = StorePipelineWidth 102 )) 103 paddrModule.io := DontCare 104 val vaddrModule = Module(new SQAddrModule( 105 dataWidth = VAddrBits, 106 numEntries = StoreQueueSize, 107 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 108 numWrite = StorePipelineWidth, 109 numForward = StorePipelineWidth 110 )) 111 vaddrModule.io := DontCare 112 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 113 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 114 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 115 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 116 117 // state & misc 118 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 119 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 120 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 121 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 122 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 123 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 124 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 125 126 // ptr 127 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 128 val rdataPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 129 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 130 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 131 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 132 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 133 val allowEnqueue = RegInit(true.B) 134 135 val enqPtr = enqPtrExt(0).value 136 val deqPtr = deqPtrExt(0).value 137 val cmtPtr = cmtPtrExt(0).value 138 139 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 140 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 141 142 val commitCount = RegNext(io.rob.scommit) 143 144 // Read dataModule 145 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 146 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 147 VecInit(rdataPtrExt.map(_ + 2.U)), 148 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 149 VecInit(rdataPtrExt.map(_ + 1.U)), 150 rdataPtrExt 151 ) 152 )) 153 // deqPtrExtNext traces which inst is about to leave store queue 154 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 155 VecInit(deqPtrExt.map(_ + 2.U)), 156 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 157 VecInit(deqPtrExt.map(_ + 1.U)), 158 deqPtrExt 159 ) 160 )) 161 for (i <- 0 until StorePipelineWidth) { 162 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 163 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 164 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 165 } 166 167 // no inst will be committed 1 cycle before tval update 168 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 169 170 /** 171 * Enqueue at dispatch 172 * 173 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 174 */ 175 io.enq.canAccept := allowEnqueue 176 for (i <- 0 until io.enq.req.length) { 177 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 178 val sqIdx = enqPtrExt(offset) 179 val index = sqIdx.value 180 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 181 uop(index) := io.enq.req(i).bits 182 allocated(index) := true.B 183 datavalid(index) := false.B 184 addrvalid(index) := false.B 185 committed(index) := false.B 186 pending(index) := false.B 187 } 188 io.enq.resp(i) := sqIdx 189 } 190 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 191 192 /** 193 * Update issuePtr when issue from rs 194 */ 195 // update issuePtr 196 val IssuePtrMoveStride = 4 197 require(IssuePtrMoveStride >= 2) 198 199 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 200 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 201 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 202 issuePtrExt := nextIssuePtr 203 204 when (io.brqRedirect.valid) { 205 issuePtrExt := Mux( 206 isAfter(cmtPtrExt(0), deqPtrExt(0)), 207 cmtPtrExt(0), 208 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 209 ) 210 } 211 // send issuePtrExt to rs 212 // io.issuePtrExt := cmtPtrExt(0) 213 io.issuePtrExt := issuePtrExt 214 215 /** 216 * Writeback store from store units 217 * 218 * Most store instructions writeback to regfile in the previous cycle. 219 * However, 220 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 221 * (in this way it will trigger an exception when it reaches ROB's head) 222 * instead of pending to avoid sending them to lower level. 223 * (2) For an mmio instruction without exceptions, we mark it as pending. 224 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 225 * Upon receiving the response, StoreQueue writes back the instruction 226 * through arbiter with store units. It will later commit as normal. 227 */ 228 229 // Write addr to sq 230 for (i <- 0 until StorePipelineWidth) { 231 paddrModule.io.wen(i) := false.B 232 vaddrModule.io.wen(i) := false.B 233 dataModule.io.mask.wen(i) := false.B 234 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 235 when (io.storeIn(i).fire()) { 236 val addr_valid = !io.storeIn(i).bits.miss 237 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 238 // pending(stWbIndex) := io.storeIn(i).bits.mmio 239 240 dataModule.io.mask.waddr(i) := stWbIndex 241 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 242 dataModule.io.mask.wen(i) := addr_valid 243 244 paddrModule.io.waddr(i) := stWbIndex 245 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 246 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 247 paddrModule.io.wen(i) := addr_valid 248 249 vaddrModule.io.waddr(i) := stWbIndex 250 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 251 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 252 vaddrModule.io.wen(i) := addr_valid 253 254 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 255 256 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 257 258 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 259 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 260 io.storeIn(i).bits.uop.sqIdx.value, 261 io.storeIn(i).bits.uop.cf.pc, 262 io.storeIn(i).bits.miss, 263 io.storeIn(i).bits.vaddr, 264 io.storeIn(i).bits.paddr, 265 io.storeIn(i).bits.mmio 266 ) 267 } 268 269 // re-replinish mmio, for pma/pmp will get mmio one cycle later 270 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 271 val stWbIndexReg = RegNext(stWbIndex) 272 when (storeInFireReg) { 273 pending(stWbIndexReg) := io.storeInRe(i).mmio 274 mmio(stWbIndexReg) := io.storeInRe(i).mmio 275 } 276 277 when(vaddrModule.io.wen(i)){ 278 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 279 } 280 } 281 282 // Write data to sq 283 for (i <- 0 until StorePipelineWidth) { 284 dataModule.io.data.wen(i) := false.B 285 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 286 when (io.storeDataIn(i).fire()) { 287 datavalid(stWbIndex) := true.B 288 289 dataModule.io.data.waddr(i) := stWbIndex 290 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 291 0.U, 292 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 293 ) 294 dataModule.io.data.wen(i) := true.B 295 296 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 297 298 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 299 io.storeDataIn(i).bits.uop.sqIdx.value, 300 io.storeDataIn(i).bits.uop.cf.pc, 301 io.storeDataIn(i).bits.data, 302 dataModule.io.data.wdata(i) 303 ) 304 } 305 } 306 307 /** 308 * load forward query 309 * 310 * Check store queue for instructions that is older than the load. 311 * The response will be valid at the next cycle after req. 312 */ 313 // check over all lq entries and forward data from the first matched store 314 for (i <- 0 until LoadPipelineWidth) { 315 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 316 // (1) if they have the same flag, we need to check range(tail, sqIdx) 317 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 318 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 319 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 320 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 321 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 322 val forwardMask = io.forward(i).sqIdxMask 323 // all addrvalid terms need to be checked 324 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 325 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 326 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 327 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 328 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 329 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 330 331 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 332 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 333 ) 334 335 // do real fwd query (cam lookup in load_s1) 336 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 337 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 338 339 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 340 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 341 342 // vaddr cam result does not equal to paddr cam result 343 // replay needed 344 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 345 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 346 val vpmaskNotEqual = ( 347 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 348 RegNext(needForward) & 349 RegNext(addrValidVec.asUInt) 350 ) =/= 0.U 351 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 352 when (vaddrMatchFailed) { 353 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 354 RegNext(io.forward(i).uop.cf.pc), 355 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 356 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 357 ); 358 } 359 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 360 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 361 362 // Fast forward mask will be generated immediately (load_s1) 363 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 364 365 // Forward result will be generated 1 cycle later (load_s2) 366 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 367 io.forward(i).forwardData := dataModule.io.forwardData(i) 368 369 // If addr match, data not ready, mark it as dataInvalid 370 // load_s1: generate dataInvalid in load_s1 to set fastUop 371 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 372 val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward)) 373 // load_s2 374 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 375 376 // load_s2 377 // check if vaddr forward mismatched 378 io.forward(i).matchInvalid := vaddrMatchFailed 379 io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg 380 } 381 382 /** 383 * Memory mapped IO / other uncached operations 384 * 385 * States: 386 * (1) writeback from store units: mark as pending 387 * (2) when they reach ROB's head, they can be sent to uncache channel 388 * (3) response from uncache channel: mark as datavalidmask.wen 389 * (4) writeback to ROB (and other units): mark as writebacked 390 * (5) ROB commits the instruction: same as normal instructions 391 */ 392 //(2) when they reach ROB's head, they can be sent to uncache channel 393 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 394 val uncacheState = RegInit(s_idle) 395 switch(uncacheState) { 396 is(s_idle) { 397 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 398 uncacheState := s_req 399 } 400 } 401 is(s_req) { 402 when(io.uncache.req.fire()) { 403 uncacheState := s_resp 404 } 405 } 406 is(s_resp) { 407 when(io.uncache.resp.fire()) { 408 uncacheState := s_wb 409 } 410 } 411 is(s_wb) { 412 when (io.mmioStout.fire()) { 413 uncacheState := s_wait 414 } 415 } 416 is(s_wait) { 417 when(commitCount > 0.U) { 418 uncacheState := s_idle // ready for next mmio 419 } 420 } 421 } 422 io.uncache.req.valid := uncacheState === s_req 423 424 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 425 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 426 io.uncache.req.bits.data := dataModule.io.rdata(0).data 427 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 428 429 // CBO op type check can be delayed for 1 cycle, 430 // as uncache op will not start in s_idle 431 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 432 val cbo_mmio_op = 0.U //TODO 433 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 434 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 435 io.uncache.req.bits.addr := DontCare // TODO 436 io.uncache.req.bits.data := paddrModule.io.rdata(0) 437 io.uncache.req.bits.mask := DontCare // TODO 438 } 439 440 io.uncache.req.bits.id := DontCare 441 io.uncache.req.bits.instrtype := DontCare 442 443 when(io.uncache.req.fire()){ 444 // mmio store should not be committed until uncache req is sent 445 pending(deqPtr) := false.B 446 447 XSDebug( 448 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 449 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 450 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 451 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 452 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 453 ) 454 } 455 456 // (3) response from uncache channel: mark as datavalid 457 io.uncache.resp.ready := true.B 458 459 // (4) writeback to ROB (and other units): mark as writebacked 460 io.mmioStout.valid := uncacheState === s_wb 461 io.mmioStout.bits.uop := uop(deqPtr) 462 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 463 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 464 io.mmioStout.bits.redirectValid := false.B 465 io.mmioStout.bits.redirect := DontCare 466 io.mmioStout.bits.debug.isMMIO := true.B 467 io.mmioStout.bits.debug.paddr := DontCare 468 io.mmioStout.bits.debug.isPerfCnt := false.B 469 io.mmioStout.bits.fflags := DontCare 470 io.mmioStout.bits.debug.vaddr := DontCare 471 // Remove MMIO inst from store queue after MMIO request is being sent 472 // That inst will be traced by uncache state machine 473 when (io.mmioStout.fire()) { 474 allocated(deqPtr) := false.B 475 } 476 477 /** 478 * ROB commits store instructions (mark them as committed) 479 * 480 * (1) When store commits, mark it as committed. 481 * (2) They will not be cancelled and can be sent to lower level. 482 */ 483 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 484 "should not commit instruction when MMIO has not been finished\n") 485 for (i <- 0 until CommitWidth) { 486 when (commitCount > i.U) { // MMIO inst is not in progress 487 if(i == 0){ 488 // MMIO inst should not update committed flag 489 // Note that commit count has been delayed for 1 cycle 490 when(uncacheState === s_idle){ 491 committed(cmtPtrExt(0).value) := true.B 492 } 493 } else { 494 committed(cmtPtrExt(i).value) := true.B 495 } 496 } 497 } 498 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 499 500 // committed stores will not be cancelled and can be sent to lower level. 501 // remove retired insts from sq, add retired store to sbuffer 502 503 // Read data from data module 504 // As store queue grows larger and larger, time needed to read data from data 505 // module keeps growing higher. Now we give data read a whole cycle. 506 507 // For now, data read logic width is hardcoded to 2 508 require(StorePipelineWidth == 2) // TODO: add EnsbufferWidth parameter 509 val mmioStall = mmio(rdataPtrExt(0).value) 510 for (i <- 0 until StorePipelineWidth) { 511 val ptr = rdataPtrExt(i).value 512 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 513 // Note that store data/addr should both be valid after store's commit 514 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 515 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 516 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 517 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 518 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 519 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 520 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 521 } 522 523 // Send data stored in sbufferReqBitsReg to sbuffer 524 for (i <- 0 until StorePipelineWidth) { 525 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 526 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 527 // Write line request should have all 1 mask 528 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 529 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 530 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 531 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 532 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 533 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 534 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 535 io.sbuffer(i).bits.id := DontCare 536 io.sbuffer(i).bits.instrtype := DontCare 537 538 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 539 when (io.sbuffer(i).fire()) { 540 allocated(ptr) := false.B 541 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 542 } 543 } 544 when (io.sbuffer(1).fire()) { 545 assert(io.sbuffer(0).fire()) 546 } 547 if (coreParams.dcacheParametersOpt.isEmpty) { 548 for (i <- 0 until StorePipelineWidth) { 549 val ptr = deqPtrExt(i).value 550 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 551 fakeRAM.clk := clock 552 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 553 fakeRAM.rIdx := 0.U 554 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 555 fakeRAM.wdata := dataModule.io.rdata(i).data 556 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 557 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 558 } 559 } 560 561 if (env.EnableDifftest) { 562 for (i <- 0 until StorePipelineWidth) { 563 val storeCommit = io.sbuffer(i).fire() 564 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 565 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 566 val wmask = io.sbuffer(i).bits.mask 567 568 val difftest = Module(new DifftestStoreEvent) 569 difftest.io.clock := clock 570 difftest.io.coreid := io.hartId 571 difftest.io.index := i.U 572 difftest.io.valid := storeCommit 573 difftest.io.storeAddr := waddr 574 difftest.io.storeData := wdata 575 difftest.io.storeMask := wmask 576 } 577 } 578 579 // Read vaddr for mem exception 580 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 581 582 // misprediction recovery / exception redirect 583 // invalidate sq term using robIdx 584 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 585 for (i <- 0 until StoreQueueSize) { 586 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 587 when (needCancel(i)) { 588 allocated(i) := false.B 589 } 590 } 591 592 /** 593 * update pointers 594 */ 595 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 596 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 597 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 598 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 599 when (lastCycleRedirect) { 600 // we recover the pointers in the next cycle after redirect 601 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 602 }.otherwise { 603 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 604 } 605 606 deqPtrExt := deqPtrExtNext 607 rdataPtrExt := rdataPtrExtNext 608 609 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 610 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 611 612 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - io.enq.req.length).U 613 614 // io.sqempty will be used by sbuffer 615 // We delay it for 1 cycle for better timing 616 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 617 // for 1 cycle will also promise that sq is empty in that cycle 618 io.sqempty := RegNext( 619 enqPtrExt(0).value === deqPtrExt(0).value && 620 enqPtrExt(0).flag === deqPtrExt(0).flag 621 ) 622 623 // perf counter 624 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 625 io.sqFull := !allowEnqueue 626 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 627 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 628 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 629 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 630 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 631 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 632 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 633 634 val perfEvents = Seq( 635 ("mmioCycle ", uncacheState =/= s_idle ), 636 ("mmioCnt ", io.uncache.req.fire() ), 637 ("mmio_wb_success", io.mmioStout.fire() ), 638 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready ), 639 ("stq_1_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U)) ), 640 ("stq_2_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U)) ), 641 ("stq_3_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))), 642 ("stq_4_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U)) ), 643 ) 644 generatePerfEvent() 645 646 // debug info 647 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 648 649 def PrintFlag(flag: Bool, name: String): Unit = { 650 when(flag) { 651 XSDebug(false, true.B, name) 652 }.otherwise { 653 XSDebug(false, true.B, " ") 654 } 655 } 656 657 for (i <- 0 until StoreQueueSize) { 658 XSDebug(i + ": pc %x va %x pa %x data %x ", 659 uop(i).cf.pc, 660 debug_vaddr(i), 661 debug_paddr(i), 662 debug_data(i) 663 ) 664 PrintFlag(allocated(i), "a") 665 PrintFlag(allocated(i) && addrvalid(i), "a") 666 PrintFlag(allocated(i) && datavalid(i), "d") 667 PrintFlag(allocated(i) && committed(i), "c") 668 PrintFlag(allocated(i) && pending(i), "p") 669 PrintFlag(allocated(i) && mmio(i), "m") 670 XSDebug(false, true.B, "\n") 671 } 672 673} 674