xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 068bf978a62360db6c16671704497c3e01d6843f)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33  override def cloneType = (new SqPtr).asInstanceOf[this.type]
34}
35
36object SqPtr {
37  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
38    val ptr = Wire(new SqPtr)
39    ptr.flag := f
40    ptr.value := v
41    ptr
42  }
43}
44
45class SqEnqIO(implicit p: Parameters) extends XSBundle {
46  val canAccept = Output(Bool())
47  val lqCanAccept = Input(Bool())
48  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
49  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
50  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
51}
52
53class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
54  val addr   = UInt(PAddrBits.W)
55  val vaddr  = UInt(VAddrBits.W)
56  val data   = UInt(DataBits.W)
57  val mask   = UInt((DataBits/8).W)
58  val wline = Bool()
59  val sqPtr  = new SqPtr
60}
61
62// Store Queue
63class StoreQueue(implicit p: Parameters) extends XSModule
64  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
65  val io = IO(new Bundle() {
66    val hartId = Input(UInt(8.W))
67    val enq = new SqEnqIO
68    val brqRedirect = Flipped(ValidIO(new Redirect))
69    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
70    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
71    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs
72    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
73    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
74    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
75    val rob = Flipped(new RobLsqIO)
76    val uncache = new DCacheWordIO
77    // val refill = Flipped(Valid(new DCacheLineReq ))
78    val exceptionAddr = new ExceptionAddrIO
79    val sqempty = Output(Bool())
80    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
81    val sqFull = Output(Bool())
82  })
83
84  println("StoreQueue: size:" + StoreQueueSize)
85
86  // data modules
87  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
88  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
89  val dataModule = Module(new SQDataModule(
90    numEntries = StoreQueueSize,
91    numRead = StorePipelineWidth,
92    numWrite = StorePipelineWidth,
93    numForward = StorePipelineWidth
94  ))
95  dataModule.io := DontCare
96  val paddrModule = Module(new SQAddrModule(
97    dataWidth = PAddrBits,
98    numEntries = StoreQueueSize,
99    numRead = StorePipelineWidth,
100    numWrite = StorePipelineWidth,
101    numForward = StorePipelineWidth
102  ))
103  paddrModule.io := DontCare
104  val vaddrModule = Module(new SQAddrModule(
105    dataWidth = VAddrBits,
106    numEntries = StoreQueueSize,
107    numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO)
108    numWrite = StorePipelineWidth,
109    numForward = StorePipelineWidth
110  ))
111  vaddrModule.io := DontCare
112  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
113  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
114  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
115  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
116
117  // state & misc
118  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
119  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
120  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
121  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
122  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
123  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
124  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
125
126  // ptr
127  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
128  val rdataPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
129  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
130  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
131  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
132  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
133  val allowEnqueue = RegInit(true.B)
134
135  val enqPtr = enqPtrExt(0).value
136  val deqPtr = deqPtrExt(0).value
137  val cmtPtr = cmtPtrExt(0).value
138
139  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
140  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
141
142  val commitCount = RegNext(io.rob.scommit)
143
144  // Read dataModule
145  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
146  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
147    VecInit(rdataPtrExt.map(_ + 2.U)),
148    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
149      VecInit(rdataPtrExt.map(_ + 1.U)),
150      rdataPtrExt
151    )
152  ))
153  // deqPtrExtNext traces which inst is about to leave store queue
154  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
155    VecInit(deqPtrExt.map(_ + 2.U)),
156    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
157      VecInit(deqPtrExt.map(_ + 1.U)),
158      deqPtrExt
159    )
160  ))
161  for (i <- 0 until StorePipelineWidth) {
162    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
163    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
164    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
165  }
166
167  // no inst will be committed 1 cycle before tval update
168  vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value
169
170  /**
171    * Enqueue at dispatch
172    *
173    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
174    */
175  io.enq.canAccept := allowEnqueue
176  for (i <- 0 until io.enq.req.length) {
177    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
178    val sqIdx = enqPtrExt(offset)
179    val index = sqIdx.value
180    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
181      uop(index) := io.enq.req(i).bits
182      allocated(index) := true.B
183      datavalid(index) := false.B
184      addrvalid(index) := false.B
185      committed(index) := false.B
186      pending(index) := false.B
187    }
188    io.enq.resp(i) := sqIdx
189  }
190  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
191
192  /**
193    * Update issuePtr when issue from rs
194    */
195  // update issuePtr
196  val IssuePtrMoveStride = 4
197  require(IssuePtrMoveStride >= 2)
198
199  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
200  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
201  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
202  issuePtrExt := nextIssuePtr
203
204  when (io.brqRedirect.valid) {
205    issuePtrExt := Mux(
206      isAfter(cmtPtrExt(0), deqPtrExt(0)),
207      cmtPtrExt(0),
208      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
209    )
210  }
211  // send issuePtrExt to rs
212  // io.issuePtrExt := cmtPtrExt(0)
213  io.issuePtrExt := issuePtrExt
214
215  /**
216    * Writeback store from store units
217    *
218    * Most store instructions writeback to regfile in the previous cycle.
219    * However,
220    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
221    * (in this way it will trigger an exception when it reaches ROB's head)
222    * instead of pending to avoid sending them to lower level.
223    *   (2) For an mmio instruction without exceptions, we mark it as pending.
224    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
225    * Upon receiving the response, StoreQueue writes back the instruction
226    * through arbiter with store units. It will later commit as normal.
227    */
228
229  // Write addr to sq
230  for (i <- 0 until StorePipelineWidth) {
231    paddrModule.io.wen(i) := false.B
232    vaddrModule.io.wen(i) := false.B
233    dataModule.io.mask.wen(i) := false.B
234    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
235    when (io.storeIn(i).fire()) {
236      val addr_valid = !io.storeIn(i).bits.miss
237      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
238      // pending(stWbIndex) := io.storeIn(i).bits.mmio
239
240      dataModule.io.mask.waddr(i) := stWbIndex
241      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
242      dataModule.io.mask.wen(i) := addr_valid
243
244      paddrModule.io.waddr(i) := stWbIndex
245      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
246      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
247      paddrModule.io.wen(i) := addr_valid
248
249      vaddrModule.io.waddr(i) := stWbIndex
250      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
251      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
252      vaddrModule.io.wen(i) := addr_valid
253
254      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
255
256      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
257
258      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
259      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
260        io.storeIn(i).bits.uop.sqIdx.value,
261        io.storeIn(i).bits.uop.cf.pc,
262        io.storeIn(i).bits.miss,
263        io.storeIn(i).bits.vaddr,
264        io.storeIn(i).bits.paddr,
265        io.storeIn(i).bits.mmio
266      )
267    }
268
269    // re-replinish mmio, for pma/pmp will get mmio one cycle later
270    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
271    val stWbIndexReg = RegNext(stWbIndex)
272    when (storeInFireReg) {
273      pending(stWbIndexReg) := io.storeInRe(i).mmio
274      mmio(stWbIndexReg) := io.storeInRe(i).mmio
275    }
276
277    when(vaddrModule.io.wen(i)){
278      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
279    }
280  }
281
282  // Write data to sq
283  for (i <- 0 until StorePipelineWidth) {
284    dataModule.io.data.wen(i) := false.B
285    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
286    when (io.storeDataIn(i).fire()) {
287      datavalid(stWbIndex) := true.B
288
289      dataModule.io.data.waddr(i) := stWbIndex
290      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
291        0.U,
292        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
293      )
294      dataModule.io.data.wen(i) := true.B
295
296      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
297
298      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
299        io.storeDataIn(i).bits.uop.sqIdx.value,
300        io.storeDataIn(i).bits.uop.cf.pc,
301        io.storeDataIn(i).bits.data,
302        dataModule.io.data.wdata(i)
303      )
304    }
305  }
306
307  /**
308    * load forward query
309    *
310    * Check store queue for instructions that is older than the load.
311    * The response will be valid at the next cycle after req.
312    */
313  // check over all lq entries and forward data from the first matched store
314  for (i <- 0 until LoadPipelineWidth) {
315    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
316    // (1) if they have the same flag, we need to check range(tail, sqIdx)
317    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
318    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
319    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
320    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
321    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
322    val forwardMask = io.forward(i).sqIdxMask
323    // all addrvalid terms need to be checked
324    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
325    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
326    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
327    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
328    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
329    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
330
331    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
332      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
333    )
334
335    // do real fwd query (cam lookup in load_s1)
336    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
337    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
338
339    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
340    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
341
342    // vaddr cam result does not equal to paddr cam result
343    // replay needed
344    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
345    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
346    val vpmaskNotEqual = (
347      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
348      RegNext(needForward) &
349      RegNext(addrValidVec.asUInt)
350    ) =/= 0.U
351    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
352    when (vaddrMatchFailed) {
353      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
354        RegNext(io.forward(i).uop.cf.pc),
355        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
356        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
357      );
358    }
359    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
360    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
361
362    // Fast forward mask will be generated immediately (load_s1)
363    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
364
365    // Forward result will be generated 1 cycle later (load_s2)
366    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
367    io.forward(i).forwardData := dataModule.io.forwardData(i)
368
369    // If addr match, data not ready, mark it as dataInvalid
370    // load_s1: generate dataInvalid in load_s1 to set fastUop
371    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR
372    val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward))
373    // load_s2
374    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
375
376    // load_s2
377    // check if vaddr forward mismatched
378    io.forward(i).matchInvalid := vaddrMatchFailed
379    io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg
380  }
381
382  /**
383    * Memory mapped IO / other uncached operations
384    *
385    * States:
386    * (1) writeback from store units: mark as pending
387    * (2) when they reach ROB's head, they can be sent to uncache channel
388    * (3) response from uncache channel: mark as datavalidmask.wen
389    * (4) writeback to ROB (and other units): mark as writebacked
390    * (5) ROB commits the instruction: same as normal instructions
391    */
392  //(2) when they reach ROB's head, they can be sent to uncache channel
393  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
394  val uncacheState = RegInit(s_idle)
395  switch(uncacheState) {
396    is(s_idle) {
397      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
398        uncacheState := s_req
399      }
400    }
401    is(s_req) {
402      when(io.uncache.req.fire()) {
403        uncacheState := s_resp
404      }
405    }
406    is(s_resp) {
407      when(io.uncache.resp.fire()) {
408        uncacheState := s_wb
409      }
410    }
411    is(s_wb) {
412      when (io.mmioStout.fire()) {
413        uncacheState := s_wait
414      }
415    }
416    is(s_wait) {
417      when(commitCount > 0.U) {
418        uncacheState := s_idle // ready for next mmio
419      }
420    }
421  }
422  io.uncache.req.valid := uncacheState === s_req
423
424  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
425  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
426  io.uncache.req.bits.data := dataModule.io.rdata(0).data
427  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
428
429  // CBO op type check can be delayed for 1 cycle,
430  // as uncache op will not start in s_idle
431  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
432  val cbo_mmio_op = 0.U //TODO
433  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
434  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
435    io.uncache.req.bits.addr := DontCare // TODO
436    io.uncache.req.bits.data := paddrModule.io.rdata(0)
437    io.uncache.req.bits.mask := DontCare // TODO
438  }
439
440  io.uncache.req.bits.id   := DontCare
441  io.uncache.req.bits.instrtype   := DontCare
442
443  when(io.uncache.req.fire()){
444    // mmio store should not be committed until uncache req is sent
445    pending(deqPtr) := false.B
446
447    XSDebug(
448      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
449      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
450      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
451      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
452      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
453    )
454  }
455
456  // (3) response from uncache channel: mark as datavalid
457  io.uncache.resp.ready := true.B
458
459  // (4) writeback to ROB (and other units): mark as writebacked
460  io.mmioStout.valid := uncacheState === s_wb
461  io.mmioStout.bits.uop := uop(deqPtr)
462  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
463  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
464  io.mmioStout.bits.redirectValid := false.B
465  io.mmioStout.bits.redirect := DontCare
466  io.mmioStout.bits.debug.isMMIO := true.B
467  io.mmioStout.bits.debug.paddr := DontCare
468  io.mmioStout.bits.debug.isPerfCnt := false.B
469  io.mmioStout.bits.fflags := DontCare
470  io.mmioStout.bits.debug.vaddr := DontCare
471  // Remove MMIO inst from store queue after MMIO request is being sent
472  // That inst will be traced by uncache state machine
473  when (io.mmioStout.fire()) {
474    allocated(deqPtr) := false.B
475  }
476
477  /**
478    * ROB commits store instructions (mark them as committed)
479    *
480    * (1) When store commits, mark it as committed.
481    * (2) They will not be cancelled and can be sent to lower level.
482    */
483  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
484   "should not commit instruction when MMIO has not been finished\n")
485  for (i <- 0 until CommitWidth) {
486    when (commitCount > i.U) { // MMIO inst is not in progress
487      if(i == 0){
488        // MMIO inst should not update committed flag
489        // Note that commit count has been delayed for 1 cycle
490        when(uncacheState === s_idle){
491          committed(cmtPtrExt(0).value) := true.B
492        }
493      } else {
494        committed(cmtPtrExt(i).value) := true.B
495      }
496    }
497  }
498  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
499
500  // committed stores will not be cancelled and can be sent to lower level.
501  // remove retired insts from sq, add retired store to sbuffer
502
503  // Read data from data module
504  // As store queue grows larger and larger, time needed to read data from data
505  // module keeps growing higher. Now we give data read a whole cycle.
506
507  // For now, data read logic width is hardcoded to 2
508  require(StorePipelineWidth == 2) // TODO: add EnsbufferWidth parameter
509  val mmioStall = mmio(rdataPtrExt(0).value)
510  for (i <- 0 until StorePipelineWidth) {
511    val ptr = rdataPtrExt(i).value
512    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
513    // Note that store data/addr should both be valid after store's commit
514    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
515    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
516    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
517    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
518    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
519    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
520    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
521  }
522
523  // Send data stored in sbufferReqBitsReg to sbuffer
524  for (i <- 0 until StorePipelineWidth) {
525    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
526    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
527    // Write line request should have all 1 mask
528    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
529    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
530    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
531    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
532    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
533    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
534    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
535    io.sbuffer(i).bits.id    := DontCare
536    io.sbuffer(i).bits.instrtype    := DontCare
537
538    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
539    when (io.sbuffer(i).fire()) {
540      allocated(ptr) := false.B
541      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
542    }
543  }
544  when (io.sbuffer(1).fire()) {
545    assert(io.sbuffer(0).fire())
546  }
547  if (coreParams.dcacheParametersOpt.isEmpty) {
548    for (i <- 0 until StorePipelineWidth) {
549      val ptr = deqPtrExt(i).value
550      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
551      fakeRAM.clk   := clock
552      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
553      fakeRAM.rIdx  := 0.U
554      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
555      fakeRAM.wdata := dataModule.io.rdata(i).data
556      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
557      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
558    }
559  }
560
561  if (env.EnableDifftest) {
562    for (i <- 0 until StorePipelineWidth) {
563      val storeCommit = io.sbuffer(i).fire()
564      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
565      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
566      val wmask = io.sbuffer(i).bits.mask
567
568      val difftest = Module(new DifftestStoreEvent)
569      difftest.io.clock       := clock
570      difftest.io.coreid      := io.hartId
571      difftest.io.index       := i.U
572      difftest.io.valid       := storeCommit
573      difftest.io.storeAddr   := waddr
574      difftest.io.storeData   := wdata
575      difftest.io.storeMask   := wmask
576    }
577  }
578
579  // Read vaddr for mem exception
580  io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth)
581
582  // misprediction recovery / exception redirect
583  // invalidate sq term using robIdx
584  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
585  for (i <- 0 until StoreQueueSize) {
586    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
587    when (needCancel(i)) {
588        allocated(i) := false.B
589    }
590  }
591
592  /**
593    * update pointers
594    */
595  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
596  val lastCycleCancelCount = PopCount(RegNext(needCancel))
597  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
598  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
599  when (lastCycleRedirect) {
600    // we recover the pointers in the next cycle after redirect
601    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
602  }.otherwise {
603    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
604  }
605
606  deqPtrExt := deqPtrExtNext
607  rdataPtrExt := rdataPtrExtNext
608
609  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
610  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
611
612  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - io.enq.req.length).U
613
614  // io.sqempty will be used by sbuffer
615  // We delay it for 1 cycle for better timing
616  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
617  // for 1 cycle will also promise that sq is empty in that cycle
618  io.sqempty := RegNext(
619    enqPtrExt(0).value === deqPtrExt(0).value &&
620    enqPtrExt(0).flag === deqPtrExt(0).flag
621  )
622
623  // perf counter
624  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
625  io.sqFull := !allowEnqueue
626  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
627  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
628  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
629  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
630  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
631  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
632  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
633
634  val perfEvents = Seq(
635    ("mmioCycle      ", uncacheState =/= s_idle                                                                                                                             ),
636    ("mmioCnt        ", io.uncache.req.fire()                                                                                                                               ),
637    ("mmio_wb_success", io.mmioStout.fire()                                                                                                                                 ),
638    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready                                                                                                           ),
639    ("stq_1_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U))                                                                              ),
640    ("stq_2_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U))    ),
641    ("stq_3_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))),
642    ("stq_4_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U))                                                                          ),
643  )
644  generatePerfEvent()
645
646  // debug info
647  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
648
649  def PrintFlag(flag: Bool, name: String): Unit = {
650    when(flag) {
651      XSDebug(false, true.B, name)
652    }.otherwise {
653      XSDebug(false, true.B, " ")
654    }
655  }
656
657  for (i <- 0 until StoreQueueSize) {
658    XSDebug(i + ": pc %x va %x pa %x data %x ",
659      uop(i).cf.pc,
660      debug_vaddr(i),
661      debug_paddr(i),
662      debug_data(i)
663    )
664    PrintFlag(allocated(i), "a")
665    PrintFlag(allocated(i) && addrvalid(i), "a")
666    PrintFlag(allocated(i) && datavalid(i), "d")
667    PrintFlag(allocated(i) && committed(i), "c")
668    PrintFlag(allocated(i) && pending(i), "p")
669    PrintFlag(allocated(i) && mmio(i), "m")
670    XSDebug(false, true.B, "\n")
671  }
672
673}
674