1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 }) 48 49 // data modules 50 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 51 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 52 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 53 dataModule.io := DontCare 54 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 55 vaddrModule.io := DontCare 56 57 // state & misc 58 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 59 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 60 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 61 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 62 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 63 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 64 65 // ptr 66 require(StoreQueueSize > RenameWidth) 67 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 68 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 69 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 70 val allowEnqueue = RegInit(true.B) 71 72 val enqPtr = enqPtrExt(0).value 73 val deqPtr = deqPtrExt(0).value 74 75 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 76 val headMask = UIntToMask(enqPtr, StoreQueueSize) 77 78 // Read dataModule 79 // deqPtr and deqPtr+1 entry will be read from dataModule 80 val dataModuleRead = dataModule.io.rdata 81 for (i <- 0 until StorePipelineWidth) { 82 dataModule.io.raddr(i) := deqPtrExt(i).value 83 } 84 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 85 86 /** 87 * Enqueue at dispatch 88 * 89 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 90 */ 91 io.enq.canAccept := allowEnqueue 92 for (i <- 0 until RenameWidth) { 93 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 94 val sqIdx = enqPtrExt(offset) 95 val index = sqIdx.value 96 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 97 uop(index) := io.enq.req(i).bits 98 allocated(index) := true.B 99 datavalid(index) := false.B 100 writebacked(index) := false.B 101 commited(index) := false.B 102 pending(index) := false.B 103 } 104 io.enq.resp(i) := sqIdx 105 } 106 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 107 108 /** 109 * Writeback store from store units 110 * 111 * Most store instructions writeback to regfile in the previous cycle. 112 * However, 113 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 114 * (in this way it will trigger an exception when it reaches ROB's head) 115 * instead of pending to avoid sending them to lower level. 116 * (2) For an mmio instruction without exceptions, we mark it as pending. 117 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 118 * Upon receiving the response, StoreQueue writes back the instruction 119 * through arbiter with store units. It will later commit as normal. 120 */ 121 for (i <- 0 until StorePipelineWidth) { 122 dataModule.io.wen(i) := false.B 123 vaddrModule.io.wen(i) := false.B 124 when (io.storeIn(i).fire()) { 125 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 126 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 127 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 128 pending(stWbIndex) := io.storeIn(i).bits.mmio 129 130 val storeWbData = Wire(new SQDataEntry) 131 storeWbData := DontCare 132 storeWbData.paddr := io.storeIn(i).bits.paddr 133 storeWbData.mask := io.storeIn(i).bits.mask 134 storeWbData.data := io.storeIn(i).bits.data 135 dataModule.io.waddr(i) := stWbIndex 136 dataModule.io.wdata(i) := storeWbData 137 dataModule.io.wen(i) := true.B 138 139 vaddrModule.io.waddr(i) := stWbIndex 140 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 141 vaddrModule.io.wen(i) := true.B 142 143 mmio(stWbIndex) := io.storeIn(i).bits.mmio 144 145 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 146 io.storeIn(i).bits.uop.sqIdx.value, 147 io.storeIn(i).bits.uop.cf.pc, 148 io.storeIn(i).bits.vaddr, 149 io.storeIn(i).bits.paddr, 150 io.storeIn(i).bits.data, 151 io.storeIn(i).bits.mmio 152 ) 153 } 154 } 155 156 /** 157 * load forward query 158 * 159 * Check store queue for instructions that is older than the load. 160 * The response will be valid at the next cycle after req. 161 */ 162 // check over all lq entries and forward data from the first matched store 163 for (i <- 0 until LoadPipelineWidth) { 164 io.forward(i).forwardMask := 0.U(8.W).asBools 165 io.forward(i).forwardData := DontCare 166 167 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 168 // (1) if they have the same flag, we need to check range(tail, sqIdx) 169 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 170 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 171 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 172 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 173 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 174 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 175 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 176 for (j <- 0 until StoreQueueSize) { 177 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 178 } 179 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 180 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 181 182 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 183 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 184 ) 185 186 // do real fwd query 187 dataModule.io.forwardQuery( 188 numForward = i, 189 paddr = io.forward(i).paddr, 190 needForward1 = needForward1, 191 needForward2 = needForward2 192 ) 193 194 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 195 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 196 } 197 198 /** 199 * Memory mapped IO / other uncached operations 200 * 201 * States: 202 * (1) writeback from store units: mark as pending 203 * (2) when they reach ROB's head, they can be sent to uncache channel 204 * (3) response from uncache channel: mark as datavalid 205 * (4) writeback to ROB (and other units): mark as writebacked 206 * (5) ROB commits the instruction: same as normal instructions 207 */ 208 //(2) when they reach ROB's head, they can be sent to uncache channel 209 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 210 io.commits.info(0).commitType === CommitType.STORE && 211 io.roqDeqPtr === uop(deqPtr).roqIdx && 212 !io.commits.isWalk 213 214 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 215 io.uncache.req.bits.addr := dataModule.io.rdata(0).paddr // data(deqPtr) -> rdata(0) 216 io.uncache.req.bits.data := dataModule.io.rdata(0).data 217 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 218 219 io.uncache.req.bits.meta.id := DontCare 220 io.uncache.req.bits.meta.vaddr := DontCare 221 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(0).paddr 222 io.uncache.req.bits.meta.uop := uop(deqPtr) 223 io.uncache.req.bits.meta.mmio := true.B 224 io.uncache.req.bits.meta.tlb_miss := false.B 225 io.uncache.req.bits.meta.mask := dataModule.io.rdata(0).mask 226 io.uncache.req.bits.meta.replay := false.B 227 228 when(io.uncache.req.fire()){ 229 pending(deqPtr) := false.B 230 231 XSDebug( 232 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 233 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 234 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 235 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 236 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 237 ) 238 } 239 240 // (3) response from uncache channel: mark as datavalid 241 io.uncache.resp.ready := true.B 242 when (io.uncache.resp.fire()) { 243 datavalid(deqPtr) := true.B 244 } 245 246 // (4) writeback to ROB (and other units): mark as writebacked 247 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 248 io.mmioStout.bits.uop := uop(deqPtr) 249 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 250 io.mmioStout.bits.data := dataModuleRead(0).data // dataModuleRead.read(deqPtr) 251 io.mmioStout.bits.redirectValid := false.B 252 io.mmioStout.bits.redirect := DontCare 253 io.mmioStout.bits.brUpdate := DontCare 254 io.mmioStout.bits.debug.isMMIO := true.B 255 io.mmioStout.bits.debug.isPerfCnt := false.B 256 io.mmioStout.bits.fflags := DontCare 257 when (io.mmioStout.fire()) { 258 writebacked(deqPtr) := true.B 259 allocated(deqPtr) := false.B 260 } 261 262 /** 263 * ROB commits store instructions (mark them as commited) 264 * 265 * (1) When store commits, mark it as commited. 266 * (2) They will not be cancelled and can be sent to lower level. 267 */ 268 for (i <- 0 until CommitWidth) { 269 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 270 when (storeCommit) { 271 commited(io.commits.info(i).sqIdx.value) := true.B 272 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 273 } 274 } 275 276 // Commited stores will not be cancelled and can be sent to lower level. 277 // remove retired insts from sq, add retired store to sbuffer 278 for (i <- 0 until StorePipelineWidth) { 279 val ptr = deqPtrExt(i).value 280 val ismmio = mmio(ptr) 281 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !ismmio 282 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 283 io.sbuffer(i).bits.addr := dataModuleRead(i).paddr 284 io.sbuffer(i).bits.data := dataModuleRead(i).data 285 io.sbuffer(i).bits.mask := dataModuleRead(i).mask 286 io.sbuffer(i).bits.meta := DontCare 287 io.sbuffer(i).bits.meta.tlb_miss := false.B 288 io.sbuffer(i).bits.meta.uop := DontCare 289 io.sbuffer(i).bits.meta.mmio := false.B 290 io.sbuffer(i).bits.meta.mask := dataModuleRead(i).mask 291 292 when (io.sbuffer(i).fire()) { 293 allocated(ptr) := false.B 294 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 295 } 296 } 297 when (io.sbuffer(1).fire()) { 298 assert(io.sbuffer(0).fire()) 299 } 300 301 if (!env.FPGAPlatform) { 302 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 303 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 304 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 305 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 306 307 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 308 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 309 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 310 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 311 } 312 313 // Read vaddr for mem exception 314 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 315 316 // misprediction recovery / exception redirect 317 // invalidate sq term using robIdx 318 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 319 for (i <- 0 until StoreQueueSize) { 320 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 321 when (needCancel(i)) { 322 allocated(i) := false.B 323 } 324 } 325 326 /** 327 * update pointers 328 */ 329 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 330 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 331 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 332 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 333 when (lastCycleRedirect) { 334 // we recover the pointers in the next cycle after redirect 335 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 336 }.otherwise { 337 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 338 } 339 340 deqPtrExt := Mux(io.sbuffer(1).fire(), 341 VecInit(deqPtrExt.map(_ + 2.U)), 342 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 343 VecInit(deqPtrExt.map(_ + 1.U)), 344 deqPtrExt 345 ) 346 ) 347 348 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 349 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 350 val trueValidCounter = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 351 validCounter := Mux(lastLastCycleRedirect, 352 trueValidCounter - dequeueCount, 353 validCounter + enqNumber - dequeueCount 354 ) 355 356 allowEnqueue := Mux(io.brqRedirect.valid, 357 false.B, 358 Mux(lastLastCycleRedirect, 359 trueValidCounter <= (StoreQueueSize - RenameWidth).U, 360 validCounter + enqNumber <= (StoreQueueSize - RenameWidth).U 361 ) 362 ) 363 364 // io.sqempty will be used by sbuffer 365 // We delay it for 1 cycle for better timing 366 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 367 // for 1 cycle will also promise that sq is empty in that cycle 368 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 369 370 // debug info 371 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 372 373 def PrintFlag(flag: Bool, name: String): Unit = { 374 when(flag) { 375 XSDebug(false, true.B, name) 376 }.otherwise { 377 XSDebug(false, true.B, " ") 378 } 379 } 380 381 for (i <- 0 until StoreQueueSize) { 382 if (i % 4 == 0) XSDebug("") 383 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.debug(i).paddr) 384 PrintFlag(allocated(i), "a") 385 PrintFlag(allocated(i) && datavalid(i), "v") 386 PrintFlag(allocated(i) && writebacked(i), "w") 387 PrintFlag(allocated(i) && commited(i), "c") 388 PrintFlag(allocated(i) && pending(i), "p") 389 XSDebug(false, true.B, " ") 390 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 391 } 392 393} 394