1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 }) 48 49 val difftestIO = IO(new Bundle() { 50 val storeCommit = Output(UInt(2.W)) 51 val storeAddr = Output(Vec(2, UInt(64.W))) 52 val storeData = Output(Vec(2, UInt(64.W))) 53 val storeMask = Output(Vec(2, UInt(8.W))) 54 }) 55 difftestIO <> DontCare 56 57 // data modules 58 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 59 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 60 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 61 dataModule.io := DontCare 62 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 63 paddrModule.io := DontCare 64 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 65 vaddrModule.io := DontCare 66 67 // state & misc 68 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 69 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 70 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 71 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 72 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 73 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 74 75 // ptr 76 require(StoreQueueSize > RenameWidth) 77 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 78 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 79 val allowEnqueue = RegInit(true.B) 80 81 val enqPtr = enqPtrExt(0).value 82 val deqPtr = deqPtrExt(0).value 83 84 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 85 val headMask = UIntToMask(enqPtr, StoreQueueSize) 86 87 // Read dataModule 88 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 89 // if !sbuffer.fire(), read the same ptr 90 // if sbuffer.fire(), read next 91 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 92 VecInit(deqPtrExt.map(_ + 2.U)), 93 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 94 VecInit(deqPtrExt.map(_ + 1.U)), 95 deqPtrExt 96 ) 97 )) 98 for (i <- 0 until StorePipelineWidth) { 99 dataModule.io.raddr(i) := deqPtrExtNext(i).value 100 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 101 } 102 vaddrModule.io.raddr(0) := io.exceptionAddr.lsIdx.sqIdx.value 103 104 /** 105 * Enqueue at dispatch 106 * 107 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 108 */ 109 io.enq.canAccept := allowEnqueue 110 for (i <- 0 until RenameWidth) { 111 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 112 val sqIdx = enqPtrExt(offset) 113 val index = sqIdx.value 114 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 115 uop(index) := io.enq.req(i).bits 116 allocated(index) := true.B 117 datavalid(index) := false.B 118 writebacked(index) := false.B 119 commited(index) := false.B 120 pending(index) := false.B 121 } 122 io.enq.resp(i) := sqIdx 123 } 124 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 125 126 /** 127 * Writeback store from store units 128 * 129 * Most store instructions writeback to regfile in the previous cycle. 130 * However, 131 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 132 * (in this way it will trigger an exception when it reaches ROB's head) 133 * instead of pending to avoid sending them to lower level. 134 * (2) For an mmio instruction without exceptions, we mark it as pending. 135 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 136 * Upon receiving the response, StoreQueue writes back the instruction 137 * through arbiter with store units. It will later commit as normal. 138 */ 139 for (i <- 0 until StorePipelineWidth) { 140 dataModule.io.wen(i) := false.B 141 paddrModule.io.wen(i) := false.B 142 vaddrModule.io.wen(i) := false.B 143 when (io.storeIn(i).fire()) { 144 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 145 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 146 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 147 pending(stWbIndex) := io.storeIn(i).bits.mmio 148 149 val storeWbData = Wire(new SQDataEntry) 150 storeWbData := DontCare 151 storeWbData.mask := io.storeIn(i).bits.mask 152 storeWbData.data := io.storeIn(i).bits.data 153 154 dataModule.io.waddr(i) := stWbIndex 155 dataModule.io.wdata(i) := storeWbData 156 dataModule.io.wen(i) := true.B 157 158 paddrModule.io.waddr(i) := stWbIndex 159 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 160 paddrModule.io.wen(i) := true.B 161 162 vaddrModule.io.waddr(i) := stWbIndex 163 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 164 vaddrModule.io.wen(i) := true.B 165 166 mmio(stWbIndex) := io.storeIn(i).bits.mmio 167 168 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 169 io.storeIn(i).bits.uop.sqIdx.value, 170 io.storeIn(i).bits.uop.cf.pc, 171 io.storeIn(i).bits.vaddr, 172 io.storeIn(i).bits.paddr, 173 io.storeIn(i).bits.data, 174 io.storeIn(i).bits.mmio 175 ) 176 } 177 } 178 179 /** 180 * load forward query 181 * 182 * Check store queue for instructions that is older than the load. 183 * The response will be valid at the next cycle after req. 184 */ 185 // check over all lq entries and forward data from the first matched store 186 for (i <- 0 until LoadPipelineWidth) { 187 io.forward(i).forwardMask := 0.U(8.W).asBools 188 io.forward(i).forwardData := DontCare 189 190 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 191 // (1) if they have the same flag, we need to check range(tail, sqIdx) 192 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 193 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 194 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 195 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 196 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 197 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 198 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 199 for (j <- 0 until StoreQueueSize) { 200 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 201 } 202 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 203 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 204 205 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 206 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 207 ) 208 209 // do real fwd query 210 dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt 211 dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt 212 213 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 214 215 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 216 io.forward(i).forwardData := dataModule.io.forwardData(i) 217 } 218 219 /** 220 * Memory mapped IO / other uncached operations 221 * 222 * States: 223 * (1) writeback from store units: mark as pending 224 * (2) when they reach ROB's head, they can be sent to uncache channel 225 * (3) response from uncache channel: mark as datavalid 226 * (4) writeback to ROB (and other units): mark as writebacked 227 * (5) ROB commits the instruction: same as normal instructions 228 */ 229 //(2) when they reach ROB's head, they can be sent to uncache channel 230 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 231 io.commits.info(0).commitType === CommitType.STORE && 232 io.roqDeqPtr === uop(deqPtr).roqIdx && 233 !io.commits.isWalk 234 235 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 236 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 237 io.uncache.req.bits.data := dataModule.io.rdata(0).data 238 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 239 240 io.uncache.req.bits.meta.id := DontCare 241 io.uncache.req.bits.meta.vaddr := DontCare 242 io.uncache.req.bits.meta.paddr := paddrModule.io.rdata(0) 243 io.uncache.req.bits.meta.uop := uop(deqPtr) 244 io.uncache.req.bits.meta.mmio := true.B 245 io.uncache.req.bits.meta.tlb_miss := false.B 246 io.uncache.req.bits.meta.mask := dataModule.io.rdata(0).mask 247 io.uncache.req.bits.meta.replay := false.B 248 249 when(io.uncache.req.fire()){ 250 pending(deqPtr) := false.B 251 252 XSDebug( 253 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 254 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 255 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 256 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 257 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 258 ) 259 } 260 261 // (3) response from uncache channel: mark as datavalid 262 io.uncache.resp.ready := true.B 263 when (io.uncache.resp.fire()) { 264 datavalid(deqPtr) := true.B 265 } 266 267 // (4) writeback to ROB (and other units): mark as writebacked 268 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 269 io.mmioStout.bits.uop := uop(deqPtr) 270 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 271 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 272 io.mmioStout.bits.redirectValid := false.B 273 io.mmioStout.bits.redirect := DontCare 274 io.mmioStout.bits.debug.isMMIO := true.B 275 io.mmioStout.bits.debug.isPerfCnt := false.B 276 io.mmioStout.bits.fflags := DontCare 277 when (io.mmioStout.fire()) { 278 writebacked(deqPtr) := true.B 279 allocated(deqPtr) := false.B 280 } 281 282 /** 283 * ROB commits store instructions (mark them as commited) 284 * 285 * (1) When store commits, mark it as commited. 286 * (2) They will not be cancelled and can be sent to lower level. 287 */ 288 for (i <- 0 until CommitWidth) { 289 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 290 when (storeCommit) { 291 commited(io.commits.info(i).sqIdx.value) := true.B 292 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 293 } 294 } 295 296 // Commited stores will not be cancelled and can be sent to lower level. 297 // remove retired insts from sq, add retired store to sbuffer 298 for (i <- 0 until StorePipelineWidth) { 299 // We use RegNext to prepare data for sbuffer 300 val ptr = deqPtrExt(i).value 301 // if !sbuffer.fire(), read the same ptr 302 // if sbuffer.fire(), read next 303 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 304 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 305 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 306 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 307 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 308 io.sbuffer(i).bits.meta := DontCare 309 io.sbuffer(i).bits.meta.tlb_miss := false.B 310 io.sbuffer(i).bits.meta.uop := DontCare 311 io.sbuffer(i).bits.meta.mmio := false.B 312 io.sbuffer(i).bits.meta.mask := io.sbuffer(i).bits.mask 313 314 when (io.sbuffer(i).fire()) { 315 allocated(ptr) := false.B 316 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 317 } 318 } 319 when (io.sbuffer(1).fire()) { 320 assert(io.sbuffer(0).fire()) 321 } 322 323 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 324 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 325 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 326 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 327 328 if (!env.FPGAPlatform) { 329 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 330 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 331 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 332 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 333 } 334 if (env.DualCoreDifftest) { 335 difftestIO.storeCommit := RegNext(storeCommit) 336 difftestIO.storeAddr := RegNext(waddr) 337 difftestIO.storeData := RegNext(wdata) 338 difftestIO.storeMask := RegNext(wmask) 339 } 340 341 // Read vaddr for mem exception 342 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 343 344 // misprediction recovery / exception redirect 345 // invalidate sq term using robIdx 346 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 347 for (i <- 0 until StoreQueueSize) { 348 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 349 when (needCancel(i)) { 350 allocated(i) := false.B 351 } 352 } 353 354 /** 355 * update pointers 356 */ 357 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 358 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 359 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 360 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 361 when (lastCycleRedirect) { 362 // we recover the pointers in the next cycle after redirect 363 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 364 }.otherwise { 365 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 366 } 367 368 deqPtrExt := deqPtrExtNext 369 370 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 371 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 372 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 373 374 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 375 376 // io.sqempty will be used by sbuffer 377 // We delay it for 1 cycle for better timing 378 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 379 // for 1 cycle will also promise that sq is empty in that cycle 380 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 381 382 // debug info 383 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 384 385 def PrintFlag(flag: Bool, name: String): Unit = { 386 when(flag) { 387 XSDebug(false, true.B, name) 388 }.otherwise { 389 XSDebug(false, true.B, " ") 390 } 391 } 392 393 for (i <- 0 until StoreQueueSize) { 394 if (i % 4 == 0) XSDebug("") 395 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 396 PrintFlag(allocated(i), "a") 397 PrintFlag(allocated(i) && datavalid(i), "v") 398 PrintFlag(allocated(i) && writebacked(i), "w") 399 PrintFlag(allocated(i) && commited(i), "c") 400 PrintFlag(allocated(i) && pending(i), "p") 401 XSDebug(false, true.B, " ") 402 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 403 } 404 405} 406