1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(DataBits.W) 56 val mask = UInt((DataBits/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59} 60 61// Store Queue 62class StoreQueue(implicit p: Parameters) extends XSModule 63 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(8.W)) 66 val enq = new SqEnqIO 67 val brqRedirect = Flipped(ValidIO(new Redirect)) 68 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 69 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 70 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 71 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 72 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 73 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 74 val rob = Flipped(new RobLsqIO) 75 val uncache = new DCacheWordIO 76 // val refill = Flipped(Valid(new DCacheLineReq )) 77 val exceptionAddr = new ExceptionAddrIO 78 val sqempty = Output(Bool()) 79 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 80 val sqFull = Output(Bool()) 81 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 82 val sqDeq = Output(UInt(2.W)) 83 }) 84 85 println("StoreQueue: size:" + StoreQueueSize) 86 87 // data modules 88 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 89 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 90 val dataModule = Module(new SQDataModule( 91 numEntries = StoreQueueSize, 92 numRead = StorePipelineWidth, 93 numWrite = StorePipelineWidth, 94 numForward = StorePipelineWidth 95 )) 96 dataModule.io := DontCare 97 val paddrModule = Module(new SQAddrModule( 98 dataWidth = PAddrBits, 99 numEntries = StoreQueueSize, 100 numRead = StorePipelineWidth, 101 numWrite = StorePipelineWidth, 102 numForward = StorePipelineWidth 103 )) 104 paddrModule.io := DontCare 105 val vaddrModule = Module(new SQAddrModule( 106 dataWidth = VAddrBits, 107 numEntries = StoreQueueSize, 108 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 109 numWrite = StorePipelineWidth, 110 numForward = StorePipelineWidth 111 )) 112 vaddrModule.io := DontCare 113 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 114 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 115 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 116 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 117 118 // state & misc 119 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 120 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 121 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 122 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 123 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 124 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 125 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 126 127 // ptr 128 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 129 val rdataPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 130 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 131 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 132 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 133 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 134 135 val enqPtr = enqPtrExt(0).value 136 val deqPtr = deqPtrExt(0).value 137 val cmtPtr = cmtPtrExt(0).value 138 139 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 140 val allowEnqueue = validCount <= (StoreQueueSize - 2).U 141 142 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 143 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 144 145 val commitCount = RegNext(io.rob.scommit) 146 147 // Read dataModule 148 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 149 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 150 VecInit(rdataPtrExt.map(_ + 2.U)), 151 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 152 VecInit(rdataPtrExt.map(_ + 1.U)), 153 rdataPtrExt 154 ) 155 )) 156 // deqPtrExtNext traces which inst is about to leave store queue 157 val deqPtrExtNext = Mux(io.sbuffer(1).fire(), 158 VecInit(deqPtrExt.map(_ + 2.U)), 159 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 160 VecInit(deqPtrExt.map(_ + 1.U)), 161 deqPtrExt 162 ) 163 ) 164 io.sqDeq := RegNext(Mux(io.sbuffer(1).fire(), 2.U, 165 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U) 166 )) 167 for (i <- 0 until StorePipelineWidth) { 168 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 169 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 170 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 171 } 172 173 // no inst will be committed 1 cycle before tval update 174 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 175 176 /** 177 * Enqueue at dispatch 178 * 179 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 180 */ 181 io.enq.canAccept := allowEnqueue 182 val canEnqueue = io.enq.req.map(_.valid) 183 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 184 for (i <- 0 until io.enq.req.length) { 185 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 186 val sqIdx = enqPtrExt(offset) 187 val index = io.enq.req(i).bits.sqIdx.value 188 when (canEnqueue(i) && !enqCancel(i)) { 189 uop(index).robIdx := io.enq.req(i).bits.robIdx 190 allocated(index) := true.B 191 datavalid(index) := false.B 192 addrvalid(index) := false.B 193 committed(index) := false.B 194 pending(index) := false.B 195 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 196 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 197 } 198 io.enq.resp(i) := sqIdx 199 } 200 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 201 202 /** 203 * Update issuePtr when issue from rs 204 */ 205 // update issuePtr 206 val IssuePtrMoveStride = 4 207 require(IssuePtrMoveStride >= 2) 208 209 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 210 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 211 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 212 issuePtrExt := nextIssuePtr 213 214 when (io.brqRedirect.valid) { 215 issuePtrExt := Mux( 216 isAfter(cmtPtrExt(0), deqPtrExt(0)), 217 cmtPtrExt(0), 218 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 219 ) 220 } 221 // send issuePtrExt to rs 222 // io.issuePtrExt := cmtPtrExt(0) 223 io.issuePtrExt := issuePtrExt 224 225 /** 226 * Writeback store from store units 227 * 228 * Most store instructions writeback to regfile in the previous cycle. 229 * However, 230 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 231 * (in this way it will trigger an exception when it reaches ROB's head) 232 * instead of pending to avoid sending them to lower level. 233 * (2) For an mmio instruction without exceptions, we mark it as pending. 234 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 235 * Upon receiving the response, StoreQueue writes back the instruction 236 * through arbiter with store units. It will later commit as normal. 237 */ 238 239 // Write addr to sq 240 for (i <- 0 until StorePipelineWidth) { 241 paddrModule.io.wen(i) := false.B 242 vaddrModule.io.wen(i) := false.B 243 dataModule.io.mask.wen(i) := false.B 244 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 245 when (io.storeIn(i).fire()) { 246 val addr_valid = !io.storeIn(i).bits.miss 247 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 248 // pending(stWbIndex) := io.storeIn(i).bits.mmio 249 250 dataModule.io.mask.waddr(i) := stWbIndex 251 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 252 dataModule.io.mask.wen(i) := addr_valid 253 254 paddrModule.io.waddr(i) := stWbIndex 255 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 256 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 257 paddrModule.io.wen(i) := addr_valid 258 259 vaddrModule.io.waddr(i) := stWbIndex 260 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 261 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 262 vaddrModule.io.wen(i) := addr_valid 263 264 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 265 266 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 267 268 uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl 269 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 270 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 271 io.storeIn(i).bits.uop.sqIdx.value, 272 io.storeIn(i).bits.uop.cf.pc, 273 io.storeIn(i).bits.miss, 274 io.storeIn(i).bits.vaddr, 275 io.storeIn(i).bits.paddr, 276 io.storeIn(i).bits.mmio 277 ) 278 } 279 280 // re-replinish mmio, for pma/pmp will get mmio one cycle later 281 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 282 val stWbIndexReg = RegNext(stWbIndex) 283 when (storeInFireReg) { 284 pending(stWbIndexReg) := io.storeInRe(i).mmio 285 mmio(stWbIndexReg) := io.storeInRe(i).mmio 286 } 287 288 when(vaddrModule.io.wen(i)){ 289 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 290 } 291 } 292 293 // Write data to sq 294 for (i <- 0 until StorePipelineWidth) { 295 dataModule.io.data.wen(i) := false.B 296 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 297 when (io.storeDataIn(i).fire()) { 298 datavalid(stWbIndex) := true.B 299 300 dataModule.io.data.waddr(i) := stWbIndex 301 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 302 0.U, 303 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 304 ) 305 dataModule.io.data.wen(i) := true.B 306 307 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 308 309 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 310 io.storeDataIn(i).bits.uop.sqIdx.value, 311 io.storeDataIn(i).bits.uop.cf.pc, 312 io.storeDataIn(i).bits.data, 313 dataModule.io.data.wdata(i) 314 ) 315 } 316 } 317 318 /** 319 * load forward query 320 * 321 * Check store queue for instructions that is older than the load. 322 * The response will be valid at the next cycle after req. 323 */ 324 // check over all lq entries and forward data from the first matched store 325 for (i <- 0 until LoadPipelineWidth) { 326 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 327 // (1) if they have the same flag, we need to check range(tail, sqIdx) 328 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 329 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 330 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 331 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 332 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 333 val forwardMask = io.forward(i).sqIdxMask 334 // all addrvalid terms need to be checked 335 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 336 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 337 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 338 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 339 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 340 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 341 342 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 343 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 344 ) 345 346 // do real fwd query (cam lookup in load_s1) 347 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 348 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 349 350 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 351 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 352 353 // vaddr cam result does not equal to paddr cam result 354 // replay needed 355 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 356 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 357 val vpmaskNotEqual = ( 358 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 359 RegNext(needForward) & 360 RegNext(addrValidVec.asUInt) 361 ) =/= 0.U 362 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 363 when (vaddrMatchFailed) { 364 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 365 RegNext(io.forward(i).uop.cf.pc), 366 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 367 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 368 ); 369 } 370 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 371 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 372 373 // Fast forward mask will be generated immediately (load_s1) 374 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 375 376 // Forward result will be generated 1 cycle later (load_s2) 377 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 378 io.forward(i).forwardData := dataModule.io.forwardData(i) 379 380 // If addr match, data not ready, mark it as dataInvalid 381 // load_s1: generate dataInvalid in load_s1 to set fastUop 382 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 383 val dataInvalidSqIdxReg = RegNext(PriorityEncoder(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward)) 384 // load_s2 385 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 386 387 // load_s2 388 // check if vaddr forward mismatched 389 io.forward(i).matchInvalid := vaddrMatchFailed 390 io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg 391 } 392 393 /** 394 * Memory mapped IO / other uncached operations 395 * 396 * States: 397 * (1) writeback from store units: mark as pending 398 * (2) when they reach ROB's head, they can be sent to uncache channel 399 * (3) response from uncache channel: mark as datavalidmask.wen 400 * (4) writeback to ROB (and other units): mark as writebacked 401 * (5) ROB commits the instruction: same as normal instructions 402 */ 403 //(2) when they reach ROB's head, they can be sent to uncache channel 404 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 405 val uncacheState = RegInit(s_idle) 406 switch(uncacheState) { 407 is(s_idle) { 408 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 409 uncacheState := s_req 410 } 411 } 412 is(s_req) { 413 when(io.uncache.req.fire()) { 414 uncacheState := s_resp 415 } 416 } 417 is(s_resp) { 418 when(io.uncache.resp.fire()) { 419 uncacheState := s_wb 420 } 421 } 422 is(s_wb) { 423 when (io.mmioStout.fire()) { 424 uncacheState := s_wait 425 } 426 } 427 is(s_wait) { 428 when(commitCount > 0.U) { 429 uncacheState := s_idle // ready for next mmio 430 } 431 } 432 } 433 io.uncache.req.valid := uncacheState === s_req 434 435 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 436 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 437 io.uncache.req.bits.data := dataModule.io.rdata(0).data 438 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 439 440 // CBO op type check can be delayed for 1 cycle, 441 // as uncache op will not start in s_idle 442 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 443 val cbo_mmio_op = 0.U //TODO 444 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 445 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 446 io.uncache.req.bits.addr := DontCare // TODO 447 io.uncache.req.bits.data := paddrModule.io.rdata(0) 448 io.uncache.req.bits.mask := DontCare // TODO 449 } 450 451 io.uncache.req.bits.id := DontCare 452 io.uncache.req.bits.instrtype := DontCare 453 454 when(io.uncache.req.fire()){ 455 // mmio store should not be committed until uncache req is sent 456 pending(deqPtr) := false.B 457 458 XSDebug( 459 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 460 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 461 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 462 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 463 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 464 ) 465 } 466 467 // (3) response from uncache channel: mark as datavalid 468 io.uncache.resp.ready := true.B 469 470 // (4) writeback to ROB (and other units): mark as writebacked 471 io.mmioStout.valid := uncacheState === s_wb 472 io.mmioStout.bits.uop := uop(deqPtr) 473 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 474 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 475 io.mmioStout.bits.redirectValid := false.B 476 io.mmioStout.bits.redirect := DontCare 477 io.mmioStout.bits.debug.isMMIO := true.B 478 io.mmioStout.bits.debug.paddr := DontCare 479 io.mmioStout.bits.debug.isPerfCnt := false.B 480 io.mmioStout.bits.fflags := DontCare 481 io.mmioStout.bits.debug.vaddr := DontCare 482 // Remove MMIO inst from store queue after MMIO request is being sent 483 // That inst will be traced by uncache state machine 484 when (io.mmioStout.fire()) { 485 allocated(deqPtr) := false.B 486 } 487 488 /** 489 * ROB commits store instructions (mark them as committed) 490 * 491 * (1) When store commits, mark it as committed. 492 * (2) They will not be cancelled and can be sent to lower level. 493 */ 494 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 495 "should not commit instruction when MMIO has not been finished\n") 496 for (i <- 0 until CommitWidth) { 497 when (commitCount > i.U) { // MMIO inst is not in progress 498 if(i == 0){ 499 // MMIO inst should not update committed flag 500 // Note that commit count has been delayed for 1 cycle 501 when(uncacheState === s_idle){ 502 committed(cmtPtrExt(0).value) := true.B 503 } 504 } else { 505 committed(cmtPtrExt(i).value) := true.B 506 } 507 } 508 } 509 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 510 511 // committed stores will not be cancelled and can be sent to lower level. 512 // remove retired insts from sq, add retired store to sbuffer 513 514 // Read data from data module 515 // As store queue grows larger and larger, time needed to read data from data 516 // module keeps growing higher. Now we give data read a whole cycle. 517 518 // For now, data read logic width is hardcoded to 2 519 require(StorePipelineWidth == 2) // TODO: add EnsbufferWidth parameter 520 val mmioStall = mmio(rdataPtrExt(0).value) 521 for (i <- 0 until StorePipelineWidth) { 522 val ptr = rdataPtrExt(i).value 523 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 524 // Note that store data/addr should both be valid after store's commit 525 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 526 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 527 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 528 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 529 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 530 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 531 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 532 } 533 534 // Send data stored in sbufferReqBitsReg to sbuffer 535 for (i <- 0 until StorePipelineWidth) { 536 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 537 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 538 // Write line request should have all 1 mask 539 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 540 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 541 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 542 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 543 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 544 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 545 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 546 io.sbuffer(i).bits.id := DontCare 547 io.sbuffer(i).bits.instrtype := DontCare 548 549 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 550 when (io.sbuffer(i).fire()) { 551 allocated(ptr) := false.B 552 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 553 } 554 } 555 when (io.sbuffer(1).fire()) { 556 assert(io.sbuffer(0).fire()) 557 } 558 if (coreParams.dcacheParametersOpt.isEmpty) { 559 for (i <- 0 until StorePipelineWidth) { 560 val ptr = deqPtrExt(i).value 561 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 562 fakeRAM.clk := clock 563 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 564 fakeRAM.rIdx := 0.U 565 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 566 fakeRAM.wdata := dataModule.io.rdata(i).data 567 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 568 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 569 } 570 } 571 572 if (env.EnableDifftest) { 573 for (i <- 0 until StorePipelineWidth) { 574 val storeCommit = io.sbuffer(i).fire() 575 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 576 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 577 val wmask = io.sbuffer(i).bits.mask 578 579 val difftest = Module(new DifftestStoreEvent) 580 difftest.io.clock := clock 581 difftest.io.coreid := io.hartId 582 difftest.io.index := i.U 583 difftest.io.valid := RegNext(RegNext(storeCommit)) 584 difftest.io.storeAddr := RegNext(RegNext(waddr)) 585 difftest.io.storeData := RegNext(RegNext(wdata)) 586 difftest.io.storeMask := RegNext(RegNext(wmask)) 587 } 588 } 589 590 // Read vaddr for mem exception 591 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 592 593 // misprediction recovery / exception redirect 594 // invalidate sq term using robIdx 595 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 596 for (i <- 0 until StoreQueueSize) { 597 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 598 when (needCancel(i)) { 599 allocated(i) := false.B 600 } 601 } 602 603 /** 604 * update pointers 605 */ 606 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 607 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 608 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 609 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 610 when (lastCycleRedirect) { 611 // we recover the pointers in the next cycle after redirect 612 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 613 }.otherwise { 614 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 615 } 616 617 deqPtrExt := deqPtrExtNext 618 rdataPtrExt := rdataPtrExtNext 619 620 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 621 622 // If redirect at T0, sqCancelCnt is at T2 623 io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 624 625 // io.sqempty will be used by sbuffer 626 // We delay it for 1 cycle for better timing 627 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 628 // for 1 cycle will also promise that sq is empty in that cycle 629 io.sqempty := RegNext( 630 enqPtrExt(0).value === deqPtrExt(0).value && 631 enqPtrExt(0).flag === deqPtrExt(0).flag 632 ) 633 634 // perf counter 635 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 636 io.sqFull := !allowEnqueue 637 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 638 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 639 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 640 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 641 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 642 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 643 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 644 645 val perfEvents = Seq( 646 ("mmioCycle ", uncacheState =/= s_idle ), 647 ("mmioCnt ", io.uncache.req.fire() ), 648 ("mmio_wb_success", io.mmioStout.fire() ), 649 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready ), 650 ("stq_1_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U)) ), 651 ("stq_2_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U)) ), 652 ("stq_3_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))), 653 ("stq_4_4_valid ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U)) ), 654 ) 655 generatePerfEvent() 656 657 // debug info 658 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 659 660 def PrintFlag(flag: Bool, name: String): Unit = { 661 when(flag) { 662 XSDebug(false, true.B, name) 663 }.otherwise { 664 XSDebug(false, true.B, " ") 665 } 666 } 667 668 for (i <- 0 until StoreQueueSize) { 669 XSDebug(i + ": pc %x va %x pa %x data %x ", 670 uop(i).cf.pc, 671 debug_vaddr(i), 672 debug_paddr(i), 673 debug_data(i) 674 ) 675 PrintFlag(allocated(i), "a") 676 PrintFlag(allocated(i) && addrvalid(i), "a") 677 PrintFlag(allocated(i) && datavalid(i), "d") 678 PrintFlag(allocated(i) && committed(i), "c") 679 PrintFlag(allocated(i) && pending(i), "p") 680 PrintFlag(allocated(i) && mmio(i), "m") 681 XSDebug(false, true.B, "\n") 682 } 683 684} 685