xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 9658ce50e75af9566868a3e788b4888e8be1859f)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33}
34
35object SqPtr {
36  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
37    val ptr = Wire(new SqPtr)
38    ptr.flag := f
39    ptr.value := v
40    ptr
41  }
42}
43
44class SqEnqIO(implicit p: Parameters) extends XSBundle {
45  val canAccept = Output(Bool())
46  val lqCanAccept = Input(Bool())
47  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
48  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
49  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
50}
51
52class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
53  val addr   = UInt(PAddrBits.W)
54  val vaddr  = UInt(VAddrBits.W)
55  val data   = UInt(DataBits.W)
56  val mask   = UInt((DataBits/8).W)
57  val wline = Bool()
58  val sqPtr  = new SqPtr
59}
60
61// Store Queue
62class StoreQueue(implicit p: Parameters) extends XSModule
63  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(8.W))
66    val enq = new SqEnqIO
67    val brqRedirect = Flipped(ValidIO(new Redirect))
68    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
69    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
70    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs
71    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
72    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
73    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
74    val rob = Flipped(new RobLsqIO)
75    val uncache = new DCacheWordIO
76    // val refill = Flipped(Valid(new DCacheLineReq ))
77    val exceptionAddr = new ExceptionAddrIO
78    val sqempty = Output(Bool())
79    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
80    val sqFull = Output(Bool())
81    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
82    val sqDeq = Output(UInt(2.W))
83  })
84
85  println("StoreQueue: size:" + StoreQueueSize)
86
87  // data modules
88  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
89  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
90  val dataModule = Module(new SQDataModule(
91    numEntries = StoreQueueSize,
92    numRead = StorePipelineWidth,
93    numWrite = StorePipelineWidth,
94    numForward = StorePipelineWidth
95  ))
96  dataModule.io := DontCare
97  val paddrModule = Module(new SQAddrModule(
98    dataWidth = PAddrBits,
99    numEntries = StoreQueueSize,
100    numRead = StorePipelineWidth,
101    numWrite = StorePipelineWidth,
102    numForward = StorePipelineWidth
103  ))
104  paddrModule.io := DontCare
105  val vaddrModule = Module(new SQAddrModule(
106    dataWidth = VAddrBits,
107    numEntries = StoreQueueSize,
108    numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO)
109    numWrite = StorePipelineWidth,
110    numForward = StorePipelineWidth
111  ))
112  vaddrModule.io := DontCare
113  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
114  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
115  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
116  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
117
118  // state & misc
119  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
120  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
121  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
122  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
123  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
124  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
125  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
126
127  // ptr
128  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
129  val rdataPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
130  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
131  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
132  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
133  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
134
135  val enqPtr = enqPtrExt(0).value
136  val deqPtr = deqPtrExt(0).value
137  val cmtPtr = cmtPtrExt(0).value
138
139  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
140  val allowEnqueue = validCount <= (StoreQueueSize - 2).U
141
142  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
143  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
144
145  val commitCount = RegNext(io.rob.scommit)
146
147  // Read dataModule
148  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
149  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
150    VecInit(rdataPtrExt.map(_ + 2.U)),
151    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
152      VecInit(rdataPtrExt.map(_ + 1.U)),
153      rdataPtrExt
154    )
155  ))
156  // deqPtrExtNext traces which inst is about to leave store queue
157  val deqPtrExtNext = Mux(io.sbuffer(1).fire(),
158    VecInit(deqPtrExt.map(_ + 2.U)),
159    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
160      VecInit(deqPtrExt.map(_ + 1.U)),
161      deqPtrExt
162    )
163  )
164  io.sqDeq := RegNext(Mux(io.sbuffer(1).fire(), 2.U,
165    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)
166  ))
167  for (i <- 0 until StorePipelineWidth) {
168    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
169    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
170    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
171  }
172
173  // no inst will be committed 1 cycle before tval update
174  vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value
175
176  /**
177    * Enqueue at dispatch
178    *
179    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
180    */
181  io.enq.canAccept := allowEnqueue
182  val canEnqueue = io.enq.req.map(_.valid)
183  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
184  for (i <- 0 until io.enq.req.length) {
185    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
186    val sqIdx = enqPtrExt(offset)
187    val index = io.enq.req(i).bits.sqIdx.value
188    when (canEnqueue(i) && !enqCancel(i)) {
189      uop(index).robIdx := io.enq.req(i).bits.robIdx
190      allocated(index) := true.B
191      datavalid(index) := false.B
192      addrvalid(index) := false.B
193      committed(index) := false.B
194      pending(index) := false.B
195      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
196      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
197    }
198    io.enq.resp(i) := sqIdx
199  }
200  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
201
202  /**
203    * Update issuePtr when issue from rs
204    */
205  // update issuePtr
206  val IssuePtrMoveStride = 4
207  require(IssuePtrMoveStride >= 2)
208
209  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
210  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
211  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
212  issuePtrExt := nextIssuePtr
213
214  when (io.brqRedirect.valid) {
215    issuePtrExt := Mux(
216      isAfter(cmtPtrExt(0), deqPtrExt(0)),
217      cmtPtrExt(0),
218      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
219    )
220  }
221  // send issuePtrExt to rs
222  // io.issuePtrExt := cmtPtrExt(0)
223  io.issuePtrExt := issuePtrExt
224
225  /**
226    * Writeback store from store units
227    *
228    * Most store instructions writeback to regfile in the previous cycle.
229    * However,
230    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
231    * (in this way it will trigger an exception when it reaches ROB's head)
232    * instead of pending to avoid sending them to lower level.
233    *   (2) For an mmio instruction without exceptions, we mark it as pending.
234    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
235    * Upon receiving the response, StoreQueue writes back the instruction
236    * through arbiter with store units. It will later commit as normal.
237    */
238
239  // Write addr to sq
240  for (i <- 0 until StorePipelineWidth) {
241    paddrModule.io.wen(i) := false.B
242    vaddrModule.io.wen(i) := false.B
243    dataModule.io.mask.wen(i) := false.B
244    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
245    when (io.storeIn(i).fire()) {
246      val addr_valid = !io.storeIn(i).bits.miss
247      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
248      // pending(stWbIndex) := io.storeIn(i).bits.mmio
249
250      dataModule.io.mask.waddr(i) := stWbIndex
251      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
252      dataModule.io.mask.wen(i) := addr_valid
253
254      paddrModule.io.waddr(i) := stWbIndex
255      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
256      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
257      paddrModule.io.wen(i) := addr_valid
258
259      vaddrModule.io.waddr(i) := stWbIndex
260      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
261      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
262      vaddrModule.io.wen(i) := addr_valid
263
264      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
265
266      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
267
268      uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl
269      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
270      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
271        io.storeIn(i).bits.uop.sqIdx.value,
272        io.storeIn(i).bits.uop.cf.pc,
273        io.storeIn(i).bits.miss,
274        io.storeIn(i).bits.vaddr,
275        io.storeIn(i).bits.paddr,
276        io.storeIn(i).bits.mmio
277      )
278    }
279
280    // re-replinish mmio, for pma/pmp will get mmio one cycle later
281    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
282    val stWbIndexReg = RegNext(stWbIndex)
283    when (storeInFireReg) {
284      pending(stWbIndexReg) := io.storeInRe(i).mmio
285      mmio(stWbIndexReg) := io.storeInRe(i).mmio
286    }
287
288    when(vaddrModule.io.wen(i)){
289      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
290    }
291  }
292
293  // Write data to sq
294  for (i <- 0 until StorePipelineWidth) {
295    dataModule.io.data.wen(i) := false.B
296    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
297    when (io.storeDataIn(i).fire()) {
298      datavalid(stWbIndex) := true.B
299
300      dataModule.io.data.waddr(i) := stWbIndex
301      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
302        0.U,
303        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
304      )
305      dataModule.io.data.wen(i) := true.B
306
307      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
308
309      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
310        io.storeDataIn(i).bits.uop.sqIdx.value,
311        io.storeDataIn(i).bits.uop.cf.pc,
312        io.storeDataIn(i).bits.data,
313        dataModule.io.data.wdata(i)
314      )
315    }
316  }
317
318  /**
319    * load forward query
320    *
321    * Check store queue for instructions that is older than the load.
322    * The response will be valid at the next cycle after req.
323    */
324  // check over all lq entries and forward data from the first matched store
325  for (i <- 0 until LoadPipelineWidth) {
326    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
327    // (1) if they have the same flag, we need to check range(tail, sqIdx)
328    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
329    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
330    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
331    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
332    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
333    val forwardMask = io.forward(i).sqIdxMask
334    // all addrvalid terms need to be checked
335    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
336    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
337    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
338    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
339    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
340    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
341
342    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
343      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
344    )
345
346    // do real fwd query (cam lookup in load_s1)
347    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
348    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
349
350    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
351    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
352
353    // vaddr cam result does not equal to paddr cam result
354    // replay needed
355    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
356    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
357    val vpmaskNotEqual = (
358      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
359      RegNext(needForward) &
360      RegNext(addrValidVec.asUInt)
361    ) =/= 0.U
362    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
363    when (vaddrMatchFailed) {
364      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
365        RegNext(io.forward(i).uop.cf.pc),
366        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
367        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
368      );
369    }
370    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
371    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
372
373    // Fast forward mask will be generated immediately (load_s1)
374    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
375
376    // Forward result will be generated 1 cycle later (load_s2)
377    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
378    io.forward(i).forwardData := dataModule.io.forwardData(i)
379
380    // If addr match, data not ready, mark it as dataInvalid
381    // load_s1: generate dataInvalid in load_s1 to set fastUop
382    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR
383    val dataInvalidSqIdxReg = RegNext(PriorityEncoder(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward))
384    // load_s2
385    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
386
387    // load_s2
388    // check if vaddr forward mismatched
389    io.forward(i).matchInvalid := vaddrMatchFailed
390    io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg
391  }
392
393  /**
394    * Memory mapped IO / other uncached operations
395    *
396    * States:
397    * (1) writeback from store units: mark as pending
398    * (2) when they reach ROB's head, they can be sent to uncache channel
399    * (3) response from uncache channel: mark as datavalidmask.wen
400    * (4) writeback to ROB (and other units): mark as writebacked
401    * (5) ROB commits the instruction: same as normal instructions
402    */
403  //(2) when they reach ROB's head, they can be sent to uncache channel
404  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
405  val uncacheState = RegInit(s_idle)
406  switch(uncacheState) {
407    is(s_idle) {
408      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
409        uncacheState := s_req
410      }
411    }
412    is(s_req) {
413      when(io.uncache.req.fire()) {
414        uncacheState := s_resp
415      }
416    }
417    is(s_resp) {
418      when(io.uncache.resp.fire()) {
419        uncacheState := s_wb
420      }
421    }
422    is(s_wb) {
423      when (io.mmioStout.fire()) {
424        uncacheState := s_wait
425      }
426    }
427    is(s_wait) {
428      when(commitCount > 0.U) {
429        uncacheState := s_idle // ready for next mmio
430      }
431    }
432  }
433  io.uncache.req.valid := uncacheState === s_req
434
435  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
436  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
437  io.uncache.req.bits.data := dataModule.io.rdata(0).data
438  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
439
440  // CBO op type check can be delayed for 1 cycle,
441  // as uncache op will not start in s_idle
442  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
443  val cbo_mmio_op = 0.U //TODO
444  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
445  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
446    io.uncache.req.bits.addr := DontCare // TODO
447    io.uncache.req.bits.data := paddrModule.io.rdata(0)
448    io.uncache.req.bits.mask := DontCare // TODO
449  }
450
451  io.uncache.req.bits.id   := DontCare
452  io.uncache.req.bits.instrtype   := DontCare
453
454  when(io.uncache.req.fire()){
455    // mmio store should not be committed until uncache req is sent
456    pending(deqPtr) := false.B
457
458    XSDebug(
459      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
460      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
461      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
462      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
463      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
464    )
465  }
466
467  // (3) response from uncache channel: mark as datavalid
468  io.uncache.resp.ready := true.B
469
470  // (4) writeback to ROB (and other units): mark as writebacked
471  io.mmioStout.valid := uncacheState === s_wb
472  io.mmioStout.bits.uop := uop(deqPtr)
473  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
474  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
475  io.mmioStout.bits.redirectValid := false.B
476  io.mmioStout.bits.redirect := DontCare
477  io.mmioStout.bits.debug.isMMIO := true.B
478  io.mmioStout.bits.debug.paddr := DontCare
479  io.mmioStout.bits.debug.isPerfCnt := false.B
480  io.mmioStout.bits.fflags := DontCare
481  io.mmioStout.bits.debug.vaddr := DontCare
482  // Remove MMIO inst from store queue after MMIO request is being sent
483  // That inst will be traced by uncache state machine
484  when (io.mmioStout.fire()) {
485    allocated(deqPtr) := false.B
486  }
487
488  /**
489    * ROB commits store instructions (mark them as committed)
490    *
491    * (1) When store commits, mark it as committed.
492    * (2) They will not be cancelled and can be sent to lower level.
493    */
494  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
495   "should not commit instruction when MMIO has not been finished\n")
496  for (i <- 0 until CommitWidth) {
497    when (commitCount > i.U) { // MMIO inst is not in progress
498      if(i == 0){
499        // MMIO inst should not update committed flag
500        // Note that commit count has been delayed for 1 cycle
501        when(uncacheState === s_idle){
502          committed(cmtPtrExt(0).value) := true.B
503        }
504      } else {
505        committed(cmtPtrExt(i).value) := true.B
506      }
507    }
508  }
509  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
510
511  // committed stores will not be cancelled and can be sent to lower level.
512  // remove retired insts from sq, add retired store to sbuffer
513
514  // Read data from data module
515  // As store queue grows larger and larger, time needed to read data from data
516  // module keeps growing higher. Now we give data read a whole cycle.
517
518  // For now, data read logic width is hardcoded to 2
519  require(StorePipelineWidth == 2) // TODO: add EnsbufferWidth parameter
520  val mmioStall = mmio(rdataPtrExt(0).value)
521  for (i <- 0 until StorePipelineWidth) {
522    val ptr = rdataPtrExt(i).value
523    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
524    // Note that store data/addr should both be valid after store's commit
525    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
526    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
527    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
528    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
529    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
530    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
531    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
532  }
533
534  // Send data stored in sbufferReqBitsReg to sbuffer
535  for (i <- 0 until StorePipelineWidth) {
536    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
537    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
538    // Write line request should have all 1 mask
539    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
540    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
541    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
542    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
543    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
544    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
545    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
546    io.sbuffer(i).bits.id    := DontCare
547    io.sbuffer(i).bits.instrtype    := DontCare
548
549    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
550    when (io.sbuffer(i).fire()) {
551      allocated(ptr) := false.B
552      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
553    }
554  }
555  when (io.sbuffer(1).fire()) {
556    assert(io.sbuffer(0).fire())
557  }
558  if (coreParams.dcacheParametersOpt.isEmpty) {
559    for (i <- 0 until StorePipelineWidth) {
560      val ptr = deqPtrExt(i).value
561      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
562      fakeRAM.clk   := clock
563      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
564      fakeRAM.rIdx  := 0.U
565      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
566      fakeRAM.wdata := dataModule.io.rdata(i).data
567      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
568      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
569    }
570  }
571
572  if (env.EnableDifftest) {
573    for (i <- 0 until StorePipelineWidth) {
574      val storeCommit = io.sbuffer(i).fire()
575      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
576      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
577      val wmask = io.sbuffer(i).bits.mask
578
579      val difftest = Module(new DifftestStoreEvent)
580      difftest.io.clock       := clock
581      difftest.io.coreid      := io.hartId
582      difftest.io.index       := i.U
583      difftest.io.valid       := RegNext(RegNext(storeCommit))
584      difftest.io.storeAddr   := RegNext(RegNext(waddr))
585      difftest.io.storeData   := RegNext(RegNext(wdata))
586      difftest.io.storeMask   := RegNext(RegNext(wmask))
587    }
588  }
589
590  // Read vaddr for mem exception
591  io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth)
592
593  // misprediction recovery / exception redirect
594  // invalidate sq term using robIdx
595  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
596  for (i <- 0 until StoreQueueSize) {
597    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
598    when (needCancel(i)) {
599      allocated(i) := false.B
600    }
601  }
602
603  /**
604    * update pointers
605    */
606  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
607  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
608  val lastCycleCancelCount = PopCount(RegNext(needCancel))
609  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
610  when (lastCycleRedirect) {
611    // we recover the pointers in the next cycle after redirect
612    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
613  }.otherwise {
614    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
615  }
616
617  deqPtrExt := deqPtrExtNext
618  rdataPtrExt := rdataPtrExtNext
619
620  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
621
622  // If redirect at T0, sqCancelCnt is at T2
623  io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
624
625  // io.sqempty will be used by sbuffer
626  // We delay it for 1 cycle for better timing
627  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
628  // for 1 cycle will also promise that sq is empty in that cycle
629  io.sqempty := RegNext(
630    enqPtrExt(0).value === deqPtrExt(0).value &&
631    enqPtrExt(0).flag === deqPtrExt(0).flag
632  )
633
634  // perf counter
635  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
636  io.sqFull := !allowEnqueue
637  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
638  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
639  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
640  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
641  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
642  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
643  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
644
645  val perfEvents = Seq(
646    ("mmioCycle      ", uncacheState =/= s_idle                                                                                                                             ),
647    ("mmioCnt        ", io.uncache.req.fire()                                                                                                                               ),
648    ("mmio_wb_success", io.mmioStout.fire()                                                                                                                                 ),
649    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready                                                                                                           ),
650    ("stq_1_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) < (StoreQueueSize.U/4.U))                                                                              ),
651    ("stq_2_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/4.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U/2.U))    ),
652    ("stq_3_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U/2.U)) & (distanceBetween(enqPtrExt(0), deqPtrExt(0)) <= (StoreQueueSize.U*3.U/4.U))),
653    ("stq_4_4_valid  ", (distanceBetween(enqPtrExt(0), deqPtrExt(0)) > (StoreQueueSize.U*3.U/4.U))                                                                          ),
654  )
655  generatePerfEvent()
656
657  // debug info
658  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
659
660  def PrintFlag(flag: Bool, name: String): Unit = {
661    when(flag) {
662      XSDebug(false, true.B, name)
663    }.otherwise {
664      XSDebug(false, true.B, " ")
665    }
666  }
667
668  for (i <- 0 until StoreQueueSize) {
669    XSDebug(i + ": pc %x va %x pa %x data %x ",
670      uop(i).cf.pc,
671      debug_vaddr(i),
672      debug_paddr(i),
673      debug_data(i)
674    )
675    PrintFlag(allocated(i), "a")
676    PrintFlag(allocated(i) && addrvalid(i), "a")
677    PrintFlag(allocated(i) && datavalid(i), "d")
678    PrintFlag(allocated(i) && committed(i), "c")
679    PrintFlag(allocated(i) && pending(i), "p")
680    PrintFlag(allocated(i) && mmio(i), "m")
681    XSDebug(false, true.B, "\n")
682  }
683
684}
685