1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqLsqIO 11 12 13class SqPtr extends CircularQueuePtr[SqPtr](SqPtr.StoreQueueSize) 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Flipped(ValidIO(new Redirect)) 37 val flush = Input(Bool()) 38 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 39 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 40 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 41 val forward = Vec(LoadPipelineWidth, Flipped(new MaskedLoadForwardQueryIO)) 42 val roq = Flipped(new RoqLsqIO) 43 val uncache = new DCacheWordIO 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 val sqempty = Output(Bool()) 47 val issuePtrExt = Output(new SqPtr) 48 val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) 49 val sqFull = Output(Bool()) 50 }) 51 52 val difftestIO = IO(new Bundle() { 53 val storeCommit = Output(UInt(2.W)) 54 val storeAddr = Output(Vec(2, UInt(64.W))) 55 val storeData = Output(Vec(2, UInt(64.W))) 56 val storeMask = Output(Vec(2, UInt(8.W))) 57 }) 58 difftestIO <> DontCare 59 60 // data modules 61 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 62 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 63 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 64 dataModule.io := DontCare 65 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 66 paddrModule.io := DontCare 67 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 68 vaddrModule.io := DontCare 69 70 // state & misc 71 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 72 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 73 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 74 val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs 75 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 76 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 77 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 78 79 // ptr 80 require(StoreQueueSize > RenameWidth) 81 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 82 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 83 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 84 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 85 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 86 val allowEnqueue = RegInit(true.B) 87 88 val enqPtr = enqPtrExt(0).value 89 val deqPtr = deqPtrExt(0).value 90 val cmtPtr = cmtPtrExt(0).value 91 92 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 93 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 94 95 val commitCount = RegNext(io.roq.scommit) 96 97 // Read dataModule 98 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 99 // if !sbuffer.fire(), read the same ptr 100 // if sbuffer.fire(), read next 101 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 102 VecInit(deqPtrExt.map(_ + 2.U)), 103 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 104 VecInit(deqPtrExt.map(_ + 1.U)), 105 deqPtrExt 106 ) 107 )) 108 for (i <- 0 until StorePipelineWidth) { 109 dataModule.io.raddr(i) := deqPtrExtNext(i).value 110 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 111 } 112 113 // no inst will be commited 1 cycle before tval update 114 vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value 115 116 /** 117 * Enqueue at dispatch 118 * 119 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 120 */ 121 io.enq.canAccept := allowEnqueue 122 for (i <- 0 until RenameWidth) { 123 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 124 val sqIdx = enqPtrExt(offset) 125 val index = sqIdx.value 126 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 127 uop(index) := io.enq.req(i).bits 128 allocated(index) := true.B 129 datavalid(index) := false.B 130 writebacked(index) := false.B 131 issued(index) := false.B 132 commited(index) := false.B 133 pending(index) := false.B 134 } 135 io.enq.resp(i) := sqIdx 136 } 137 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 138 139 /** 140 * Update issuePtr when issue from rs 141 */ 142 143 // update state bit issued 144 for (i <- 0 until StorePipelineWidth) { 145 when (io.storeIssue(i).valid) { 146 issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B 147 } 148 } 149 150 // update issuePtr 151 val IssuePtrMoveStride = 4 152 require(IssuePtrMoveStride >= 2) 153 154 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 155 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0)) 156 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 157 issuePtrExt := nextIssuePtr 158 159 when (io.brqRedirect.valid || io.flush) { 160 issuePtrExt := Mux( 161 isAfter(cmtPtrExt(0), deqPtrExt(0)), 162 cmtPtrExt(0), 163 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 164 ) 165 } 166 // send issuePtrExt to rs 167 // io.issuePtrExt := cmtPtrExt(0) 168 io.issuePtrExt := issuePtrExt 169 170 /** 171 * Writeback store from store units 172 * 173 * Most store instructions writeback to regfile in the previous cycle. 174 * However, 175 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 176 * (in this way it will trigger an exception when it reaches ROB's head) 177 * instead of pending to avoid sending them to lower level. 178 * (2) For an mmio instruction without exceptions, we mark it as pending. 179 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 180 * Upon receiving the response, StoreQueue writes back the instruction 181 * through arbiter with store units. It will later commit as normal. 182 */ 183 for (i <- 0 until StorePipelineWidth) { 184 dataModule.io.wen(i) := false.B 185 paddrModule.io.wen(i) := false.B 186 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 187 when (io.storeIn(i).fire()) { 188 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 189 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 190 pending(stWbIndex) := io.storeIn(i).bits.mmio 191 192 val storeWbData = Wire(new SQDataEntry) 193 storeWbData := DontCare 194 storeWbData.mask := io.storeIn(i).bits.mask 195 storeWbData.data := io.storeIn(i).bits.data 196 197 dataModule.io.waddr(i) := stWbIndex 198 dataModule.io.wdata(i) := storeWbData 199 dataModule.io.wen(i) := true.B 200 201 paddrModule.io.waddr(i) := stWbIndex 202 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 203 paddrModule.io.wen(i) := true.B 204 205 206 mmio(stWbIndex) := io.storeIn(i).bits.mmio 207 208 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 209 io.storeIn(i).bits.uop.sqIdx.value, 210 io.storeIn(i).bits.uop.cf.pc, 211 io.storeIn(i).bits.vaddr, 212 io.storeIn(i).bits.paddr, 213 io.storeIn(i).bits.data, 214 io.storeIn(i).bits.mmio 215 ) 216 } 217 // vaddrModule write is delayed, as vaddrModule will not be read right after write 218 vaddrModule.io.waddr(i) := RegNext(stWbIndex) 219 vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr) 220 vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire()) 221 } 222 223 /** 224 * load forward query 225 * 226 * Check store queue for instructions that is older than the load. 227 * The response will be valid at the next cycle after req. 228 */ 229 // check over all lq entries and forward data from the first matched store 230 for (i <- 0 until LoadPipelineWidth) { 231 io.forward(i).forwardMask := 0.U(8.W).asBools 232 io.forward(i).forwardData := DontCare 233 234 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 235 // (1) if they have the same flag, we need to check range(tail, sqIdx) 236 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 237 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 238 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 239 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 240 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 241 val forwardMask = io.forward(i).sqIdxMask 242 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 243 for (j <- 0 until StoreQueueSize) { 244 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 245 } 246 val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt 247 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 248 249 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 250 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 251 ) 252 253 // do real fwd query 254 dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt 255 dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt 256 257 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 258 259 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 260 io.forward(i).forwardData := dataModule.io.forwardData(i) 261 } 262 263 /** 264 * Memory mapped IO / other uncached operations 265 * 266 * States: 267 * (1) writeback from store units: mark as pending 268 * (2) when they reach ROB's head, they can be sent to uncache channel 269 * (3) response from uncache channel: mark as datavalid 270 * (4) writeback to ROB (and other units): mark as writebacked 271 * (5) ROB commits the instruction: same as normal instructions 272 */ 273 //(2) when they reach ROB's head, they can be sent to uncache channel 274 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 275 val uncacheState = RegInit(s_idle) 276 switch(uncacheState) { 277 is(s_idle) { 278 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) { 279 uncacheState := s_req 280 } 281 } 282 is(s_req) { 283 when(io.uncache.req.fire()) { 284 uncacheState := s_resp 285 } 286 } 287 is(s_resp) { 288 when(io.uncache.resp.fire()) { 289 uncacheState := s_wb 290 } 291 } 292 is(s_wb) { 293 when (io.mmioStout.fire()) { 294 uncacheState := s_wait 295 } 296 } 297 is(s_wait) { 298 when(io.roq.commit) { 299 uncacheState := s_idle // ready for next mmio 300 } 301 } 302 } 303 io.uncache.req.valid := uncacheState === s_req 304 305 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 306 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 307 io.uncache.req.bits.data := dataModule.io.rdata(0).data 308 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 309 310 io.uncache.req.bits.id := DontCare 311 312 when(io.uncache.req.fire()){ 313 pending(deqPtr) := false.B 314 315 XSDebug( 316 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 317 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 318 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 319 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 320 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 321 ) 322 } 323 324 // (3) response from uncache channel: mark as datavalid 325 io.uncache.resp.ready := true.B 326 when (io.uncache.resp.fire()) { 327 datavalid(deqPtr) := true.B 328 } 329 330 // (4) writeback to ROB (and other units): mark as writebacked 331 io.mmioStout.valid := uncacheState === s_wb // allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 332 io.mmioStout.bits.uop := uop(deqPtr) 333 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 334 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 335 io.mmioStout.bits.redirectValid := false.B 336 io.mmioStout.bits.redirect := DontCare 337 io.mmioStout.bits.debug.isMMIO := true.B 338 io.mmioStout.bits.debug.paddr := DontCare 339 io.mmioStout.bits.debug.isPerfCnt := false.B 340 io.mmioStout.bits.fflags := DontCare 341 when (io.mmioStout.fire()) { 342 writebacked(deqPtr) := true.B 343 allocated(deqPtr) := false.B 344 } 345 346 /** 347 * ROB commits store instructions (mark them as commited) 348 * 349 * (1) When store commits, mark it as commited. 350 * (2) They will not be cancelled and can be sent to lower level. 351 */ 352 for (i <- 0 until CommitWidth) { 353 when (commitCount > i.U) { 354 commited(cmtPtrExt(i).value) := true.B 355 } 356 } 357 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 358 359 // Commited stores will not be cancelled and can be sent to lower level. 360 // remove retired insts from sq, add retired store to sbuffer 361 for (i <- 0 until StorePipelineWidth) { 362 // We use RegNext to prepare data for sbuffer 363 val ptr = deqPtrExt(i).value 364 // if !sbuffer.fire(), read the same ptr 365 // if sbuffer.fire(), read next 366 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 367 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 368 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 369 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 370 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 371 io.sbuffer(i).bits.id := DontCare 372 373 when (io.sbuffer(i).fire()) { 374 allocated(ptr) := false.B 375 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 376 } 377 } 378 when (io.sbuffer(1).fire()) { 379 assert(io.sbuffer(0).fire()) 380 } 381 382 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 383 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 384 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 385 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 386 387 if (!env.FPGAPlatform) { 388 difftestIO.storeCommit := RegNext(storeCommit) 389 difftestIO.storeAddr := RegNext(waddr) 390 difftestIO.storeData := RegNext(wdata) 391 difftestIO.storeMask := RegNext(wmask) 392 } 393 394 // Read vaddr for mem exception 395 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 396 397 // misprediction recovery / exception redirect 398 // invalidate sq term using robIdx 399 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 400 for (i <- 0 until StoreQueueSize) { 401 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 402 when (needCancel(i)) { 403 allocated(i) := false.B 404 } 405 } 406 407 /** 408 * update pointers 409 */ 410 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 411 val lastCycleFlush = RegNext(io.flush) 412 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 413 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 414 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 415 when (lastCycleRedirect || lastCycleFlush) { 416 // we recover the pointers in the next cycle after redirect 417 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 418 }.otherwise { 419 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 420 } 421 422 deqPtrExt := deqPtrExtNext 423 424 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 425 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 426 427 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 428 429 // io.sqempty will be used by sbuffer 430 // We delay it for 1 cycle for better timing 431 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 432 // for 1 cycle will also promise that sq is empty in that cycle 433 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 434 435 // perf counter 436 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 437 io.sqFull := !allowEnqueue 438 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 439 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 440 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 441 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 442 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 443 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 444 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 445 446 // debug info 447 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 448 449 def PrintFlag(flag: Bool, name: String): Unit = { 450 when(flag) { 451 XSDebug(false, true.B, name) 452 }.otherwise { 453 XSDebug(false, true.B, " ") 454 } 455 } 456 457 for (i <- 0 until StoreQueueSize) { 458 if (i % 4 == 0) XSDebug("") 459 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 460 PrintFlag(allocated(i), "a") 461 PrintFlag(allocated(i) && datavalid(i), "v") 462 PrintFlag(allocated(i) && writebacked(i), "w") 463 PrintFlag(allocated(i) && commited(i), "c") 464 PrintFlag(allocated(i) && pending(i), "p") 465 XSDebug(false, true.B, " ") 466 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 467 } 468 469} 470