1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 59 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 60 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write commited store to sbuffer 61 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 62 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 63 val rob = Flipped(new RobLsqIO) 64 val uncache = new DCacheWordIO 65 // val refill = Flipped(Valid(new DCacheLineReq )) 66 val exceptionAddr = new ExceptionAddrIO 67 val sqempty = Output(Bool()) 68 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 69 val sqFull = Output(Bool()) 70 }) 71 72 println("StoreQueue: size:" + StoreQueueSize) 73 74 // data modules 75 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 76 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 77 val dataModule = Module(new SQDataModule( 78 numEntries = StoreQueueSize, 79 numRead = StorePipelineWidth, 80 numWrite = StorePipelineWidth, 81 numForward = StorePipelineWidth 82 )) 83 dataModule.io := DontCare 84 val paddrModule = Module(new SQAddrModule( 85 dataWidth = PAddrBits, 86 numEntries = StoreQueueSize, 87 numRead = StorePipelineWidth, 88 numWrite = StorePipelineWidth, 89 numForward = StorePipelineWidth 90 )) 91 paddrModule.io := DontCare 92 val vaddrModule = Module(new SQAddrModule( 93 dataWidth = VAddrBits, 94 numEntries = StoreQueueSize, 95 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 96 numWrite = StorePipelineWidth, 97 numForward = StorePipelineWidth 98 )) 99 vaddrModule.io := DontCare 100 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 101 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 102 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 103 104 // state & misc 105 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 106 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 107 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 108 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 109 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by rob 110 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 111 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 112 113 // ptr 114 require(StoreQueueSize > RenameWidth) 115 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 116 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 117 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 118 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 119 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 120 val allowEnqueue = RegInit(true.B) 121 122 val enqPtr = enqPtrExt(0).value 123 val deqPtr = deqPtrExt(0).value 124 val cmtPtr = cmtPtrExt(0).value 125 126 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 127 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 128 129 val commitCount = RegNext(io.rob.scommit) 130 131 // Read dataModule 132 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 133 // if !sbuffer.fire(), read the same ptr 134 // if sbuffer.fire(), read next 135 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 136 VecInit(deqPtrExt.map(_ + 2.U)), 137 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 138 VecInit(deqPtrExt.map(_ + 1.U)), 139 deqPtrExt 140 ) 141 )) 142 for (i <- 0 until StorePipelineWidth) { 143 dataModule.io.raddr(i) := deqPtrExtNext(i).value 144 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 145 vaddrModule.io.raddr(i) := deqPtrExtNext(i).value 146 } 147 148 // no inst will be commited 1 cycle before tval update 149 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 150 151 /** 152 * Enqueue at dispatch 153 * 154 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 155 */ 156 io.enq.canAccept := allowEnqueue 157 for (i <- 0 until RenameWidth) { 158 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 159 val sqIdx = enqPtrExt(offset) 160 val index = sqIdx.value 161 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 162 uop(index) := io.enq.req(i).bits 163 allocated(index) := true.B 164 datavalid(index) := false.B 165 addrvalid(index) := false.B 166 commited(index) := false.B 167 pending(index) := false.B 168 } 169 io.enq.resp(i) := sqIdx 170 } 171 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 172 173 /** 174 * Update issuePtr when issue from rs 175 */ 176 // update issuePtr 177 val IssuePtrMoveStride = 4 178 require(IssuePtrMoveStride >= 2) 179 180 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 181 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 182 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 183 issuePtrExt := nextIssuePtr 184 185 when (io.brqRedirect.valid) { 186 issuePtrExt := Mux( 187 isAfter(cmtPtrExt(0), deqPtrExt(0)), 188 cmtPtrExt(0), 189 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 190 ) 191 } 192 // send issuePtrExt to rs 193 // io.issuePtrExt := cmtPtrExt(0) 194 io.issuePtrExt := issuePtrExt 195 196 /** 197 * Writeback store from store units 198 * 199 * Most store instructions writeback to regfile in the previous cycle. 200 * However, 201 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 202 * (in this way it will trigger an exception when it reaches ROB's head) 203 * instead of pending to avoid sending them to lower level. 204 * (2) For an mmio instruction without exceptions, we mark it as pending. 205 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 206 * Upon receiving the response, StoreQueue writes back the instruction 207 * through arbiter with store units. It will later commit as normal. 208 */ 209 210 // Write addr to sq 211 for (i <- 0 until StorePipelineWidth) { 212 paddrModule.io.wen(i) := false.B 213 vaddrModule.io.wen(i) := false.B 214 dataModule.io.mask.wen(i) := false.B 215 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 216 when (io.storeIn(i).fire()) { 217 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 218 pending(stWbIndex) := io.storeIn(i).bits.mmio 219 220 dataModule.io.mask.waddr(i) := stWbIndex 221 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 222 dataModule.io.mask.wen(i) := true.B 223 224 paddrModule.io.waddr(i) := stWbIndex 225 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 226 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 227 paddrModule.io.wen(i) := true.B 228 229 vaddrModule.io.waddr(i) := stWbIndex 230 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 231 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 232 vaddrModule.io.wen(i) := true.B 233 234 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 235 236 mmio(stWbIndex) := io.storeIn(i).bits.mmio 237 238 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 239 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 240 io.storeIn(i).bits.uop.sqIdx.value, 241 io.storeIn(i).bits.uop.cf.pc, 242 io.storeIn(i).bits.vaddr, 243 io.storeIn(i).bits.paddr, 244 io.storeIn(i).bits.mmio 245 ) 246 } 247 248 when(vaddrModule.io.wen(i)){ 249 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 250 } 251 } 252 253 // Write data to sq 254 for (i <- 0 until StorePipelineWidth) { 255 dataModule.io.data.wen(i) := false.B 256 io.rob.storeDataRobWb(i).valid := false.B 257 io.rob.storeDataRobWb(i).bits := DontCare 258 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 259 when (io.storeDataIn(i).fire()) { 260 datavalid(stWbIndex) := true.B 261 262 dataModule.io.data.waddr(i) := stWbIndex 263 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 264 0.U, 265 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 266 ) 267 dataModule.io.data.wen(i) := true.B 268 269 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 270 271 io.rob.storeDataRobWb(i).valid := true.B 272 io.rob.storeDataRobWb(i).bits := io.storeDataIn(i).bits.uop.robIdx 273 274 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 275 io.storeDataIn(i).bits.uop.sqIdx.value, 276 io.storeDataIn(i).bits.uop.cf.pc, 277 io.storeDataIn(i).bits.data, 278 dataModule.io.data.wdata(i) 279 ) 280 } 281 } 282 283 /** 284 * load forward query 285 * 286 * Check store queue for instructions that is older than the load. 287 * The response will be valid at the next cycle after req. 288 */ 289 // check over all lq entries and forward data from the first matched store 290 for (i <- 0 until LoadPipelineWidth) { 291 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 292 // (1) if they have the same flag, we need to check range(tail, sqIdx) 293 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 294 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 295 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 296 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 297 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 298 val forwardMask = io.forward(i).sqIdxMask 299 // all addrvalid terms need to be checked 300 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 301 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 302 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 303 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 304 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 305 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 306 307 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 308 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 309 ) 310 311 // do real fwd query (cam lookup in load_s1) 312 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 313 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 314 315 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 316 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 317 318 // vaddr cam result does not equal to paddr cam result 319 // replay needed 320 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 321 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 322 val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U 323 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 324 when (vaddrMatchFailed) { 325 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 326 RegNext(io.forward(i).uop.cf.pc), 327 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 328 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 329 ); 330 } 331 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 332 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 333 334 // Fast forward mask will be generated immediately (load_s1) 335 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 336 337 // Forward result will be generated 1 cycle later (load_s2) 338 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 339 io.forward(i).forwardData := dataModule.io.forwardData(i) 340 341 // If addr match, data not ready, mark it as dataInvalid 342 // load_s1: generate dataInvalid in load_s1 to set fastUop 343 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 344 val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward)) 345 // load_s2 346 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 347 348 // load_s2 349 // check if vaddr forward mismatched 350 io.forward(i).matchInvalid := vaddrMatchFailed 351 io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg 352 } 353 354 /** 355 * Memory mapped IO / other uncached operations 356 * 357 * States: 358 * (1) writeback from store units: mark as pending 359 * (2) when they reach ROB's head, they can be sent to uncache channel 360 * (3) response from uncache channel: mark as datavalidmask.wen 361 * (4) writeback to ROB (and other units): mark as writebacked 362 * (5) ROB commits the instruction: same as normal instructions 363 */ 364 //(2) when they reach ROB's head, they can be sent to uncache channel 365 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 366 val uncacheState = RegInit(s_idle) 367 switch(uncacheState) { 368 is(s_idle) { 369 when(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 370 uncacheState := s_req 371 } 372 } 373 is(s_req) { 374 when(io.uncache.req.fire()) { 375 uncacheState := s_resp 376 } 377 } 378 is(s_resp) { 379 when(io.uncache.resp.fire()) { 380 uncacheState := s_wb 381 } 382 } 383 is(s_wb) { 384 when (io.mmioStout.fire()) { 385 uncacheState := s_wait 386 } 387 } 388 is(s_wait) { 389 when(commitCount > 0.U) { 390 uncacheState := s_idle // ready for next mmio 391 } 392 } 393 } 394 io.uncache.req.valid := uncacheState === s_req 395 396 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 397 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 398 io.uncache.req.bits.data := dataModule.io.rdata(0).data 399 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 400 401 // CBO op type check can be delayed for 1 cycle, 402 // as uncache op will not start in s_idle 403 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 404 val cbo_mmio_op = 0.U //TODO 405 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 406 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 407 io.uncache.req.bits.addr := DontCare // TODO 408 io.uncache.req.bits.data := paddrModule.io.rdata(0) 409 io.uncache.req.bits.mask := DontCare // TODO 410 } 411 412 io.uncache.req.bits.id := DontCare 413 io.uncache.req.bits.instrtype := DontCare 414 415 when(io.uncache.req.fire()){ 416 // mmio store should not be committed until uncache req is sent 417 pending(deqPtr) := false.B 418 419 XSDebug( 420 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 421 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 422 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 423 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 424 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 425 ) 426 } 427 428 // (3) response from uncache channel: mark as datavalid 429 io.uncache.resp.ready := true.B 430 431 // (4) writeback to ROB (and other units): mark as writebacked 432 io.mmioStout.valid := uncacheState === s_wb 433 io.mmioStout.bits.uop := uop(deqPtr) 434 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 435 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 436 io.mmioStout.bits.redirectValid := false.B 437 io.mmioStout.bits.redirect := DontCare 438 io.mmioStout.bits.debug.isMMIO := true.B 439 io.mmioStout.bits.debug.paddr := DontCare 440 io.mmioStout.bits.debug.isPerfCnt := false.B 441 io.mmioStout.bits.fflags := DontCare 442 // Remove MMIO inst from store queue after MMIO request is being sent 443 // That inst will be traced by uncache state machine 444 when (io.mmioStout.fire()) { 445 allocated(deqPtr) := false.B 446 } 447 448 /** 449 * ROB commits store instructions (mark them as commited) 450 * 451 * (1) When store commits, mark it as commited. 452 * (2) They will not be cancelled and can be sent to lower level. 453 */ 454 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 455 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 456 "should not commit instruction when MMIO has not been finished\n") 457 for (i <- 0 until CommitWidth) { 458 when (commitCount > i.U) { // MMIO inst is not in progress 459 if(i == 0){ 460 // MMIO inst should not update commited flag 461 // Note that commit count has been delayed for 1 cycle 462 when(uncacheState === s_idle){ 463 commited(cmtPtrExt(0).value) := true.B 464 } 465 } else { 466 commited(cmtPtrExt(i).value) := true.B 467 } 468 } 469 } 470 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 471 472 // Commited stores will not be cancelled and can be sent to lower level. 473 // remove retired insts from sq, add retired store to sbuffer 474 for (i <- 0 until StorePipelineWidth) { 475 // We use RegNext to prepare data for sbuffer 476 val ptr = deqPtrExt(i).value 477 // if !sbuffer.fire(), read the same ptr 478 // if sbuffer.fire(), read next 479 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 480 // Note that store data/addr should both be valid after store's commit 481 assert(!io.sbuffer(i).valid || allvalid(ptr)) 482 // Write line request should have all 1 mask 483 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 484 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 485 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 486 io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i) 487 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 488 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 489 io.sbuffer(i).bits.wline := paddrModule.io.rlineflag(i) 490 io.sbuffer(i).bits.id := DontCare 491 io.sbuffer(i).bits.instrtype := DontCare 492 493 when (io.sbuffer(i).fire()) { 494 allocated(ptr) := false.B 495 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 496 } 497 } 498 when (io.sbuffer(1).fire()) { 499 assert(io.sbuffer(0).fire()) 500 } 501 if (coreParams.dcacheParametersOpt.isEmpty) { 502 for (i <- 0 until StorePipelineWidth) { 503 val ptr = deqPtrExt(i).value 504 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 505 fakeRAM.clk := clock 506 fakeRAM.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 507 fakeRAM.rIdx := 0.U 508 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 509 fakeRAM.wdata := dataModule.io.rdata(i).data 510 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 511 fakeRAM.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 512 } 513 } 514 515 if (!env.FPGAPlatform) { 516 for (i <- 0 until StorePipelineWidth) { 517 val storeCommit = io.sbuffer(i).fire() 518 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 519 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 520 val wmask = io.sbuffer(i).bits.mask 521 522 val difftest = Module(new DifftestStoreEvent) 523 difftest.io.clock := clock 524 difftest.io.coreid := hardId.U 525 difftest.io.index := i.U 526 difftest.io.valid := storeCommit 527 difftest.io.storeAddr := waddr 528 difftest.io.storeData := wdata 529 difftest.io.storeMask := wmask 530 } 531 } 532 533 // Read vaddr for mem exception 534 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 535 536 // misprediction recovery / exception redirect 537 // invalidate sq term using robIdx 538 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 539 for (i <- 0 until StoreQueueSize) { 540 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 541 when (needCancel(i)) { 542 allocated(i) := false.B 543 } 544 } 545 546 /** 547 * update pointers 548 */ 549 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 550 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 551 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 552 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 553 when (lastCycleRedirect) { 554 // we recover the pointers in the next cycle after redirect 555 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 556 }.otherwise { 557 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 558 } 559 560 deqPtrExt := deqPtrExtNext 561 562 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 563 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 564 565 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 566 567 // io.sqempty will be used by sbuffer 568 // We delay it for 1 cycle for better timing 569 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 570 // for 1 cycle will also promise that sq is empty in that cycle 571 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 572 573 // perf counter 574 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 575 io.sqFull := !allowEnqueue 576 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 577 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 578 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 579 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 580 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 581 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 582 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 583 584 // debug info 585 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 586 587 def PrintFlag(flag: Bool, name: String): Unit = { 588 when(flag) { 589 XSDebug(false, true.B, name) 590 }.otherwise { 591 XSDebug(false, true.B, " ") 592 } 593 } 594 595 for (i <- 0 until StoreQueueSize) { 596 XSDebug(i + ": pc %x va %x pa %x data %x ", 597 uop(i).cf.pc, 598 debug_vaddr(i), 599 debug_paddr(i), 600 debug_data(i) 601 ) 602 PrintFlag(allocated(i), "a") 603 PrintFlag(allocated(i) && addrvalid(i), "a") 604 PrintFlag(allocated(i) && datavalid(i), "d") 605 PrintFlag(allocated(i) && commited(i), "c") 606 PrintFlag(allocated(i) && pending(i), "p") 607 PrintFlag(allocated(i) && mmio(i), "m") 608 XSDebug(false, true.B, "\n") 609 } 610 611} 612