1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val flush = Input(Bool()) 59 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 60 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 61 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write commited store to sbuffer 62 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 63 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 64 val rob = Flipped(new RobLsqIO) 65 val uncache = new DCacheWordIO 66 // val refill = Flipped(Valid(new DCacheLineReq )) 67 val exceptionAddr = new ExceptionAddrIO 68 val sqempty = Output(Bool()) 69 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 70 val sqFull = Output(Bool()) 71 }) 72 73 println("StoreQueue: size:" + StoreQueueSize) 74 75 // data modules 76 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 77 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 78 val dataModule = Module(new SQDataModule( 79 numEntries = StoreQueueSize, 80 numRead = StorePipelineWidth, 81 numWrite = StorePipelineWidth, 82 numForward = StorePipelineWidth 83 )) 84 dataModule.io := DontCare 85 val paddrModule = Module(new SQAddrModule( 86 dataWidth = PAddrBits, 87 numEntries = StoreQueueSize, 88 numRead = StorePipelineWidth, 89 numWrite = StorePipelineWidth, 90 numForward = StorePipelineWidth 91 )) 92 paddrModule.io := DontCare 93 val vaddrModule = Module(new SQAddrModule( 94 dataWidth = VAddrBits, 95 numEntries = StoreQueueSize, 96 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 97 numWrite = StorePipelineWidth, 98 numForward = StorePipelineWidth 99 )) 100 vaddrModule.io := DontCare 101 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 102 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 103 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 104 105 // state & misc 106 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 107 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 108 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 109 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 110 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by rob 111 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 112 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 113 114 // ptr 115 require(StoreQueueSize > RenameWidth) 116 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 117 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 118 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 119 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 120 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 121 val allowEnqueue = RegInit(true.B) 122 123 val enqPtr = enqPtrExt(0).value 124 val deqPtr = deqPtrExt(0).value 125 val cmtPtr = cmtPtrExt(0).value 126 127 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 128 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 129 130 val commitCount = RegNext(io.rob.scommit) 131 132 // Read dataModule 133 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 134 // if !sbuffer.fire(), read the same ptr 135 // if sbuffer.fire(), read next 136 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 137 VecInit(deqPtrExt.map(_ + 2.U)), 138 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 139 VecInit(deqPtrExt.map(_ + 1.U)), 140 deqPtrExt 141 ) 142 )) 143 for (i <- 0 until StorePipelineWidth) { 144 dataModule.io.raddr(i) := deqPtrExtNext(i).value 145 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 146 vaddrModule.io.raddr(i) := deqPtrExtNext(i).value 147 } 148 149 // no inst will be commited 1 cycle before tval update 150 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 151 152 /** 153 * Enqueue at dispatch 154 * 155 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 156 */ 157 io.enq.canAccept := allowEnqueue 158 for (i <- 0 until RenameWidth) { 159 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 160 val sqIdx = enqPtrExt(offset) 161 val index = sqIdx.value 162 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 163 uop(index) := io.enq.req(i).bits 164 allocated(index) := true.B 165 datavalid(index) := false.B 166 addrvalid(index) := false.B 167 commited(index) := false.B 168 pending(index) := false.B 169 } 170 io.enq.resp(i) := sqIdx 171 } 172 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 173 174 /** 175 * Update issuePtr when issue from rs 176 */ 177 // update issuePtr 178 val IssuePtrMoveStride = 4 179 require(IssuePtrMoveStride >= 2) 180 181 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 182 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 183 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 184 issuePtrExt := nextIssuePtr 185 186 when (io.brqRedirect.valid || io.flush) { 187 issuePtrExt := Mux( 188 isAfter(cmtPtrExt(0), deqPtrExt(0)), 189 cmtPtrExt(0), 190 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 191 ) 192 } 193 // send issuePtrExt to rs 194 // io.issuePtrExt := cmtPtrExt(0) 195 io.issuePtrExt := issuePtrExt 196 197 /** 198 * Writeback store from store units 199 * 200 * Most store instructions writeback to regfile in the previous cycle. 201 * However, 202 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 203 * (in this way it will trigger an exception when it reaches ROB's head) 204 * instead of pending to avoid sending them to lower level. 205 * (2) For an mmio instruction without exceptions, we mark it as pending. 206 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 207 * Upon receiving the response, StoreQueue writes back the instruction 208 * through arbiter with store units. It will later commit as normal. 209 */ 210 211 // Write addr to sq 212 for (i <- 0 until StorePipelineWidth) { 213 paddrModule.io.wen(i) := false.B 214 vaddrModule.io.wen(i) := false.B 215 dataModule.io.mask.wen(i) := false.B 216 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 217 when (io.storeIn(i).fire()) { 218 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 219 pending(stWbIndex) := io.storeIn(i).bits.mmio 220 221 dataModule.io.mask.waddr(i) := stWbIndex 222 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 223 dataModule.io.mask.wen(i) := true.B 224 225 paddrModule.io.waddr(i) := stWbIndex 226 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 227 paddrModule.io.wen(i) := true.B 228 229 vaddrModule.io.waddr(i) := stWbIndex 230 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 231 vaddrModule.io.wen(i) := true.B 232 233 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 234 235 mmio(stWbIndex) := io.storeIn(i).bits.mmio 236 237 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 238 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 239 io.storeIn(i).bits.uop.sqIdx.value, 240 io.storeIn(i).bits.uop.cf.pc, 241 io.storeIn(i).bits.vaddr, 242 io.storeIn(i).bits.paddr, 243 io.storeIn(i).bits.mmio 244 ) 245 } 246 247 when(vaddrModule.io.wen(i)){ 248 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 249 } 250 } 251 252 // Write data to sq 253 for (i <- 0 until StorePipelineWidth) { 254 dataModule.io.data.wen(i) := false.B 255 io.rob.storeDataRobWb(i).valid := false.B 256 io.rob.storeDataRobWb(i).bits := DontCare 257 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 258 when (io.storeDataIn(i).fire()) { 259 datavalid(stWbIndex) := true.B 260 261 dataModule.io.data.waddr(i) := stWbIndex 262 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 263 dataModule.io.data.wen(i) := true.B 264 265 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 266 267 io.rob.storeDataRobWb(i).valid := true.B 268 io.rob.storeDataRobWb(i).bits := io.storeDataIn(i).bits.uop.robIdx 269 270 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 271 io.storeDataIn(i).bits.uop.sqIdx.value, 272 io.storeDataIn(i).bits.uop.cf.pc, 273 io.storeDataIn(i).bits.data, 274 dataModule.io.data.wdata(i) 275 ) 276 } 277 } 278 279 /** 280 * load forward query 281 * 282 * Check store queue for instructions that is older than the load. 283 * The response will be valid at the next cycle after req. 284 */ 285 // check over all lq entries and forward data from the first matched store 286 for (i <- 0 until LoadPipelineWidth) { 287 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 288 // (1) if they have the same flag, we need to check range(tail, sqIdx) 289 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 290 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 291 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 292 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 293 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 294 val forwardMask = io.forward(i).sqIdxMask 295 // all addrvalid terms need to be checked 296 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 297 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 298 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 299 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 300 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 301 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 302 303 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 304 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 305 ) 306 307 // do real fwd query (cam lookup in load_s1) 308 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 309 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 310 311 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 312 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 313 314 // vaddr cam result does not equal to paddr cam result 315 // replay needed 316 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 317 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 318 val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U 319 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 320 when (vaddrMatchFailed) { 321 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 322 RegNext(io.forward(i).uop.cf.pc), 323 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 324 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 325 ); 326 } 327 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 328 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 329 330 // Fast forward mask will be generated immediately (load_s1) 331 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 332 333 // Forward result will be generated 1 cycle later (load_s2) 334 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 335 io.forward(i).forwardData := dataModule.io.forwardData(i) 336 337 // If addr match, data not ready, mark it as dataInvalid 338 // load_s1: generate dataInvalid in load_s1 to set fastUop 339 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 340 val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward)) 341 // load_s2 342 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 343 344 // load_s2 345 // check if vaddr forward mismatched 346 io.forward(i).matchInvalid := vaddrMatchFailed 347 io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg 348 } 349 350 /** 351 * Memory mapped IO / other uncached operations 352 * 353 * States: 354 * (1) writeback from store units: mark as pending 355 * (2) when they reach ROB's head, they can be sent to uncache channel 356 * (3) response from uncache channel: mark as datavalidmask.wen 357 * (4) writeback to ROB (and other units): mark as writebacked 358 * (5) ROB commits the instruction: same as normal instructions 359 */ 360 //(2) when they reach ROB's head, they can be sent to uncache channel 361 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 362 val uncacheState = RegInit(s_idle) 363 switch(uncacheState) { 364 is(s_idle) { 365 when(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 366 uncacheState := s_req 367 } 368 } 369 is(s_req) { 370 when(io.uncache.req.fire()) { 371 uncacheState := s_resp 372 } 373 } 374 is(s_resp) { 375 when(io.uncache.resp.fire()) { 376 uncacheState := s_wb 377 } 378 } 379 is(s_wb) { 380 when (io.mmioStout.fire()) { 381 uncacheState := s_wait 382 } 383 } 384 is(s_wait) { 385 when(io.rob.commit) { 386 uncacheState := s_idle // ready for next mmio 387 } 388 } 389 } 390 io.uncache.req.valid := uncacheState === s_req 391 392 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 393 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 394 io.uncache.req.bits.data := dataModule.io.rdata(0).data 395 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 396 397 io.uncache.req.bits.id := DontCare 398 io.uncache.req.bits.instrtype := DontCare 399 400 when(io.uncache.req.fire()){ 401 // mmio store should not be committed until uncache req is sent 402 pending(deqPtr) := false.B 403 404 XSDebug( 405 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 406 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 407 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 408 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 409 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 410 ) 411 } 412 413 // (3) response from uncache channel: mark as datavalid 414 io.uncache.resp.ready := true.B 415 416 // (4) writeback to ROB (and other units): mark as writebacked 417 io.mmioStout.valid := uncacheState === s_wb 418 io.mmioStout.bits.uop := uop(deqPtr) 419 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 420 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 421 io.mmioStout.bits.redirectValid := false.B 422 io.mmioStout.bits.redirect := DontCare 423 io.mmioStout.bits.debug.isMMIO := true.B 424 io.mmioStout.bits.debug.paddr := DontCare 425 io.mmioStout.bits.debug.isPerfCnt := false.B 426 io.mmioStout.bits.fflags := DontCare 427 // Remove MMIO inst from store queue after MMIO request is being sent 428 // That inst will be traced by uncache state machine 429 when (io.mmioStout.fire()) { 430 allocated(deqPtr) := false.B 431 } 432 433 /** 434 * ROB commits store instructions (mark them as commited) 435 * 436 * (1) When store commits, mark it as commited. 437 * (2) They will not be cancelled and can be sent to lower level. 438 */ 439 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 440 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 441 "should not commit instruction when MMIO has not been finished\n") 442 for (i <- 0 until CommitWidth) { 443 when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress 444 commited(cmtPtrExt(i).value) := true.B 445 } 446 } 447 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 448 449 // Commited stores will not be cancelled and can be sent to lower level. 450 // remove retired insts from sq, add retired store to sbuffer 451 for (i <- 0 until StorePipelineWidth) { 452 // We use RegNext to prepare data for sbuffer 453 val ptr = deqPtrExt(i).value 454 // if !sbuffer.fire(), read the same ptr 455 // if sbuffer.fire(), read next 456 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 457 // Note that store data/addr should both be valid after store's commit 458 assert(!io.sbuffer(i).valid || allvalid(ptr)) 459 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 460 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 461 io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i) 462 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 463 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 464 io.sbuffer(i).bits.id := DontCare 465 io.sbuffer(i).bits.instrtype := DontCare 466 467 when (io.sbuffer(i).fire()) { 468 allocated(ptr) := false.B 469 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 470 } 471 } 472 when (io.sbuffer(1).fire()) { 473 assert(io.sbuffer(0).fire()) 474 } 475 if (coreParams.dcacheParametersOpt.isEmpty) { 476 for (i <- 0 until StorePipelineWidth) { 477 val ptr = deqPtrExt(i).value 478 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 479 fakeRAM.clk := clock 480 fakeRAM.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 481 fakeRAM.rIdx := 0.U 482 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 483 fakeRAM.wdata := dataModule.io.rdata(i).data 484 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 485 fakeRAM.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 486 } 487 } 488 489 if (!env.FPGAPlatform) { 490 for (i <- 0 until StorePipelineWidth) { 491 val storeCommit = io.sbuffer(i).fire() 492 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 493 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 494 val wmask = io.sbuffer(i).bits.mask 495 496 val difftest = Module(new DifftestStoreEvent) 497 difftest.io.clock := clock 498 difftest.io.coreid := hardId.U 499 difftest.io.index := i.U 500 difftest.io.valid := storeCommit 501 difftest.io.storeAddr := waddr 502 difftest.io.storeData := wdata 503 difftest.io.storeMask := wmask 504 } 505 } 506 507 // Read vaddr for mem exception 508 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 509 510 // misprediction recovery / exception redirect 511 // invalidate sq term using robIdx 512 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 513 for (i <- 0 until StoreQueueSize) { 514 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 515 when (needCancel(i)) { 516 allocated(i) := false.B 517 } 518 } 519 520 /** 521 * update pointers 522 */ 523 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 524 val lastCycleFlush = RegNext(io.flush) 525 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 526 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 527 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 528 when (lastCycleRedirect || lastCycleFlush) { 529 // we recover the pointers in the next cycle after redirect 530 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 531 }.otherwise { 532 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 533 } 534 535 deqPtrExt := deqPtrExtNext 536 537 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 538 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 539 540 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 541 542 // io.sqempty will be used by sbuffer 543 // We delay it for 1 cycle for better timing 544 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 545 // for 1 cycle will also promise that sq is empty in that cycle 546 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 547 548 // perf counter 549 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 550 io.sqFull := !allowEnqueue 551 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 552 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 553 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 554 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 555 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 556 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 557 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 558 559 // debug info 560 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 561 562 def PrintFlag(flag: Bool, name: String): Unit = { 563 when(flag) { 564 XSDebug(false, true.B, name) 565 }.otherwise { 566 XSDebug(false, true.B, " ") 567 } 568 } 569 570 for (i <- 0 until StoreQueueSize) { 571 XSDebug(i + ": pc %x va %x pa %x data %x ", 572 uop(i).cf.pc, 573 debug_vaddr(i), 574 debug_paddr(i), 575 debug_data(i) 576 ) 577 PrintFlag(allocated(i), "a") 578 PrintFlag(allocated(i) && addrvalid(i), "a") 579 PrintFlag(allocated(i) && datavalid(i), "d") 580 PrintFlag(allocated(i) && commited(i), "c") 581 PrintFlag(allocated(i) && pending(i), "p") 582 PrintFlag(allocated(i) && mmio(i), "m") 583 XSDebug(false, true.B, "\n") 584 } 585 586} 587