xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_squeezenet_v1_1.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1*c217d954SCole Faust /*
2*c217d954SCole Faust  * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust  *
4*c217d954SCole Faust  * SPDX-License-Identifier: MIT
5*c217d954SCole Faust  *
6*c217d954SCole Faust  * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust  * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust  * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust  * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust  * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust  *
13*c217d954SCole Faust  * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust  * copies or substantial portions of the Software.
15*c217d954SCole Faust  *
16*c217d954SCole Faust  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust  * SOFTWARE.
23*c217d954SCole Faust  */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust 
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust 
34*c217d954SCole Faust /** Example demonstrating how to implement Squeezenet's v1.1 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphSqueezenet_v1_1Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphSqueezenet_v1_1Example()38*c217d954SCole Faust     GraphSqueezenet_v1_1Example()
39*c217d954SCole Faust         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1.1")
40*c217d954SCole Faust     {
41*c217d954SCole Faust     }
do_setup(int argc,char ** argv)42*c217d954SCole Faust     bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust     {
44*c217d954SCole Faust         // Parse arguments
45*c217d954SCole Faust         cmd_parser.parse(argc, argv);
46*c217d954SCole Faust         cmd_parser.validate();
47*c217d954SCole Faust 
48*c217d954SCole Faust         // Consume common parameters
49*c217d954SCole Faust         common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust 
51*c217d954SCole Faust         // Return when help menu is requested
52*c217d954SCole Faust         if(common_params.help)
53*c217d954SCole Faust         {
54*c217d954SCole Faust             cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust             return false;
56*c217d954SCole Faust         }
57*c217d954SCole Faust 
58*c217d954SCole Faust         // Print parameter values
59*c217d954SCole Faust         std::cout << common_params << std::endl;
60*c217d954SCole Faust 
61*c217d954SCole Faust         // Get trainable parameters data path
62*c217d954SCole Faust         std::string data_path = common_params.data_path;
63*c217d954SCole Faust 
64*c217d954SCole Faust         // Create a preprocessor object
65*c217d954SCole Faust         const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
66*c217d954SCole Faust         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
67*c217d954SCole Faust 
68*c217d954SCole Faust         // Create input descriptor
69*c217d954SCole Faust         const auto        operation_layout = common_params.data_layout;
70*c217d954SCole Faust         const TensorShape tensor_shape     = permute_shape(TensorShape(227U, 227U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
71*c217d954SCole Faust         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72*c217d954SCole Faust 
73*c217d954SCole Faust         // Set weights trained layout
74*c217d954SCole Faust         const DataLayout weights_layout = DataLayout::NCHW;
75*c217d954SCole Faust 
76*c217d954SCole Faust         graph << common_params.target
77*c217d954SCole Faust               << common_params.fast_math_hint
78*c217d954SCole Faust               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
79*c217d954SCole Faust               << ConvolutionLayer(
80*c217d954SCole Faust                   3U, 3U, 64U,
81*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_w.npy", weights_layout),
82*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_b.npy"),
83*c217d954SCole Faust                   PadStrideInfo(2, 2, 0, 0))
84*c217d954SCole Faust               .set_name("conv1")
85*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv1")
86*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1")
87*c217d954SCole Faust               << ConvolutionLayer(
88*c217d954SCole Faust                   1U, 1U, 16U,
89*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_w.npy", weights_layout),
90*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_b.npy"),
91*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
92*c217d954SCole Faust               .set_name("fire2/squeeze1x1")
93*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire2/relu_squeeze1x1");
94*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U).set_name("fire2/concat");
95*c217d954SCole Faust         graph << ConvolutionLayer(
96*c217d954SCole Faust                   1U, 1U, 16U,
97*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_w.npy", weights_layout),
98*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_b.npy"),
99*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
100*c217d954SCole Faust               .set_name("fire3/squeeze1x1")
101*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire3/relu_squeeze1x1");
102*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U).set_name("fire3/concat");
103*c217d954SCole Faust         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool3")
104*c217d954SCole Faust               << ConvolutionLayer(
105*c217d954SCole Faust                   1U, 1U, 32U,
106*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_w.npy", weights_layout),
107*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_b.npy"),
108*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
109*c217d954SCole Faust               .set_name("fire4/squeeze1x1")
110*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire4/relu_squeeze1x1");
111*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U).set_name("fire4/concat");
112*c217d954SCole Faust         graph << ConvolutionLayer(
113*c217d954SCole Faust                   1U, 1U, 32U,
114*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_w.npy", weights_layout),
115*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_b.npy"),
116*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
117*c217d954SCole Faust               .set_name("fire5/squeeze1x1")
118*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire5/relu_squeeze1x1");
119*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U).set_name("fire5/concat");
120*c217d954SCole Faust         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool5")
121*c217d954SCole Faust               << ConvolutionLayer(
122*c217d954SCole Faust                   1U, 1U, 48U,
123*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_w.npy", weights_layout),
124*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_b.npy"),
125*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
126*c217d954SCole Faust               .set_name("fire6/squeeze1x1")
127*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire6/relu_squeeze1x1");
128*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U).set_name("fire6/concat");
129*c217d954SCole Faust         graph << ConvolutionLayer(
130*c217d954SCole Faust                   1U, 1U, 48U,
131*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_w.npy", weights_layout),
132*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_b.npy"),
133*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
134*c217d954SCole Faust               .set_name("fire7/squeeze1x1")
135*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire7/relu_squeeze1x1");
136*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U).set_name("fire7/concat");
137*c217d954SCole Faust         graph << ConvolutionLayer(
138*c217d954SCole Faust                   1U, 1U, 64U,
139*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_w.npy", weights_layout),
140*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_b.npy"),
141*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
142*c217d954SCole Faust               .set_name("fire8/squeeze1x1")
143*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire8/relu_squeeze1x1");
144*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U).set_name("fire8/concat");
145*c217d954SCole Faust         graph << ConvolutionLayer(
146*c217d954SCole Faust                   1U, 1U, 64U,
147*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_w.npy", weights_layout),
148*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_b.npy"),
149*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
150*c217d954SCole Faust               .set_name("fire9/squeeze1x1")
151*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire9/relu_squeeze1x1");
152*c217d954SCole Faust         graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U).set_name("fire9/concat");
153*c217d954SCole Faust         graph << ConvolutionLayer(
154*c217d954SCole Faust                   1U, 1U, 1000U,
155*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_w.npy", weights_layout),
156*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_b.npy"),
157*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
158*c217d954SCole Faust               .set_name("conv10")
159*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv10")
160*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool10")
161*c217d954SCole Faust               << FlattenLayer().set_name("flatten")
162*c217d954SCole Faust               << SoftmaxLayer().set_name("prob")
163*c217d954SCole Faust               << OutputLayer(get_output_accessor(common_params, 5));
164*c217d954SCole Faust 
165*c217d954SCole Faust         // Finalize graph
166*c217d954SCole Faust         GraphConfig config;
167*c217d954SCole Faust         config.num_threads        = common_params.threads;
168*c217d954SCole Faust         config.use_tuner          = common_params.enable_tuner;
169*c217d954SCole Faust         config.tuner_mode         = common_params.tuner_mode;
170*c217d954SCole Faust         config.tuner_file         = common_params.tuner_file;
171*c217d954SCole Faust         config.mlgo_file          = common_params.mlgo_file;
172*c217d954SCole Faust         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
173*c217d954SCole Faust         config.synthetic_type     = common_params.data_type;
174*c217d954SCole Faust 
175*c217d954SCole Faust         graph.finalize(common_params.target, config);
176*c217d954SCole Faust 
177*c217d954SCole Faust         return true;
178*c217d954SCole Faust     }
do_run()179*c217d954SCole Faust     void do_run() override
180*c217d954SCole Faust     {
181*c217d954SCole Faust         // Run graph
182*c217d954SCole Faust         graph.run();
183*c217d954SCole Faust     }
184*c217d954SCole Faust 
185*c217d954SCole Faust private:
186*c217d954SCole Faust     CommandLineParser  cmd_parser;
187*c217d954SCole Faust     CommonGraphOptions common_opts;
188*c217d954SCole Faust     CommonGraphParams  common_params;
189*c217d954SCole Faust     Stream             graph;
190*c217d954SCole Faust 
get_expand_fire_node(const std::string & data_path,std::string && param_path,DataLayout weights_layout,unsigned int expand1_filt,unsigned int expand3_filt)191*c217d954SCole Faust     ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
192*c217d954SCole Faust                                      unsigned int expand1_filt, unsigned int expand3_filt)
193*c217d954SCole Faust     {
194*c217d954SCole Faust         std::string total_path = "/cnn_data/squeezenet_v1_1_model/" + param_path + "_";
195*c217d954SCole Faust         SubStream   i_a(graph);
196*c217d954SCole Faust         i_a << ConvolutionLayer(
197*c217d954SCole Faust                 1U, 1U, expand1_filt,
198*c217d954SCole Faust                 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
199*c217d954SCole Faust                 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
200*c217d954SCole Faust                 PadStrideInfo(1, 1, 0, 0))
201*c217d954SCole Faust             .set_name(param_path + "/expand1x1")
202*c217d954SCole Faust             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand1x1");
203*c217d954SCole Faust 
204*c217d954SCole Faust         SubStream i_b(graph);
205*c217d954SCole Faust         i_b << ConvolutionLayer(
206*c217d954SCole Faust                 3U, 3U, expand3_filt,
207*c217d954SCole Faust                 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
208*c217d954SCole Faust                 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
209*c217d954SCole Faust                 PadStrideInfo(1, 1, 1, 1))
210*c217d954SCole Faust             .set_name(param_path + "/expand3x3")
211*c217d954SCole Faust             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand3x3");
212*c217d954SCole Faust 
213*c217d954SCole Faust         return ConcatLayer(std::move(i_a), std::move(i_b));
214*c217d954SCole Faust     }
215*c217d954SCole Faust };
216*c217d954SCole Faust 
217*c217d954SCole Faust /** Main program for Squeezenet v1.1
218*c217d954SCole Faust  *
219*c217d954SCole Faust  * Model is based on:
220*c217d954SCole Faust  *      https://arxiv.org/abs/1602.07360
221*c217d954SCole Faust  *      "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
222*c217d954SCole Faust  *      Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
223*c217d954SCole Faust  *
224*c217d954SCole Faust  * Provenance: https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel
225*c217d954SCole Faust  *
226*c217d954SCole Faust  * @note To list all the possible arguments execute the binary appended with the --help option
227*c217d954SCole Faust  *
228*c217d954SCole Faust  * @param[in] argc Number of arguments
229*c217d954SCole Faust  * @param[in] argv Arguments
230*c217d954SCole Faust  */
main(int argc,char ** argv)231*c217d954SCole Faust int main(int argc, char **argv)
232*c217d954SCole Faust {
233*c217d954SCole Faust     return arm_compute::utils::run_example<GraphSqueezenet_v1_1Example>(argc, argv);
234*c217d954SCole Faust }
235