1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust
34*c217d954SCole Faust /** Example demonstrating how to implement YOLOv3 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphYOLOv3Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphYOLOv3Example()38*c217d954SCole Faust GraphYOLOv3Example()
39*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "YOLOv3")
40*c217d954SCole Faust {
41*c217d954SCole Faust }
42*c217d954SCole Faust
do_setup(int argc,char ** argv)43*c217d954SCole Faust bool do_setup(int argc, char **argv) override
44*c217d954SCole Faust {
45*c217d954SCole Faust // Parse arguments
46*c217d954SCole Faust cmd_parser.parse(argc, argv);
47*c217d954SCole Faust cmd_parser.validate();
48*c217d954SCole Faust
49*c217d954SCole Faust // Consume common parameters
50*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
51*c217d954SCole Faust
52*c217d954SCole Faust // Return when help menu is requested
53*c217d954SCole Faust if(common_params.help)
54*c217d954SCole Faust {
55*c217d954SCole Faust cmd_parser.print_help(argv[0]);
56*c217d954SCole Faust return false;
57*c217d954SCole Faust }
58*c217d954SCole Faust
59*c217d954SCole Faust // Checks
60*c217d954SCole Faust ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
61*c217d954SCole Faust
62*c217d954SCole Faust // Print parameter values
63*c217d954SCole Faust std::cout << common_params << std::endl;
64*c217d954SCole Faust
65*c217d954SCole Faust // Get trainable parameters data path
66*c217d954SCole Faust std::string data_path = common_params.data_path;
67*c217d954SCole Faust
68*c217d954SCole Faust // Create a preprocessor object
69*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>(0.f);
70*c217d954SCole Faust
71*c217d954SCole Faust // Create input descriptor
72*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(608U, 608U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
73*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
74*c217d954SCole Faust
75*c217d954SCole Faust // Set weights trained layout
76*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
77*c217d954SCole Faust
78*c217d954SCole Faust graph << common_params.target
79*c217d954SCole Faust << common_params.fast_math_hint
80*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false));
81*c217d954SCole Faust std::pair<SubStream, SubStream> intermediate_layers = darknet53(data_path, weights_layout);
82*c217d954SCole Faust graph << ConvolutionLayer(
83*c217d954SCole Faust 1U, 1U, 512U,
84*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_53_w.npy", weights_layout),
85*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
86*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
87*c217d954SCole Faust .set_name("conv2d_53")
88*c217d954SCole Faust << BatchNormalizationLayer(
89*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_53_mean.npy"),
90*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_53_var.npy"),
91*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_53_gamma.npy"),
92*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_53_beta.npy"),
93*c217d954SCole Faust 0.000001f)
94*c217d954SCole Faust .set_name("conv2d_53/BatchNorm")
95*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_53/LeakyRelu")
96*c217d954SCole Faust << ConvolutionLayer(
97*c217d954SCole Faust 3U, 3U, 1024U,
98*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_54_w.npy", weights_layout),
99*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
100*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
101*c217d954SCole Faust .set_name("conv2d_54")
102*c217d954SCole Faust << BatchNormalizationLayer(
103*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_54_mean.npy"),
104*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_54_var.npy"),
105*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_54_gamma.npy"),
106*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_54_beta.npy"),
107*c217d954SCole Faust 0.000001f)
108*c217d954SCole Faust .set_name("conv2d_54/BatchNorm")
109*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_54/LeakyRelu")
110*c217d954SCole Faust << ConvolutionLayer(
111*c217d954SCole Faust 1U, 1U, 512U,
112*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_55_w.npy", weights_layout),
113*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
114*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
115*c217d954SCole Faust .set_name("conv2d_55")
116*c217d954SCole Faust << BatchNormalizationLayer(
117*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_55_mean.npy"),
118*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_55_var.npy"),
119*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_55_gamma.npy"),
120*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_55_beta.npy"),
121*c217d954SCole Faust 0.000001f)
122*c217d954SCole Faust .set_name("conv2d_55/BatchNorm")
123*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_55/LeakyRelu")
124*c217d954SCole Faust << ConvolutionLayer(
125*c217d954SCole Faust 3U, 3U, 1024U,
126*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_56_w.npy", weights_layout),
127*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
128*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
129*c217d954SCole Faust .set_name("conv2d_56")
130*c217d954SCole Faust << BatchNormalizationLayer(
131*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_56_mean.npy"),
132*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_56_var.npy"),
133*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_56_gamma.npy"),
134*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_56_beta.npy"),
135*c217d954SCole Faust 0.000001f)
136*c217d954SCole Faust .set_name("conv2d_56/BatchNorm")
137*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_56/LeakyRelu")
138*c217d954SCole Faust << ConvolutionLayer(
139*c217d954SCole Faust 1U, 1U, 512U,
140*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_57_w.npy", weights_layout),
141*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
142*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
143*c217d954SCole Faust .set_name("conv2d_57")
144*c217d954SCole Faust << BatchNormalizationLayer(
145*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_57_mean.npy"),
146*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_57_var.npy"),
147*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_57_gamma.npy"),
148*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_57_beta.npy"),
149*c217d954SCole Faust 0.000001f)
150*c217d954SCole Faust .set_name("conv2d_57/BatchNorm")
151*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_57/LeakyRelu");
152*c217d954SCole Faust SubStream route_1(graph);
153*c217d954SCole Faust graph << ConvolutionLayer(
154*c217d954SCole Faust 3U, 3U, 1024U,
155*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_58_w.npy", weights_layout),
156*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
157*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
158*c217d954SCole Faust .set_name("conv2d_58")
159*c217d954SCole Faust << BatchNormalizationLayer(
160*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_58_mean.npy"),
161*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_58_var.npy"),
162*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_58_gamma.npy"),
163*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_58_beta.npy"),
164*c217d954SCole Faust 0.000001f)
165*c217d954SCole Faust .set_name("conv2d_58/BatchNorm")
166*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_58/LeakyRelu")
167*c217d954SCole Faust << ConvolutionLayer(
168*c217d954SCole Faust 1U, 1U, 255U,
169*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_59_w.npy", weights_layout),
170*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_59_b.npy", weights_layout),
171*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
172*c217d954SCole Faust .set_name("conv2d_59")
173*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f)).set_name("conv2d_59/Linear")
174*c217d954SCole Faust << YOLOLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.1f)).set_name("Yolo1")
175*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
176*c217d954SCole Faust route_1 << ConvolutionLayer(
177*c217d954SCole Faust 1U, 1U, 256U,
178*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_60_w.npy", weights_layout),
179*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
180*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
181*c217d954SCole Faust .set_name("conv2d_60")
182*c217d954SCole Faust << BatchNormalizationLayer(
183*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_59_mean.npy"),
184*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_59_var.npy"),
185*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_59_gamma.npy"),
186*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_59_beta.npy"),
187*c217d954SCole Faust 0.000001f)
188*c217d954SCole Faust .set_name("conv2d_59/BatchNorm")
189*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_60/LeakyRelu")
190*c217d954SCole Faust << ResizeLayer(InterpolationPolicy::NEAREST_NEIGHBOR, 2, 2).set_name("Upsample_60");
191*c217d954SCole Faust SubStream concat_1(route_1);
192*c217d954SCole Faust concat_1 << ConcatLayer(std::move(route_1), std::move(intermediate_layers.second)).set_name("Route1")
193*c217d954SCole Faust << ConvolutionLayer(
194*c217d954SCole Faust 1U, 1U, 256U,
195*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_61_w.npy", weights_layout),
196*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
197*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
198*c217d954SCole Faust .set_name("conv2d_61")
199*c217d954SCole Faust << BatchNormalizationLayer(
200*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_60_mean.npy"),
201*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_60_var.npy"),
202*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_60_gamma.npy"),
203*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_60_beta.npy"),
204*c217d954SCole Faust 0.000001f)
205*c217d954SCole Faust .set_name("conv2d_60/BatchNorm")
206*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_61/LeakyRelu")
207*c217d954SCole Faust << ConvolutionLayer(
208*c217d954SCole Faust 3U, 3U, 512U,
209*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_62_w.npy", weights_layout),
210*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
211*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
212*c217d954SCole Faust .set_name("conv2d_62")
213*c217d954SCole Faust << BatchNormalizationLayer(
214*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_61_mean.npy"),
215*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_61_var.npy"),
216*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_61_gamma.npy"),
217*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_61_beta.npy"),
218*c217d954SCole Faust 0.000001f)
219*c217d954SCole Faust .set_name("conv2d_61/BatchNorm")
220*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_62/LeakyRelu")
221*c217d954SCole Faust << ConvolutionLayer(
222*c217d954SCole Faust 1U, 1U, 256U,
223*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_63_w.npy", weights_layout),
224*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
225*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
226*c217d954SCole Faust .set_name("conv2d_63")
227*c217d954SCole Faust << BatchNormalizationLayer(
228*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_62_mean.npy"),
229*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_62_var.npy"),
230*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_62_gamma.npy"),
231*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_62_beta.npy"),
232*c217d954SCole Faust 0.000001f)
233*c217d954SCole Faust .set_name("conv2d_62/BatchNorm")
234*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_63/LeakyRelu")
235*c217d954SCole Faust << ConvolutionLayer(
236*c217d954SCole Faust 3U, 3U, 512U,
237*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_64_w.npy", weights_layout),
238*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
239*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
240*c217d954SCole Faust .set_name("conv2d_64")
241*c217d954SCole Faust << BatchNormalizationLayer(
242*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_63_mean.npy"),
243*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_63_var.npy"),
244*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_63_gamma.npy"),
245*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_63_beta.npy"),
246*c217d954SCole Faust 0.000001f)
247*c217d954SCole Faust .set_name("conv2d_63/BatchNorm")
248*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_64/LeakyRelu")
249*c217d954SCole Faust << ConvolutionLayer(
250*c217d954SCole Faust 1U, 1U, 256U,
251*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_65_w.npy", weights_layout),
252*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
253*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
254*c217d954SCole Faust .set_name("conv2d_65")
255*c217d954SCole Faust << BatchNormalizationLayer(
256*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_64_mean.npy"),
257*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_64_var.npy"),
258*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_64_gamma.npy"),
259*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_64_beta.npy"),
260*c217d954SCole Faust 0.000001f)
261*c217d954SCole Faust .set_name("conv2d_65/BatchNorm")
262*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_65/LeakyRelu");
263*c217d954SCole Faust SubStream route_2(concat_1);
264*c217d954SCole Faust concat_1 << ConvolutionLayer(
265*c217d954SCole Faust 3U, 3U, 512U,
266*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_66_w.npy", weights_layout),
267*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
268*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
269*c217d954SCole Faust .set_name("conv2d_66")
270*c217d954SCole Faust << BatchNormalizationLayer(
271*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_65_mean.npy"),
272*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_65_var.npy"),
273*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_65_gamma.npy"),
274*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_65_beta.npy"),
275*c217d954SCole Faust 0.000001f)
276*c217d954SCole Faust .set_name("conv2d_65/BatchNorm")
277*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_66/LeakyRelu")
278*c217d954SCole Faust << ConvolutionLayer(
279*c217d954SCole Faust 1U, 1U, 255U,
280*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_67_w.npy", weights_layout),
281*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_67_b.npy", weights_layout),
282*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
283*c217d954SCole Faust .set_name("conv2d_67")
284*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f)).set_name("conv2d_67/Linear")
285*c217d954SCole Faust << YOLOLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.1f)).set_name("Yolo2")
286*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
287*c217d954SCole Faust route_2 << ConvolutionLayer(
288*c217d954SCole Faust 1U, 1U, 128U,
289*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_68_w.npy", weights_layout),
290*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
291*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
292*c217d954SCole Faust .set_name("conv2d_68")
293*c217d954SCole Faust << BatchNormalizationLayer(
294*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_66_mean.npy"),
295*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_66_var.npy"),
296*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_66_gamma.npy"),
297*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_66_beta.npy"),
298*c217d954SCole Faust 0.000001f)
299*c217d954SCole Faust .set_name("conv2d_66/BatchNorm")
300*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_68/LeakyRelu")
301*c217d954SCole Faust << ResizeLayer(InterpolationPolicy::NEAREST_NEIGHBOR, 2, 2).set_name("Upsample_68");
302*c217d954SCole Faust SubStream concat_2(route_2);
303*c217d954SCole Faust concat_2 << ConcatLayer(std::move(route_2), std::move(intermediate_layers.first)).set_name("Route2")
304*c217d954SCole Faust << ConvolutionLayer(
305*c217d954SCole Faust 1U, 1U, 128U,
306*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_69_w.npy", weights_layout),
307*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
308*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
309*c217d954SCole Faust .set_name("conv2d_69")
310*c217d954SCole Faust << BatchNormalizationLayer(
311*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_67_mean.npy"),
312*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_67_var.npy"),
313*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_67_gamma.npy"),
314*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_67_beta.npy"),
315*c217d954SCole Faust 0.000001f)
316*c217d954SCole Faust .set_name("conv2d_67/BatchNorm")
317*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_69/LeakyRelu")
318*c217d954SCole Faust << ConvolutionLayer(
319*c217d954SCole Faust 3U, 3U, 256U,
320*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_70_w.npy", weights_layout),
321*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
322*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
323*c217d954SCole Faust .set_name("conv2d_70")
324*c217d954SCole Faust << BatchNormalizationLayer(
325*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_68_mean.npy"),
326*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_68_var.npy"),
327*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_68_gamma.npy"),
328*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_68_beta.npy"),
329*c217d954SCole Faust 0.000001f)
330*c217d954SCole Faust .set_name("conv2d_68/BatchNorm")
331*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_70/LeakyRelu")
332*c217d954SCole Faust << ConvolutionLayer(
333*c217d954SCole Faust 1U, 1U, 128U,
334*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_71_w.npy", weights_layout),
335*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
336*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
337*c217d954SCole Faust .set_name("conv2d_71")
338*c217d954SCole Faust << BatchNormalizationLayer(
339*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_69_mean.npy"),
340*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_69_var.npy"),
341*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_69_gamma.npy"),
342*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_69_beta.npy"),
343*c217d954SCole Faust 0.000001f)
344*c217d954SCole Faust .set_name("conv2d_69/BatchNorm")
345*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_71/LeakyRelu")
346*c217d954SCole Faust << ConvolutionLayer(
347*c217d954SCole Faust 3U, 3U, 256U,
348*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_72_w.npy", weights_layout),
349*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
350*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
351*c217d954SCole Faust .set_name("conv2d_72")
352*c217d954SCole Faust << BatchNormalizationLayer(
353*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_70_mean.npy"),
354*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_70_var.npy"),
355*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_70_gamma.npy"),
356*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_70_beta.npy"),
357*c217d954SCole Faust 0.000001f)
358*c217d954SCole Faust .set_name("conv2d_70/BatchNorm")
359*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_72/LeakyRelu")
360*c217d954SCole Faust << ConvolutionLayer(
361*c217d954SCole Faust 1U, 1U, 128U,
362*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_73_w.npy", weights_layout),
363*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
364*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
365*c217d954SCole Faust .set_name("conv2d_73")
366*c217d954SCole Faust << BatchNormalizationLayer(
367*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_71_mean.npy"),
368*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_71_var.npy"),
369*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_71_gamma.npy"),
370*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_71_beta.npy"),
371*c217d954SCole Faust 0.000001f)
372*c217d954SCole Faust .set_name("conv2d_71/BatchNorm")
373*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_73/LeakyRelu")
374*c217d954SCole Faust << ConvolutionLayer(
375*c217d954SCole Faust 3U, 3U, 256U,
376*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_74_w.npy", weights_layout),
377*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
378*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
379*c217d954SCole Faust .set_name("conv2d_74")
380*c217d954SCole Faust << BatchNormalizationLayer(
381*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_72_mean.npy"),
382*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_72_var.npy"),
383*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_72_gamma.npy"),
384*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_72_beta.npy"),
385*c217d954SCole Faust 0.000001f)
386*c217d954SCole Faust .set_name("conv2d_72/BatchNorm")
387*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_74/LeakyRelu")
388*c217d954SCole Faust << ConvolutionLayer(
389*c217d954SCole Faust 1U, 1U, 255U,
390*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_75_w.npy", weights_layout),
391*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_75_b.npy", weights_layout),
392*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
393*c217d954SCole Faust .set_name("conv2d_75")
394*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f)).set_name("conv2d_75/Linear")
395*c217d954SCole Faust << YOLOLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 0.1f)).set_name("Yolo3")
396*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
397*c217d954SCole Faust
398*c217d954SCole Faust // Finalize graph
399*c217d954SCole Faust GraphConfig config;
400*c217d954SCole Faust config.num_threads = common_params.threads;
401*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
402*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
403*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
404*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
405*c217d954SCole Faust
406*c217d954SCole Faust graph.finalize(common_params.target, config);
407*c217d954SCole Faust
408*c217d954SCole Faust return true;
409*c217d954SCole Faust }
do_run()410*c217d954SCole Faust void do_run() override
411*c217d954SCole Faust {
412*c217d954SCole Faust // Run graph
413*c217d954SCole Faust graph.run();
414*c217d954SCole Faust }
415*c217d954SCole Faust
416*c217d954SCole Faust private:
417*c217d954SCole Faust CommandLineParser cmd_parser;
418*c217d954SCole Faust CommonGraphOptions common_opts;
419*c217d954SCole Faust CommonGraphParams common_params;
420*c217d954SCole Faust Stream graph;
421*c217d954SCole Faust
darknet53(const std::string & data_path,DataLayout weights_layout)422*c217d954SCole Faust std::pair<SubStream, SubStream> darknet53(const std::string &data_path, DataLayout weights_layout)
423*c217d954SCole Faust {
424*c217d954SCole Faust graph << ConvolutionLayer(
425*c217d954SCole Faust 3U, 3U, 32U,
426*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_1_w.npy", weights_layout),
427*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
428*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
429*c217d954SCole Faust .set_name("conv2d_1/Conv2D")
430*c217d954SCole Faust << BatchNormalizationLayer(
431*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_1_mean.npy"),
432*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_1_var.npy"),
433*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_1_gamma.npy"),
434*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_1_beta.npy"),
435*c217d954SCole Faust 0.000001f)
436*c217d954SCole Faust .set_name("conv2d_1/BatchNorm")
437*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_1/LeakyRelu")
438*c217d954SCole Faust << ConvolutionLayer(
439*c217d954SCole Faust 3U, 3U, 64U,
440*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_2_w.npy", weights_layout),
441*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
442*c217d954SCole Faust PadStrideInfo(2, 2, 1, 1))
443*c217d954SCole Faust .set_name("conv2d_2/Conv2D")
444*c217d954SCole Faust << BatchNormalizationLayer(
445*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_2_mean.npy"),
446*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_2_var.npy"),
447*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_2_gamma.npy"),
448*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_2_beta.npy"),
449*c217d954SCole Faust 0.000001f)
450*c217d954SCole Faust .set_name("conv2d_2/BatchNorm")
451*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_2/LeakyRelu");
452*c217d954SCole Faust darknet53_block(data_path, "3", weights_layout, 32U);
453*c217d954SCole Faust graph << ConvolutionLayer(
454*c217d954SCole Faust 3U, 3U, 128U,
455*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_5_w.npy", weights_layout),
456*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
457*c217d954SCole Faust PadStrideInfo(2, 2, 1, 1))
458*c217d954SCole Faust .set_name("conv2d_5/Conv2D")
459*c217d954SCole Faust << BatchNormalizationLayer(
460*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_5_mean.npy"),
461*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_5_var.npy"),
462*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_5_gamma.npy"),
463*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_5_beta.npy"),
464*c217d954SCole Faust 0.000001f)
465*c217d954SCole Faust .set_name("conv2d_5/BatchNorm")
466*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_5/LeakyRelu");
467*c217d954SCole Faust darknet53_block(data_path, "6", weights_layout, 64U);
468*c217d954SCole Faust darknet53_block(data_path, "8", weights_layout, 64U);
469*c217d954SCole Faust graph << ConvolutionLayer(
470*c217d954SCole Faust 3U, 3U, 256U,
471*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_10_w.npy", weights_layout),
472*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
473*c217d954SCole Faust PadStrideInfo(2, 2, 1, 1))
474*c217d954SCole Faust .set_name("conv2d_10/Conv2D")
475*c217d954SCole Faust << BatchNormalizationLayer(
476*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_10_mean.npy"),
477*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_10_var.npy"),
478*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_10_gamma.npy"),
479*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_10_beta.npy"),
480*c217d954SCole Faust 0.000001f)
481*c217d954SCole Faust .set_name("conv2d_10/BatchNorm")
482*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_10/LeakyRelu");
483*c217d954SCole Faust darknet53_block(data_path, "11", weights_layout, 128U);
484*c217d954SCole Faust darknet53_block(data_path, "13", weights_layout, 128U);
485*c217d954SCole Faust darknet53_block(data_path, "15", weights_layout, 128U);
486*c217d954SCole Faust darknet53_block(data_path, "17", weights_layout, 128U);
487*c217d954SCole Faust darknet53_block(data_path, "19", weights_layout, 128U);
488*c217d954SCole Faust darknet53_block(data_path, "21", weights_layout, 128U);
489*c217d954SCole Faust darknet53_block(data_path, "23", weights_layout, 128U);
490*c217d954SCole Faust darknet53_block(data_path, "25", weights_layout, 128U);
491*c217d954SCole Faust SubStream layer_36(graph);
492*c217d954SCole Faust graph << ConvolutionLayer(
493*c217d954SCole Faust 3U, 3U, 512U,
494*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_27_w.npy", weights_layout),
495*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
496*c217d954SCole Faust PadStrideInfo(2, 2, 1, 1))
497*c217d954SCole Faust .set_name("conv2d_27/Conv2D")
498*c217d954SCole Faust << BatchNormalizationLayer(
499*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_27_mean.npy"),
500*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_27_var.npy"),
501*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_27_gamma.npy"),
502*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_27_beta.npy"),
503*c217d954SCole Faust 0.000001f)
504*c217d954SCole Faust .set_name("conv2d_27/BatchNorm")
505*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_27/LeakyRelu");
506*c217d954SCole Faust darknet53_block(data_path, "28", weights_layout, 256U);
507*c217d954SCole Faust darknet53_block(data_path, "30", weights_layout, 256U);
508*c217d954SCole Faust darknet53_block(data_path, "32", weights_layout, 256U);
509*c217d954SCole Faust darknet53_block(data_path, "34", weights_layout, 256U);
510*c217d954SCole Faust darknet53_block(data_path, "36", weights_layout, 256U);
511*c217d954SCole Faust darknet53_block(data_path, "38", weights_layout, 256U);
512*c217d954SCole Faust darknet53_block(data_path, "40", weights_layout, 256U);
513*c217d954SCole Faust darknet53_block(data_path, "42", weights_layout, 256U);
514*c217d954SCole Faust SubStream layer_61(graph);
515*c217d954SCole Faust graph << ConvolutionLayer(
516*c217d954SCole Faust 3U, 3U, 1024U,
517*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/conv2d_44_w.npy", weights_layout),
518*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
519*c217d954SCole Faust PadStrideInfo(2, 2, 1, 1))
520*c217d954SCole Faust .set_name("conv2d_44/Conv2D")
521*c217d954SCole Faust << BatchNormalizationLayer(
522*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_44_mean.npy"),
523*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_44_var.npy"),
524*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_44_gamma.npy"),
525*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/yolov3_model/batch_normalization_44_beta.npy"),
526*c217d954SCole Faust 0.000001f)
527*c217d954SCole Faust .set_name("conv2d_44/BatchNorm")
528*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_44/LeakyRelu");
529*c217d954SCole Faust darknet53_block(data_path, "45", weights_layout, 512U);
530*c217d954SCole Faust darknet53_block(data_path, "47", weights_layout, 512U);
531*c217d954SCole Faust darknet53_block(data_path, "49", weights_layout, 512U);
532*c217d954SCole Faust darknet53_block(data_path, "51", weights_layout, 512U);
533*c217d954SCole Faust
534*c217d954SCole Faust return std::pair<SubStream, SubStream>(layer_36, layer_61);
535*c217d954SCole Faust }
536*c217d954SCole Faust
darknet53_block(const std::string & data_path,std::string && param_path,DataLayout weights_layout,unsigned int filter_size)537*c217d954SCole Faust void darknet53_block(const std::string &data_path, std::string &¶m_path, DataLayout weights_layout,
538*c217d954SCole Faust unsigned int filter_size)
539*c217d954SCole Faust {
540*c217d954SCole Faust std::string total_path = "/cnn_data/yolov3_model/";
541*c217d954SCole Faust std::string param_path2 = arm_compute::support::cpp11::to_string(arm_compute::support::cpp11::stoi(param_path) + 1);
542*c217d954SCole Faust SubStream i_a(graph);
543*c217d954SCole Faust SubStream i_b(graph);
544*c217d954SCole Faust i_a << ConvolutionLayer(
545*c217d954SCole Faust 1U, 1U, filter_size,
546*c217d954SCole Faust get_weights_accessor(data_path, total_path + "conv2d_" + param_path + "_w.npy", weights_layout),
547*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
548*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
549*c217d954SCole Faust .set_name("conv2d_" + param_path + "/Conv2D")
550*c217d954SCole Faust << BatchNormalizationLayer(
551*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path + "_mean.npy"),
552*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path + "_var.npy"),
553*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path + "_gamma.npy"),
554*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path + "_beta.npy"),
555*c217d954SCole Faust 0.000001f)
556*c217d954SCole Faust .set_name("conv2d_" + param_path + "/BatchNorm")
557*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_" + param_path + "/LeakyRelu")
558*c217d954SCole Faust << ConvolutionLayer(
559*c217d954SCole Faust 3U, 3U, filter_size * 2,
560*c217d954SCole Faust get_weights_accessor(data_path, total_path + "conv2d_" + param_path2 + "_w.npy", weights_layout),
561*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
562*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
563*c217d954SCole Faust .set_name("conv2d_" + param_path2 + "/Conv2D")
564*c217d954SCole Faust << BatchNormalizationLayer(
565*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path2 + "_mean.npy"),
566*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path2 + "_var.npy"),
567*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path2 + "_gamma.npy"),
568*c217d954SCole Faust get_weights_accessor(data_path, total_path + "batch_normalization_" + param_path2 + "_beta.npy"),
569*c217d954SCole Faust 0.000001f)
570*c217d954SCole Faust .set_name("conv2d_" + param_path2 + "/BatchNorm")
571*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LEAKY_RELU, 0.1f)).set_name("conv2d_" + param_path2 + "/LeakyRelu");
572*c217d954SCole Faust
573*c217d954SCole Faust graph << EltwiseLayer(std::move(i_a), std::move(i_b), EltwiseOperation::Add).set_name("").set_name("add_" + param_path + "_" + param_path2);
574*c217d954SCole Faust }
575*c217d954SCole Faust };
576*c217d954SCole Faust
577*c217d954SCole Faust /** Main program for YOLOv3
578*c217d954SCole Faust *
579*c217d954SCole Faust * Model is based on:
580*c217d954SCole Faust * https://arxiv.org/abs/1804.02767
581*c217d954SCole Faust * "YOLOv3: An Incremental Improvement"
582*c217d954SCole Faust * Joseph Redmon, Ali Farhadi
583*c217d954SCole Faust *
584*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
585*c217d954SCole Faust *
586*c217d954SCole Faust * @param[in] argc Number of arguments
587*c217d954SCole Faust * @param[in] argv Arguments
588*c217d954SCole Faust *
589*c217d954SCole Faust * @return Return code
590*c217d954SCole Faust */
main(int argc,char ** argv)591*c217d954SCole Faust int main(int argc, char **argv)
592*c217d954SCole Faust {
593*c217d954SCole Faust return arm_compute::utils::run_example<GraphYOLOv3Example>(argc, argv);
594*c217d954SCole Faust }
595