1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2021-2022 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "src/cpu/operators/CpuWinogradConv2d.h"
25*c217d954SCole Faust #include "arm_compute/core/Error.h"
26*c217d954SCole Faust #include "arm_compute/core/Utils.h"
27*c217d954SCole Faust #include "arm_compute/core/Validate.h"
28*c217d954SCole Faust #include "arm_compute/core/utils/misc/ShapeCalculator.h"
29*c217d954SCole Faust #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
30*c217d954SCole Faust #include "arm_compute/runtime/FunctionDescriptors.h"
31*c217d954SCole Faust #include "arm_compute/runtime/NEON/NEScheduler.h"
32*c217d954SCole Faust #include "src/common/utils/Log.h"
33*c217d954SCole Faust #include "src/core/CPP/Validate.h"
34*c217d954SCole Faust #include "src/core/NEON/kernels/assembly/winograd.hpp"
35*c217d954SCole Faust #include "src/core/NEON/kernels/convolution/common/tensor.hpp"
36*c217d954SCole Faust #include "src/core/NEON/kernels/convolution/common/utils.hpp"
37*c217d954SCole Faust #include "src/core/helpers/MemoryHelpers.h"
38*c217d954SCole Faust #include "src/core/helpers/WindowHelpers.h"
39*c217d954SCole Faust #include "src/core/utils/AssemblyUtils.h"
40*c217d954SCole Faust #include "src/cpu/kernels/CpuWinogradConv2dKernel.h"
41*c217d954SCole Faust #include "src/cpu/kernels/assembly/arm_gemm.hpp"
42*c217d954SCole Faust #include "src/cpu/operators/CpuActivation.h"
43*c217d954SCole Faust #include "src/cpu/operators/CpuPermute.h"
44*c217d954SCole Faust #include "src/cpu/utils/CpuAuxTensorHandler.h"
45*c217d954SCole Faust #include "support/Cast.h"
46*c217d954SCole Faust
47*c217d954SCole Faust namespace arm_compute
48*c217d954SCole Faust {
49*c217d954SCole Faust namespace cpu
50*c217d954SCole Faust {
51*c217d954SCole Faust using namespace arm_compute::experimental;
52*c217d954SCole Faust using namespace arm_compute::utils::cast;
53*c217d954SCole Faust
54*c217d954SCole Faust namespace
55*c217d954SCole Faust {
internal_get_shape(const ITensorInfo * in)56*c217d954SCole Faust inline Tensor4DShape internal_get_shape(const ITensorInfo *in)
57*c217d954SCole Faust {
58*c217d954SCole Faust const DataLayout data_layout = in->data_layout();
59*c217d954SCole Faust const int in_width = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH));
60*c217d954SCole Faust const int in_height = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT));
61*c217d954SCole Faust const int in_channels = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL));
62*c217d954SCole Faust const int in_batches = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES));
63*c217d954SCole Faust
64*c217d954SCole Faust return Tensor4DShape{ in_batches, in_height, in_width, in_channels };
65*c217d954SCole Faust }
66*c217d954SCole Faust
validate_arguments(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const PadStrideInfo & conv_info)67*c217d954SCole Faust Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info)
68*c217d954SCole Faust {
69*c217d954SCole Faust ARM_COMPUTE_UNUSED(dst, weights);
70*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
71*c217d954SCole Faust
72*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides.");
73*c217d954SCole Faust if(biases != nullptr)
74*c217d954SCole Faust {
75*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
76*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
77*c217d954SCole Faust }
78*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
79*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
80*c217d954SCole Faust return Status{};
81*c217d954SCole Faust }
82*c217d954SCole Faust
get_winograd_kernel_implementation(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * dst,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math,arm_conv::winograd::WinogradImpl * winograd_impl,std::unique_ptr<arm_conv::ConvolutionArgs> & conv_args)83*c217d954SCole Faust bool get_winograd_kernel_implementation(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst,
84*c217d954SCole Faust const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math,
85*c217d954SCole Faust arm_conv::winograd::WinogradImpl *winograd_impl, std::unique_ptr<arm_conv::ConvolutionArgs> &conv_args)
86*c217d954SCole Faust {
87*c217d954SCole Faust arm_conv::winograd::WinogradConfig winograd_cfg;
88*c217d954SCole Faust arm_gemm::GemmConfig cfg;
89*c217d954SCole Faust
90*c217d954SCole Faust const DataType data_type = src->data_type();
91*c217d954SCole Faust Tensor4DShape in_shape{ internal_get_shape(src) };
92*c217d954SCole Faust Tensor4DShape out_shape{ internal_get_shape(dst) };
93*c217d954SCole Faust Tensor4DShape kernel_shape{ internal_get_shape(weights) };
94*c217d954SCole Faust uint32_t nthreads = NEScheduler::get().num_threads();
95*c217d954SCole Faust // Get configuration arguments for Winograd
96*c217d954SCole Faust winograd_cfg.output_rows = 0;
97*c217d954SCole Faust winograd_cfg.output_cols = 0;
98*c217d954SCole Faust conv_args = std::make_unique<arm_conv::ConvolutionArgs>(
99*c217d954SCole Faust in_shape.n_batches,
100*c217d954SCole Faust arm_conv::Shape2D{ static_cast<uint32_t>(in_shape.n_rows), static_cast<uint32_t>(in_shape.n_cols) },
101*c217d954SCole Faust in_shape.n_channels,
102*c217d954SCole Faust conv_info.pad_top(),
103*c217d954SCole Faust conv_info.pad_left(),
104*c217d954SCole Faust arm_conv::Shape2D{ static_cast<uint32_t>(out_shape.n_rows), static_cast<uint32_t>(out_shape.n_cols) },
105*c217d954SCole Faust out_shape.n_channels,
106*c217d954SCole Faust arm_conv::Shape2D{ static_cast<uint32_t>(kernel_shape.n_rows), static_cast<uint32_t>(kernel_shape.n_cols) },
107*c217d954SCole Faust assembly_utils::map_to_arm_gemm_activation(act_info));
108*c217d954SCole Faust
109*c217d954SCole Faust bool success = false;
110*c217d954SCole Faust if(data_type == DataType::F32)
111*c217d954SCole Faust {
112*c217d954SCole Faust success = arm_conv::winograd::get_implementation<float>(
113*c217d954SCole Faust *winograd_impl, &CPUInfo::get(), *conv_args, nthreads, enable_fast_math, &winograd_cfg, nullptr);
114*c217d954SCole Faust }
115*c217d954SCole Faust #if defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
116*c217d954SCole Faust else if(data_type == DataType::F16)
117*c217d954SCole Faust {
118*c217d954SCole Faust success = arm_conv::winograd::get_implementation<__fp16>(
119*c217d954SCole Faust *winograd_impl, &CPUInfo::get(), *conv_args, nthreads, enable_fast_math, &winograd_cfg, nullptr);
120*c217d954SCole Faust }
121*c217d954SCole Faust #endif // defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
122*c217d954SCole Faust else
123*c217d954SCole Faust {
124*c217d954SCole Faust success = false;
125*c217d954SCole Faust }
126*c217d954SCole Faust return success;
127*c217d954SCole Faust }
fuse_function_supported(const ActivationLayerInfo & act_info)128*c217d954SCole Faust inline bool fuse_function_supported(const ActivationLayerInfo &act_info)
129*c217d954SCole Faust {
130*c217d954SCole Faust return act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU || act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU;
131*c217d954SCole Faust }
132*c217d954SCole Faust } // namespace
133*c217d954SCole Faust
CpuWinogradConv2d()134*c217d954SCole Faust CpuWinogradConv2d::CpuWinogradConv2d()
135*c217d954SCole Faust
136*c217d954SCole Faust : _gemm_function(std::make_unique<CpuGemm>()),
137*c217d954SCole Faust _activation_func(std::make_unique<CpuActivation>()),
138*c217d954SCole Faust _transform_input_kernel(nullptr),
139*c217d954SCole Faust _transform_output_kernel(nullptr),
140*c217d954SCole Faust _permute_input(std::make_unique<CpuPermute>()),
141*c217d954SCole Faust _permute_output(std::make_unique<CpuPermute>()),
142*c217d954SCole Faust _permute_weights(std::make_unique<CpuPermute>()),
143*c217d954SCole Faust _aux_mem(AuxTensorIdx::Count),
144*c217d954SCole Faust _conv_args{ nullptr },
145*c217d954SCole Faust _winograd_impl{},
146*c217d954SCole Faust _data_layout(),
147*c217d954SCole Faust _winograd_transformed_input{},
148*c217d954SCole Faust _winograd_transformed_output{},
149*c217d954SCole Faust _winograd_transformed_weights{},
150*c217d954SCole Faust _input_workspace(),
151*c217d954SCole Faust _output_workspace(),
152*c217d954SCole Faust _weights_hwio(),
153*c217d954SCole Faust _input_nhwc(),
154*c217d954SCole Faust _output_nhwc(),
155*c217d954SCole Faust _is_prepared{ false },
156*c217d954SCole Faust _run_activation{ false }
157*c217d954SCole Faust {
158*c217d954SCole Faust }
159*c217d954SCole Faust
160*c217d954SCole Faust CpuWinogradConv2d::~CpuWinogradConv2d() = default;
161*c217d954SCole Faust
configure(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)162*c217d954SCole Faust void CpuWinogradConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
163*c217d954SCole Faust const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
164*c217d954SCole Faust {
165*c217d954SCole Faust ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
166*c217d954SCole Faust ARM_COMPUTE_ERROR_THROW_ON(validate(src, weights, biases, dst, conv_info, act_info, enable_fast_math));
167*c217d954SCole Faust ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, act_info, enable_fast_math);
168*c217d954SCole Faust ARM_COMPUTE_UNUSED(biases);
169*c217d954SCole Faust const DataType data_type = src->data_type();
170*c217d954SCole Faust uint32_t nthreads = NEScheduler::get().num_threads();
171*c217d954SCole Faust _data_layout = src->data_layout();
172*c217d954SCole Faust const Tensor4DShape kernel_shape{ internal_get_shape(weights) };
173*c217d954SCole Faust
174*c217d954SCole Faust bool success = get_winograd_kernel_implementation(src, weights, dst, conv_info, act_info, enable_fast_math, &_winograd_impl, _conv_args);
175*c217d954SCole Faust
176*c217d954SCole Faust ARM_COMPUTE_EXIT_ON_MSG_VAR(!success, "Unsupported kernel size: %d x %d.\n", kernel_shape.n_rows, kernel_shape.n_cols);
177*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using input transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
178*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using weight transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
179*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using output transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
180*c217d954SCole Faust
181*c217d954SCole Faust const bool has_impl = ((_winograd_impl.input_transform != nullptr) && (_winograd_impl.output_transform != nullptr) && (_winograd_impl.gemm_args != nullptr));
182*c217d954SCole Faust if(has_impl)
183*c217d954SCole Faust {
184*c217d954SCole Faust // Determine how much working space is required, allocate it.
185*c217d954SCole Faust const size_t input_workspace_size = _winograd_impl.input_transform->get_working_space_size(*_conv_args, nthreads);
186*c217d954SCole Faust const size_t output_workspace_size = _winograd_impl.output_transform->get_working_space_size(*_conv_args, nthreads);
187*c217d954SCole Faust
188*c217d954SCole Faust TensorInfo input_workspace_info(TensorShape(input_workspace_size), 1, DataType::U8);
189*c217d954SCole Faust TensorInfo output_workspace_info(TensorShape(output_workspace_size), 1, DataType::U8);
190*c217d954SCole Faust _input_workspace = input_workspace_info;
191*c217d954SCole Faust _output_workspace = output_workspace_info;
192*c217d954SCole Faust
193*c217d954SCole Faust const auto &wds = _winograd_impl.winograd_spec;
194*c217d954SCole Faust
195*c217d954SCole Faust // Preparing winograd transformed input tensor
196*c217d954SCole Faust const size_t data_type_size = src->element_size();
197*c217d954SCole Faust const uint32_t m = _winograd_impl.gemm_args->_Msize; // Total number of tiles
198*c217d954SCole Faust const uint32_t k = _winograd_impl.gemm_args->_Ksize; // Input channels
199*c217d954SCole Faust const uint32_t n = _winograd_impl.gemm_args->_Nsize; // Output channels
200*c217d954SCole Faust const uint32_t n_gemms = _winograd_impl.gemm_args->_nmulti;
201*c217d954SCole Faust const uint32_t n_batches = _winograd_impl.gemm_args->_nbatches;
202*c217d954SCole Faust constexpr size_t storage_alignment = 64;
203*c217d954SCole Faust
204*c217d954SCole Faust const TensorShape a_shape(k, m, n_batches, n_gemms);
205*c217d954SCole Faust Strides a_strides(data_type_size);
206*c217d954SCole Faust a_strides.set(1, data_type_size * _winograd_impl.winograd_spec.input_ld_row);
207*c217d954SCole Faust a_strides.set(2, data_type_size * _winograd_impl.winograd_spec.input_ld_batch);
208*c217d954SCole Faust a_strides.set(3, data_type_size * _winograd_impl.winograd_spec.input_ld_matrix);
209*c217d954SCole Faust
210*c217d954SCole Faust const TensorShape b_shape(n, k, n_gemms);
211*c217d954SCole Faust Strides b_strides(data_type_size);
212*c217d954SCole Faust b_strides.set(1, data_type_size * _winograd_impl.winograd_spec.weight_ld_row);
213*c217d954SCole Faust b_strides.set(2, data_type_size * _winograd_impl.winograd_spec.weight_ld_matrix);
214*c217d954SCole Faust
215*c217d954SCole Faust const TensorShape d_shape(n, m, n_batches, n_gemms);
216*c217d954SCole Faust Strides d_strides(data_type_size);
217*c217d954SCole Faust d_strides.set(1, data_type_size * _winograd_impl.winograd_spec.output_ld_row);
218*c217d954SCole Faust d_strides.set(2, data_type_size * _winograd_impl.winograd_spec.output_ld_batch);
219*c217d954SCole Faust d_strides.set(3, data_type_size * _winograd_impl.winograd_spec.output_ld_matrix);
220*c217d954SCole Faust
221*c217d954SCole Faust TensorInfo a_info{};
222*c217d954SCole Faust TensorInfo b_info{};
223*c217d954SCole Faust TensorInfo d_info{};
224*c217d954SCole Faust a_info.init(a_shape, 1, data_type, a_strides, 0, wds.input_matrix_size_bytes);
225*c217d954SCole Faust b_info.init(b_shape, 1, data_type, b_strides, 0, wds.weight_matrix_size_bytes);
226*c217d954SCole Faust d_info.init(d_shape, 1, data_type, d_strides, 0, wds.output_matrix_size_bytes);
227*c217d954SCole Faust
228*c217d954SCole Faust _winograd_transformed_input = a_info;
229*c217d954SCole Faust _winograd_transformed_weights = b_info;
230*c217d954SCole Faust _winograd_transformed_output = d_info;
231*c217d954SCole Faust
232*c217d954SCole Faust PermutationVector weights_permutation_vector(3U, 0U, 1U, 2U);
233*c217d954SCole Faust
234*c217d954SCole Faust // Configure the kernel to transform the input tensor from NCHW -> NHWC
235*c217d954SCole Faust if(_data_layout == DataLayout::NCHW)
236*c217d954SCole Faust {
237*c217d954SCole Faust _permute_input->configure(src, &_input_nhwc, PermutationVector(2U, 0U, 1U));
238*c217d954SCole Faust weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U);
239*c217d954SCole Faust }
240*c217d954SCole Faust
241*c217d954SCole Faust // Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
242*c217d954SCole Faust _permute_weights->configure(weights, &_weights_hwio, weights_permutation_vector);
243*c217d954SCole Faust
244*c217d954SCole Faust // Reorder the convoluted output to ACL's ordering NCHW
245*c217d954SCole Faust if(_data_layout == DataLayout::NCHW)
246*c217d954SCole Faust {
247*c217d954SCole Faust // configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
248*c217d954SCole Faust TensorInfo info(TensorShape(dst->dimension(2), dst->dimension(0),
249*c217d954SCole Faust dst->dimension(1), dst->dimension(3)),
250*c217d954SCole Faust 1, dst->data_type());
251*c217d954SCole Faust _output_nhwc = info;
252*c217d954SCole Faust _permute_output->configure(&_output_nhwc, dst, PermutationVector(1U, 2U, 0U));
253*c217d954SCole Faust }
254*c217d954SCole Faust
255*c217d954SCole Faust // Configure input transform kernel
256*c217d954SCole Faust _transform_input_kernel = std::make_unique<CpuWinogradConv2dTransformInputKernel>(_winograd_impl, *_conv_args, nthreads);
257*c217d954SCole Faust
258*c217d954SCole Faust // Configure GEMM function
259*c217d954SCole Faust _gemm_function->configure(&_winograd_transformed_input, &_winograd_transformed_weights, nullptr, &_winograd_transformed_output, 1.0f, 0.f);
260*c217d954SCole Faust
261*c217d954SCole Faust // Configure output transform kernel
262*c217d954SCole Faust _transform_output_kernel = std::make_unique<CpuWinogradConv2dTransformOutputKernel>(_winograd_impl, *_conv_args, nthreads);
263*c217d954SCole Faust
264*c217d954SCole Faust //Configure Activation Layer
265*c217d954SCole Faust _run_activation = act_info.enabled() && !fuse_function_supported(act_info);
266*c217d954SCole Faust if(_run_activation)
267*c217d954SCole Faust {
268*c217d954SCole Faust _activation_func->configure(dst, nullptr, act_info);
269*c217d954SCole Faust }
270*c217d954SCole Faust
271*c217d954SCole Faust auto asm_mem_req = _gemm_function->workspace();
272*c217d954SCole Faust _aux_mem[GemmWorkspace] = asm_mem_req[GemmWorkspace];
273*c217d954SCole Faust _aux_mem[Pretranspose] = asm_mem_req[Pretranspose];
274*c217d954SCole Faust _aux_mem[InterleavedLHS] = asm_mem_req[InterleavedLHS];
275*c217d954SCole Faust _aux_mem[TransposedRHS] = asm_mem_req[TransposedRHS];
276*c217d954SCole Faust _aux_mem[TempResult] = asm_mem_req[TempResult];
277*c217d954SCole Faust
278*c217d954SCole Faust // Request temporary memory. Overlap memory needed for Input/Output transformations as they run on different non-overlapping time-steps.
279*c217d954SCole Faust _aux_mem[TransformedInput] = MemoryInfo(offset_int_vec(TransformedInput), MemoryLifetime::Temporary, wds.input_matrix_size_bytes, storage_alignment);
280*c217d954SCole Faust _aux_mem[TransformedOutput] = MemoryInfo(offset_int_vec(TransformedOutput), MemoryLifetime::Temporary, wds.output_matrix_size_bytes, storage_alignment);
281*c217d954SCole Faust _aux_mem[WorkspaceIO] = MemoryInfo(offset_int_vec(WorkspaceIO), MemoryLifetime::Temporary, std::max(input_workspace_size, output_workspace_size));
282*c217d954SCole Faust _aux_mem[PermutedWeights] = MemoryInfo(offset_int_vec(PermutedWeights), MemoryLifetime::Prepare, _weights_hwio.total_size());
283*c217d954SCole Faust _aux_mem[TransformedWeights] = MemoryInfo(offset_int_vec(TransformedWeights), MemoryLifetime::Persistent, wds.weight_matrix_size_bytes, storage_alignment);
284*c217d954SCole Faust if(_data_layout == DataLayout::NCHW)
285*c217d954SCole Faust {
286*c217d954SCole Faust _aux_mem[PermutedInput].merge(offset_int_vec(PermutedInput), src->total_size());
287*c217d954SCole Faust _aux_mem[PermutedOutput].merge(offset_int_vec(PermutedOutput), dst->total_size());
288*c217d954SCole Faust }
289*c217d954SCole Faust }
290*c217d954SCole Faust }
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const PadStrideInfo & conv_info,const ActivationLayerInfo & act_info,bool enable_fast_math)291*c217d954SCole Faust Status CpuWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
292*c217d954SCole Faust const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
293*c217d954SCole Faust {
294*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
295*c217d954SCole Faust ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info));
296*c217d954SCole Faust
297*c217d954SCole Faust // Disable winograd for fp16 if fast math is false.
298*c217d954SCole Faust if(!enable_fast_math)
299*c217d954SCole Faust {
300*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F32);
301*c217d954SCole Faust }
302*c217d954SCole Faust
303*c217d954SCole Faust const Tensor4DShape kernel_shape{ internal_get_shape(weights) };
304*c217d954SCole Faust arm_conv::winograd::WinogradImpl winograd_impl{};
305*c217d954SCole Faust
306*c217d954SCole Faust std::unique_ptr<arm_conv::ConvolutionArgs> conv_args;
307*c217d954SCole Faust const bool success = get_winograd_kernel_implementation(src, weights, dst, conv_info, act_info, enable_fast_math, &winograd_impl, conv_args);
308*c217d954SCole Faust
309*c217d954SCole Faust ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(success == false, "Unsupported kernel size: %d x %d.\n", kernel_shape.n_rows, kernel_shape.n_cols);
310*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using input transform: %s\n", winograd_impl.input_transform->get_name().c_str());
311*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using weight transform: %s\n", winograd_impl.input_transform->get_name().c_str());
312*c217d954SCole Faust ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using output transform: %s\n", winograd_impl.input_transform->get_name().c_str());
313*c217d954SCole Faust return Status{};
314*c217d954SCole Faust }
315*c217d954SCole Faust
run(ITensorPack & tensors)316*c217d954SCole Faust void CpuWinogradConv2d::run(ITensorPack &tensors)
317*c217d954SCole Faust {
318*c217d954SCole Faust prepare(tensors);
319*c217d954SCole Faust auto src = tensors.get_const_tensor(ACL_SRC_0);
320*c217d954SCole Faust auto biases = tensors.get_const_tensor(ACL_SRC_2);
321*c217d954SCole Faust auto output = tensors.get_tensor(ACL_DST);
322*c217d954SCole Faust Window win;
323*c217d954SCole Faust
324*c217d954SCole Faust const uint32_t nthreads = NEScheduler::get().num_threads();
325*c217d954SCole Faust
326*c217d954SCole Faust // The Winograd transform implementation does fine-grain threading inside the transforms. Just pass thread_id and nthreads.
327*c217d954SCole Faust win.set(Window::DimX, Window::Dimension(0, nthreads, 1));
328*c217d954SCole Faust
329*c217d954SCole Faust // Wrap the winograd-domain tensorInfos created in configuration in tensors and allocate the required memory.
330*c217d954SCole Faust CpuAuxTensorHandler input_nhwc(offset_int_vec(PermutedInput), _input_nhwc, tensors, true);
331*c217d954SCole Faust CpuAuxTensorHandler winograd_input_transformed(offset_int_vec(TransformedInput), _winograd_transformed_input, tensors, true);
332*c217d954SCole Faust CpuAuxTensorHandler input_workspace(offset_int_vec(WorkspaceIO), _input_workspace, tensors, true);
333*c217d954SCole Faust const bool is_nchw = _data_layout == DataLayout::NCHW;
334*c217d954SCole Faust if(is_nchw)
335*c217d954SCole Faust {
336*c217d954SCole Faust //Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
337*c217d954SCole Faust ITensorPack pack{ { ACL_SRC, src }, { ACL_DST, input_nhwc.get() } };
338*c217d954SCole Faust _permute_input->run(pack);
339*c217d954SCole Faust }
340*c217d954SCole Faust
341*c217d954SCole Faust CpuAuxTensorHandler winograd_output_transformed(offset_int_vec(TransformedOutput), _winograd_transformed_output, tensors, true);
342*c217d954SCole Faust CpuAuxTensorHandler output_workspace(offset_int_vec(WorkspaceIO), _output_workspace, tensors, true);
343*c217d954SCole Faust CpuAuxTensorHandler output_nhwc(offset_int_vec(PermutedOutput), _output_nhwc, tensors, true);
344*c217d954SCole Faust
345*c217d954SCole Faust ITensorPack transform_input_pack{ { ACL_SRC, is_nchw ? input_nhwc.get() : src }, { ACL_DST, winograd_input_transformed.get() }, { ACL_INT, input_workspace.get() } };
346*c217d954SCole Faust NEScheduler::get().schedule_op(_transform_input_kernel.get(), Window::DimX, win, transform_input_pack);
347*c217d954SCole Faust
348*c217d954SCole Faust CpuAuxTensorHandler winograd_weights_transformed(offset_int_vec(TransformedWeights), _winograd_transformed_weights, tensors, true);
349*c217d954SCole Faust
350*c217d954SCole Faust // Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
351*c217d954SCole Faust ITensorPack gemm_pack = tensors;
352*c217d954SCole Faust gemm_pack.add_const_tensor(ACL_SRC, winograd_input_transformed.get());
353*c217d954SCole Faust gemm_pack.add_const_tensor(ACL_SRC_1, winograd_weights_transformed.get());
354*c217d954SCole Faust gemm_pack.add_const_tensor(ACL_BIAS, nullptr);
355*c217d954SCole Faust gemm_pack.add_tensor(ACL_DST, winograd_output_transformed.get());
356*c217d954SCole Faust _gemm_function->run(gemm_pack);
357*c217d954SCole Faust
358*c217d954SCole Faust // Output transform
359*c217d954SCole Faust ITensorPack transform_output_pack{ { ACL_SRC_0, winograd_output_transformed.get() }, { ACL_DST, is_nchw ? output_nhwc.get() : output }, { ACL_SRC_1, biases }, { ACL_INT, output_workspace.get() } };
360*c217d954SCole Faust NEScheduler::get().schedule_op(_transform_output_kernel.get(), Window::DimX, win, transform_output_pack);
361*c217d954SCole Faust if(is_nchw)
362*c217d954SCole Faust {
363*c217d954SCole Faust // Reorder the convoluted output to ACL's ordering NCHW
364*c217d954SCole Faust ITensorPack pack{ { ACL_SRC, output_nhwc.get() }, { ACL_DST, output } };
365*c217d954SCole Faust _permute_output->run(pack);
366*c217d954SCole Faust }
367*c217d954SCole Faust if(_run_activation)
368*c217d954SCole Faust {
369*c217d954SCole Faust ITensorPack pack{ { ACL_SRC, output }, { ACL_DST, output } };
370*c217d954SCole Faust _activation_func->run(pack);
371*c217d954SCole Faust }
372*c217d954SCole Faust }
373*c217d954SCole Faust
prepare(ITensorPack & tensors)374*c217d954SCole Faust void CpuWinogradConv2d::prepare(ITensorPack &tensors)
375*c217d954SCole Faust {
376*c217d954SCole Faust if(!_is_prepared)
377*c217d954SCole Faust {
378*c217d954SCole Faust const ITensor *weights = tensors.get_const_tensor(ACL_SRC_1);
379*c217d954SCole Faust ITensor *weights_aux = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(PermutedWeights)));
380*c217d954SCole Faust
381*c217d954SCole Faust CpuAuxTensorHandler permuted_weights(_weights_hwio, *weights_aux);
382*c217d954SCole Faust ITensorPack permute_tensors{ { ACL_SRC, weights }, { ACL_DST, permuted_weights.get() } };
383*c217d954SCole Faust _permute_weights->run(permute_tensors);
384*c217d954SCole Faust const int element_size_in_bytes = permuted_weights.get()->info()->element_size();
385*c217d954SCole Faust // Weights were in OHWI format, before being permuted "permuted_weights" to be in HWIO format.
386*c217d954SCole Faust const unsigned int height_idx = 3; // H in HWIO
387*c217d954SCole Faust const unsigned int width_idx = 2; // W in HWIO
388*c217d954SCole Faust const unsigned int channel_idx = 1; // I in HWIO
389*c217d954SCole Faust
390*c217d954SCole Faust const int permuted_weight_row_stride = permuted_weights.get()->info()->strides_in_bytes()[height_idx] / element_size_in_bytes;
391*c217d954SCole Faust const int permuted_weight_col_stride = permuted_weights.get()->info()->strides_in_bytes()[width_idx] / element_size_in_bytes;
392*c217d954SCole Faust const int permuted_weight_channel_stride = permuted_weights.get()->info()->strides_in_bytes()[channel_idx] / element_size_in_bytes;
393*c217d954SCole Faust
394*c217d954SCole Faust // Wrap the winograd-domain transformed weight TensorInfo in Auxiliary tensor and allocate the required memory.
395*c217d954SCole Faust ITensor *weights_transf = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(TransformedWeights)));
396*c217d954SCole Faust ARM_COMPUTE_ERROR_ON_NULLPTR(weights_transf);
397*c217d954SCole Faust CpuAuxTensorHandler winograd_transformed_weights(_winograd_transformed_weights, *weights_transf);
398*c217d954SCole Faust
399*c217d954SCole Faust const void *permuted_weights_ptr;
400*c217d954SCole Faust void *win_wght_transf_ptr;
401*c217d954SCole Faust
402*c217d954SCole Faust permuted_weights_ptr = reinterpret_cast<const void *>(permuted_weights.get()->buffer() + permuted_weights.get()->info()->offset_first_element_in_bytes());
403*c217d954SCole Faust win_wght_transf_ptr = reinterpret_cast<void *>(winograd_transformed_weights.get()->buffer() + winograd_transformed_weights.get()->info()->offset_first_element_in_bytes());
404*c217d954SCole Faust
405*c217d954SCole Faust // Prepare Weights
406*c217d954SCole Faust _winograd_impl.weight_transform->execute(
407*c217d954SCole Faust *_conv_args,
408*c217d954SCole Faust permuted_weights_ptr,
409*c217d954SCole Faust permuted_weight_row_stride,
410*c217d954SCole Faust permuted_weight_col_stride,
411*c217d954SCole Faust permuted_weight_channel_stride,
412*c217d954SCole Faust win_wght_transf_ptr,
413*c217d954SCole Faust _winograd_impl.winograd_spec,
414*c217d954SCole Faust 0, 1 // Thread 1 of 1
415*c217d954SCole Faust );
416*c217d954SCole Faust ITensorPack gemm_pack = tensors;
417*c217d954SCole Faust gemm_pack.add_const_tensor(ACL_SRC_1, winograd_transformed_weights.get());
418*c217d954SCole Faust _gemm_function->prepare(gemm_pack);
419*c217d954SCole Faust _is_prepared = 1;
420*c217d954SCole Faust }
421*c217d954SCole Faust }
workspace() const422*c217d954SCole Faust experimental::MemoryRequirements CpuWinogradConv2d::workspace() const
423*c217d954SCole Faust {
424*c217d954SCole Faust return _aux_mem;
425*c217d954SCole Faust }
426*c217d954SCole Faust
427*c217d954SCole Faust } // namespace cpu
428*c217d954SCole Faust } // namespace arm_compute
429