xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/CL/BatchNormalizationLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
25 #include "arm_compute/runtime/CL/CLTensor.h"
26 #include "arm_compute/runtime/CL/CLTensorAllocator.h"
27 #include "arm_compute/runtime/CL/functions/CLBatchNormalizationLayer.h"
28 #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
29 #include "arm_compute/runtime/CL/functions/CLFuseBatchNormalization.h"
30 #include "tests/CL/CLAccessor.h"
31 #include "tests/PaddingCalculator.h"
32 #include "tests/datasets/LargeConvolutionLayerDataset.h"
33 #include "tests/datasets/RandomBatchNormalizationLayerDataset.h"
34 #include "tests/datasets/SmallConvolutionLayerDataset.h"
35 #include "tests/framework/Asserts.h"
36 #include "tests/framework/Macros.h"
37 #include "tests/framework/datasets/Datasets.h"
38 #include "tests/validation/Helpers.h"
39 #include "tests/validation/Validation.h"
40 #include "tests/validation/fixtures/BatchNormalizationLayerFixture.h"
41 #include "tests/validation/fixtures/BatchNormalizationLayerFusionFixture.h"
42 
43 namespace arm_compute
44 {
45 namespace test
46 {
47 namespace validation
48 {
49 namespace
50 {
51 RelativeTolerance<float>           rel_tolerance_f32(0.05f);   /**< Tolerance value for comparing reference's output against implementation's output for DataType::F32 */
52 constexpr AbsoluteTolerance<float> abs_tolerance_f32(0.0001f); /**< Tolerance value for comparing reference's output against implementation's output for DataType::F32 */
53 constexpr AbsoluteTolerance<float> tolerance_f16(0.02f);       /**< Tolerance value for comparing reference's output against implementation's output for DataType::F16 */
54 const auto                         act_infos = framework::dataset::make("ActivationInfo",
55 {
56     ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
57     ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f),
58     ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
59 });
60 
61 const auto common_fusion_dataset = combine(combine(combine(framework::dataset::make("UseBias",
62 { false, true }),
63 framework::dataset::make("UseBeta", { false, true })),
64 framework::dataset::make("UseGamma", { false, true })),
65 framework::dataset::make("Epsilon", { 0.001f }));
66 
67 } // namespace
68 
69 TEST_SUITE(CL)
70 TEST_SUITE(BatchNormalizationLayer)
71 
72 template <typename T>
73 using CLBatchNormalizationLayerFixture = BatchNormalizationLayerValidationFixture<CLTensor, CLAccessor, CLBatchNormalizationLayer, T>;
74 
75 // *INDENT-OFF*
76 // clang-format off
77 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
78                framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
79                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32),    // Window shrink
80                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),    // Mismatching data types
81                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),    // Mismatching data types
82                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),    // Invalid mean/var/beta/gamma shape
83                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),    // Unsupported fused activation
84                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),    // Fused activation's a < b
85                                                      }),
86                framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
87                                                        TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32),
88                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
89                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F16),
90                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
91                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
92                                                        TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
93                                                      })),
94                framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32),
95                                                      TensorInfo(TensorShape(2U), 1, DataType::F32),
96                                                      TensorInfo(TensorShape(2U), 1, DataType::F16),
97                                                      TensorInfo(TensorShape(2U), 1, DataType::F32),
98                                                      TensorInfo(TensorShape(5U), 1, DataType::F32),
99                                                      TensorInfo(TensorShape(2U), 1, DataType::F32),
100                                                      TensorInfo(TensorShape(2U), 1, DataType::F32),
101                                                    })),
102                 framework::dataset::make("ActivationLayerInfo",{ ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
103                                                     ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
104                                                      ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f),
105                                                      ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f),
106                                                      ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f),
107                                                      ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH),
108                                                      ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 2.f, 6.f),
109                                                    })),
110                framework::dataset::make("Expected", { true, false, false, false, false, false, false})),
111                input_info, output_info, mvbg_info, act_info, expected)
112 {
113     const auto &mean_info = mvbg_info;
114     const auto &var_info = mvbg_info;
115     const auto &beta_info = mvbg_info;
116     const auto &gamma_info = mvbg_info;
117     bool has_error = bool(CLBatchNormalizationLayer::validate(&input_info.clone()->set_is_resizable(false), (output_info.total_size() == 0) ? nullptr : &output_info.clone()->set_is_resizable(false), &mean_info.clone()->set_is_resizable(false), &var_info.clone()->set_is_resizable(false), &beta_info.clone()->set_is_resizable(false), &gamma_info.clone()->set_is_resizable(false), 1.f, act_info));
118     ARM_COMPUTE_EXPECT(has_error == expected, framework::LogLevel::ERRORS);
119 }
120 // clang-format on
121 // *INDENT-ON*
122 
123 TEST_SUITE(Float)
TEST_SUITE(FP32)124 TEST_SUITE(FP32)
125 FIXTURE_DATA_TEST_CASE(Random, CLBatchNormalizationLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallRandomBatchNormalizationLayerDataset(),
126                                                                                                                    combine(framework::dataset::make("UseBeta", { false, true }), framework::dataset::make("UseGamma", { false, true }))),
127                                                                                                                    act_infos),
128                                                                                                                    framework::dataset::make("DataType", DataType::F32)),
129                                                                                                                    framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
130 {
131     // Validate output
132     validate(CLAccessor(_target), _reference, abs_tolerance_f32, 0);
133 }
134 TEST_SUITE_END() //FP32
135 
TEST_SUITE(FP16)136 TEST_SUITE(FP16)
137 FIXTURE_DATA_TEST_CASE(Random, CLBatchNormalizationLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(datasets::SmallRandomBatchNormalizationLayerDataset(),
138                                                                                                                   combine(framework::dataset::make("UseBeta", { false, true }), framework::dataset::make("UseGamma", { false, true }))),
139                                                                                                                   framework::dataset::make("ActivationInfo",
140                                                                                                                           ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))),
141                                                                                                                   framework::dataset::make("DataType", DataType::F16)),
142                                                                                                                   framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
143 {
144     // Validate output
145     validate(CLAccessor(_target), _reference, tolerance_f16, 0);
146 }
147 TEST_SUITE_END() // FP16
TEST_SUITE_END()148 TEST_SUITE_END() // Float
149 
150 TEST_SUITE_END() // BatchNormalizationLayer
151 
152 TEST_SUITE(BatchNormalizationLayerFusion)
153 // *INDENT-OFF*
154 // clang-format off
155 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(
156                framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),      // Valid
157                                                        TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),    // Mismatching data types
158                                                        TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32),    // Invalid mean/var/beta/gamma shape
159                                                      }),
160                framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32),
161                                                      TensorInfo(TensorShape(2U), 1, DataType::F16),
162                                                      TensorInfo(TensorShape(5U), 1, DataType::F32),
163                                                    })),
164                framework::dataset::make("Expected", { true, false, false})),
165                weights_info, mvbg_info, expected)
166 {
167     const auto &weights_in_info = weights_info;
168     const auto &mean_info = mvbg_info;
169     const auto &var_info = mvbg_info;
170     const auto &fused_weights_info = weights_info;
171     const auto &fused_bias_info = mvbg_info;
172     const auto &conv_bias_info = mvbg_info;
173     const auto &beta_info = mvbg_info;
174     const auto &gamma_info = mvbg_info;
175     bool has_error = bool(CLFuseBatchNormalization::validate(
176             &weights_in_info.clone()->set_is_resizable(false), &mean_info.clone()->set_is_resizable(false),
177             &var_info.clone()->set_is_resizable(false), &fused_weights_info.clone()->set_is_resizable(false),
178             &fused_bias_info.clone()->set_is_resizable(false), &conv_bias_info.clone()->set_is_resizable(false),
179             &beta_info.clone()->set_is_resizable(false), &gamma_info.clone()->set_is_resizable(false), 1.f));
180     ARM_COMPUTE_EXPECT(has_error == expected, framework::LogLevel::ERRORS);
181 }
182 // clang-format on
183 // *INDENT-ON*
184 template <typename T>
185 using CLBatchNormalizationLayerFusionFixture = BatchNormalizationLayerFusionValidationFixture<CLTensor, CLAccessor, CLConvolutionLayer, CLFuseBatchNormalization, T>;
186 
187 TEST_SUITE(Float)
TEST_SUITE(FP32)188 TEST_SUITE(FP32)
189 FIXTURE_DATA_TEST_CASE(RunSmall, CLBatchNormalizationLayerFusionFixture<float>, framework::DatasetMode::PRECOMMIT,
190                        combine(combine(combine(datasets::SmallConvolutionLayerReducedDataset(), common_fusion_dataset),
191                                        framework::dataset::make("DataType", DataType::F32)),
192                                framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
193 {
194     // Validate output
195     validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
196 }
197 FIXTURE_DATA_TEST_CASE(RunLarge, CLBatchNormalizationLayerFusionFixture<float>, framework::DatasetMode::NIGHTLY,
198                        combine(combine(combine(datasets::SmallConvolutionLayerDataset(), common_fusion_dataset),
199                                        framework::dataset::make("DataType", DataType::F32)),
200                                framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
201 {
202     // Validate output
203     validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
204 }
205 TEST_SUITE_END() // FP32
206 TEST_SUITE_END() // Float
207 
208 TEST_SUITE_END() // BatchNormalizationLayerFusion
209 TEST_SUITE_END() // CL
210 } // namespace validation
211 } // namespace test
212 } // namespace arm_compute
213