1*412f47f9SXin Li /*
2*412f47f9SXin Li * Double-precision log(x) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2018-2019, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include <float.h>
9*412f47f9SXin Li #include <math.h>
10*412f47f9SXin Li #include <stdint.h>
11*412f47f9SXin Li #include "math_config.h"
12*412f47f9SXin Li
13*412f47f9SXin Li #define T __log_data.tab
14*412f47f9SXin Li #define T2 __log_data.tab2
15*412f47f9SXin Li #define B __log_data.poly1
16*412f47f9SXin Li #define A __log_data.poly
17*412f47f9SXin Li #define Ln2hi __log_data.ln2hi
18*412f47f9SXin Li #define Ln2lo __log_data.ln2lo
19*412f47f9SXin Li #define N (1 << LOG_TABLE_BITS)
20*412f47f9SXin Li #define OFF 0x3fe6000000000000
21*412f47f9SXin Li
22*412f47f9SXin Li /* Top 16 bits of a double. */
23*412f47f9SXin Li static inline uint32_t
top16(double x)24*412f47f9SXin Li top16 (double x)
25*412f47f9SXin Li {
26*412f47f9SXin Li return asuint64 (x) >> 48;
27*412f47f9SXin Li }
28*412f47f9SXin Li
29*412f47f9SXin Li double
log(double x)30*412f47f9SXin Li log (double x)
31*412f47f9SXin Li {
32*412f47f9SXin Li /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
33*412f47f9SXin Li double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
34*412f47f9SXin Li uint64_t ix, iz, tmp;
35*412f47f9SXin Li uint32_t top;
36*412f47f9SXin Li int k, i;
37*412f47f9SXin Li
38*412f47f9SXin Li ix = asuint64 (x);
39*412f47f9SXin Li top = top16 (x);
40*412f47f9SXin Li
41*412f47f9SXin Li #if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11
42*412f47f9SXin Li # define LO asuint64 (1.0 - 0x1p-5)
43*412f47f9SXin Li # define HI asuint64 (1.0 + 0x1.1p-5)
44*412f47f9SXin Li #elif LOG_POLY1_ORDER == 12
45*412f47f9SXin Li # define LO asuint64 (1.0 - 0x1p-4)
46*412f47f9SXin Li # define HI asuint64 (1.0 + 0x1.09p-4)
47*412f47f9SXin Li #endif
48*412f47f9SXin Li if (unlikely (ix - LO < HI - LO))
49*412f47f9SXin Li {
50*412f47f9SXin Li /* Handle close to 1.0 inputs separately. */
51*412f47f9SXin Li /* Fix sign of zero with downward rounding when x==1. */
52*412f47f9SXin Li if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
53*412f47f9SXin Li return 0;
54*412f47f9SXin Li r = x - 1.0;
55*412f47f9SXin Li r2 = r * r;
56*412f47f9SXin Li r3 = r * r2;
57*412f47f9SXin Li #if LOG_POLY1_ORDER == 10
58*412f47f9SXin Li /* Worst-case error is around 0.516 ULP. */
59*412f47f9SXin Li y = r3 * (B[1] + r * B[2] + r2 * B[3]
60*412f47f9SXin Li + r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8])));
61*412f47f9SXin Li w = B[0] * r2; /* B[0] == -0.5. */
62*412f47f9SXin Li hi = r + w;
63*412f47f9SXin Li y += r - hi + w;
64*412f47f9SXin Li y += hi;
65*412f47f9SXin Li #elif LOG_POLY1_ORDER == 11
66*412f47f9SXin Li /* Worst-case error is around 0.516 ULP. */
67*412f47f9SXin Li y = r3 * (B[1] + r * B[2]
68*412f47f9SXin Li + r2 * (B[3] + r * B[4] + r2 * B[5]
69*412f47f9SXin Li + r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9])));
70*412f47f9SXin Li w = B[0] * r2; /* B[0] == -0.5. */
71*412f47f9SXin Li hi = r + w;
72*412f47f9SXin Li y += r - hi + w;
73*412f47f9SXin Li y += hi;
74*412f47f9SXin Li #elif LOG_POLY1_ORDER == 12
75*412f47f9SXin Li y = r3 * (B[1] + r * B[2] + r2 * B[3]
76*412f47f9SXin Li + r3 * (B[4] + r * B[5] + r2 * B[6]
77*412f47f9SXin Li + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
78*412f47f9SXin Li # if N <= 64
79*412f47f9SXin Li /* Worst-case error is around 0.532 ULP. */
80*412f47f9SXin Li w = B[0] * r2; /* B[0] == -0.5. */
81*412f47f9SXin Li hi = r + w;
82*412f47f9SXin Li y += r - hi + w;
83*412f47f9SXin Li y += hi;
84*412f47f9SXin Li # else
85*412f47f9SXin Li /* Worst-case error is around 0.507 ULP. */
86*412f47f9SXin Li w = r * 0x1p27;
87*412f47f9SXin Li double_t rhi = r + w - w;
88*412f47f9SXin Li double_t rlo = r - rhi;
89*412f47f9SXin Li w = rhi * rhi * B[0]; /* B[0] == -0.5. */
90*412f47f9SXin Li hi = r + w;
91*412f47f9SXin Li lo = r - hi + w;
92*412f47f9SXin Li lo += B[0] * rlo * (rhi + r);
93*412f47f9SXin Li y += lo;
94*412f47f9SXin Li y += hi;
95*412f47f9SXin Li # endif
96*412f47f9SXin Li #endif
97*412f47f9SXin Li return eval_as_double (y);
98*412f47f9SXin Li }
99*412f47f9SXin Li if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
100*412f47f9SXin Li {
101*412f47f9SXin Li /* x < 0x1p-1022 or inf or nan. */
102*412f47f9SXin Li if (ix * 2 == 0)
103*412f47f9SXin Li return __math_divzero (1);
104*412f47f9SXin Li if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */
105*412f47f9SXin Li return x;
106*412f47f9SXin Li if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
107*412f47f9SXin Li return __math_invalid (x);
108*412f47f9SXin Li /* x is subnormal, normalize it. */
109*412f47f9SXin Li ix = asuint64 (x * 0x1p52);
110*412f47f9SXin Li ix -= 52ULL << 52;
111*412f47f9SXin Li }
112*412f47f9SXin Li
113*412f47f9SXin Li /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
114*412f47f9SXin Li The range is split into N subintervals.
115*412f47f9SXin Li The ith subinterval contains z and c is near its center. */
116*412f47f9SXin Li tmp = ix - OFF;
117*412f47f9SXin Li i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
118*412f47f9SXin Li k = (int64_t) tmp >> 52; /* arithmetic shift */
119*412f47f9SXin Li iz = ix - (tmp & 0xfffULL << 52);
120*412f47f9SXin Li invc = T[i].invc;
121*412f47f9SXin Li logc = T[i].logc;
122*412f47f9SXin Li z = asdouble (iz);
123*412f47f9SXin Li
124*412f47f9SXin Li /* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
125*412f47f9SXin Li /* r ~= z/c - 1, |r| < 1/(2*N). */
126*412f47f9SXin Li #if HAVE_FAST_FMA
127*412f47f9SXin Li /* rounding error: 0x1p-55/N. */
128*412f47f9SXin Li r = fma (z, invc, -1.0);
129*412f47f9SXin Li #else
130*412f47f9SXin Li /* rounding error: 0x1p-55/N + 0x1p-66. */
131*412f47f9SXin Li r = (z - T2[i].chi - T2[i].clo) * invc;
132*412f47f9SXin Li #endif
133*412f47f9SXin Li kd = (double_t) k;
134*412f47f9SXin Li
135*412f47f9SXin Li /* hi + lo = r + log(c) + k*Ln2. */
136*412f47f9SXin Li w = kd * Ln2hi + logc;
137*412f47f9SXin Li hi = w + r;
138*412f47f9SXin Li lo = w - hi + r + kd * Ln2lo;
139*412f47f9SXin Li
140*412f47f9SXin Li /* log(x) = lo + (log1p(r) - r) + hi. */
141*412f47f9SXin Li r2 = r * r; /* rounding error: 0x1p-54/N^2. */
142*412f47f9SXin Li /* Worst case error if |y| > 0x1p-5:
143*412f47f9SXin Li 0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
144*412f47f9SXin Li Worst case error if |y| > 0x1p-4:
145*412f47f9SXin Li 0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
146*412f47f9SXin Li #if LOG_POLY_ORDER == 6
147*412f47f9SXin Li y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
148*412f47f9SXin Li #elif LOG_POLY_ORDER == 7
149*412f47f9SXin Li y = lo
150*412f47f9SXin Li + r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3])
151*412f47f9SXin Li + r2 * r2 * (A[4] + r * A[5]))
152*412f47f9SXin Li + hi;
153*412f47f9SXin Li #endif
154*412f47f9SXin Li return eval_as_double (y);
155*412f47f9SXin Li }
156*412f47f9SXin Li #if USE_GLIBC_ABI
strong_alias(log,__log_finite)157*412f47f9SXin Li strong_alias (log, __log_finite)
158*412f47f9SXin Li hidden_alias (log, __ieee754_log)
159*412f47f9SXin Li # if LDBL_MANT_DIG == 53
160*412f47f9SXin Li long double logl (long double x) { return log (x); }
161*412f47f9SXin Li # endif
162*412f47f9SXin Li #endif
163