xref: /aosp_15_r20/external/arm-optimized-routines/math/log2.c (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Double-precision log2(x) function.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2018-2019, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include <float.h>
9*412f47f9SXin Li #include <math.h>
10*412f47f9SXin Li #include <stdint.h>
11*412f47f9SXin Li #include "math_config.h"
12*412f47f9SXin Li 
13*412f47f9SXin Li #define T __log2_data.tab
14*412f47f9SXin Li #define T2 __log2_data.tab2
15*412f47f9SXin Li #define B __log2_data.poly1
16*412f47f9SXin Li #define A __log2_data.poly
17*412f47f9SXin Li #define InvLn2hi __log2_data.invln2hi
18*412f47f9SXin Li #define InvLn2lo __log2_data.invln2lo
19*412f47f9SXin Li #define N (1 << LOG2_TABLE_BITS)
20*412f47f9SXin Li #define OFF 0x3fe6000000000000
21*412f47f9SXin Li 
22*412f47f9SXin Li /* Top 16 bits of a double.  */
23*412f47f9SXin Li static inline uint32_t
top16(double x)24*412f47f9SXin Li top16 (double x)
25*412f47f9SXin Li {
26*412f47f9SXin Li   return asuint64 (x) >> 48;
27*412f47f9SXin Li }
28*412f47f9SXin Li 
29*412f47f9SXin Li double
log2(double x)30*412f47f9SXin Li log2 (double x)
31*412f47f9SXin Li {
32*412f47f9SXin Li   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
33*412f47f9SXin Li   double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
34*412f47f9SXin Li   uint64_t ix, iz, tmp;
35*412f47f9SXin Li   uint32_t top;
36*412f47f9SXin Li   int k, i;
37*412f47f9SXin Li 
38*412f47f9SXin Li   ix = asuint64 (x);
39*412f47f9SXin Li   top = top16 (x);
40*412f47f9SXin Li 
41*412f47f9SXin Li #if LOG2_POLY1_ORDER == 11
42*412f47f9SXin Li # define LO asuint64 (1.0 - 0x1.5b51p-5)
43*412f47f9SXin Li # define HI asuint64 (1.0 + 0x1.6ab2p-5)
44*412f47f9SXin Li #endif
45*412f47f9SXin Li   if (unlikely (ix - LO < HI - LO))
46*412f47f9SXin Li     {
47*412f47f9SXin Li       /* Handle close to 1.0 inputs separately.  */
48*412f47f9SXin Li       /* Fix sign of zero with downward rounding when x==1.  */
49*412f47f9SXin Li       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
50*412f47f9SXin Li 	return 0;
51*412f47f9SXin Li       r = x - 1.0;
52*412f47f9SXin Li #if HAVE_FAST_FMA
53*412f47f9SXin Li       hi = r * InvLn2hi;
54*412f47f9SXin Li       lo = r * InvLn2lo + fma (r, InvLn2hi, -hi);
55*412f47f9SXin Li #else
56*412f47f9SXin Li       double_t rhi, rlo;
57*412f47f9SXin Li       rhi = asdouble (asuint64 (r) & -1ULL << 32);
58*412f47f9SXin Li       rlo = r - rhi;
59*412f47f9SXin Li       hi = rhi * InvLn2hi;
60*412f47f9SXin Li       lo = rlo * InvLn2hi + r * InvLn2lo;
61*412f47f9SXin Li #endif
62*412f47f9SXin Li       r2 = r * r; /* rounding error: 0x1p-62.  */
63*412f47f9SXin Li       r4 = r2 * r2;
64*412f47f9SXin Li #if LOG2_POLY1_ORDER == 11
65*412f47f9SXin Li       /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
66*412f47f9SXin Li       p = r2 * (B[0] + r * B[1]);
67*412f47f9SXin Li       y = hi + p;
68*412f47f9SXin Li       lo += hi - y + p;
69*412f47f9SXin Li       lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
70*412f47f9SXin Li 		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
71*412f47f9SXin Li       y += lo;
72*412f47f9SXin Li #endif
73*412f47f9SXin Li       return eval_as_double (y);
74*412f47f9SXin Li     }
75*412f47f9SXin Li   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
76*412f47f9SXin Li     {
77*412f47f9SXin Li       /* x < 0x1p-1022 or inf or nan.  */
78*412f47f9SXin Li       if (ix * 2 == 0)
79*412f47f9SXin Li 	return __math_divzero (1);
80*412f47f9SXin Li       if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
81*412f47f9SXin Li 	return x;
82*412f47f9SXin Li       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
83*412f47f9SXin Li 	return __math_invalid (x);
84*412f47f9SXin Li       /* x is subnormal, normalize it.  */
85*412f47f9SXin Li       ix = asuint64 (x * 0x1p52);
86*412f47f9SXin Li       ix -= 52ULL << 52;
87*412f47f9SXin Li     }
88*412f47f9SXin Li 
89*412f47f9SXin Li   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
90*412f47f9SXin Li      The range is split into N subintervals.
91*412f47f9SXin Li      The ith subinterval contains z and c is near its center.  */
92*412f47f9SXin Li   tmp = ix - OFF;
93*412f47f9SXin Li   i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
94*412f47f9SXin Li   k = (int64_t) tmp >> 52; /* arithmetic shift */
95*412f47f9SXin Li   iz = ix - (tmp & 0xfffULL << 52);
96*412f47f9SXin Li   invc = T[i].invc;
97*412f47f9SXin Li   logc = T[i].logc;
98*412f47f9SXin Li   z = asdouble (iz);
99*412f47f9SXin Li   kd = (double_t) k;
100*412f47f9SXin Li 
101*412f47f9SXin Li   /* log2(x) = log2(z/c) + log2(c) + k.  */
102*412f47f9SXin Li   /* r ~= z/c - 1, |r| < 1/(2*N).  */
103*412f47f9SXin Li #if HAVE_FAST_FMA
104*412f47f9SXin Li   /* rounding error: 0x1p-55/N.  */
105*412f47f9SXin Li   r = fma (z, invc, -1.0);
106*412f47f9SXin Li   t1 = r * InvLn2hi;
107*412f47f9SXin Li   t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1);
108*412f47f9SXin Li #else
109*412f47f9SXin Li   double_t rhi, rlo;
110*412f47f9SXin Li   /* rounding error: 0x1p-55/N + 0x1p-65.  */
111*412f47f9SXin Li   r = (z - T2[i].chi - T2[i].clo) * invc;
112*412f47f9SXin Li   rhi = asdouble (asuint64 (r) & -1ULL << 32);
113*412f47f9SXin Li   rlo = r - rhi;
114*412f47f9SXin Li   t1 = rhi * InvLn2hi;
115*412f47f9SXin Li   t2 = rlo * InvLn2hi + r * InvLn2lo;
116*412f47f9SXin Li #endif
117*412f47f9SXin Li 
118*412f47f9SXin Li   /* hi + lo = r/ln2 + log2(c) + k.  */
119*412f47f9SXin Li   t3 = kd + logc;
120*412f47f9SXin Li   hi = t3 + t1;
121*412f47f9SXin Li   lo = t3 - hi + t1 + t2;
122*412f47f9SXin Li 
123*412f47f9SXin Li   /* log2(r+1) = r/ln2 + r^2*poly(r).  */
124*412f47f9SXin Li   /* Evaluation is optimized assuming superscalar pipelined execution.  */
125*412f47f9SXin Li   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
126*412f47f9SXin Li   r4 = r2 * r2;
127*412f47f9SXin Li #if LOG2_POLY_ORDER == 7
128*412f47f9SXin Li   /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
129*412f47f9SXin Li      ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
130*412f47f9SXin Li   p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
131*412f47f9SXin Li   y = lo + r2 * p + hi;
132*412f47f9SXin Li #endif
133*412f47f9SXin Li   return eval_as_double (y);
134*412f47f9SXin Li }
135*412f47f9SXin Li #if USE_GLIBC_ABI
strong_alias(log2,__log2_finite)136*412f47f9SXin Li strong_alias (log2, __log2_finite)
137*412f47f9SXin Li hidden_alias (log2, __ieee754_log2)
138*412f47f9SXin Li # if LDBL_MANT_DIG == 53
139*412f47f9SXin Li long double log2l (long double x) { return log2 (x); }
140*412f47f9SXin Li # endif
141*412f47f9SXin Li #endif
142