xref: /aosp_15_r20/external/arm-optimized-routines/math/sincosf.h (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Header for sinf, cosf and sincosf.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2018-2021, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include <stdint.h>
9*412f47f9SXin Li #include <math.h>
10*412f47f9SXin Li #include "math_config.h"
11*412f47f9SXin Li 
12*412f47f9SXin Li /* 2PI * 2^-64.  */
13*412f47f9SXin Li static const double pi63 = 0x1.921FB54442D18p-62;
14*412f47f9SXin Li /* PI / 4.  */
15*412f47f9SXin Li static const float pio4f = 0x1.921FB6p-1f;
16*412f47f9SXin Li 
17*412f47f9SXin Li /* The constants and polynomials for sine and cosine.  */
18*412f47f9SXin Li typedef struct
19*412f47f9SXin Li {
20*412f47f9SXin Li   double sign[4];		/* Sign of sine in quadrants 0..3.  */
21*412f47f9SXin Li   double hpi_inv;		/* 2 / PI ( * 2^24 if !TOINT_INTRINSICS).  */
22*412f47f9SXin Li   double hpi;			/* PI / 2.  */
23*412f47f9SXin Li   double c0, c1, c2, c3, c4;	/* Cosine polynomial.  */
24*412f47f9SXin Li   double s1, s2, s3;		/* Sine polynomial.  */
25*412f47f9SXin Li } sincos_t;
26*412f47f9SXin Li 
27*412f47f9SXin Li /* Polynomial data (the cosine polynomial is negated in the 2nd entry).  */
28*412f47f9SXin Li extern const sincos_t __sincosf_table[2] HIDDEN;
29*412f47f9SXin Li 
30*412f47f9SXin Li /* Table with 4/PI to 192 bit precision.  */
31*412f47f9SXin Li extern const uint32_t __inv_pio4[] HIDDEN;
32*412f47f9SXin Li 
33*412f47f9SXin Li /* Top 12 bits of the float representation with the sign bit cleared.  */
34*412f47f9SXin Li static inline uint32_t
abstop12(float x)35*412f47f9SXin Li abstop12 (float x)
36*412f47f9SXin Li {
37*412f47f9SXin Li   return (asuint (x) >> 20) & 0x7ff;
38*412f47f9SXin Li }
39*412f47f9SXin Li 
40*412f47f9SXin Li /* Compute the sine and cosine of inputs X and X2 (X squared), using the
41*412f47f9SXin Li    polynomial P and store the results in SINP and COSP.  N is the quadrant,
42*412f47f9SXin Li    if odd the cosine and sine polynomials are swapped.  */
43*412f47f9SXin Li static inline void
sincosf_poly(double x,double x2,const sincos_t * p,int n,float * sinp,float * cosp)44*412f47f9SXin Li sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
45*412f47f9SXin Li 	      float *cosp)
46*412f47f9SXin Li {
47*412f47f9SXin Li   double x3, x4, x5, x6, s, c, c1, c2, s1;
48*412f47f9SXin Li 
49*412f47f9SXin Li   x4 = x2 * x2;
50*412f47f9SXin Li   x3 = x2 * x;
51*412f47f9SXin Li   c2 = p->c3 + x2 * p->c4;
52*412f47f9SXin Li   s1 = p->s2 + x2 * p->s3;
53*412f47f9SXin Li 
54*412f47f9SXin Li   /* Swap sin/cos result based on quadrant.  */
55*412f47f9SXin Li   float *tmp = (n & 1 ? cosp : sinp);
56*412f47f9SXin Li   cosp = (n & 1 ? sinp : cosp);
57*412f47f9SXin Li   sinp = tmp;
58*412f47f9SXin Li 
59*412f47f9SXin Li   c1 = p->c0 + x2 * p->c1;
60*412f47f9SXin Li   x5 = x3 * x2;
61*412f47f9SXin Li   x6 = x4 * x2;
62*412f47f9SXin Li 
63*412f47f9SXin Li   s = x + x3 * p->s1;
64*412f47f9SXin Li   c = c1 + x4 * p->c2;
65*412f47f9SXin Li 
66*412f47f9SXin Li   *sinp = s + x5 * s1;
67*412f47f9SXin Li   *cosp = c + x6 * c2;
68*412f47f9SXin Li }
69*412f47f9SXin Li 
70*412f47f9SXin Li /* Return the sine of inputs X and X2 (X squared) using the polynomial P.
71*412f47f9SXin Li    N is the quadrant, and if odd the cosine polynomial is used.  */
72*412f47f9SXin Li static inline float
sinf_poly(double x,double x2,const sincos_t * p,int n)73*412f47f9SXin Li sinf_poly (double x, double x2, const sincos_t *p, int n)
74*412f47f9SXin Li {
75*412f47f9SXin Li   double x3, x4, x6, x7, s, c, c1, c2, s1;
76*412f47f9SXin Li 
77*412f47f9SXin Li   if ((n & 1) == 0)
78*412f47f9SXin Li     {
79*412f47f9SXin Li       x3 = x * x2;
80*412f47f9SXin Li       s1 = p->s2 + x2 * p->s3;
81*412f47f9SXin Li 
82*412f47f9SXin Li       x7 = x3 * x2;
83*412f47f9SXin Li       s = x + x3 * p->s1;
84*412f47f9SXin Li 
85*412f47f9SXin Li       return s + x7 * s1;
86*412f47f9SXin Li     }
87*412f47f9SXin Li   else
88*412f47f9SXin Li     {
89*412f47f9SXin Li       x4 = x2 * x2;
90*412f47f9SXin Li       c2 = p->c3 + x2 * p->c4;
91*412f47f9SXin Li       c1 = p->c0 + x2 * p->c1;
92*412f47f9SXin Li 
93*412f47f9SXin Li       x6 = x4 * x2;
94*412f47f9SXin Li       c = c1 + x4 * p->c2;
95*412f47f9SXin Li 
96*412f47f9SXin Li       return c + x6 * c2;
97*412f47f9SXin Li     }
98*412f47f9SXin Li }
99*412f47f9SXin Li 
100*412f47f9SXin Li /* Fast range reduction using single multiply-subtract.  Return the modulo of
101*412f47f9SXin Li    X as a value between -PI/4 and PI/4 and store the quadrant in NP.
102*412f47f9SXin Li    The values for PI/2 and 2/PI are accessed via P.  Since PI/2 as a double
103*412f47f9SXin Li    is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
104*412f47f9SXin Li    the result is accurate for |X| <= 120.0.  */
105*412f47f9SXin Li static inline double
reduce_fast(double x,const sincos_t * p,int * np)106*412f47f9SXin Li reduce_fast (double x, const sincos_t *p, int *np)
107*412f47f9SXin Li {
108*412f47f9SXin Li   double r;
109*412f47f9SXin Li #if TOINT_INTRINSICS
110*412f47f9SXin Li   /* Use fast round and lround instructions when available.  */
111*412f47f9SXin Li   r = x * p->hpi_inv;
112*412f47f9SXin Li   *np = converttoint (r);
113*412f47f9SXin Li   return x - roundtoint (r) * p->hpi;
114*412f47f9SXin Li #else
115*412f47f9SXin Li   /* Use scaled float to int conversion with explicit rounding.
116*412f47f9SXin Li      hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
117*412f47f9SXin Li      This avoids inaccuracies introduced by truncating negative values.  */
118*412f47f9SXin Li   r = x * p->hpi_inv;
119*412f47f9SXin Li   int n = ((int32_t)r + 0x800000) >> 24;
120*412f47f9SXin Li   *np = n;
121*412f47f9SXin Li   return x - n * p->hpi;
122*412f47f9SXin Li #endif
123*412f47f9SXin Li }
124*412f47f9SXin Li 
125*412f47f9SXin Li /* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
126*412f47f9SXin Li    XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
127*412f47f9SXin Li    Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
128*412f47f9SXin Li    Reduction uses a table of 4/PI with 192 bits of precision.  A 32x96->128 bit
129*412f47f9SXin Li    multiply computes the exact 2.62-bit fixed-point modulo.  Since the result
130*412f47f9SXin Li    can have at most 29 leading zeros after the binary point, the double
131*412f47f9SXin Li    precision result is accurate to 33 bits.  */
132*412f47f9SXin Li static inline double
reduce_large(uint32_t xi,int * np)133*412f47f9SXin Li reduce_large (uint32_t xi, int *np)
134*412f47f9SXin Li {
135*412f47f9SXin Li   const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
136*412f47f9SXin Li   int shift = (xi >> 23) & 7;
137*412f47f9SXin Li   uint64_t n, res0, res1, res2;
138*412f47f9SXin Li 
139*412f47f9SXin Li   xi = (xi & 0xffffff) | 0x800000;
140*412f47f9SXin Li   xi <<= shift;
141*412f47f9SXin Li 
142*412f47f9SXin Li   res0 = xi * arr[0];
143*412f47f9SXin Li   res1 = (uint64_t)xi * arr[4];
144*412f47f9SXin Li   res2 = (uint64_t)xi * arr[8];
145*412f47f9SXin Li   res0 = (res2 >> 32) | (res0 << 32);
146*412f47f9SXin Li   res0 += res1;
147*412f47f9SXin Li 
148*412f47f9SXin Li   n = (res0 + (1ULL << 61)) >> 62;
149*412f47f9SXin Li   res0 -= n << 62;
150*412f47f9SXin Li   double x = (int64_t)res0;
151*412f47f9SXin Li   *np = n;
152*412f47f9SXin Li   return x * pi63;
153*412f47f9SXin Li }
154