1*9a0e4156SSadaf Ebrahimi //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2*9a0e4156SSadaf Ebrahimi //
3*9a0e4156SSadaf Ebrahimi // The LLVM Compiler Infrastructure
4*9a0e4156SSadaf Ebrahimi //
5*9a0e4156SSadaf Ebrahimi // This file is distributed under the University of Illinois Open Source
6*9a0e4156SSadaf Ebrahimi // License. See LICENSE.TXT for details.
7*9a0e4156SSadaf Ebrahimi //
8*9a0e4156SSadaf Ebrahimi //===----------------------------------------------------------------------===//
9*9a0e4156SSadaf Ebrahimi //
10*9a0e4156SSadaf Ebrahimi // This file contains the ARM addressing mode implementation stuff.
11*9a0e4156SSadaf Ebrahimi //
12*9a0e4156SSadaf Ebrahimi //===----------------------------------------------------------------------===//
13*9a0e4156SSadaf Ebrahimi
14*9a0e4156SSadaf Ebrahimi /* Capstone Disassembly Engine */
15*9a0e4156SSadaf Ebrahimi /* By Nguyen Anh Quynh <[email protected]>, 2013-2015 */
16*9a0e4156SSadaf Ebrahimi
17*9a0e4156SSadaf Ebrahimi #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
18*9a0e4156SSadaf Ebrahimi #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
19*9a0e4156SSadaf Ebrahimi
20*9a0e4156SSadaf Ebrahimi #include "capstone/platform.h"
21*9a0e4156SSadaf Ebrahimi #include "../../MathExtras.h"
22*9a0e4156SSadaf Ebrahimi
23*9a0e4156SSadaf Ebrahimi /// ARM_AM - ARM Addressing Mode Stuff
24*9a0e4156SSadaf Ebrahimi typedef enum ARM_AM_ShiftOpc {
25*9a0e4156SSadaf Ebrahimi ARM_AM_no_shift = 0,
26*9a0e4156SSadaf Ebrahimi ARM_AM_asr,
27*9a0e4156SSadaf Ebrahimi ARM_AM_lsl,
28*9a0e4156SSadaf Ebrahimi ARM_AM_lsr,
29*9a0e4156SSadaf Ebrahimi ARM_AM_ror,
30*9a0e4156SSadaf Ebrahimi ARM_AM_rrx
31*9a0e4156SSadaf Ebrahimi } ARM_AM_ShiftOpc;
32*9a0e4156SSadaf Ebrahimi
33*9a0e4156SSadaf Ebrahimi typedef enum ARM_AM_AddrOpc {
34*9a0e4156SSadaf Ebrahimi ARM_AM_sub = 0,
35*9a0e4156SSadaf Ebrahimi ARM_AM_add
36*9a0e4156SSadaf Ebrahimi } ARM_AM_AddrOpc;
37*9a0e4156SSadaf Ebrahimi
ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)38*9a0e4156SSadaf Ebrahimi static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
39*9a0e4156SSadaf Ebrahimi {
40*9a0e4156SSadaf Ebrahimi return Op == ARM_AM_sub ? "-" : "";
41*9a0e4156SSadaf Ebrahimi }
42*9a0e4156SSadaf Ebrahimi
ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)43*9a0e4156SSadaf Ebrahimi static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
44*9a0e4156SSadaf Ebrahimi {
45*9a0e4156SSadaf Ebrahimi switch (Op) {
46*9a0e4156SSadaf Ebrahimi default: return ""; //llvm_unreachable("Unknown shift opc!");
47*9a0e4156SSadaf Ebrahimi case ARM_AM_asr: return "asr";
48*9a0e4156SSadaf Ebrahimi case ARM_AM_lsl: return "lsl";
49*9a0e4156SSadaf Ebrahimi case ARM_AM_lsr: return "lsr";
50*9a0e4156SSadaf Ebrahimi case ARM_AM_ror: return "ror";
51*9a0e4156SSadaf Ebrahimi case ARM_AM_rrx: return "rrx";
52*9a0e4156SSadaf Ebrahimi }
53*9a0e4156SSadaf Ebrahimi }
54*9a0e4156SSadaf Ebrahimi
ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)55*9a0e4156SSadaf Ebrahimi static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
56*9a0e4156SSadaf Ebrahimi {
57*9a0e4156SSadaf Ebrahimi switch (Op) {
58*9a0e4156SSadaf Ebrahimi default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!");
59*9a0e4156SSadaf Ebrahimi case ARM_AM_asr: return 2;
60*9a0e4156SSadaf Ebrahimi case ARM_AM_lsl: return 0;
61*9a0e4156SSadaf Ebrahimi case ARM_AM_lsr: return 1;
62*9a0e4156SSadaf Ebrahimi case ARM_AM_ror: return 3;
63*9a0e4156SSadaf Ebrahimi }
64*9a0e4156SSadaf Ebrahimi }
65*9a0e4156SSadaf Ebrahimi
66*9a0e4156SSadaf Ebrahimi typedef enum ARM_AM_AMSubMode {
67*9a0e4156SSadaf Ebrahimi ARM_AM_bad_am_submode = 0,
68*9a0e4156SSadaf Ebrahimi ARM_AM_ia,
69*9a0e4156SSadaf Ebrahimi ARM_AM_ib,
70*9a0e4156SSadaf Ebrahimi ARM_AM_da,
71*9a0e4156SSadaf Ebrahimi ARM_AM_db
72*9a0e4156SSadaf Ebrahimi } ARM_AM_AMSubMode;
73*9a0e4156SSadaf Ebrahimi
ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)74*9a0e4156SSadaf Ebrahimi static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
75*9a0e4156SSadaf Ebrahimi {
76*9a0e4156SSadaf Ebrahimi switch (Mode) {
77*9a0e4156SSadaf Ebrahimi default: return "";
78*9a0e4156SSadaf Ebrahimi case ARM_AM_ia: return "ia";
79*9a0e4156SSadaf Ebrahimi case ARM_AM_ib: return "ib";
80*9a0e4156SSadaf Ebrahimi case ARM_AM_da: return "da";
81*9a0e4156SSadaf Ebrahimi case ARM_AM_db: return "db";
82*9a0e4156SSadaf Ebrahimi }
83*9a0e4156SSadaf Ebrahimi }
84*9a0e4156SSadaf Ebrahimi
85*9a0e4156SSadaf Ebrahimi /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
86*9a0e4156SSadaf Ebrahimi ///
rotr32(unsigned Val,unsigned Amt)87*9a0e4156SSadaf Ebrahimi static inline unsigned rotr32(unsigned Val, unsigned Amt)
88*9a0e4156SSadaf Ebrahimi {
89*9a0e4156SSadaf Ebrahimi //assert(Amt < 32 && "Invalid rotate amount");
90*9a0e4156SSadaf Ebrahimi return (Val >> Amt) | (Val << ((32-Amt)&31));
91*9a0e4156SSadaf Ebrahimi }
92*9a0e4156SSadaf Ebrahimi
93*9a0e4156SSadaf Ebrahimi /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
94*9a0e4156SSadaf Ebrahimi ///
rotl32(unsigned Val,unsigned Amt)95*9a0e4156SSadaf Ebrahimi static inline unsigned rotl32(unsigned Val, unsigned Amt)
96*9a0e4156SSadaf Ebrahimi {
97*9a0e4156SSadaf Ebrahimi //assert(Amt < 32 && "Invalid rotate amount");
98*9a0e4156SSadaf Ebrahimi return (Val << Amt) | (Val >> ((32-Amt)&31));
99*9a0e4156SSadaf Ebrahimi }
100*9a0e4156SSadaf Ebrahimi
101*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
102*9a0e4156SSadaf Ebrahimi // Addressing Mode #1: shift_operand with registers
103*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
104*9a0e4156SSadaf Ebrahimi //
105*9a0e4156SSadaf Ebrahimi // This 'addressing mode' is used for arithmetic instructions. It can
106*9a0e4156SSadaf Ebrahimi // represent things like:
107*9a0e4156SSadaf Ebrahimi // reg
108*9a0e4156SSadaf Ebrahimi // reg [asr|lsl|lsr|ror|rrx] reg
109*9a0e4156SSadaf Ebrahimi // reg [asr|lsl|lsr|ror|rrx] imm
110*9a0e4156SSadaf Ebrahimi //
111*9a0e4156SSadaf Ebrahimi // This is stored three operands [rega, regb, opc]. The first is the base
112*9a0e4156SSadaf Ebrahimi // reg, the second is the shift amount (or reg0 if not present or imm). The
113*9a0e4156SSadaf Ebrahimi // third operand encodes the shift opcode and the imm if a reg isn't present.
114*9a0e4156SSadaf Ebrahimi //
getSORegOpc(ARM_AM_ShiftOpc ShOp,unsigned Imm)115*9a0e4156SSadaf Ebrahimi static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
116*9a0e4156SSadaf Ebrahimi {
117*9a0e4156SSadaf Ebrahimi return ShOp | (Imm << 3);
118*9a0e4156SSadaf Ebrahimi }
119*9a0e4156SSadaf Ebrahimi
getSORegOffset(unsigned Op)120*9a0e4156SSadaf Ebrahimi static inline unsigned getSORegOffset(unsigned Op)
121*9a0e4156SSadaf Ebrahimi {
122*9a0e4156SSadaf Ebrahimi return Op >> 3;
123*9a0e4156SSadaf Ebrahimi }
124*9a0e4156SSadaf Ebrahimi
ARM_AM_getSORegShOp(unsigned Op)125*9a0e4156SSadaf Ebrahimi static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
126*9a0e4156SSadaf Ebrahimi {
127*9a0e4156SSadaf Ebrahimi return (ARM_AM_ShiftOpc)(Op & 7);
128*9a0e4156SSadaf Ebrahimi }
129*9a0e4156SSadaf Ebrahimi
130*9a0e4156SSadaf Ebrahimi /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
131*9a0e4156SSadaf Ebrahimi /// the 8-bit imm value.
getSOImmValImm(unsigned Imm)132*9a0e4156SSadaf Ebrahimi static inline unsigned getSOImmValImm(unsigned Imm)
133*9a0e4156SSadaf Ebrahimi {
134*9a0e4156SSadaf Ebrahimi return Imm & 0xFF;
135*9a0e4156SSadaf Ebrahimi }
136*9a0e4156SSadaf Ebrahimi
137*9a0e4156SSadaf Ebrahimi /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
138*9a0e4156SSadaf Ebrahimi /// the rotate amount.
getSOImmValRot(unsigned Imm)139*9a0e4156SSadaf Ebrahimi static inline unsigned getSOImmValRot(unsigned Imm)
140*9a0e4156SSadaf Ebrahimi {
141*9a0e4156SSadaf Ebrahimi return (Imm >> 8) * 2;
142*9a0e4156SSadaf Ebrahimi }
143*9a0e4156SSadaf Ebrahimi
144*9a0e4156SSadaf Ebrahimi /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
145*9a0e4156SSadaf Ebrahimi /// computing the rotate amount to use. If this immediate value cannot be
146*9a0e4156SSadaf Ebrahimi /// handled with a single shifter-op, determine a good rotate amount that will
147*9a0e4156SSadaf Ebrahimi /// take a maximal chunk of bits out of the immediate.
getSOImmValRotate(unsigned Imm)148*9a0e4156SSadaf Ebrahimi static inline unsigned getSOImmValRotate(unsigned Imm)
149*9a0e4156SSadaf Ebrahimi {
150*9a0e4156SSadaf Ebrahimi unsigned TZ, RotAmt;
151*9a0e4156SSadaf Ebrahimi // 8-bit (or less) immediates are trivially shifter_operands with a rotate
152*9a0e4156SSadaf Ebrahimi // of zero.
153*9a0e4156SSadaf Ebrahimi if ((Imm & ~255U) == 0) return 0;
154*9a0e4156SSadaf Ebrahimi
155*9a0e4156SSadaf Ebrahimi // Use CTZ to compute the rotate amount.
156*9a0e4156SSadaf Ebrahimi TZ = CountTrailingZeros_32(Imm);
157*9a0e4156SSadaf Ebrahimi
158*9a0e4156SSadaf Ebrahimi // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
159*9a0e4156SSadaf Ebrahimi // not 9.
160*9a0e4156SSadaf Ebrahimi RotAmt = TZ & ~1;
161*9a0e4156SSadaf Ebrahimi
162*9a0e4156SSadaf Ebrahimi // If we can handle this spread, return it.
163*9a0e4156SSadaf Ebrahimi if ((rotr32(Imm, RotAmt) & ~255U) == 0)
164*9a0e4156SSadaf Ebrahimi return (32-RotAmt)&31; // HW rotates right, not left.
165*9a0e4156SSadaf Ebrahimi
166*9a0e4156SSadaf Ebrahimi // For values like 0xF000000F, we should ignore the low 6 bits, then
167*9a0e4156SSadaf Ebrahimi // retry the hunt.
168*9a0e4156SSadaf Ebrahimi if (Imm & 63U) {
169*9a0e4156SSadaf Ebrahimi unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
170*9a0e4156SSadaf Ebrahimi unsigned RotAmt2 = TZ2 & ~1;
171*9a0e4156SSadaf Ebrahimi if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
172*9a0e4156SSadaf Ebrahimi return (32-RotAmt2)&31; // HW rotates right, not left.
173*9a0e4156SSadaf Ebrahimi }
174*9a0e4156SSadaf Ebrahimi
175*9a0e4156SSadaf Ebrahimi // Otherwise, we have no way to cover this span of bits with a single
176*9a0e4156SSadaf Ebrahimi // shifter_op immediate. Return a chunk of bits that will be useful to
177*9a0e4156SSadaf Ebrahimi // handle.
178*9a0e4156SSadaf Ebrahimi return (32-RotAmt)&31; // HW rotates right, not left.
179*9a0e4156SSadaf Ebrahimi }
180*9a0e4156SSadaf Ebrahimi
181*9a0e4156SSadaf Ebrahimi /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
182*9a0e4156SSadaf Ebrahimi /// into an shifter_operand immediate operand, return the 12-bit encoding for
183*9a0e4156SSadaf Ebrahimi /// it. If not, return -1.
getSOImmVal(unsigned Arg)184*9a0e4156SSadaf Ebrahimi static inline int getSOImmVal(unsigned Arg)
185*9a0e4156SSadaf Ebrahimi {
186*9a0e4156SSadaf Ebrahimi unsigned RotAmt;
187*9a0e4156SSadaf Ebrahimi // 8-bit (or less) immediates are trivially shifter_operands with a rotate
188*9a0e4156SSadaf Ebrahimi // of zero.
189*9a0e4156SSadaf Ebrahimi if ((Arg & ~255U) == 0) return Arg;
190*9a0e4156SSadaf Ebrahimi
191*9a0e4156SSadaf Ebrahimi RotAmt = getSOImmValRotate(Arg);
192*9a0e4156SSadaf Ebrahimi
193*9a0e4156SSadaf Ebrahimi // If this cannot be handled with a single shifter_op, bail out.
194*9a0e4156SSadaf Ebrahimi if (rotr32(~255U, RotAmt) & Arg)
195*9a0e4156SSadaf Ebrahimi return -1;
196*9a0e4156SSadaf Ebrahimi
197*9a0e4156SSadaf Ebrahimi // Encode this correctly.
198*9a0e4156SSadaf Ebrahimi return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
199*9a0e4156SSadaf Ebrahimi }
200*9a0e4156SSadaf Ebrahimi
201*9a0e4156SSadaf Ebrahimi /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
202*9a0e4156SSadaf Ebrahimi /// or'ing together two SOImmVal's.
isSOImmTwoPartVal(unsigned V)203*9a0e4156SSadaf Ebrahimi static inline bool isSOImmTwoPartVal(unsigned V)
204*9a0e4156SSadaf Ebrahimi {
205*9a0e4156SSadaf Ebrahimi // If this can be handled with a single shifter_op, bail out.
206*9a0e4156SSadaf Ebrahimi V = rotr32(~255U, getSOImmValRotate(V)) & V;
207*9a0e4156SSadaf Ebrahimi if (V == 0)
208*9a0e4156SSadaf Ebrahimi return false;
209*9a0e4156SSadaf Ebrahimi
210*9a0e4156SSadaf Ebrahimi // If this can be handled with two shifter_op's, accept.
211*9a0e4156SSadaf Ebrahimi V = rotr32(~255U, getSOImmValRotate(V)) & V;
212*9a0e4156SSadaf Ebrahimi return V == 0;
213*9a0e4156SSadaf Ebrahimi }
214*9a0e4156SSadaf Ebrahimi
215*9a0e4156SSadaf Ebrahimi /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
216*9a0e4156SSadaf Ebrahimi /// return the first chunk of it.
getSOImmTwoPartFirst(unsigned V)217*9a0e4156SSadaf Ebrahimi static inline unsigned getSOImmTwoPartFirst(unsigned V)
218*9a0e4156SSadaf Ebrahimi {
219*9a0e4156SSadaf Ebrahimi return rotr32(255U, getSOImmValRotate(V)) & V;
220*9a0e4156SSadaf Ebrahimi }
221*9a0e4156SSadaf Ebrahimi
222*9a0e4156SSadaf Ebrahimi /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
223*9a0e4156SSadaf Ebrahimi /// return the second chunk of it.
getSOImmTwoPartSecond(unsigned V)224*9a0e4156SSadaf Ebrahimi static inline unsigned getSOImmTwoPartSecond(unsigned V)
225*9a0e4156SSadaf Ebrahimi {
226*9a0e4156SSadaf Ebrahimi // Mask out the first hunk.
227*9a0e4156SSadaf Ebrahimi V = rotr32(~255U, getSOImmValRotate(V)) & V;
228*9a0e4156SSadaf Ebrahimi
229*9a0e4156SSadaf Ebrahimi // Take what's left.
230*9a0e4156SSadaf Ebrahimi //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
231*9a0e4156SSadaf Ebrahimi return V;
232*9a0e4156SSadaf Ebrahimi }
233*9a0e4156SSadaf Ebrahimi
234*9a0e4156SSadaf Ebrahimi /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
235*9a0e4156SSadaf Ebrahimi /// by a left shift. Returns the shift amount to use.
getThumbImmValShift(unsigned Imm)236*9a0e4156SSadaf Ebrahimi static inline unsigned getThumbImmValShift(unsigned Imm)
237*9a0e4156SSadaf Ebrahimi {
238*9a0e4156SSadaf Ebrahimi // 8-bit (or less) immediates are trivially immediate operand with a shift
239*9a0e4156SSadaf Ebrahimi // of zero.
240*9a0e4156SSadaf Ebrahimi if ((Imm & ~255U) == 0) return 0;
241*9a0e4156SSadaf Ebrahimi
242*9a0e4156SSadaf Ebrahimi // Use CTZ to compute the shift amount.
243*9a0e4156SSadaf Ebrahimi return CountTrailingZeros_32(Imm);
244*9a0e4156SSadaf Ebrahimi }
245*9a0e4156SSadaf Ebrahimi
246*9a0e4156SSadaf Ebrahimi /// isThumbImmShiftedVal - Return true if the specified value can be obtained
247*9a0e4156SSadaf Ebrahimi /// by left shifting a 8-bit immediate.
isThumbImmShiftedVal(unsigned V)248*9a0e4156SSadaf Ebrahimi static inline bool isThumbImmShiftedVal(unsigned V)
249*9a0e4156SSadaf Ebrahimi {
250*9a0e4156SSadaf Ebrahimi // If this can be handled with
251*9a0e4156SSadaf Ebrahimi V = (~255U << getThumbImmValShift(V)) & V;
252*9a0e4156SSadaf Ebrahimi return V == 0;
253*9a0e4156SSadaf Ebrahimi }
254*9a0e4156SSadaf Ebrahimi
255*9a0e4156SSadaf Ebrahimi /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
256*9a0e4156SSadaf Ebrahimi /// by a left shift. Returns the shift amount to use.
getThumbImm16ValShift(unsigned Imm)257*9a0e4156SSadaf Ebrahimi static inline unsigned getThumbImm16ValShift(unsigned Imm)
258*9a0e4156SSadaf Ebrahimi {
259*9a0e4156SSadaf Ebrahimi // 16-bit (or less) immediates are trivially immediate operand with a shift
260*9a0e4156SSadaf Ebrahimi // of zero.
261*9a0e4156SSadaf Ebrahimi if ((Imm & ~65535U) == 0) return 0;
262*9a0e4156SSadaf Ebrahimi
263*9a0e4156SSadaf Ebrahimi // Use CTZ to compute the shift amount.
264*9a0e4156SSadaf Ebrahimi return CountTrailingZeros_32(Imm);
265*9a0e4156SSadaf Ebrahimi }
266*9a0e4156SSadaf Ebrahimi
267*9a0e4156SSadaf Ebrahimi /// isThumbImm16ShiftedVal - Return true if the specified value can be
268*9a0e4156SSadaf Ebrahimi /// obtained by left shifting a 16-bit immediate.
isThumbImm16ShiftedVal(unsigned V)269*9a0e4156SSadaf Ebrahimi static inline bool isThumbImm16ShiftedVal(unsigned V)
270*9a0e4156SSadaf Ebrahimi {
271*9a0e4156SSadaf Ebrahimi // If this can be handled with
272*9a0e4156SSadaf Ebrahimi V = (~65535U << getThumbImm16ValShift(V)) & V;
273*9a0e4156SSadaf Ebrahimi return V == 0;
274*9a0e4156SSadaf Ebrahimi }
275*9a0e4156SSadaf Ebrahimi
276*9a0e4156SSadaf Ebrahimi /// getThumbImmNonShiftedVal - If V is a value that satisfies
277*9a0e4156SSadaf Ebrahimi /// isThumbImmShiftedVal, return the non-shiftd value.
getThumbImmNonShiftedVal(unsigned V)278*9a0e4156SSadaf Ebrahimi static inline unsigned getThumbImmNonShiftedVal(unsigned V)
279*9a0e4156SSadaf Ebrahimi {
280*9a0e4156SSadaf Ebrahimi return V >> getThumbImmValShift(V);
281*9a0e4156SSadaf Ebrahimi }
282*9a0e4156SSadaf Ebrahimi
283*9a0e4156SSadaf Ebrahimi
284*9a0e4156SSadaf Ebrahimi /// getT2SOImmValSplat - Return the 12-bit encoded representation
285*9a0e4156SSadaf Ebrahimi /// if the specified value can be obtained by splatting the low 8 bits
286*9a0e4156SSadaf Ebrahimi /// into every other byte or every byte of a 32-bit value. i.e.,
287*9a0e4156SSadaf Ebrahimi /// 00000000 00000000 00000000 abcdefgh control = 0
288*9a0e4156SSadaf Ebrahimi /// 00000000 abcdefgh 00000000 abcdefgh control = 1
289*9a0e4156SSadaf Ebrahimi /// abcdefgh 00000000 abcdefgh 00000000 control = 2
290*9a0e4156SSadaf Ebrahimi /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
291*9a0e4156SSadaf Ebrahimi /// Return -1 if none of the above apply.
292*9a0e4156SSadaf Ebrahimi /// See ARM Reference Manual A6.3.2.
getT2SOImmValSplatVal(unsigned V)293*9a0e4156SSadaf Ebrahimi static inline int getT2SOImmValSplatVal(unsigned V)
294*9a0e4156SSadaf Ebrahimi {
295*9a0e4156SSadaf Ebrahimi unsigned u, Vs, Imm;
296*9a0e4156SSadaf Ebrahimi // control = 0
297*9a0e4156SSadaf Ebrahimi if ((V & 0xffffff00) == 0)
298*9a0e4156SSadaf Ebrahimi return V;
299*9a0e4156SSadaf Ebrahimi
300*9a0e4156SSadaf Ebrahimi // If the value is zeroes in the first byte, just shift those off
301*9a0e4156SSadaf Ebrahimi Vs = ((V & 0xff) == 0) ? V >> 8 : V;
302*9a0e4156SSadaf Ebrahimi // Any passing value only has 8 bits of payload, splatted across the word
303*9a0e4156SSadaf Ebrahimi Imm = Vs & 0xff;
304*9a0e4156SSadaf Ebrahimi // Likewise, any passing values have the payload splatted into the 3rd byte
305*9a0e4156SSadaf Ebrahimi u = Imm | (Imm << 16);
306*9a0e4156SSadaf Ebrahimi
307*9a0e4156SSadaf Ebrahimi // control = 1 or 2
308*9a0e4156SSadaf Ebrahimi if (Vs == u)
309*9a0e4156SSadaf Ebrahimi return (((Vs == V) ? 1 : 2) << 8) | Imm;
310*9a0e4156SSadaf Ebrahimi
311*9a0e4156SSadaf Ebrahimi // control = 3
312*9a0e4156SSadaf Ebrahimi if (Vs == (u | (u << 8)))
313*9a0e4156SSadaf Ebrahimi return (3 << 8) | Imm;
314*9a0e4156SSadaf Ebrahimi
315*9a0e4156SSadaf Ebrahimi return -1;
316*9a0e4156SSadaf Ebrahimi }
317*9a0e4156SSadaf Ebrahimi
318*9a0e4156SSadaf Ebrahimi /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
319*9a0e4156SSadaf Ebrahimi /// specified value is a rotated 8-bit value. Return -1 if no rotation
320*9a0e4156SSadaf Ebrahimi /// encoding is possible.
321*9a0e4156SSadaf Ebrahimi /// See ARM Reference Manual A6.3.2.
getT2SOImmValRotateVal(unsigned V)322*9a0e4156SSadaf Ebrahimi static inline int getT2SOImmValRotateVal(unsigned V)
323*9a0e4156SSadaf Ebrahimi {
324*9a0e4156SSadaf Ebrahimi unsigned RotAmt = CountLeadingZeros_32(V);
325*9a0e4156SSadaf Ebrahimi if (RotAmt >= 24)
326*9a0e4156SSadaf Ebrahimi return -1;
327*9a0e4156SSadaf Ebrahimi
328*9a0e4156SSadaf Ebrahimi // If 'Arg' can be handled with a single shifter_op return the value.
329*9a0e4156SSadaf Ebrahimi if ((rotr32(0xff000000U, RotAmt) & V) == V)
330*9a0e4156SSadaf Ebrahimi return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
331*9a0e4156SSadaf Ebrahimi
332*9a0e4156SSadaf Ebrahimi return -1;
333*9a0e4156SSadaf Ebrahimi }
334*9a0e4156SSadaf Ebrahimi
335*9a0e4156SSadaf Ebrahimi /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
336*9a0e4156SSadaf Ebrahimi /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
337*9a0e4156SSadaf Ebrahimi /// encoding for it. If not, return -1.
338*9a0e4156SSadaf Ebrahimi /// See ARM Reference Manual A6.3.2.
getT2SOImmVal(unsigned Arg)339*9a0e4156SSadaf Ebrahimi static inline int getT2SOImmVal(unsigned Arg)
340*9a0e4156SSadaf Ebrahimi {
341*9a0e4156SSadaf Ebrahimi int Rot;
342*9a0e4156SSadaf Ebrahimi // If 'Arg' is an 8-bit splat, then get the encoded value.
343*9a0e4156SSadaf Ebrahimi int Splat = getT2SOImmValSplatVal(Arg);
344*9a0e4156SSadaf Ebrahimi if (Splat != -1)
345*9a0e4156SSadaf Ebrahimi return Splat;
346*9a0e4156SSadaf Ebrahimi
347*9a0e4156SSadaf Ebrahimi // If 'Arg' can be handled with a single shifter_op return the value.
348*9a0e4156SSadaf Ebrahimi Rot = getT2SOImmValRotateVal(Arg);
349*9a0e4156SSadaf Ebrahimi if (Rot != -1)
350*9a0e4156SSadaf Ebrahimi return Rot;
351*9a0e4156SSadaf Ebrahimi
352*9a0e4156SSadaf Ebrahimi return -1;
353*9a0e4156SSadaf Ebrahimi }
354*9a0e4156SSadaf Ebrahimi
getT2SOImmValRotate(unsigned V)355*9a0e4156SSadaf Ebrahimi static inline unsigned getT2SOImmValRotate(unsigned V)
356*9a0e4156SSadaf Ebrahimi {
357*9a0e4156SSadaf Ebrahimi unsigned RotAmt;
358*9a0e4156SSadaf Ebrahimi
359*9a0e4156SSadaf Ebrahimi if ((V & ~255U) == 0)
360*9a0e4156SSadaf Ebrahimi return 0;
361*9a0e4156SSadaf Ebrahimi
362*9a0e4156SSadaf Ebrahimi // Use CTZ to compute the rotate amount.
363*9a0e4156SSadaf Ebrahimi RotAmt = CountTrailingZeros_32(V);
364*9a0e4156SSadaf Ebrahimi return (32 - RotAmt) & 31;
365*9a0e4156SSadaf Ebrahimi }
366*9a0e4156SSadaf Ebrahimi
isT2SOImmTwoPartVal(unsigned Imm)367*9a0e4156SSadaf Ebrahimi static inline bool isT2SOImmTwoPartVal (unsigned Imm)
368*9a0e4156SSadaf Ebrahimi {
369*9a0e4156SSadaf Ebrahimi unsigned V = Imm;
370*9a0e4156SSadaf Ebrahimi // Passing values can be any combination of splat values and shifter
371*9a0e4156SSadaf Ebrahimi // values. If this can be handled with a single shifter or splat, bail
372*9a0e4156SSadaf Ebrahimi // out. Those should be handled directly, not with a two-part val.
373*9a0e4156SSadaf Ebrahimi if (getT2SOImmValSplatVal(V) != -1)
374*9a0e4156SSadaf Ebrahimi return false;
375*9a0e4156SSadaf Ebrahimi V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
376*9a0e4156SSadaf Ebrahimi if (V == 0)
377*9a0e4156SSadaf Ebrahimi return false;
378*9a0e4156SSadaf Ebrahimi
379*9a0e4156SSadaf Ebrahimi // If this can be handled as an immediate, accept.
380*9a0e4156SSadaf Ebrahimi if (getT2SOImmVal(V) != -1) return true;
381*9a0e4156SSadaf Ebrahimi
382*9a0e4156SSadaf Ebrahimi // Likewise, try masking out a splat value first.
383*9a0e4156SSadaf Ebrahimi V = Imm;
384*9a0e4156SSadaf Ebrahimi if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
385*9a0e4156SSadaf Ebrahimi V &= ~0xff00ff00U;
386*9a0e4156SSadaf Ebrahimi else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
387*9a0e4156SSadaf Ebrahimi V &= ~0x00ff00ffU;
388*9a0e4156SSadaf Ebrahimi // If what's left can be handled as an immediate, accept.
389*9a0e4156SSadaf Ebrahimi if (getT2SOImmVal(V) != -1) return true;
390*9a0e4156SSadaf Ebrahimi
391*9a0e4156SSadaf Ebrahimi // Otherwise, do not accept.
392*9a0e4156SSadaf Ebrahimi return false;
393*9a0e4156SSadaf Ebrahimi }
394*9a0e4156SSadaf Ebrahimi
getT2SOImmTwoPartFirst(unsigned Imm)395*9a0e4156SSadaf Ebrahimi static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
396*9a0e4156SSadaf Ebrahimi {
397*9a0e4156SSadaf Ebrahimi //assert (isT2SOImmTwoPartVal(Imm) &&
398*9a0e4156SSadaf Ebrahimi // "Immedate cannot be encoded as two part immediate!");
399*9a0e4156SSadaf Ebrahimi // Try a shifter operand as one part
400*9a0e4156SSadaf Ebrahimi unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
401*9a0e4156SSadaf Ebrahimi // If the rest is encodable as an immediate, then return it.
402*9a0e4156SSadaf Ebrahimi if (getT2SOImmVal(V) != -1) return V;
403*9a0e4156SSadaf Ebrahimi
404*9a0e4156SSadaf Ebrahimi // Try masking out a splat value first.
405*9a0e4156SSadaf Ebrahimi if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
406*9a0e4156SSadaf Ebrahimi return Imm & 0xff00ff00U;
407*9a0e4156SSadaf Ebrahimi
408*9a0e4156SSadaf Ebrahimi // The other splat is all that's left as an option.
409*9a0e4156SSadaf Ebrahimi //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
410*9a0e4156SSadaf Ebrahimi return Imm & 0x00ff00ffU;
411*9a0e4156SSadaf Ebrahimi }
412*9a0e4156SSadaf Ebrahimi
getT2SOImmTwoPartSecond(unsigned Imm)413*9a0e4156SSadaf Ebrahimi static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
414*9a0e4156SSadaf Ebrahimi {
415*9a0e4156SSadaf Ebrahimi // Mask out the first hunk
416*9a0e4156SSadaf Ebrahimi Imm ^= getT2SOImmTwoPartFirst(Imm);
417*9a0e4156SSadaf Ebrahimi // Return what's left
418*9a0e4156SSadaf Ebrahimi //assert (getT2SOImmVal(Imm) != -1 &&
419*9a0e4156SSadaf Ebrahimi // "Unable to encode second part of T2 two part SO immediate");
420*9a0e4156SSadaf Ebrahimi return Imm;
421*9a0e4156SSadaf Ebrahimi }
422*9a0e4156SSadaf Ebrahimi
423*9a0e4156SSadaf Ebrahimi
424*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
425*9a0e4156SSadaf Ebrahimi // Addressing Mode #2
426*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
427*9a0e4156SSadaf Ebrahimi //
428*9a0e4156SSadaf Ebrahimi // This is used for most simple load/store instructions.
429*9a0e4156SSadaf Ebrahimi //
430*9a0e4156SSadaf Ebrahimi // addrmode2 := reg +/- reg shop imm
431*9a0e4156SSadaf Ebrahimi // addrmode2 := reg +/- imm12
432*9a0e4156SSadaf Ebrahimi //
433*9a0e4156SSadaf Ebrahimi // The first operand is always a Reg. The second operand is a reg if in
434*9a0e4156SSadaf Ebrahimi // reg/reg form, otherwise it's reg#0. The third field encodes the operation
435*9a0e4156SSadaf Ebrahimi // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
436*9a0e4156SSadaf Ebrahimi // fourth operand 16-17 encodes the index mode.
437*9a0e4156SSadaf Ebrahimi //
438*9a0e4156SSadaf Ebrahimi // If this addressing mode is a frame index (before prolog/epilog insertion
439*9a0e4156SSadaf Ebrahimi // and code rewriting), this operand will have the form: FI#, reg0, <offs>
440*9a0e4156SSadaf Ebrahimi // with no shift amount for the frame offset.
441*9a0e4156SSadaf Ebrahimi //
ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc,unsigned Imm12,ARM_AM_ShiftOpc SO,unsigned IdxMode)442*9a0e4156SSadaf Ebrahimi static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
443*9a0e4156SSadaf Ebrahimi unsigned IdxMode)
444*9a0e4156SSadaf Ebrahimi {
445*9a0e4156SSadaf Ebrahimi //assert(Imm12 < (1 << 12) && "Imm too large!");
446*9a0e4156SSadaf Ebrahimi bool isSub = Opc == ARM_AM_sub;
447*9a0e4156SSadaf Ebrahimi return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
448*9a0e4156SSadaf Ebrahimi }
449*9a0e4156SSadaf Ebrahimi
getAM2Offset(unsigned AM2Opc)450*9a0e4156SSadaf Ebrahimi static inline unsigned getAM2Offset(unsigned AM2Opc)
451*9a0e4156SSadaf Ebrahimi {
452*9a0e4156SSadaf Ebrahimi return AM2Opc & ((1 << 12)-1);
453*9a0e4156SSadaf Ebrahimi }
454*9a0e4156SSadaf Ebrahimi
getAM2Op(unsigned AM2Opc)455*9a0e4156SSadaf Ebrahimi static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
456*9a0e4156SSadaf Ebrahimi {
457*9a0e4156SSadaf Ebrahimi return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
458*9a0e4156SSadaf Ebrahimi }
459*9a0e4156SSadaf Ebrahimi
getAM2ShiftOpc(unsigned AM2Opc)460*9a0e4156SSadaf Ebrahimi static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
461*9a0e4156SSadaf Ebrahimi {
462*9a0e4156SSadaf Ebrahimi return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
463*9a0e4156SSadaf Ebrahimi }
464*9a0e4156SSadaf Ebrahimi
getAM2IdxMode(unsigned AM2Opc)465*9a0e4156SSadaf Ebrahimi static inline unsigned getAM2IdxMode(unsigned AM2Opc)
466*9a0e4156SSadaf Ebrahimi {
467*9a0e4156SSadaf Ebrahimi return (AM2Opc >> 16);
468*9a0e4156SSadaf Ebrahimi }
469*9a0e4156SSadaf Ebrahimi
470*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
471*9a0e4156SSadaf Ebrahimi // Addressing Mode #3
472*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
473*9a0e4156SSadaf Ebrahimi //
474*9a0e4156SSadaf Ebrahimi // This is used for sign-extending loads, and load/store-pair instructions.
475*9a0e4156SSadaf Ebrahimi //
476*9a0e4156SSadaf Ebrahimi // addrmode3 := reg +/- reg
477*9a0e4156SSadaf Ebrahimi // addrmode3 := reg +/- imm8
478*9a0e4156SSadaf Ebrahimi //
479*9a0e4156SSadaf Ebrahimi // The first operand is always a Reg. The second operand is a reg if in
480*9a0e4156SSadaf Ebrahimi // reg/reg form, otherwise it's reg#0. The third field encodes the operation
481*9a0e4156SSadaf Ebrahimi // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
482*9a0e4156SSadaf Ebrahimi // index mode.
483*9a0e4156SSadaf Ebrahimi
484*9a0e4156SSadaf Ebrahimi /// getAM3Opc - This function encodes the addrmode3 opc field.
getAM3Opc(ARM_AM_AddrOpc Opc,unsigned char Offset,unsigned IdxMode)485*9a0e4156SSadaf Ebrahimi static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
486*9a0e4156SSadaf Ebrahimi unsigned IdxMode)
487*9a0e4156SSadaf Ebrahimi {
488*9a0e4156SSadaf Ebrahimi bool isSub = Opc == ARM_AM_sub;
489*9a0e4156SSadaf Ebrahimi return ((int)isSub << 8) | Offset | (IdxMode << 9);
490*9a0e4156SSadaf Ebrahimi }
491*9a0e4156SSadaf Ebrahimi
getAM3Offset(unsigned AM3Opc)492*9a0e4156SSadaf Ebrahimi static inline unsigned char getAM3Offset(unsigned AM3Opc)
493*9a0e4156SSadaf Ebrahimi {
494*9a0e4156SSadaf Ebrahimi return AM3Opc & 0xFF;
495*9a0e4156SSadaf Ebrahimi }
496*9a0e4156SSadaf Ebrahimi
getAM3Op(unsigned AM3Opc)497*9a0e4156SSadaf Ebrahimi static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
498*9a0e4156SSadaf Ebrahimi {
499*9a0e4156SSadaf Ebrahimi return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
500*9a0e4156SSadaf Ebrahimi }
501*9a0e4156SSadaf Ebrahimi
getAM3IdxMode(unsigned AM3Opc)502*9a0e4156SSadaf Ebrahimi static inline unsigned getAM3IdxMode(unsigned AM3Opc)
503*9a0e4156SSadaf Ebrahimi {
504*9a0e4156SSadaf Ebrahimi return (AM3Opc >> 9);
505*9a0e4156SSadaf Ebrahimi }
506*9a0e4156SSadaf Ebrahimi
507*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
508*9a0e4156SSadaf Ebrahimi // Addressing Mode #4
509*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
510*9a0e4156SSadaf Ebrahimi //
511*9a0e4156SSadaf Ebrahimi // This is used for load / store multiple instructions.
512*9a0e4156SSadaf Ebrahimi //
513*9a0e4156SSadaf Ebrahimi // addrmode4 := reg, <mode>
514*9a0e4156SSadaf Ebrahimi //
515*9a0e4156SSadaf Ebrahimi // The four modes are:
516*9a0e4156SSadaf Ebrahimi // IA - Increment after
517*9a0e4156SSadaf Ebrahimi // IB - Increment before
518*9a0e4156SSadaf Ebrahimi // DA - Decrement after
519*9a0e4156SSadaf Ebrahimi // DB - Decrement before
520*9a0e4156SSadaf Ebrahimi // For VFP instructions, only the IA and DB modes are valid.
521*9a0e4156SSadaf Ebrahimi
getAM4SubMode(unsigned Mode)522*9a0e4156SSadaf Ebrahimi static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
523*9a0e4156SSadaf Ebrahimi {
524*9a0e4156SSadaf Ebrahimi return (ARM_AM_AMSubMode)(Mode & 0x7);
525*9a0e4156SSadaf Ebrahimi }
526*9a0e4156SSadaf Ebrahimi
getAM4ModeImm(ARM_AM_AMSubMode SubMode)527*9a0e4156SSadaf Ebrahimi static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
528*9a0e4156SSadaf Ebrahimi {
529*9a0e4156SSadaf Ebrahimi return (int)SubMode;
530*9a0e4156SSadaf Ebrahimi }
531*9a0e4156SSadaf Ebrahimi
532*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
533*9a0e4156SSadaf Ebrahimi // Addressing Mode #5
534*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
535*9a0e4156SSadaf Ebrahimi //
536*9a0e4156SSadaf Ebrahimi // This is used for coprocessor instructions, such as FP load/stores.
537*9a0e4156SSadaf Ebrahimi //
538*9a0e4156SSadaf Ebrahimi // addrmode5 := reg +/- imm8*4
539*9a0e4156SSadaf Ebrahimi //
540*9a0e4156SSadaf Ebrahimi // The first operand is always a Reg. The second operand encodes the
541*9a0e4156SSadaf Ebrahimi // operation in bit 8 and the immediate in bits 0-7.
542*9a0e4156SSadaf Ebrahimi
543*9a0e4156SSadaf Ebrahimi /// getAM5Opc - This function encodes the addrmode5 opc field.
ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc,unsigned char Offset)544*9a0e4156SSadaf Ebrahimi static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
545*9a0e4156SSadaf Ebrahimi {
546*9a0e4156SSadaf Ebrahimi bool isSub = Opc == ARM_AM_sub;
547*9a0e4156SSadaf Ebrahimi return ((int)isSub << 8) | Offset;
548*9a0e4156SSadaf Ebrahimi }
ARM_AM_getAM5Offset(unsigned AM5Opc)549*9a0e4156SSadaf Ebrahimi static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
550*9a0e4156SSadaf Ebrahimi {
551*9a0e4156SSadaf Ebrahimi return AM5Opc & 0xFF;
552*9a0e4156SSadaf Ebrahimi }
ARM_AM_getAM5Op(unsigned AM5Opc)553*9a0e4156SSadaf Ebrahimi static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
554*9a0e4156SSadaf Ebrahimi {
555*9a0e4156SSadaf Ebrahimi return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
556*9a0e4156SSadaf Ebrahimi }
557*9a0e4156SSadaf Ebrahimi
558*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
559*9a0e4156SSadaf Ebrahimi // Addressing Mode #6
560*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
561*9a0e4156SSadaf Ebrahimi //
562*9a0e4156SSadaf Ebrahimi // This is used for NEON load / store instructions.
563*9a0e4156SSadaf Ebrahimi //
564*9a0e4156SSadaf Ebrahimi // addrmode6 := reg with optional alignment
565*9a0e4156SSadaf Ebrahimi //
566*9a0e4156SSadaf Ebrahimi // This is stored in two operands [regaddr, align]. The first is the
567*9a0e4156SSadaf Ebrahimi // address register. The second operand is the value of the alignment
568*9a0e4156SSadaf Ebrahimi // specifier in bytes or zero if no explicit alignment.
569*9a0e4156SSadaf Ebrahimi // Valid alignments depend on the specific instruction.
570*9a0e4156SSadaf Ebrahimi
571*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
572*9a0e4156SSadaf Ebrahimi // NEON Modified Immediates
573*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
574*9a0e4156SSadaf Ebrahimi //
575*9a0e4156SSadaf Ebrahimi // Several NEON instructions (e.g., VMOV) take a "modified immediate"
576*9a0e4156SSadaf Ebrahimi // vector operand, where a small immediate encoded in the instruction
577*9a0e4156SSadaf Ebrahimi // specifies a full NEON vector value. These modified immediates are
578*9a0e4156SSadaf Ebrahimi // represented here as encoded integers. The low 8 bits hold the immediate
579*9a0e4156SSadaf Ebrahimi // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
580*9a0e4156SSadaf Ebrahimi // the "Cmode" field of the instruction. The interfaces below treat the
581*9a0e4156SSadaf Ebrahimi // Op and Cmode values as a single 5-bit value.
582*9a0e4156SSadaf Ebrahimi
createNEONModImm(unsigned OpCmode,unsigned Val)583*9a0e4156SSadaf Ebrahimi static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
584*9a0e4156SSadaf Ebrahimi {
585*9a0e4156SSadaf Ebrahimi return (OpCmode << 8) | Val;
586*9a0e4156SSadaf Ebrahimi }
getNEONModImmOpCmode(unsigned ModImm)587*9a0e4156SSadaf Ebrahimi static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
588*9a0e4156SSadaf Ebrahimi {
589*9a0e4156SSadaf Ebrahimi return (ModImm >> 8) & 0x1f;
590*9a0e4156SSadaf Ebrahimi }
getNEONModImmVal(unsigned ModImm)591*9a0e4156SSadaf Ebrahimi static inline unsigned getNEONModImmVal(unsigned ModImm)
592*9a0e4156SSadaf Ebrahimi {
593*9a0e4156SSadaf Ebrahimi return ModImm & 0xff;
594*9a0e4156SSadaf Ebrahimi }
595*9a0e4156SSadaf Ebrahimi
596*9a0e4156SSadaf Ebrahimi /// decodeNEONModImm - Decode a NEON modified immediate value into the
597*9a0e4156SSadaf Ebrahimi /// element value and the element size in bits. (If the element size is
598*9a0e4156SSadaf Ebrahimi /// smaller than the vector, it is splatted into all the elements.)
ARM_AM_decodeNEONModImm(unsigned ModImm,unsigned * EltBits)599*9a0e4156SSadaf Ebrahimi static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
600*9a0e4156SSadaf Ebrahimi {
601*9a0e4156SSadaf Ebrahimi unsigned OpCmode = getNEONModImmOpCmode(ModImm);
602*9a0e4156SSadaf Ebrahimi unsigned Imm8 = getNEONModImmVal(ModImm);
603*9a0e4156SSadaf Ebrahimi uint64_t Val = 0;
604*9a0e4156SSadaf Ebrahimi unsigned ByteNum;
605*9a0e4156SSadaf Ebrahimi
606*9a0e4156SSadaf Ebrahimi if (OpCmode == 0xe) {
607*9a0e4156SSadaf Ebrahimi // 8-bit vector elements
608*9a0e4156SSadaf Ebrahimi Val = Imm8;
609*9a0e4156SSadaf Ebrahimi *EltBits = 8;
610*9a0e4156SSadaf Ebrahimi } else if ((OpCmode & 0xc) == 0x8) {
611*9a0e4156SSadaf Ebrahimi // 16-bit vector elements
612*9a0e4156SSadaf Ebrahimi ByteNum = (OpCmode & 0x6) >> 1;
613*9a0e4156SSadaf Ebrahimi Val = (uint64_t)Imm8 << (8 * ByteNum);
614*9a0e4156SSadaf Ebrahimi *EltBits = 16;
615*9a0e4156SSadaf Ebrahimi } else if ((OpCmode & 0x8) == 0) {
616*9a0e4156SSadaf Ebrahimi // 32-bit vector elements, zero with one byte set
617*9a0e4156SSadaf Ebrahimi ByteNum = (OpCmode & 0x6) >> 1;
618*9a0e4156SSadaf Ebrahimi Val = (uint64_t)Imm8 << (8 * ByteNum);
619*9a0e4156SSadaf Ebrahimi *EltBits = 32;
620*9a0e4156SSadaf Ebrahimi } else if ((OpCmode & 0xe) == 0xc) {
621*9a0e4156SSadaf Ebrahimi // 32-bit vector elements, one byte with low bits set
622*9a0e4156SSadaf Ebrahimi ByteNum = 1 + (OpCmode & 0x1);
623*9a0e4156SSadaf Ebrahimi Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
624*9a0e4156SSadaf Ebrahimi *EltBits = 32;
625*9a0e4156SSadaf Ebrahimi } else if (OpCmode == 0x1e) {
626*9a0e4156SSadaf Ebrahimi // 64-bit vector elements
627*9a0e4156SSadaf Ebrahimi for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
628*9a0e4156SSadaf Ebrahimi if ((ModImm >> ByteNum) & 1)
629*9a0e4156SSadaf Ebrahimi Val |= (uint64_t)0xff << (8 * ByteNum);
630*9a0e4156SSadaf Ebrahimi }
631*9a0e4156SSadaf Ebrahimi *EltBits = 64;
632*9a0e4156SSadaf Ebrahimi } else {
633*9a0e4156SSadaf Ebrahimi //llvm_unreachable("Unsupported NEON immediate");
634*9a0e4156SSadaf Ebrahimi }
635*9a0e4156SSadaf Ebrahimi return Val;
636*9a0e4156SSadaf Ebrahimi }
637*9a0e4156SSadaf Ebrahimi
638*9a0e4156SSadaf Ebrahimi ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode);
639*9a0e4156SSadaf Ebrahimi
640*9a0e4156SSadaf Ebrahimi //===--------------------------------------------------------------------===//
641*9a0e4156SSadaf Ebrahimi // Floating-point Immediates
642*9a0e4156SSadaf Ebrahimi //
getFPImmFloat(unsigned Imm)643*9a0e4156SSadaf Ebrahimi static inline float getFPImmFloat(unsigned Imm)
644*9a0e4156SSadaf Ebrahimi {
645*9a0e4156SSadaf Ebrahimi // We expect an 8-bit binary encoding of a floating-point number here.
646*9a0e4156SSadaf Ebrahimi union {
647*9a0e4156SSadaf Ebrahimi uint32_t I;
648*9a0e4156SSadaf Ebrahimi float F;
649*9a0e4156SSadaf Ebrahimi } FPUnion;
650*9a0e4156SSadaf Ebrahimi
651*9a0e4156SSadaf Ebrahimi uint8_t Sign = (Imm >> 7) & 0x1;
652*9a0e4156SSadaf Ebrahimi uint8_t Exp = (Imm >> 4) & 0x7;
653*9a0e4156SSadaf Ebrahimi uint8_t Mantissa = Imm & 0xf;
654*9a0e4156SSadaf Ebrahimi
655*9a0e4156SSadaf Ebrahimi // 8-bit FP iEEEE Float Encoding
656*9a0e4156SSadaf Ebrahimi // abcd efgh aBbbbbbc defgh000 00000000 00000000
657*9a0e4156SSadaf Ebrahimi //
658*9a0e4156SSadaf Ebrahimi // where B = NOT(b);
659*9a0e4156SSadaf Ebrahimi
660*9a0e4156SSadaf Ebrahimi FPUnion.I = 0;
661*9a0e4156SSadaf Ebrahimi FPUnion.I |= ((uint32_t) Sign) << 31;
662*9a0e4156SSadaf Ebrahimi FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
663*9a0e4156SSadaf Ebrahimi FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
664*9a0e4156SSadaf Ebrahimi FPUnion.I |= (Exp & 0x3) << 23;
665*9a0e4156SSadaf Ebrahimi FPUnion.I |= Mantissa << 19;
666*9a0e4156SSadaf Ebrahimi return FPUnion.F;
667*9a0e4156SSadaf Ebrahimi }
668*9a0e4156SSadaf Ebrahimi
669*9a0e4156SSadaf Ebrahimi #endif
670*9a0e4156SSadaf Ebrahimi
671