1*67e74705SXin Li //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2*67e74705SXin Li //
3*67e74705SXin Li // The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li // This file implements the Expr constant evaluator.
11*67e74705SXin Li //
12*67e74705SXin Li // Constant expression evaluation produces four main results:
13*67e74705SXin Li //
14*67e74705SXin Li // * A success/failure flag indicating whether constant folding was successful.
15*67e74705SXin Li // This is the 'bool' return value used by most of the code in this file. A
16*67e74705SXin Li // 'false' return value indicates that constant folding has failed, and any
17*67e74705SXin Li // appropriate diagnostic has already been produced.
18*67e74705SXin Li //
19*67e74705SXin Li // * An evaluated result, valid only if constant folding has not failed.
20*67e74705SXin Li //
21*67e74705SXin Li // * A flag indicating if evaluation encountered (unevaluated) side-effects.
22*67e74705SXin Li // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23*67e74705SXin Li // where it is possible to determine the evaluated result regardless.
24*67e74705SXin Li //
25*67e74705SXin Li // * A set of notes indicating why the evaluation was not a constant expression
26*67e74705SXin Li // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27*67e74705SXin Li // too, why the expression could not be folded.
28*67e74705SXin Li //
29*67e74705SXin Li // If we are checking for a potential constant expression, failure to constant
30*67e74705SXin Li // fold a potential constant sub-expression will be indicated by a 'false'
31*67e74705SXin Li // return value (the expression could not be folded) and no diagnostic (the
32*67e74705SXin Li // expression is not necessarily non-constant).
33*67e74705SXin Li //
34*67e74705SXin Li //===----------------------------------------------------------------------===//
35*67e74705SXin Li
36*67e74705SXin Li #include "clang/AST/APValue.h"
37*67e74705SXin Li #include "clang/AST/ASTContext.h"
38*67e74705SXin Li #include "clang/AST/ASTDiagnostic.h"
39*67e74705SXin Li #include "clang/AST/ASTLambda.h"
40*67e74705SXin Li #include "clang/AST/CharUnits.h"
41*67e74705SXin Li #include "clang/AST/Expr.h"
42*67e74705SXin Li #include "clang/AST/RecordLayout.h"
43*67e74705SXin Li #include "clang/AST/StmtVisitor.h"
44*67e74705SXin Li #include "clang/AST/TypeLoc.h"
45*67e74705SXin Li #include "clang/Basic/Builtins.h"
46*67e74705SXin Li #include "clang/Basic/TargetInfo.h"
47*67e74705SXin Li #include "llvm/ADT/SmallString.h"
48*67e74705SXin Li #include "llvm/Support/raw_ostream.h"
49*67e74705SXin Li #include <cstring>
50*67e74705SXin Li #include <functional>
51*67e74705SXin Li
52*67e74705SXin Li using namespace clang;
53*67e74705SXin Li using llvm::APSInt;
54*67e74705SXin Li using llvm::APFloat;
55*67e74705SXin Li
56*67e74705SXin Li static bool IsGlobalLValue(APValue::LValueBase B);
57*67e74705SXin Li
58*67e74705SXin Li namespace {
59*67e74705SXin Li struct LValue;
60*67e74705SXin Li struct CallStackFrame;
61*67e74705SXin Li struct EvalInfo;
62*67e74705SXin Li
getType(APValue::LValueBase B)63*67e74705SXin Li static QualType getType(APValue::LValueBase B) {
64*67e74705SXin Li if (!B) return QualType();
65*67e74705SXin Li if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
66*67e74705SXin Li return D->getType();
67*67e74705SXin Li
68*67e74705SXin Li const Expr *Base = B.get<const Expr*>();
69*67e74705SXin Li
70*67e74705SXin Li // For a materialized temporary, the type of the temporary we materialized
71*67e74705SXin Li // may not be the type of the expression.
72*67e74705SXin Li if (const MaterializeTemporaryExpr *MTE =
73*67e74705SXin Li dyn_cast<MaterializeTemporaryExpr>(Base)) {
74*67e74705SXin Li SmallVector<const Expr *, 2> CommaLHSs;
75*67e74705SXin Li SmallVector<SubobjectAdjustment, 2> Adjustments;
76*67e74705SXin Li const Expr *Temp = MTE->GetTemporaryExpr();
77*67e74705SXin Li const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
78*67e74705SXin Li Adjustments);
79*67e74705SXin Li // Keep any cv-qualifiers from the reference if we generated a temporary
80*67e74705SXin Li // for it.
81*67e74705SXin Li if (Inner != Temp)
82*67e74705SXin Li return Inner->getType();
83*67e74705SXin Li }
84*67e74705SXin Li
85*67e74705SXin Li return Base->getType();
86*67e74705SXin Li }
87*67e74705SXin Li
88*67e74705SXin Li /// Get an LValue path entry, which is known to not be an array index, as a
89*67e74705SXin Li /// field or base class.
90*67e74705SXin Li static
getAsBaseOrMember(APValue::LValuePathEntry E)91*67e74705SXin Li APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
92*67e74705SXin Li APValue::BaseOrMemberType Value;
93*67e74705SXin Li Value.setFromOpaqueValue(E.BaseOrMember);
94*67e74705SXin Li return Value;
95*67e74705SXin Li }
96*67e74705SXin Li
97*67e74705SXin Li /// Get an LValue path entry, which is known to not be an array index, as a
98*67e74705SXin Li /// field declaration.
getAsField(APValue::LValuePathEntry E)99*67e74705SXin Li static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
100*67e74705SXin Li return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
101*67e74705SXin Li }
102*67e74705SXin Li /// Get an LValue path entry, which is known to not be an array index, as a
103*67e74705SXin Li /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)104*67e74705SXin Li static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
105*67e74705SXin Li return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
106*67e74705SXin Li }
107*67e74705SXin Li /// Determine whether this LValue path entry for a base class names a virtual
108*67e74705SXin Li /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)109*67e74705SXin Li static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
110*67e74705SXin Li return getAsBaseOrMember(E).getInt();
111*67e74705SXin Li }
112*67e74705SXin Li
113*67e74705SXin Li /// Find the path length and type of the most-derived subobject in the given
114*67e74705SXin Li /// path, and find the size of the containing array, if any.
115*67e74705SXin Li static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray)116*67e74705SXin Li unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
117*67e74705SXin Li ArrayRef<APValue::LValuePathEntry> Path,
118*67e74705SXin Li uint64_t &ArraySize, QualType &Type,
119*67e74705SXin Li bool &IsArray) {
120*67e74705SXin Li unsigned MostDerivedLength = 0;
121*67e74705SXin Li Type = Base;
122*67e74705SXin Li for (unsigned I = 0, N = Path.size(); I != N; ++I) {
123*67e74705SXin Li if (Type->isArrayType()) {
124*67e74705SXin Li const ConstantArrayType *CAT =
125*67e74705SXin Li cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
126*67e74705SXin Li Type = CAT->getElementType();
127*67e74705SXin Li ArraySize = CAT->getSize().getZExtValue();
128*67e74705SXin Li MostDerivedLength = I + 1;
129*67e74705SXin Li IsArray = true;
130*67e74705SXin Li } else if (Type->isAnyComplexType()) {
131*67e74705SXin Li const ComplexType *CT = Type->castAs<ComplexType>();
132*67e74705SXin Li Type = CT->getElementType();
133*67e74705SXin Li ArraySize = 2;
134*67e74705SXin Li MostDerivedLength = I + 1;
135*67e74705SXin Li IsArray = true;
136*67e74705SXin Li } else if (const FieldDecl *FD = getAsField(Path[I])) {
137*67e74705SXin Li Type = FD->getType();
138*67e74705SXin Li ArraySize = 0;
139*67e74705SXin Li MostDerivedLength = I + 1;
140*67e74705SXin Li IsArray = false;
141*67e74705SXin Li } else {
142*67e74705SXin Li // Path[I] describes a base class.
143*67e74705SXin Li ArraySize = 0;
144*67e74705SXin Li IsArray = false;
145*67e74705SXin Li }
146*67e74705SXin Li }
147*67e74705SXin Li return MostDerivedLength;
148*67e74705SXin Li }
149*67e74705SXin Li
150*67e74705SXin Li // The order of this enum is important for diagnostics.
151*67e74705SXin Li enum CheckSubobjectKind {
152*67e74705SXin Li CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
153*67e74705SXin Li CSK_This, CSK_Real, CSK_Imag
154*67e74705SXin Li };
155*67e74705SXin Li
156*67e74705SXin Li /// A path from a glvalue to a subobject of that glvalue.
157*67e74705SXin Li struct SubobjectDesignator {
158*67e74705SXin Li /// True if the subobject was named in a manner not supported by C++11. Such
159*67e74705SXin Li /// lvalues can still be folded, but they are not core constant expressions
160*67e74705SXin Li /// and we cannot perform lvalue-to-rvalue conversions on them.
161*67e74705SXin Li unsigned Invalid : 1;
162*67e74705SXin Li
163*67e74705SXin Li /// Is this a pointer one past the end of an object?
164*67e74705SXin Li unsigned IsOnePastTheEnd : 1;
165*67e74705SXin Li
166*67e74705SXin Li /// Indicator of whether the most-derived object is an array element.
167*67e74705SXin Li unsigned MostDerivedIsArrayElement : 1;
168*67e74705SXin Li
169*67e74705SXin Li /// The length of the path to the most-derived object of which this is a
170*67e74705SXin Li /// subobject.
171*67e74705SXin Li unsigned MostDerivedPathLength : 29;
172*67e74705SXin Li
173*67e74705SXin Li /// The size of the array of which the most-derived object is an element.
174*67e74705SXin Li /// This will always be 0 if the most-derived object is not an array
175*67e74705SXin Li /// element. 0 is not an indicator of whether or not the most-derived object
176*67e74705SXin Li /// is an array, however, because 0-length arrays are allowed.
177*67e74705SXin Li uint64_t MostDerivedArraySize;
178*67e74705SXin Li
179*67e74705SXin Li /// The type of the most derived object referred to by this address.
180*67e74705SXin Li QualType MostDerivedType;
181*67e74705SXin Li
182*67e74705SXin Li typedef APValue::LValuePathEntry PathEntry;
183*67e74705SXin Li
184*67e74705SXin Li /// The entries on the path from the glvalue to the designated subobject.
185*67e74705SXin Li SmallVector<PathEntry, 8> Entries;
186*67e74705SXin Li
SubobjectDesignator__anon2db4a5520111::SubobjectDesignator187*67e74705SXin Li SubobjectDesignator() : Invalid(true) {}
188*67e74705SXin Li
SubobjectDesignator__anon2db4a5520111::SubobjectDesignator189*67e74705SXin Li explicit SubobjectDesignator(QualType T)
190*67e74705SXin Li : Invalid(false), IsOnePastTheEnd(false),
191*67e74705SXin Li MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
192*67e74705SXin Li MostDerivedArraySize(0), MostDerivedType(T) {}
193*67e74705SXin Li
SubobjectDesignator__anon2db4a5520111::SubobjectDesignator194*67e74705SXin Li SubobjectDesignator(ASTContext &Ctx, const APValue &V)
195*67e74705SXin Li : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
196*67e74705SXin Li MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
197*67e74705SXin Li MostDerivedArraySize(0) {
198*67e74705SXin Li if (!Invalid) {
199*67e74705SXin Li IsOnePastTheEnd = V.isLValueOnePastTheEnd();
200*67e74705SXin Li ArrayRef<PathEntry> VEntries = V.getLValuePath();
201*67e74705SXin Li Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
202*67e74705SXin Li if (V.getLValueBase()) {
203*67e74705SXin Li bool IsArray = false;
204*67e74705SXin Li MostDerivedPathLength =
205*67e74705SXin Li findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
206*67e74705SXin Li V.getLValuePath(), MostDerivedArraySize,
207*67e74705SXin Li MostDerivedType, IsArray);
208*67e74705SXin Li MostDerivedIsArrayElement = IsArray;
209*67e74705SXin Li }
210*67e74705SXin Li }
211*67e74705SXin Li }
212*67e74705SXin Li
setInvalid__anon2db4a5520111::SubobjectDesignator213*67e74705SXin Li void setInvalid() {
214*67e74705SXin Li Invalid = true;
215*67e74705SXin Li Entries.clear();
216*67e74705SXin Li }
217*67e74705SXin Li
218*67e74705SXin Li /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon2db4a5520111::SubobjectDesignator219*67e74705SXin Li bool isOnePastTheEnd() const {
220*67e74705SXin Li assert(!Invalid);
221*67e74705SXin Li if (IsOnePastTheEnd)
222*67e74705SXin Li return true;
223*67e74705SXin Li if (MostDerivedIsArrayElement &&
224*67e74705SXin Li Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
225*67e74705SXin Li return true;
226*67e74705SXin Li return false;
227*67e74705SXin Li }
228*67e74705SXin Li
229*67e74705SXin Li /// Check that this refers to a valid subobject.
isValidSubobject__anon2db4a5520111::SubobjectDesignator230*67e74705SXin Li bool isValidSubobject() const {
231*67e74705SXin Li if (Invalid)
232*67e74705SXin Li return false;
233*67e74705SXin Li return !isOnePastTheEnd();
234*67e74705SXin Li }
235*67e74705SXin Li /// Check that this refers to a valid subobject, and if not, produce a
236*67e74705SXin Li /// relevant diagnostic and set the designator as invalid.
237*67e74705SXin Li bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
238*67e74705SXin Li
239*67e74705SXin Li /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon2db4a5520111::SubobjectDesignator240*67e74705SXin Li void addArrayUnchecked(const ConstantArrayType *CAT) {
241*67e74705SXin Li PathEntry Entry;
242*67e74705SXin Li Entry.ArrayIndex = 0;
243*67e74705SXin Li Entries.push_back(Entry);
244*67e74705SXin Li
245*67e74705SXin Li // This is a most-derived object.
246*67e74705SXin Li MostDerivedType = CAT->getElementType();
247*67e74705SXin Li MostDerivedIsArrayElement = true;
248*67e74705SXin Li MostDerivedArraySize = CAT->getSize().getZExtValue();
249*67e74705SXin Li MostDerivedPathLength = Entries.size();
250*67e74705SXin Li }
251*67e74705SXin Li /// Update this designator to refer to the given base or member of this
252*67e74705SXin Li /// object.
addDeclUnchecked__anon2db4a5520111::SubobjectDesignator253*67e74705SXin Li void addDeclUnchecked(const Decl *D, bool Virtual = false) {
254*67e74705SXin Li PathEntry Entry;
255*67e74705SXin Li APValue::BaseOrMemberType Value(D, Virtual);
256*67e74705SXin Li Entry.BaseOrMember = Value.getOpaqueValue();
257*67e74705SXin Li Entries.push_back(Entry);
258*67e74705SXin Li
259*67e74705SXin Li // If this isn't a base class, it's a new most-derived object.
260*67e74705SXin Li if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
261*67e74705SXin Li MostDerivedType = FD->getType();
262*67e74705SXin Li MostDerivedIsArrayElement = false;
263*67e74705SXin Li MostDerivedArraySize = 0;
264*67e74705SXin Li MostDerivedPathLength = Entries.size();
265*67e74705SXin Li }
266*67e74705SXin Li }
267*67e74705SXin Li /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon2db4a5520111::SubobjectDesignator268*67e74705SXin Li void addComplexUnchecked(QualType EltTy, bool Imag) {
269*67e74705SXin Li PathEntry Entry;
270*67e74705SXin Li Entry.ArrayIndex = Imag;
271*67e74705SXin Li Entries.push_back(Entry);
272*67e74705SXin Li
273*67e74705SXin Li // This is technically a most-derived object, though in practice this
274*67e74705SXin Li // is unlikely to matter.
275*67e74705SXin Li MostDerivedType = EltTy;
276*67e74705SXin Li MostDerivedIsArrayElement = true;
277*67e74705SXin Li MostDerivedArraySize = 2;
278*67e74705SXin Li MostDerivedPathLength = Entries.size();
279*67e74705SXin Li }
280*67e74705SXin Li void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
281*67e74705SXin Li /// Add N to the address of this subobject.
adjustIndex__anon2db4a5520111::SubobjectDesignator282*67e74705SXin Li void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
283*67e74705SXin Li if (Invalid) return;
284*67e74705SXin Li if (MostDerivedPathLength == Entries.size() &&
285*67e74705SXin Li MostDerivedIsArrayElement) {
286*67e74705SXin Li Entries.back().ArrayIndex += N;
287*67e74705SXin Li if (Entries.back().ArrayIndex > MostDerivedArraySize) {
288*67e74705SXin Li diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
289*67e74705SXin Li setInvalid();
290*67e74705SXin Li }
291*67e74705SXin Li return;
292*67e74705SXin Li }
293*67e74705SXin Li // [expr.add]p4: For the purposes of these operators, a pointer to a
294*67e74705SXin Li // nonarray object behaves the same as a pointer to the first element of
295*67e74705SXin Li // an array of length one with the type of the object as its element type.
296*67e74705SXin Li if (IsOnePastTheEnd && N == (uint64_t)-1)
297*67e74705SXin Li IsOnePastTheEnd = false;
298*67e74705SXin Li else if (!IsOnePastTheEnd && N == 1)
299*67e74705SXin Li IsOnePastTheEnd = true;
300*67e74705SXin Li else if (N != 0) {
301*67e74705SXin Li diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
302*67e74705SXin Li setInvalid();
303*67e74705SXin Li }
304*67e74705SXin Li }
305*67e74705SXin Li };
306*67e74705SXin Li
307*67e74705SXin Li /// A stack frame in the constexpr call stack.
308*67e74705SXin Li struct CallStackFrame {
309*67e74705SXin Li EvalInfo &Info;
310*67e74705SXin Li
311*67e74705SXin Li /// Parent - The caller of this stack frame.
312*67e74705SXin Li CallStackFrame *Caller;
313*67e74705SXin Li
314*67e74705SXin Li /// CallLoc - The location of the call expression for this call.
315*67e74705SXin Li SourceLocation CallLoc;
316*67e74705SXin Li
317*67e74705SXin Li /// Callee - The function which was called.
318*67e74705SXin Li const FunctionDecl *Callee;
319*67e74705SXin Li
320*67e74705SXin Li /// Index - The call index of this call.
321*67e74705SXin Li unsigned Index;
322*67e74705SXin Li
323*67e74705SXin Li /// This - The binding for the this pointer in this call, if any.
324*67e74705SXin Li const LValue *This;
325*67e74705SXin Li
326*67e74705SXin Li /// Arguments - Parameter bindings for this function call, indexed by
327*67e74705SXin Li /// parameters' function scope indices.
328*67e74705SXin Li APValue *Arguments;
329*67e74705SXin Li
330*67e74705SXin Li // Note that we intentionally use std::map here so that references to
331*67e74705SXin Li // values are stable.
332*67e74705SXin Li typedef std::map<const void*, APValue> MapTy;
333*67e74705SXin Li typedef MapTy::const_iterator temp_iterator;
334*67e74705SXin Li /// Temporaries - Temporary lvalues materialized within this stack frame.
335*67e74705SXin Li MapTy Temporaries;
336*67e74705SXin Li
337*67e74705SXin Li CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
338*67e74705SXin Li const FunctionDecl *Callee, const LValue *This,
339*67e74705SXin Li APValue *Arguments);
340*67e74705SXin Li ~CallStackFrame();
341*67e74705SXin Li
getTemporary__anon2db4a5520111::CallStackFrame342*67e74705SXin Li APValue *getTemporary(const void *Key) {
343*67e74705SXin Li MapTy::iterator I = Temporaries.find(Key);
344*67e74705SXin Li return I == Temporaries.end() ? nullptr : &I->second;
345*67e74705SXin Li }
346*67e74705SXin Li APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
347*67e74705SXin Li };
348*67e74705SXin Li
349*67e74705SXin Li /// Temporarily override 'this'.
350*67e74705SXin Li class ThisOverrideRAII {
351*67e74705SXin Li public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)352*67e74705SXin Li ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
353*67e74705SXin Li : Frame(Frame), OldThis(Frame.This) {
354*67e74705SXin Li if (Enable)
355*67e74705SXin Li Frame.This = NewThis;
356*67e74705SXin Li }
~ThisOverrideRAII()357*67e74705SXin Li ~ThisOverrideRAII() {
358*67e74705SXin Li Frame.This = OldThis;
359*67e74705SXin Li }
360*67e74705SXin Li private:
361*67e74705SXin Li CallStackFrame &Frame;
362*67e74705SXin Li const LValue *OldThis;
363*67e74705SXin Li };
364*67e74705SXin Li
365*67e74705SXin Li /// A partial diagnostic which we might know in advance that we are not going
366*67e74705SXin Li /// to emit.
367*67e74705SXin Li class OptionalDiagnostic {
368*67e74705SXin Li PartialDiagnostic *Diag;
369*67e74705SXin Li
370*67e74705SXin Li public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)371*67e74705SXin Li explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
372*67e74705SXin Li : Diag(Diag) {}
373*67e74705SXin Li
374*67e74705SXin Li template<typename T>
operator <<(const T & v)375*67e74705SXin Li OptionalDiagnostic &operator<<(const T &v) {
376*67e74705SXin Li if (Diag)
377*67e74705SXin Li *Diag << v;
378*67e74705SXin Li return *this;
379*67e74705SXin Li }
380*67e74705SXin Li
operator <<(const APSInt & I)381*67e74705SXin Li OptionalDiagnostic &operator<<(const APSInt &I) {
382*67e74705SXin Li if (Diag) {
383*67e74705SXin Li SmallVector<char, 32> Buffer;
384*67e74705SXin Li I.toString(Buffer);
385*67e74705SXin Li *Diag << StringRef(Buffer.data(), Buffer.size());
386*67e74705SXin Li }
387*67e74705SXin Li return *this;
388*67e74705SXin Li }
389*67e74705SXin Li
operator <<(const APFloat & F)390*67e74705SXin Li OptionalDiagnostic &operator<<(const APFloat &F) {
391*67e74705SXin Li if (Diag) {
392*67e74705SXin Li // FIXME: Force the precision of the source value down so we don't
393*67e74705SXin Li // print digits which are usually useless (we don't really care here if
394*67e74705SXin Li // we truncate a digit by accident in edge cases). Ideally,
395*67e74705SXin Li // APFloat::toString would automatically print the shortest
396*67e74705SXin Li // representation which rounds to the correct value, but it's a bit
397*67e74705SXin Li // tricky to implement.
398*67e74705SXin Li unsigned precision =
399*67e74705SXin Li llvm::APFloat::semanticsPrecision(F.getSemantics());
400*67e74705SXin Li precision = (precision * 59 + 195) / 196;
401*67e74705SXin Li SmallVector<char, 32> Buffer;
402*67e74705SXin Li F.toString(Buffer, precision);
403*67e74705SXin Li *Diag << StringRef(Buffer.data(), Buffer.size());
404*67e74705SXin Li }
405*67e74705SXin Li return *this;
406*67e74705SXin Li }
407*67e74705SXin Li };
408*67e74705SXin Li
409*67e74705SXin Li /// A cleanup, and a flag indicating whether it is lifetime-extended.
410*67e74705SXin Li class Cleanup {
411*67e74705SXin Li llvm::PointerIntPair<APValue*, 1, bool> Value;
412*67e74705SXin Li
413*67e74705SXin Li public:
Cleanup(APValue * Val,bool IsLifetimeExtended)414*67e74705SXin Li Cleanup(APValue *Val, bool IsLifetimeExtended)
415*67e74705SXin Li : Value(Val, IsLifetimeExtended) {}
416*67e74705SXin Li
isLifetimeExtended() const417*67e74705SXin Li bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()418*67e74705SXin Li void endLifetime() {
419*67e74705SXin Li *Value.getPointer() = APValue();
420*67e74705SXin Li }
421*67e74705SXin Li };
422*67e74705SXin Li
423*67e74705SXin Li /// EvalInfo - This is a private struct used by the evaluator to capture
424*67e74705SXin Li /// information about a subexpression as it is folded. It retains information
425*67e74705SXin Li /// about the AST context, but also maintains information about the folded
426*67e74705SXin Li /// expression.
427*67e74705SXin Li ///
428*67e74705SXin Li /// If an expression could be evaluated, it is still possible it is not a C
429*67e74705SXin Li /// "integer constant expression" or constant expression. If not, this struct
430*67e74705SXin Li /// captures information about how and why not.
431*67e74705SXin Li ///
432*67e74705SXin Li /// One bit of information passed *into* the request for constant folding
433*67e74705SXin Li /// indicates whether the subexpression is "evaluated" or not according to C
434*67e74705SXin Li /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
435*67e74705SXin Li /// evaluate the expression regardless of what the RHS is, but C only allows
436*67e74705SXin Li /// certain things in certain situations.
437*67e74705SXin Li struct EvalInfo {
438*67e74705SXin Li ASTContext &Ctx;
439*67e74705SXin Li
440*67e74705SXin Li /// EvalStatus - Contains information about the evaluation.
441*67e74705SXin Li Expr::EvalStatus &EvalStatus;
442*67e74705SXin Li
443*67e74705SXin Li /// CurrentCall - The top of the constexpr call stack.
444*67e74705SXin Li CallStackFrame *CurrentCall;
445*67e74705SXin Li
446*67e74705SXin Li /// CallStackDepth - The number of calls in the call stack right now.
447*67e74705SXin Li unsigned CallStackDepth;
448*67e74705SXin Li
449*67e74705SXin Li /// NextCallIndex - The next call index to assign.
450*67e74705SXin Li unsigned NextCallIndex;
451*67e74705SXin Li
452*67e74705SXin Li /// StepsLeft - The remaining number of evaluation steps we're permitted
453*67e74705SXin Li /// to perform. This is essentially a limit for the number of statements
454*67e74705SXin Li /// we will evaluate.
455*67e74705SXin Li unsigned StepsLeft;
456*67e74705SXin Li
457*67e74705SXin Li /// BottomFrame - The frame in which evaluation started. This must be
458*67e74705SXin Li /// initialized after CurrentCall and CallStackDepth.
459*67e74705SXin Li CallStackFrame BottomFrame;
460*67e74705SXin Li
461*67e74705SXin Li /// A stack of values whose lifetimes end at the end of some surrounding
462*67e74705SXin Li /// evaluation frame.
463*67e74705SXin Li llvm::SmallVector<Cleanup, 16> CleanupStack;
464*67e74705SXin Li
465*67e74705SXin Li /// EvaluatingDecl - This is the declaration whose initializer is being
466*67e74705SXin Li /// evaluated, if any.
467*67e74705SXin Li APValue::LValueBase EvaluatingDecl;
468*67e74705SXin Li
469*67e74705SXin Li /// EvaluatingDeclValue - This is the value being constructed for the
470*67e74705SXin Li /// declaration whose initializer is being evaluated, if any.
471*67e74705SXin Li APValue *EvaluatingDeclValue;
472*67e74705SXin Li
473*67e74705SXin Li /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
474*67e74705SXin Li /// notes attached to it will also be stored, otherwise they will not be.
475*67e74705SXin Li bool HasActiveDiagnostic;
476*67e74705SXin Li
477*67e74705SXin Li /// \brief Have we emitted a diagnostic explaining why we couldn't constant
478*67e74705SXin Li /// fold (not just why it's not strictly a constant expression)?
479*67e74705SXin Li bool HasFoldFailureDiagnostic;
480*67e74705SXin Li
481*67e74705SXin Li /// \brief Whether or not we're currently speculatively evaluating.
482*67e74705SXin Li bool IsSpeculativelyEvaluating;
483*67e74705SXin Li
484*67e74705SXin Li enum EvaluationMode {
485*67e74705SXin Li /// Evaluate as a constant expression. Stop if we find that the expression
486*67e74705SXin Li /// is not a constant expression.
487*67e74705SXin Li EM_ConstantExpression,
488*67e74705SXin Li
489*67e74705SXin Li /// Evaluate as a potential constant expression. Keep going if we hit a
490*67e74705SXin Li /// construct that we can't evaluate yet (because we don't yet know the
491*67e74705SXin Li /// value of something) but stop if we hit something that could never be
492*67e74705SXin Li /// a constant expression.
493*67e74705SXin Li EM_PotentialConstantExpression,
494*67e74705SXin Li
495*67e74705SXin Li /// Fold the expression to a constant. Stop if we hit a side-effect that
496*67e74705SXin Li /// we can't model.
497*67e74705SXin Li EM_ConstantFold,
498*67e74705SXin Li
499*67e74705SXin Li /// Evaluate the expression looking for integer overflow and similar
500*67e74705SXin Li /// issues. Don't worry about side-effects, and try to visit all
501*67e74705SXin Li /// subexpressions.
502*67e74705SXin Li EM_EvaluateForOverflow,
503*67e74705SXin Li
504*67e74705SXin Li /// Evaluate in any way we know how. Don't worry about side-effects that
505*67e74705SXin Li /// can't be modeled.
506*67e74705SXin Li EM_IgnoreSideEffects,
507*67e74705SXin Li
508*67e74705SXin Li /// Evaluate as a constant expression. Stop if we find that the expression
509*67e74705SXin Li /// is not a constant expression. Some expressions can be retried in the
510*67e74705SXin Li /// optimizer if we don't constant fold them here, but in an unevaluated
511*67e74705SXin Li /// context we try to fold them immediately since the optimizer never
512*67e74705SXin Li /// gets a chance to look at it.
513*67e74705SXin Li EM_ConstantExpressionUnevaluated,
514*67e74705SXin Li
515*67e74705SXin Li /// Evaluate as a potential constant expression. Keep going if we hit a
516*67e74705SXin Li /// construct that we can't evaluate yet (because we don't yet know the
517*67e74705SXin Li /// value of something) but stop if we hit something that could never be
518*67e74705SXin Li /// a constant expression. Some expressions can be retried in the
519*67e74705SXin Li /// optimizer if we don't constant fold them here, but in an unevaluated
520*67e74705SXin Li /// context we try to fold them immediately since the optimizer never
521*67e74705SXin Li /// gets a chance to look at it.
522*67e74705SXin Li EM_PotentialConstantExpressionUnevaluated,
523*67e74705SXin Li
524*67e74705SXin Li /// Evaluate as a constant expression. Continue evaluating if we find a
525*67e74705SXin Li /// MemberExpr with a base that can't be evaluated.
526*67e74705SXin Li EM_DesignatorFold,
527*67e74705SXin Li } EvalMode;
528*67e74705SXin Li
529*67e74705SXin Li /// Are we checking whether the expression is a potential constant
530*67e74705SXin Li /// expression?
checkingPotentialConstantExpression__anon2db4a5520111::EvalInfo531*67e74705SXin Li bool checkingPotentialConstantExpression() const {
532*67e74705SXin Li return EvalMode == EM_PotentialConstantExpression ||
533*67e74705SXin Li EvalMode == EM_PotentialConstantExpressionUnevaluated;
534*67e74705SXin Li }
535*67e74705SXin Li
536*67e74705SXin Li /// Are we checking an expression for overflow?
537*67e74705SXin Li // FIXME: We should check for any kind of undefined or suspicious behavior
538*67e74705SXin Li // in such constructs, not just overflow.
checkingForOverflow__anon2db4a5520111::EvalInfo539*67e74705SXin Li bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
540*67e74705SXin Li
EvalInfo__anon2db4a5520111::EvalInfo541*67e74705SXin Li EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
542*67e74705SXin Li : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
543*67e74705SXin Li CallStackDepth(0), NextCallIndex(1),
544*67e74705SXin Li StepsLeft(getLangOpts().ConstexprStepLimit),
545*67e74705SXin Li BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
546*67e74705SXin Li EvaluatingDecl((const ValueDecl *)nullptr),
547*67e74705SXin Li EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
548*67e74705SXin Li HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
549*67e74705SXin Li EvalMode(Mode) {}
550*67e74705SXin Li
setEvaluatingDecl__anon2db4a5520111::EvalInfo551*67e74705SXin Li void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
552*67e74705SXin Li EvaluatingDecl = Base;
553*67e74705SXin Li EvaluatingDeclValue = &Value;
554*67e74705SXin Li }
555*67e74705SXin Li
getLangOpts__anon2db4a5520111::EvalInfo556*67e74705SXin Li const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
557*67e74705SXin Li
CheckCallLimit__anon2db4a5520111::EvalInfo558*67e74705SXin Li bool CheckCallLimit(SourceLocation Loc) {
559*67e74705SXin Li // Don't perform any constexpr calls (other than the call we're checking)
560*67e74705SXin Li // when checking a potential constant expression.
561*67e74705SXin Li if (checkingPotentialConstantExpression() && CallStackDepth > 1)
562*67e74705SXin Li return false;
563*67e74705SXin Li if (NextCallIndex == 0) {
564*67e74705SXin Li // NextCallIndex has wrapped around.
565*67e74705SXin Li FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
566*67e74705SXin Li return false;
567*67e74705SXin Li }
568*67e74705SXin Li if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
569*67e74705SXin Li return true;
570*67e74705SXin Li FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
571*67e74705SXin Li << getLangOpts().ConstexprCallDepth;
572*67e74705SXin Li return false;
573*67e74705SXin Li }
574*67e74705SXin Li
getCallFrame__anon2db4a5520111::EvalInfo575*67e74705SXin Li CallStackFrame *getCallFrame(unsigned CallIndex) {
576*67e74705SXin Li assert(CallIndex && "no call index in getCallFrame");
577*67e74705SXin Li // We will eventually hit BottomFrame, which has Index 1, so Frame can't
578*67e74705SXin Li // be null in this loop.
579*67e74705SXin Li CallStackFrame *Frame = CurrentCall;
580*67e74705SXin Li while (Frame->Index > CallIndex)
581*67e74705SXin Li Frame = Frame->Caller;
582*67e74705SXin Li return (Frame->Index == CallIndex) ? Frame : nullptr;
583*67e74705SXin Li }
584*67e74705SXin Li
nextStep__anon2db4a5520111::EvalInfo585*67e74705SXin Li bool nextStep(const Stmt *S) {
586*67e74705SXin Li if (!StepsLeft) {
587*67e74705SXin Li FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
588*67e74705SXin Li return false;
589*67e74705SXin Li }
590*67e74705SXin Li --StepsLeft;
591*67e74705SXin Li return true;
592*67e74705SXin Li }
593*67e74705SXin Li
594*67e74705SXin Li private:
595*67e74705SXin Li /// Add a diagnostic to the diagnostics list.
addDiag__anon2db4a5520111::EvalInfo596*67e74705SXin Li PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
597*67e74705SXin Li PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
598*67e74705SXin Li EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
599*67e74705SXin Li return EvalStatus.Diag->back().second;
600*67e74705SXin Li }
601*67e74705SXin Li
602*67e74705SXin Li /// Add notes containing a call stack to the current point of evaluation.
603*67e74705SXin Li void addCallStack(unsigned Limit);
604*67e74705SXin Li
605*67e74705SXin Li private:
Diag__anon2db4a5520111::EvalInfo606*67e74705SXin Li OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
607*67e74705SXin Li unsigned ExtraNotes, bool IsCCEDiag) {
608*67e74705SXin Li
609*67e74705SXin Li if (EvalStatus.Diag) {
610*67e74705SXin Li // If we have a prior diagnostic, it will be noting that the expression
611*67e74705SXin Li // isn't a constant expression. This diagnostic is more important,
612*67e74705SXin Li // unless we require this evaluation to produce a constant expression.
613*67e74705SXin Li //
614*67e74705SXin Li // FIXME: We might want to show both diagnostics to the user in
615*67e74705SXin Li // EM_ConstantFold mode.
616*67e74705SXin Li if (!EvalStatus.Diag->empty()) {
617*67e74705SXin Li switch (EvalMode) {
618*67e74705SXin Li case EM_ConstantFold:
619*67e74705SXin Li case EM_IgnoreSideEffects:
620*67e74705SXin Li case EM_EvaluateForOverflow:
621*67e74705SXin Li if (!HasFoldFailureDiagnostic)
622*67e74705SXin Li break;
623*67e74705SXin Li // We've already failed to fold something. Keep that diagnostic.
624*67e74705SXin Li case EM_ConstantExpression:
625*67e74705SXin Li case EM_PotentialConstantExpression:
626*67e74705SXin Li case EM_ConstantExpressionUnevaluated:
627*67e74705SXin Li case EM_PotentialConstantExpressionUnevaluated:
628*67e74705SXin Li case EM_DesignatorFold:
629*67e74705SXin Li HasActiveDiagnostic = false;
630*67e74705SXin Li return OptionalDiagnostic();
631*67e74705SXin Li }
632*67e74705SXin Li }
633*67e74705SXin Li
634*67e74705SXin Li unsigned CallStackNotes = CallStackDepth - 1;
635*67e74705SXin Li unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
636*67e74705SXin Li if (Limit)
637*67e74705SXin Li CallStackNotes = std::min(CallStackNotes, Limit + 1);
638*67e74705SXin Li if (checkingPotentialConstantExpression())
639*67e74705SXin Li CallStackNotes = 0;
640*67e74705SXin Li
641*67e74705SXin Li HasActiveDiagnostic = true;
642*67e74705SXin Li HasFoldFailureDiagnostic = !IsCCEDiag;
643*67e74705SXin Li EvalStatus.Diag->clear();
644*67e74705SXin Li EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
645*67e74705SXin Li addDiag(Loc, DiagId);
646*67e74705SXin Li if (!checkingPotentialConstantExpression())
647*67e74705SXin Li addCallStack(Limit);
648*67e74705SXin Li return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
649*67e74705SXin Li }
650*67e74705SXin Li HasActiveDiagnostic = false;
651*67e74705SXin Li return OptionalDiagnostic();
652*67e74705SXin Li }
653*67e74705SXin Li public:
654*67e74705SXin Li // Diagnose that the evaluation could not be folded (FF => FoldFailure)
655*67e74705SXin Li OptionalDiagnostic
FFDiag__anon2db4a5520111::EvalInfo656*67e74705SXin Li FFDiag(SourceLocation Loc,
657*67e74705SXin Li diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
658*67e74705SXin Li unsigned ExtraNotes = 0) {
659*67e74705SXin Li return Diag(Loc, DiagId, ExtraNotes, false);
660*67e74705SXin Li }
661*67e74705SXin Li
FFDiag__anon2db4a5520111::EvalInfo662*67e74705SXin Li OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
663*67e74705SXin Li = diag::note_invalid_subexpr_in_const_expr,
664*67e74705SXin Li unsigned ExtraNotes = 0) {
665*67e74705SXin Li if (EvalStatus.Diag)
666*67e74705SXin Li return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
667*67e74705SXin Li HasActiveDiagnostic = false;
668*67e74705SXin Li return OptionalDiagnostic();
669*67e74705SXin Li }
670*67e74705SXin Li
671*67e74705SXin Li /// Diagnose that the evaluation does not produce a C++11 core constant
672*67e74705SXin Li /// expression.
673*67e74705SXin Li ///
674*67e74705SXin Li /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
675*67e74705SXin Li /// EM_PotentialConstantExpression mode and we produce one of these.
CCEDiag__anon2db4a5520111::EvalInfo676*67e74705SXin Li OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
677*67e74705SXin Li = diag::note_invalid_subexpr_in_const_expr,
678*67e74705SXin Li unsigned ExtraNotes = 0) {
679*67e74705SXin Li // Don't override a previous diagnostic. Don't bother collecting
680*67e74705SXin Li // diagnostics if we're evaluating for overflow.
681*67e74705SXin Li if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
682*67e74705SXin Li HasActiveDiagnostic = false;
683*67e74705SXin Li return OptionalDiagnostic();
684*67e74705SXin Li }
685*67e74705SXin Li return Diag(Loc, DiagId, ExtraNotes, true);
686*67e74705SXin Li }
CCEDiag__anon2db4a5520111::EvalInfo687*67e74705SXin Li OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
688*67e74705SXin Li = diag::note_invalid_subexpr_in_const_expr,
689*67e74705SXin Li unsigned ExtraNotes = 0) {
690*67e74705SXin Li return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
691*67e74705SXin Li }
692*67e74705SXin Li /// Add a note to a prior diagnostic.
Note__anon2db4a5520111::EvalInfo693*67e74705SXin Li OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
694*67e74705SXin Li if (!HasActiveDiagnostic)
695*67e74705SXin Li return OptionalDiagnostic();
696*67e74705SXin Li return OptionalDiagnostic(&addDiag(Loc, DiagId));
697*67e74705SXin Li }
698*67e74705SXin Li
699*67e74705SXin Li /// Add a stack of notes to a prior diagnostic.
addNotes__anon2db4a5520111::EvalInfo700*67e74705SXin Li void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
701*67e74705SXin Li if (HasActiveDiagnostic) {
702*67e74705SXin Li EvalStatus.Diag->insert(EvalStatus.Diag->end(),
703*67e74705SXin Li Diags.begin(), Diags.end());
704*67e74705SXin Li }
705*67e74705SXin Li }
706*67e74705SXin Li
707*67e74705SXin Li /// Should we continue evaluation after encountering a side-effect that we
708*67e74705SXin Li /// couldn't model?
keepEvaluatingAfterSideEffect__anon2db4a5520111::EvalInfo709*67e74705SXin Li bool keepEvaluatingAfterSideEffect() {
710*67e74705SXin Li switch (EvalMode) {
711*67e74705SXin Li case EM_PotentialConstantExpression:
712*67e74705SXin Li case EM_PotentialConstantExpressionUnevaluated:
713*67e74705SXin Li case EM_EvaluateForOverflow:
714*67e74705SXin Li case EM_IgnoreSideEffects:
715*67e74705SXin Li return true;
716*67e74705SXin Li
717*67e74705SXin Li case EM_ConstantExpression:
718*67e74705SXin Li case EM_ConstantExpressionUnevaluated:
719*67e74705SXin Li case EM_ConstantFold:
720*67e74705SXin Li case EM_DesignatorFold:
721*67e74705SXin Li return false;
722*67e74705SXin Li }
723*67e74705SXin Li llvm_unreachable("Missed EvalMode case");
724*67e74705SXin Li }
725*67e74705SXin Li
726*67e74705SXin Li /// Note that we have had a side-effect, and determine whether we should
727*67e74705SXin Li /// keep evaluating.
noteSideEffect__anon2db4a5520111::EvalInfo728*67e74705SXin Li bool noteSideEffect() {
729*67e74705SXin Li EvalStatus.HasSideEffects = true;
730*67e74705SXin Li return keepEvaluatingAfterSideEffect();
731*67e74705SXin Li }
732*67e74705SXin Li
733*67e74705SXin Li /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior__anon2db4a5520111::EvalInfo734*67e74705SXin Li bool keepEvaluatingAfterUndefinedBehavior() {
735*67e74705SXin Li switch (EvalMode) {
736*67e74705SXin Li case EM_EvaluateForOverflow:
737*67e74705SXin Li case EM_IgnoreSideEffects:
738*67e74705SXin Li case EM_ConstantFold:
739*67e74705SXin Li case EM_DesignatorFold:
740*67e74705SXin Li return true;
741*67e74705SXin Li
742*67e74705SXin Li case EM_PotentialConstantExpression:
743*67e74705SXin Li case EM_PotentialConstantExpressionUnevaluated:
744*67e74705SXin Li case EM_ConstantExpression:
745*67e74705SXin Li case EM_ConstantExpressionUnevaluated:
746*67e74705SXin Li return false;
747*67e74705SXin Li }
748*67e74705SXin Li llvm_unreachable("Missed EvalMode case");
749*67e74705SXin Li }
750*67e74705SXin Li
751*67e74705SXin Li /// Note that we hit something that was technically undefined behavior, but
752*67e74705SXin Li /// that we can evaluate past it (such as signed overflow or floating-point
753*67e74705SXin Li /// division by zero.)
noteUndefinedBehavior__anon2db4a5520111::EvalInfo754*67e74705SXin Li bool noteUndefinedBehavior() {
755*67e74705SXin Li EvalStatus.HasUndefinedBehavior = true;
756*67e74705SXin Li return keepEvaluatingAfterUndefinedBehavior();
757*67e74705SXin Li }
758*67e74705SXin Li
759*67e74705SXin Li /// Should we continue evaluation as much as possible after encountering a
760*67e74705SXin Li /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon2db4a5520111::EvalInfo761*67e74705SXin Li bool keepEvaluatingAfterFailure() {
762*67e74705SXin Li if (!StepsLeft)
763*67e74705SXin Li return false;
764*67e74705SXin Li
765*67e74705SXin Li switch (EvalMode) {
766*67e74705SXin Li case EM_PotentialConstantExpression:
767*67e74705SXin Li case EM_PotentialConstantExpressionUnevaluated:
768*67e74705SXin Li case EM_EvaluateForOverflow:
769*67e74705SXin Li return true;
770*67e74705SXin Li
771*67e74705SXin Li case EM_ConstantExpression:
772*67e74705SXin Li case EM_ConstantExpressionUnevaluated:
773*67e74705SXin Li case EM_ConstantFold:
774*67e74705SXin Li case EM_IgnoreSideEffects:
775*67e74705SXin Li case EM_DesignatorFold:
776*67e74705SXin Li return false;
777*67e74705SXin Li }
778*67e74705SXin Li llvm_unreachable("Missed EvalMode case");
779*67e74705SXin Li }
780*67e74705SXin Li
781*67e74705SXin Li /// Notes that we failed to evaluate an expression that other expressions
782*67e74705SXin Li /// directly depend on, and determine if we should keep evaluating. This
783*67e74705SXin Li /// should only be called if we actually intend to keep evaluating.
784*67e74705SXin Li ///
785*67e74705SXin Li /// Call noteSideEffect() instead if we may be able to ignore the value that
786*67e74705SXin Li /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
787*67e74705SXin Li ///
788*67e74705SXin Li /// (Foo(), 1) // use noteSideEffect
789*67e74705SXin Li /// (Foo() || true) // use noteSideEffect
790*67e74705SXin Li /// Foo() + 1 // use noteFailure
noteFailure__anon2db4a5520111::EvalInfo791*67e74705SXin Li LLVM_ATTRIBUTE_UNUSED_RESULT bool noteFailure() {
792*67e74705SXin Li // Failure when evaluating some expression often means there is some
793*67e74705SXin Li // subexpression whose evaluation was skipped. Therefore, (because we
794*67e74705SXin Li // don't track whether we skipped an expression when unwinding after an
795*67e74705SXin Li // evaluation failure) every evaluation failure that bubbles up from a
796*67e74705SXin Li // subexpression implies that a side-effect has potentially happened. We
797*67e74705SXin Li // skip setting the HasSideEffects flag to true until we decide to
798*67e74705SXin Li // continue evaluating after that point, which happens here.
799*67e74705SXin Li bool KeepGoing = keepEvaluatingAfterFailure();
800*67e74705SXin Li EvalStatus.HasSideEffects |= KeepGoing;
801*67e74705SXin Li return KeepGoing;
802*67e74705SXin Li }
803*67e74705SXin Li
allowInvalidBaseExpr__anon2db4a5520111::EvalInfo804*67e74705SXin Li bool allowInvalidBaseExpr() const {
805*67e74705SXin Li return EvalMode == EM_DesignatorFold;
806*67e74705SXin Li }
807*67e74705SXin Li };
808*67e74705SXin Li
809*67e74705SXin Li /// Object used to treat all foldable expressions as constant expressions.
810*67e74705SXin Li struct FoldConstant {
811*67e74705SXin Li EvalInfo &Info;
812*67e74705SXin Li bool Enabled;
813*67e74705SXin Li bool HadNoPriorDiags;
814*67e74705SXin Li EvalInfo::EvaluationMode OldMode;
815*67e74705SXin Li
FoldConstant__anon2db4a5520111::FoldConstant816*67e74705SXin Li explicit FoldConstant(EvalInfo &Info, bool Enabled)
817*67e74705SXin Li : Info(Info),
818*67e74705SXin Li Enabled(Enabled),
819*67e74705SXin Li HadNoPriorDiags(Info.EvalStatus.Diag &&
820*67e74705SXin Li Info.EvalStatus.Diag->empty() &&
821*67e74705SXin Li !Info.EvalStatus.HasSideEffects),
822*67e74705SXin Li OldMode(Info.EvalMode) {
823*67e74705SXin Li if (Enabled &&
824*67e74705SXin Li (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
825*67e74705SXin Li Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
826*67e74705SXin Li Info.EvalMode = EvalInfo::EM_ConstantFold;
827*67e74705SXin Li }
keepDiagnostics__anon2db4a5520111::FoldConstant828*67e74705SXin Li void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon2db4a5520111::FoldConstant829*67e74705SXin Li ~FoldConstant() {
830*67e74705SXin Li if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
831*67e74705SXin Li !Info.EvalStatus.HasSideEffects)
832*67e74705SXin Li Info.EvalStatus.Diag->clear();
833*67e74705SXin Li Info.EvalMode = OldMode;
834*67e74705SXin Li }
835*67e74705SXin Li };
836*67e74705SXin Li
837*67e74705SXin Li /// RAII object used to treat the current evaluation as the correct pointer
838*67e74705SXin Li /// offset fold for the current EvalMode
839*67e74705SXin Li struct FoldOffsetRAII {
840*67e74705SXin Li EvalInfo &Info;
841*67e74705SXin Li EvalInfo::EvaluationMode OldMode;
FoldOffsetRAII__anon2db4a5520111::FoldOffsetRAII842*67e74705SXin Li explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
843*67e74705SXin Li : Info(Info), OldMode(Info.EvalMode) {
844*67e74705SXin Li if (!Info.checkingPotentialConstantExpression())
845*67e74705SXin Li Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
846*67e74705SXin Li : EvalInfo::EM_ConstantFold;
847*67e74705SXin Li }
848*67e74705SXin Li
~FoldOffsetRAII__anon2db4a5520111::FoldOffsetRAII849*67e74705SXin Li ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
850*67e74705SXin Li };
851*67e74705SXin Li
852*67e74705SXin Li /// RAII object used to optionally suppress diagnostics and side-effects from
853*67e74705SXin Li /// a speculative evaluation.
854*67e74705SXin Li class SpeculativeEvaluationRAII {
855*67e74705SXin Li /// Pair of EvalInfo, and a bit that stores whether or not we were
856*67e74705SXin Li /// speculatively evaluating when we created this RAII.
857*67e74705SXin Li llvm::PointerIntPair<EvalInfo *, 1, bool> InfoAndOldSpecEval;
858*67e74705SXin Li Expr::EvalStatus Old;
859*67e74705SXin Li
moveFromAndCancel(SpeculativeEvaluationRAII && Other)860*67e74705SXin Li void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
861*67e74705SXin Li InfoAndOldSpecEval = Other.InfoAndOldSpecEval;
862*67e74705SXin Li Old = Other.Old;
863*67e74705SXin Li Other.InfoAndOldSpecEval.setPointer(nullptr);
864*67e74705SXin Li }
865*67e74705SXin Li
maybeRestoreState()866*67e74705SXin Li void maybeRestoreState() {
867*67e74705SXin Li EvalInfo *Info = InfoAndOldSpecEval.getPointer();
868*67e74705SXin Li if (!Info)
869*67e74705SXin Li return;
870*67e74705SXin Li
871*67e74705SXin Li Info->EvalStatus = Old;
872*67e74705SXin Li Info->IsSpeculativelyEvaluating = InfoAndOldSpecEval.getInt();
873*67e74705SXin Li }
874*67e74705SXin Li
875*67e74705SXin Li public:
876*67e74705SXin Li SpeculativeEvaluationRAII() = default;
877*67e74705SXin Li
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)878*67e74705SXin Li SpeculativeEvaluationRAII(
879*67e74705SXin Li EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
880*67e74705SXin Li : InfoAndOldSpecEval(&Info, Info.IsSpeculativelyEvaluating),
881*67e74705SXin Li Old(Info.EvalStatus) {
882*67e74705SXin Li Info.EvalStatus.Diag = NewDiag;
883*67e74705SXin Li Info.IsSpeculativelyEvaluating = true;
884*67e74705SXin Li }
885*67e74705SXin Li
886*67e74705SXin Li SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)887*67e74705SXin Li SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
888*67e74705SXin Li moveFromAndCancel(std::move(Other));
889*67e74705SXin Li }
890*67e74705SXin Li
operator =(SpeculativeEvaluationRAII && Other)891*67e74705SXin Li SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
892*67e74705SXin Li maybeRestoreState();
893*67e74705SXin Li moveFromAndCancel(std::move(Other));
894*67e74705SXin Li return *this;
895*67e74705SXin Li }
896*67e74705SXin Li
~SpeculativeEvaluationRAII()897*67e74705SXin Li ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
898*67e74705SXin Li };
899*67e74705SXin Li
900*67e74705SXin Li /// RAII object wrapping a full-expression or block scope, and handling
901*67e74705SXin Li /// the ending of the lifetime of temporaries created within it.
902*67e74705SXin Li template<bool IsFullExpression>
903*67e74705SXin Li class ScopeRAII {
904*67e74705SXin Li EvalInfo &Info;
905*67e74705SXin Li unsigned OldStackSize;
906*67e74705SXin Li public:
ScopeRAII(EvalInfo & Info)907*67e74705SXin Li ScopeRAII(EvalInfo &Info)
908*67e74705SXin Li : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()909*67e74705SXin Li ~ScopeRAII() {
910*67e74705SXin Li // Body moved to a static method to encourage the compiler to inline away
911*67e74705SXin Li // instances of this class.
912*67e74705SXin Li cleanup(Info, OldStackSize);
913*67e74705SXin Li }
914*67e74705SXin Li private:
cleanup(EvalInfo & Info,unsigned OldStackSize)915*67e74705SXin Li static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
916*67e74705SXin Li unsigned NewEnd = OldStackSize;
917*67e74705SXin Li for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
918*67e74705SXin Li I != N; ++I) {
919*67e74705SXin Li if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
920*67e74705SXin Li // Full-expression cleanup of a lifetime-extended temporary: nothing
921*67e74705SXin Li // to do, just move this cleanup to the right place in the stack.
922*67e74705SXin Li std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
923*67e74705SXin Li ++NewEnd;
924*67e74705SXin Li } else {
925*67e74705SXin Li // End the lifetime of the object.
926*67e74705SXin Li Info.CleanupStack[I].endLifetime();
927*67e74705SXin Li }
928*67e74705SXin Li }
929*67e74705SXin Li Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
930*67e74705SXin Li Info.CleanupStack.end());
931*67e74705SXin Li }
932*67e74705SXin Li };
933*67e74705SXin Li typedef ScopeRAII<false> BlockScopeRAII;
934*67e74705SXin Li typedef ScopeRAII<true> FullExpressionRAII;
935*67e74705SXin Li }
936*67e74705SXin Li
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)937*67e74705SXin Li bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
938*67e74705SXin Li CheckSubobjectKind CSK) {
939*67e74705SXin Li if (Invalid)
940*67e74705SXin Li return false;
941*67e74705SXin Li if (isOnePastTheEnd()) {
942*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
943*67e74705SXin Li << CSK;
944*67e74705SXin Li setInvalid();
945*67e74705SXin Li return false;
946*67e74705SXin Li }
947*67e74705SXin Li return true;
948*67e74705SXin Li }
949*67e74705SXin Li
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)950*67e74705SXin Li void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
951*67e74705SXin Li const Expr *E, uint64_t N) {
952*67e74705SXin Li if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
953*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_array_index)
954*67e74705SXin Li << static_cast<int>(N) << /*array*/ 0
955*67e74705SXin Li << static_cast<unsigned>(MostDerivedArraySize);
956*67e74705SXin Li else
957*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_array_index)
958*67e74705SXin Li << static_cast<int>(N) << /*non-array*/ 1;
959*67e74705SXin Li setInvalid();
960*67e74705SXin Li }
961*67e74705SXin Li
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)962*67e74705SXin Li CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
963*67e74705SXin Li const FunctionDecl *Callee, const LValue *This,
964*67e74705SXin Li APValue *Arguments)
965*67e74705SXin Li : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
966*67e74705SXin Li Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
967*67e74705SXin Li Info.CurrentCall = this;
968*67e74705SXin Li ++Info.CallStackDepth;
969*67e74705SXin Li }
970*67e74705SXin Li
~CallStackFrame()971*67e74705SXin Li CallStackFrame::~CallStackFrame() {
972*67e74705SXin Li assert(Info.CurrentCall == this && "calls retired out of order");
973*67e74705SXin Li --Info.CallStackDepth;
974*67e74705SXin Li Info.CurrentCall = Caller;
975*67e74705SXin Li }
976*67e74705SXin Li
createTemporary(const void * Key,bool IsLifetimeExtended)977*67e74705SXin Li APValue &CallStackFrame::createTemporary(const void *Key,
978*67e74705SXin Li bool IsLifetimeExtended) {
979*67e74705SXin Li APValue &Result = Temporaries[Key];
980*67e74705SXin Li assert(Result.isUninit() && "temporary created multiple times");
981*67e74705SXin Li Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
982*67e74705SXin Li return Result;
983*67e74705SXin Li }
984*67e74705SXin Li
985*67e74705SXin Li static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
986*67e74705SXin Li
addCallStack(unsigned Limit)987*67e74705SXin Li void EvalInfo::addCallStack(unsigned Limit) {
988*67e74705SXin Li // Determine which calls to skip, if any.
989*67e74705SXin Li unsigned ActiveCalls = CallStackDepth - 1;
990*67e74705SXin Li unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
991*67e74705SXin Li if (Limit && Limit < ActiveCalls) {
992*67e74705SXin Li SkipStart = Limit / 2 + Limit % 2;
993*67e74705SXin Li SkipEnd = ActiveCalls - Limit / 2;
994*67e74705SXin Li }
995*67e74705SXin Li
996*67e74705SXin Li // Walk the call stack and add the diagnostics.
997*67e74705SXin Li unsigned CallIdx = 0;
998*67e74705SXin Li for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
999*67e74705SXin Li Frame = Frame->Caller, ++CallIdx) {
1000*67e74705SXin Li // Skip this call?
1001*67e74705SXin Li if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
1002*67e74705SXin Li if (CallIdx == SkipStart) {
1003*67e74705SXin Li // Note that we're skipping calls.
1004*67e74705SXin Li addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
1005*67e74705SXin Li << unsigned(ActiveCalls - Limit);
1006*67e74705SXin Li }
1007*67e74705SXin Li continue;
1008*67e74705SXin Li }
1009*67e74705SXin Li
1010*67e74705SXin Li // Use a different note for an inheriting constructor, because from the
1011*67e74705SXin Li // user's perspective it's not really a function at all.
1012*67e74705SXin Li if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
1013*67e74705SXin Li if (CD->isInheritingConstructor()) {
1014*67e74705SXin Li addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
1015*67e74705SXin Li << CD->getParent();
1016*67e74705SXin Li continue;
1017*67e74705SXin Li }
1018*67e74705SXin Li }
1019*67e74705SXin Li
1020*67e74705SXin Li SmallVector<char, 128> Buffer;
1021*67e74705SXin Li llvm::raw_svector_ostream Out(Buffer);
1022*67e74705SXin Li describeCall(Frame, Out);
1023*67e74705SXin Li addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
1024*67e74705SXin Li }
1025*67e74705SXin Li }
1026*67e74705SXin Li
1027*67e74705SXin Li namespace {
1028*67e74705SXin Li struct ComplexValue {
1029*67e74705SXin Li private:
1030*67e74705SXin Li bool IsInt;
1031*67e74705SXin Li
1032*67e74705SXin Li public:
1033*67e74705SXin Li APSInt IntReal, IntImag;
1034*67e74705SXin Li APFloat FloatReal, FloatImag;
1035*67e74705SXin Li
ComplexValue__anon2db4a5520211::ComplexValue1036*67e74705SXin Li ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
1037*67e74705SXin Li
makeComplexFloat__anon2db4a5520211::ComplexValue1038*67e74705SXin Li void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon2db4a5520211::ComplexValue1039*67e74705SXin Li bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon2db4a5520211::ComplexValue1040*67e74705SXin Li APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon2db4a5520211::ComplexValue1041*67e74705SXin Li APFloat &getComplexFloatImag() { return FloatImag; }
1042*67e74705SXin Li
makeComplexInt__anon2db4a5520211::ComplexValue1043*67e74705SXin Li void makeComplexInt() { IsInt = true; }
isComplexInt__anon2db4a5520211::ComplexValue1044*67e74705SXin Li bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon2db4a5520211::ComplexValue1045*67e74705SXin Li APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon2db4a5520211::ComplexValue1046*67e74705SXin Li APSInt &getComplexIntImag() { return IntImag; }
1047*67e74705SXin Li
moveInto__anon2db4a5520211::ComplexValue1048*67e74705SXin Li void moveInto(APValue &v) const {
1049*67e74705SXin Li if (isComplexFloat())
1050*67e74705SXin Li v = APValue(FloatReal, FloatImag);
1051*67e74705SXin Li else
1052*67e74705SXin Li v = APValue(IntReal, IntImag);
1053*67e74705SXin Li }
setFrom__anon2db4a5520211::ComplexValue1054*67e74705SXin Li void setFrom(const APValue &v) {
1055*67e74705SXin Li assert(v.isComplexFloat() || v.isComplexInt());
1056*67e74705SXin Li if (v.isComplexFloat()) {
1057*67e74705SXin Li makeComplexFloat();
1058*67e74705SXin Li FloatReal = v.getComplexFloatReal();
1059*67e74705SXin Li FloatImag = v.getComplexFloatImag();
1060*67e74705SXin Li } else {
1061*67e74705SXin Li makeComplexInt();
1062*67e74705SXin Li IntReal = v.getComplexIntReal();
1063*67e74705SXin Li IntImag = v.getComplexIntImag();
1064*67e74705SXin Li }
1065*67e74705SXin Li }
1066*67e74705SXin Li };
1067*67e74705SXin Li
1068*67e74705SXin Li struct LValue {
1069*67e74705SXin Li APValue::LValueBase Base;
1070*67e74705SXin Li CharUnits Offset;
1071*67e74705SXin Li unsigned InvalidBase : 1;
1072*67e74705SXin Li unsigned CallIndex : 31;
1073*67e74705SXin Li SubobjectDesignator Designator;
1074*67e74705SXin Li
getLValueBase__anon2db4a5520211::LValue1075*67e74705SXin Li const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon2db4a5520211::LValue1076*67e74705SXin Li CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon2db4a5520211::LValue1077*67e74705SXin Li const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon2db4a5520211::LValue1078*67e74705SXin Li unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon2db4a5520211::LValue1079*67e74705SXin Li SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon2db4a5520211::LValue1080*67e74705SXin Li const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1081*67e74705SXin Li
moveInto__anon2db4a5520211::LValue1082*67e74705SXin Li void moveInto(APValue &V) const {
1083*67e74705SXin Li if (Designator.Invalid)
1084*67e74705SXin Li V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
1085*67e74705SXin Li else
1086*67e74705SXin Li V = APValue(Base, Offset, Designator.Entries,
1087*67e74705SXin Li Designator.IsOnePastTheEnd, CallIndex);
1088*67e74705SXin Li }
setFrom__anon2db4a5520211::LValue1089*67e74705SXin Li void setFrom(ASTContext &Ctx, const APValue &V) {
1090*67e74705SXin Li assert(V.isLValue());
1091*67e74705SXin Li Base = V.getLValueBase();
1092*67e74705SXin Li Offset = V.getLValueOffset();
1093*67e74705SXin Li InvalidBase = false;
1094*67e74705SXin Li CallIndex = V.getLValueCallIndex();
1095*67e74705SXin Li Designator = SubobjectDesignator(Ctx, V);
1096*67e74705SXin Li }
1097*67e74705SXin Li
set__anon2db4a5520211::LValue1098*67e74705SXin Li void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1099*67e74705SXin Li Base = B;
1100*67e74705SXin Li Offset = CharUnits::Zero();
1101*67e74705SXin Li InvalidBase = BInvalid;
1102*67e74705SXin Li CallIndex = I;
1103*67e74705SXin Li Designator = SubobjectDesignator(getType(B));
1104*67e74705SXin Li }
1105*67e74705SXin Li
setInvalid__anon2db4a5520211::LValue1106*67e74705SXin Li void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1107*67e74705SXin Li set(B, I, true);
1108*67e74705SXin Li }
1109*67e74705SXin Li
1110*67e74705SXin Li // Check that this LValue is not based on a null pointer. If it is, produce
1111*67e74705SXin Li // a diagnostic and mark the designator as invalid.
checkNullPointer__anon2db4a5520211::LValue1112*67e74705SXin Li bool checkNullPointer(EvalInfo &Info, const Expr *E,
1113*67e74705SXin Li CheckSubobjectKind CSK) {
1114*67e74705SXin Li if (Designator.Invalid)
1115*67e74705SXin Li return false;
1116*67e74705SXin Li if (!Base) {
1117*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1118*67e74705SXin Li << CSK;
1119*67e74705SXin Li Designator.setInvalid();
1120*67e74705SXin Li return false;
1121*67e74705SXin Li }
1122*67e74705SXin Li return true;
1123*67e74705SXin Li }
1124*67e74705SXin Li
1125*67e74705SXin Li // Check this LValue refers to an object. If not, set the designator to be
1126*67e74705SXin Li // invalid and emit a diagnostic.
checkSubobject__anon2db4a5520211::LValue1127*67e74705SXin Li bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1128*67e74705SXin Li return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1129*67e74705SXin Li Designator.checkSubobject(Info, E, CSK);
1130*67e74705SXin Li }
1131*67e74705SXin Li
addDecl__anon2db4a5520211::LValue1132*67e74705SXin Li void addDecl(EvalInfo &Info, const Expr *E,
1133*67e74705SXin Li const Decl *D, bool Virtual = false) {
1134*67e74705SXin Li if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1135*67e74705SXin Li Designator.addDeclUnchecked(D, Virtual);
1136*67e74705SXin Li }
addArray__anon2db4a5520211::LValue1137*67e74705SXin Li void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1138*67e74705SXin Li if (checkSubobject(Info, E, CSK_ArrayToPointer))
1139*67e74705SXin Li Designator.addArrayUnchecked(CAT);
1140*67e74705SXin Li }
addComplex__anon2db4a5520211::LValue1141*67e74705SXin Li void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1142*67e74705SXin Li if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1143*67e74705SXin Li Designator.addComplexUnchecked(EltTy, Imag);
1144*67e74705SXin Li }
adjustIndex__anon2db4a5520211::LValue1145*67e74705SXin Li void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
1146*67e74705SXin Li if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
1147*67e74705SXin Li Designator.adjustIndex(Info, E, N);
1148*67e74705SXin Li }
1149*67e74705SXin Li };
1150*67e74705SXin Li
1151*67e74705SXin Li struct MemberPtr {
MemberPtr__anon2db4a5520211::MemberPtr1152*67e74705SXin Li MemberPtr() {}
MemberPtr__anon2db4a5520211::MemberPtr1153*67e74705SXin Li explicit MemberPtr(const ValueDecl *Decl) :
1154*67e74705SXin Li DeclAndIsDerivedMember(Decl, false), Path() {}
1155*67e74705SXin Li
1156*67e74705SXin Li /// The member or (direct or indirect) field referred to by this member
1157*67e74705SXin Li /// pointer, or 0 if this is a null member pointer.
getDecl__anon2db4a5520211::MemberPtr1158*67e74705SXin Li const ValueDecl *getDecl() const {
1159*67e74705SXin Li return DeclAndIsDerivedMember.getPointer();
1160*67e74705SXin Li }
1161*67e74705SXin Li /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon2db4a5520211::MemberPtr1162*67e74705SXin Li bool isDerivedMember() const {
1163*67e74705SXin Li return DeclAndIsDerivedMember.getInt();
1164*67e74705SXin Li }
1165*67e74705SXin Li /// Get the class which the declaration actually lives in.
getContainingRecord__anon2db4a5520211::MemberPtr1166*67e74705SXin Li const CXXRecordDecl *getContainingRecord() const {
1167*67e74705SXin Li return cast<CXXRecordDecl>(
1168*67e74705SXin Li DeclAndIsDerivedMember.getPointer()->getDeclContext());
1169*67e74705SXin Li }
1170*67e74705SXin Li
moveInto__anon2db4a5520211::MemberPtr1171*67e74705SXin Li void moveInto(APValue &V) const {
1172*67e74705SXin Li V = APValue(getDecl(), isDerivedMember(), Path);
1173*67e74705SXin Li }
setFrom__anon2db4a5520211::MemberPtr1174*67e74705SXin Li void setFrom(const APValue &V) {
1175*67e74705SXin Li assert(V.isMemberPointer());
1176*67e74705SXin Li DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1177*67e74705SXin Li DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1178*67e74705SXin Li Path.clear();
1179*67e74705SXin Li ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1180*67e74705SXin Li Path.insert(Path.end(), P.begin(), P.end());
1181*67e74705SXin Li }
1182*67e74705SXin Li
1183*67e74705SXin Li /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1184*67e74705SXin Li /// whether the member is a member of some class derived from the class type
1185*67e74705SXin Li /// of the member pointer.
1186*67e74705SXin Li llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1187*67e74705SXin Li /// Path - The path of base/derived classes from the member declaration's
1188*67e74705SXin Li /// class (exclusive) to the class type of the member pointer (inclusive).
1189*67e74705SXin Li SmallVector<const CXXRecordDecl*, 4> Path;
1190*67e74705SXin Li
1191*67e74705SXin Li /// Perform a cast towards the class of the Decl (either up or down the
1192*67e74705SXin Li /// hierarchy).
castBack__anon2db4a5520211::MemberPtr1193*67e74705SXin Li bool castBack(const CXXRecordDecl *Class) {
1194*67e74705SXin Li assert(!Path.empty());
1195*67e74705SXin Li const CXXRecordDecl *Expected;
1196*67e74705SXin Li if (Path.size() >= 2)
1197*67e74705SXin Li Expected = Path[Path.size() - 2];
1198*67e74705SXin Li else
1199*67e74705SXin Li Expected = getContainingRecord();
1200*67e74705SXin Li if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1201*67e74705SXin Li // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1202*67e74705SXin Li // if B does not contain the original member and is not a base or
1203*67e74705SXin Li // derived class of the class containing the original member, the result
1204*67e74705SXin Li // of the cast is undefined.
1205*67e74705SXin Li // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1206*67e74705SXin Li // (D::*). We consider that to be a language defect.
1207*67e74705SXin Li return false;
1208*67e74705SXin Li }
1209*67e74705SXin Li Path.pop_back();
1210*67e74705SXin Li return true;
1211*67e74705SXin Li }
1212*67e74705SXin Li /// Perform a base-to-derived member pointer cast.
castToDerived__anon2db4a5520211::MemberPtr1213*67e74705SXin Li bool castToDerived(const CXXRecordDecl *Derived) {
1214*67e74705SXin Li if (!getDecl())
1215*67e74705SXin Li return true;
1216*67e74705SXin Li if (!isDerivedMember()) {
1217*67e74705SXin Li Path.push_back(Derived);
1218*67e74705SXin Li return true;
1219*67e74705SXin Li }
1220*67e74705SXin Li if (!castBack(Derived))
1221*67e74705SXin Li return false;
1222*67e74705SXin Li if (Path.empty())
1223*67e74705SXin Li DeclAndIsDerivedMember.setInt(false);
1224*67e74705SXin Li return true;
1225*67e74705SXin Li }
1226*67e74705SXin Li /// Perform a derived-to-base member pointer cast.
castToBase__anon2db4a5520211::MemberPtr1227*67e74705SXin Li bool castToBase(const CXXRecordDecl *Base) {
1228*67e74705SXin Li if (!getDecl())
1229*67e74705SXin Li return true;
1230*67e74705SXin Li if (Path.empty())
1231*67e74705SXin Li DeclAndIsDerivedMember.setInt(true);
1232*67e74705SXin Li if (isDerivedMember()) {
1233*67e74705SXin Li Path.push_back(Base);
1234*67e74705SXin Li return true;
1235*67e74705SXin Li }
1236*67e74705SXin Li return castBack(Base);
1237*67e74705SXin Li }
1238*67e74705SXin Li };
1239*67e74705SXin Li
1240*67e74705SXin Li /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1241*67e74705SXin Li static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1242*67e74705SXin Li if (!LHS.getDecl() || !RHS.getDecl())
1243*67e74705SXin Li return !LHS.getDecl() && !RHS.getDecl();
1244*67e74705SXin Li if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1245*67e74705SXin Li return false;
1246*67e74705SXin Li return LHS.Path == RHS.Path;
1247*67e74705SXin Li }
1248*67e74705SXin Li }
1249*67e74705SXin Li
1250*67e74705SXin Li static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1251*67e74705SXin Li static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1252*67e74705SXin Li const LValue &This, const Expr *E,
1253*67e74705SXin Li bool AllowNonLiteralTypes = false);
1254*67e74705SXin Li static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1255*67e74705SXin Li static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1256*67e74705SXin Li static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1257*67e74705SXin Li EvalInfo &Info);
1258*67e74705SXin Li static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1259*67e74705SXin Li static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1260*67e74705SXin Li static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1261*67e74705SXin Li EvalInfo &Info);
1262*67e74705SXin Li static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1263*67e74705SXin Li static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1264*67e74705SXin Li static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1265*67e74705SXin Li static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1266*67e74705SXin Li
1267*67e74705SXin Li //===----------------------------------------------------------------------===//
1268*67e74705SXin Li // Misc utilities
1269*67e74705SXin Li //===----------------------------------------------------------------------===//
1270*67e74705SXin Li
1271*67e74705SXin Li /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1272*67e74705SXin Li static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1273*67e74705SXin Li unsigned ArgIndex = 0;
1274*67e74705SXin Li bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1275*67e74705SXin Li !isa<CXXConstructorDecl>(Frame->Callee) &&
1276*67e74705SXin Li cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1277*67e74705SXin Li
1278*67e74705SXin Li if (!IsMemberCall)
1279*67e74705SXin Li Out << *Frame->Callee << '(';
1280*67e74705SXin Li
1281*67e74705SXin Li if (Frame->This && IsMemberCall) {
1282*67e74705SXin Li APValue Val;
1283*67e74705SXin Li Frame->This->moveInto(Val);
1284*67e74705SXin Li Val.printPretty(Out, Frame->Info.Ctx,
1285*67e74705SXin Li Frame->This->Designator.MostDerivedType);
1286*67e74705SXin Li // FIXME: Add parens around Val if needed.
1287*67e74705SXin Li Out << "->" << *Frame->Callee << '(';
1288*67e74705SXin Li IsMemberCall = false;
1289*67e74705SXin Li }
1290*67e74705SXin Li
1291*67e74705SXin Li for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1292*67e74705SXin Li E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1293*67e74705SXin Li if (ArgIndex > (unsigned)IsMemberCall)
1294*67e74705SXin Li Out << ", ";
1295*67e74705SXin Li
1296*67e74705SXin Li const ParmVarDecl *Param = *I;
1297*67e74705SXin Li const APValue &Arg = Frame->Arguments[ArgIndex];
1298*67e74705SXin Li Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1299*67e74705SXin Li
1300*67e74705SXin Li if (ArgIndex == 0 && IsMemberCall)
1301*67e74705SXin Li Out << "->" << *Frame->Callee << '(';
1302*67e74705SXin Li }
1303*67e74705SXin Li
1304*67e74705SXin Li Out << ')';
1305*67e74705SXin Li }
1306*67e74705SXin Li
1307*67e74705SXin Li /// Evaluate an expression to see if it had side-effects, and discard its
1308*67e74705SXin Li /// result.
1309*67e74705SXin Li /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1310*67e74705SXin Li static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1311*67e74705SXin Li APValue Scratch;
1312*67e74705SXin Li if (!Evaluate(Scratch, Info, E))
1313*67e74705SXin Li // We don't need the value, but we might have skipped a side effect here.
1314*67e74705SXin Li return Info.noteSideEffect();
1315*67e74705SXin Li return true;
1316*67e74705SXin Li }
1317*67e74705SXin Li
1318*67e74705SXin Li /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1319*67e74705SXin Li /// return its existing value.
getExtValue(const APSInt & Value)1320*67e74705SXin Li static int64_t getExtValue(const APSInt &Value) {
1321*67e74705SXin Li return Value.isSigned() ? Value.getSExtValue()
1322*67e74705SXin Li : static_cast<int64_t>(Value.getZExtValue());
1323*67e74705SXin Li }
1324*67e74705SXin Li
1325*67e74705SXin Li /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1326*67e74705SXin Li static bool IsStringLiteralCall(const CallExpr *E) {
1327*67e74705SXin Li unsigned Builtin = E->getBuiltinCallee();
1328*67e74705SXin Li return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1329*67e74705SXin Li Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1330*67e74705SXin Li }
1331*67e74705SXin Li
IsGlobalLValue(APValue::LValueBase B)1332*67e74705SXin Li static bool IsGlobalLValue(APValue::LValueBase B) {
1333*67e74705SXin Li // C++11 [expr.const]p3 An address constant expression is a prvalue core
1334*67e74705SXin Li // constant expression of pointer type that evaluates to...
1335*67e74705SXin Li
1336*67e74705SXin Li // ... a null pointer value, or a prvalue core constant expression of type
1337*67e74705SXin Li // std::nullptr_t.
1338*67e74705SXin Li if (!B) return true;
1339*67e74705SXin Li
1340*67e74705SXin Li if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1341*67e74705SXin Li // ... the address of an object with static storage duration,
1342*67e74705SXin Li if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1343*67e74705SXin Li return VD->hasGlobalStorage();
1344*67e74705SXin Li // ... the address of a function,
1345*67e74705SXin Li return isa<FunctionDecl>(D);
1346*67e74705SXin Li }
1347*67e74705SXin Li
1348*67e74705SXin Li const Expr *E = B.get<const Expr*>();
1349*67e74705SXin Li switch (E->getStmtClass()) {
1350*67e74705SXin Li default:
1351*67e74705SXin Li return false;
1352*67e74705SXin Li case Expr::CompoundLiteralExprClass: {
1353*67e74705SXin Li const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1354*67e74705SXin Li return CLE->isFileScope() && CLE->isLValue();
1355*67e74705SXin Li }
1356*67e74705SXin Li case Expr::MaterializeTemporaryExprClass:
1357*67e74705SXin Li // A materialized temporary might have been lifetime-extended to static
1358*67e74705SXin Li // storage duration.
1359*67e74705SXin Li return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1360*67e74705SXin Li // A string literal has static storage duration.
1361*67e74705SXin Li case Expr::StringLiteralClass:
1362*67e74705SXin Li case Expr::PredefinedExprClass:
1363*67e74705SXin Li case Expr::ObjCStringLiteralClass:
1364*67e74705SXin Li case Expr::ObjCEncodeExprClass:
1365*67e74705SXin Li case Expr::CXXTypeidExprClass:
1366*67e74705SXin Li case Expr::CXXUuidofExprClass:
1367*67e74705SXin Li return true;
1368*67e74705SXin Li case Expr::CallExprClass:
1369*67e74705SXin Li return IsStringLiteralCall(cast<CallExpr>(E));
1370*67e74705SXin Li // For GCC compatibility, &&label has static storage duration.
1371*67e74705SXin Li case Expr::AddrLabelExprClass:
1372*67e74705SXin Li return true;
1373*67e74705SXin Li // A Block literal expression may be used as the initialization value for
1374*67e74705SXin Li // Block variables at global or local static scope.
1375*67e74705SXin Li case Expr::BlockExprClass:
1376*67e74705SXin Li return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1377*67e74705SXin Li case Expr::ImplicitValueInitExprClass:
1378*67e74705SXin Li // FIXME:
1379*67e74705SXin Li // We can never form an lvalue with an implicit value initialization as its
1380*67e74705SXin Li // base through expression evaluation, so these only appear in one case: the
1381*67e74705SXin Li // implicit variable declaration we invent when checking whether a constexpr
1382*67e74705SXin Li // constructor can produce a constant expression. We must assume that such
1383*67e74705SXin Li // an expression might be a global lvalue.
1384*67e74705SXin Li return true;
1385*67e74705SXin Li }
1386*67e74705SXin Li }
1387*67e74705SXin Li
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1388*67e74705SXin Li static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1389*67e74705SXin Li assert(Base && "no location for a null lvalue");
1390*67e74705SXin Li const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1391*67e74705SXin Li if (VD)
1392*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
1393*67e74705SXin Li else
1394*67e74705SXin Li Info.Note(Base.get<const Expr*>()->getExprLoc(),
1395*67e74705SXin Li diag::note_constexpr_temporary_here);
1396*67e74705SXin Li }
1397*67e74705SXin Li
1398*67e74705SXin Li /// Check that this reference or pointer core constant expression is a valid
1399*67e74705SXin Li /// value for an address or reference constant expression. Return true if we
1400*67e74705SXin Li /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1401*67e74705SXin Li static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1402*67e74705SXin Li QualType Type, const LValue &LVal) {
1403*67e74705SXin Li bool IsReferenceType = Type->isReferenceType();
1404*67e74705SXin Li
1405*67e74705SXin Li APValue::LValueBase Base = LVal.getLValueBase();
1406*67e74705SXin Li const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1407*67e74705SXin Li
1408*67e74705SXin Li // Check that the object is a global. Note that the fake 'this' object we
1409*67e74705SXin Li // manufacture when checking potential constant expressions is conservatively
1410*67e74705SXin Li // assumed to be global here.
1411*67e74705SXin Li if (!IsGlobalLValue(Base)) {
1412*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11) {
1413*67e74705SXin Li const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1414*67e74705SXin Li Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
1415*67e74705SXin Li << IsReferenceType << !Designator.Entries.empty()
1416*67e74705SXin Li << !!VD << VD;
1417*67e74705SXin Li NoteLValueLocation(Info, Base);
1418*67e74705SXin Li } else {
1419*67e74705SXin Li Info.FFDiag(Loc);
1420*67e74705SXin Li }
1421*67e74705SXin Li // Don't allow references to temporaries to escape.
1422*67e74705SXin Li return false;
1423*67e74705SXin Li }
1424*67e74705SXin Li assert((Info.checkingPotentialConstantExpression() ||
1425*67e74705SXin Li LVal.getLValueCallIndex() == 0) &&
1426*67e74705SXin Li "have call index for global lvalue");
1427*67e74705SXin Li
1428*67e74705SXin Li if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1429*67e74705SXin Li if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1430*67e74705SXin Li // Check if this is a thread-local variable.
1431*67e74705SXin Li if (Var->getTLSKind())
1432*67e74705SXin Li return false;
1433*67e74705SXin Li
1434*67e74705SXin Li // A dllimport variable never acts like a constant.
1435*67e74705SXin Li if (Var->hasAttr<DLLImportAttr>())
1436*67e74705SXin Li return false;
1437*67e74705SXin Li }
1438*67e74705SXin Li if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1439*67e74705SXin Li // __declspec(dllimport) must be handled very carefully:
1440*67e74705SXin Li // We must never initialize an expression with the thunk in C++.
1441*67e74705SXin Li // Doing otherwise would allow the same id-expression to yield
1442*67e74705SXin Li // different addresses for the same function in different translation
1443*67e74705SXin Li // units. However, this means that we must dynamically initialize the
1444*67e74705SXin Li // expression with the contents of the import address table at runtime.
1445*67e74705SXin Li //
1446*67e74705SXin Li // The C language has no notion of ODR; furthermore, it has no notion of
1447*67e74705SXin Li // dynamic initialization. This means that we are permitted to
1448*67e74705SXin Li // perform initialization with the address of the thunk.
1449*67e74705SXin Li if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1450*67e74705SXin Li return false;
1451*67e74705SXin Li }
1452*67e74705SXin Li }
1453*67e74705SXin Li
1454*67e74705SXin Li // Allow address constant expressions to be past-the-end pointers. This is
1455*67e74705SXin Li // an extension: the standard requires them to point to an object.
1456*67e74705SXin Li if (!IsReferenceType)
1457*67e74705SXin Li return true;
1458*67e74705SXin Li
1459*67e74705SXin Li // A reference constant expression must refer to an object.
1460*67e74705SXin Li if (!Base) {
1461*67e74705SXin Li // FIXME: diagnostic
1462*67e74705SXin Li Info.CCEDiag(Loc);
1463*67e74705SXin Li return true;
1464*67e74705SXin Li }
1465*67e74705SXin Li
1466*67e74705SXin Li // Does this refer one past the end of some object?
1467*67e74705SXin Li if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1468*67e74705SXin Li const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1469*67e74705SXin Li Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
1470*67e74705SXin Li << !Designator.Entries.empty() << !!VD << VD;
1471*67e74705SXin Li NoteLValueLocation(Info, Base);
1472*67e74705SXin Li }
1473*67e74705SXin Li
1474*67e74705SXin Li return true;
1475*67e74705SXin Li }
1476*67e74705SXin Li
1477*67e74705SXin Li /// Check that this core constant expression is of literal type, and if not,
1478*67e74705SXin Li /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1479*67e74705SXin Li static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1480*67e74705SXin Li const LValue *This = nullptr) {
1481*67e74705SXin Li if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1482*67e74705SXin Li return true;
1483*67e74705SXin Li
1484*67e74705SXin Li // C++1y: A constant initializer for an object o [...] may also invoke
1485*67e74705SXin Li // constexpr constructors for o and its subobjects even if those objects
1486*67e74705SXin Li // are of non-literal class types.
1487*67e74705SXin Li if (Info.getLangOpts().CPlusPlus14 && This &&
1488*67e74705SXin Li Info.EvaluatingDecl == This->getLValueBase())
1489*67e74705SXin Li return true;
1490*67e74705SXin Li
1491*67e74705SXin Li // Prvalue constant expressions must be of literal types.
1492*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
1493*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_nonliteral)
1494*67e74705SXin Li << E->getType();
1495*67e74705SXin Li else
1496*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1497*67e74705SXin Li return false;
1498*67e74705SXin Li }
1499*67e74705SXin Li
1500*67e74705SXin Li /// Check that this core constant expression value is a valid value for a
1501*67e74705SXin Li /// constant expression. If not, report an appropriate diagnostic. Does not
1502*67e74705SXin Li /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1503*67e74705SXin Li static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1504*67e74705SXin Li QualType Type, const APValue &Value) {
1505*67e74705SXin Li if (Value.isUninit()) {
1506*67e74705SXin Li Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
1507*67e74705SXin Li << true << Type;
1508*67e74705SXin Li return false;
1509*67e74705SXin Li }
1510*67e74705SXin Li
1511*67e74705SXin Li // We allow _Atomic(T) to be initialized from anything that T can be
1512*67e74705SXin Li // initialized from.
1513*67e74705SXin Li if (const AtomicType *AT = Type->getAs<AtomicType>())
1514*67e74705SXin Li Type = AT->getValueType();
1515*67e74705SXin Li
1516*67e74705SXin Li // Core issue 1454: For a literal constant expression of array or class type,
1517*67e74705SXin Li // each subobject of its value shall have been initialized by a constant
1518*67e74705SXin Li // expression.
1519*67e74705SXin Li if (Value.isArray()) {
1520*67e74705SXin Li QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1521*67e74705SXin Li for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1522*67e74705SXin Li if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1523*67e74705SXin Li Value.getArrayInitializedElt(I)))
1524*67e74705SXin Li return false;
1525*67e74705SXin Li }
1526*67e74705SXin Li if (!Value.hasArrayFiller())
1527*67e74705SXin Li return true;
1528*67e74705SXin Li return CheckConstantExpression(Info, DiagLoc, EltTy,
1529*67e74705SXin Li Value.getArrayFiller());
1530*67e74705SXin Li }
1531*67e74705SXin Li if (Value.isUnion() && Value.getUnionField()) {
1532*67e74705SXin Li return CheckConstantExpression(Info, DiagLoc,
1533*67e74705SXin Li Value.getUnionField()->getType(),
1534*67e74705SXin Li Value.getUnionValue());
1535*67e74705SXin Li }
1536*67e74705SXin Li if (Value.isStruct()) {
1537*67e74705SXin Li RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1538*67e74705SXin Li if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1539*67e74705SXin Li unsigned BaseIndex = 0;
1540*67e74705SXin Li for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1541*67e74705SXin Li End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1542*67e74705SXin Li if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1543*67e74705SXin Li Value.getStructBase(BaseIndex)))
1544*67e74705SXin Li return false;
1545*67e74705SXin Li }
1546*67e74705SXin Li }
1547*67e74705SXin Li for (const auto *I : RD->fields()) {
1548*67e74705SXin Li if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1549*67e74705SXin Li Value.getStructField(I->getFieldIndex())))
1550*67e74705SXin Li return false;
1551*67e74705SXin Li }
1552*67e74705SXin Li }
1553*67e74705SXin Li
1554*67e74705SXin Li if (Value.isLValue()) {
1555*67e74705SXin Li LValue LVal;
1556*67e74705SXin Li LVal.setFrom(Info.Ctx, Value);
1557*67e74705SXin Li return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1558*67e74705SXin Li }
1559*67e74705SXin Li
1560*67e74705SXin Li // Everything else is fine.
1561*67e74705SXin Li return true;
1562*67e74705SXin Li }
1563*67e74705SXin Li
GetLValueBaseDecl(const LValue & LVal)1564*67e74705SXin Li static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1565*67e74705SXin Li return LVal.Base.dyn_cast<const ValueDecl*>();
1566*67e74705SXin Li }
1567*67e74705SXin Li
IsLiteralLValue(const LValue & Value)1568*67e74705SXin Li static bool IsLiteralLValue(const LValue &Value) {
1569*67e74705SXin Li if (Value.CallIndex)
1570*67e74705SXin Li return false;
1571*67e74705SXin Li const Expr *E = Value.Base.dyn_cast<const Expr*>();
1572*67e74705SXin Li return E && !isa<MaterializeTemporaryExpr>(E);
1573*67e74705SXin Li }
1574*67e74705SXin Li
IsWeakLValue(const LValue & Value)1575*67e74705SXin Li static bool IsWeakLValue(const LValue &Value) {
1576*67e74705SXin Li const ValueDecl *Decl = GetLValueBaseDecl(Value);
1577*67e74705SXin Li return Decl && Decl->isWeak();
1578*67e74705SXin Li }
1579*67e74705SXin Li
isZeroSized(const LValue & Value)1580*67e74705SXin Li static bool isZeroSized(const LValue &Value) {
1581*67e74705SXin Li const ValueDecl *Decl = GetLValueBaseDecl(Value);
1582*67e74705SXin Li if (Decl && isa<VarDecl>(Decl)) {
1583*67e74705SXin Li QualType Ty = Decl->getType();
1584*67e74705SXin Li if (Ty->isArrayType())
1585*67e74705SXin Li return Ty->isIncompleteType() ||
1586*67e74705SXin Li Decl->getASTContext().getTypeSize(Ty) == 0;
1587*67e74705SXin Li }
1588*67e74705SXin Li return false;
1589*67e74705SXin Li }
1590*67e74705SXin Li
EvalPointerValueAsBool(const APValue & Value,bool & Result)1591*67e74705SXin Li static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1592*67e74705SXin Li // A null base expression indicates a null pointer. These are always
1593*67e74705SXin Li // evaluatable, and they are false unless the offset is zero.
1594*67e74705SXin Li if (!Value.getLValueBase()) {
1595*67e74705SXin Li Result = !Value.getLValueOffset().isZero();
1596*67e74705SXin Li return true;
1597*67e74705SXin Li }
1598*67e74705SXin Li
1599*67e74705SXin Li // We have a non-null base. These are generally known to be true, but if it's
1600*67e74705SXin Li // a weak declaration it can be null at runtime.
1601*67e74705SXin Li Result = true;
1602*67e74705SXin Li const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1603*67e74705SXin Li return !Decl || !Decl->isWeak();
1604*67e74705SXin Li }
1605*67e74705SXin Li
HandleConversionToBool(const APValue & Val,bool & Result)1606*67e74705SXin Li static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1607*67e74705SXin Li switch (Val.getKind()) {
1608*67e74705SXin Li case APValue::Uninitialized:
1609*67e74705SXin Li return false;
1610*67e74705SXin Li case APValue::Int:
1611*67e74705SXin Li Result = Val.getInt().getBoolValue();
1612*67e74705SXin Li return true;
1613*67e74705SXin Li case APValue::Float:
1614*67e74705SXin Li Result = !Val.getFloat().isZero();
1615*67e74705SXin Li return true;
1616*67e74705SXin Li case APValue::ComplexInt:
1617*67e74705SXin Li Result = Val.getComplexIntReal().getBoolValue() ||
1618*67e74705SXin Li Val.getComplexIntImag().getBoolValue();
1619*67e74705SXin Li return true;
1620*67e74705SXin Li case APValue::ComplexFloat:
1621*67e74705SXin Li Result = !Val.getComplexFloatReal().isZero() ||
1622*67e74705SXin Li !Val.getComplexFloatImag().isZero();
1623*67e74705SXin Li return true;
1624*67e74705SXin Li case APValue::LValue:
1625*67e74705SXin Li return EvalPointerValueAsBool(Val, Result);
1626*67e74705SXin Li case APValue::MemberPointer:
1627*67e74705SXin Li Result = Val.getMemberPointerDecl();
1628*67e74705SXin Li return true;
1629*67e74705SXin Li case APValue::Vector:
1630*67e74705SXin Li case APValue::Array:
1631*67e74705SXin Li case APValue::Struct:
1632*67e74705SXin Li case APValue::Union:
1633*67e74705SXin Li case APValue::AddrLabelDiff:
1634*67e74705SXin Li return false;
1635*67e74705SXin Li }
1636*67e74705SXin Li
1637*67e74705SXin Li llvm_unreachable("unknown APValue kind");
1638*67e74705SXin Li }
1639*67e74705SXin Li
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1640*67e74705SXin Li static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1641*67e74705SXin Li EvalInfo &Info) {
1642*67e74705SXin Li assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1643*67e74705SXin Li APValue Val;
1644*67e74705SXin Li if (!Evaluate(Val, Info, E))
1645*67e74705SXin Li return false;
1646*67e74705SXin Li return HandleConversionToBool(Val, Result);
1647*67e74705SXin Li }
1648*67e74705SXin Li
1649*67e74705SXin Li template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1650*67e74705SXin Li static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1651*67e74705SXin Li const T &SrcValue, QualType DestType) {
1652*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_overflow)
1653*67e74705SXin Li << SrcValue << DestType;
1654*67e74705SXin Li return Info.noteUndefinedBehavior();
1655*67e74705SXin Li }
1656*67e74705SXin Li
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1657*67e74705SXin Li static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1658*67e74705SXin Li QualType SrcType, const APFloat &Value,
1659*67e74705SXin Li QualType DestType, APSInt &Result) {
1660*67e74705SXin Li unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1661*67e74705SXin Li // Determine whether we are converting to unsigned or signed.
1662*67e74705SXin Li bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1663*67e74705SXin Li
1664*67e74705SXin Li Result = APSInt(DestWidth, !DestSigned);
1665*67e74705SXin Li bool ignored;
1666*67e74705SXin Li if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1667*67e74705SXin Li & APFloat::opInvalidOp)
1668*67e74705SXin Li return HandleOverflow(Info, E, Value, DestType);
1669*67e74705SXin Li return true;
1670*67e74705SXin Li }
1671*67e74705SXin Li
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1672*67e74705SXin Li static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1673*67e74705SXin Li QualType SrcType, QualType DestType,
1674*67e74705SXin Li APFloat &Result) {
1675*67e74705SXin Li APFloat Value = Result;
1676*67e74705SXin Li bool ignored;
1677*67e74705SXin Li if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1678*67e74705SXin Li APFloat::rmNearestTiesToEven, &ignored)
1679*67e74705SXin Li & APFloat::opOverflow)
1680*67e74705SXin Li return HandleOverflow(Info, E, Value, DestType);
1681*67e74705SXin Li return true;
1682*67e74705SXin Li }
1683*67e74705SXin Li
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)1684*67e74705SXin Li static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1685*67e74705SXin Li QualType DestType, QualType SrcType,
1686*67e74705SXin Li const APSInt &Value) {
1687*67e74705SXin Li unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1688*67e74705SXin Li APSInt Result = Value;
1689*67e74705SXin Li // Figure out if this is a truncate, extend or noop cast.
1690*67e74705SXin Li // If the input is signed, do a sign extend, noop, or truncate.
1691*67e74705SXin Li Result = Result.extOrTrunc(DestWidth);
1692*67e74705SXin Li Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1693*67e74705SXin Li return Result;
1694*67e74705SXin Li }
1695*67e74705SXin Li
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1696*67e74705SXin Li static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1697*67e74705SXin Li QualType SrcType, const APSInt &Value,
1698*67e74705SXin Li QualType DestType, APFloat &Result) {
1699*67e74705SXin Li Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1700*67e74705SXin Li if (Result.convertFromAPInt(Value, Value.isSigned(),
1701*67e74705SXin Li APFloat::rmNearestTiesToEven)
1702*67e74705SXin Li & APFloat::opOverflow)
1703*67e74705SXin Li return HandleOverflow(Info, E, Value, DestType);
1704*67e74705SXin Li return true;
1705*67e74705SXin Li }
1706*67e74705SXin Li
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1707*67e74705SXin Li static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1708*67e74705SXin Li APValue &Value, const FieldDecl *FD) {
1709*67e74705SXin Li assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1710*67e74705SXin Li
1711*67e74705SXin Li if (!Value.isInt()) {
1712*67e74705SXin Li // Trying to store a pointer-cast-to-integer into a bitfield.
1713*67e74705SXin Li // FIXME: In this case, we should provide the diagnostic for casting
1714*67e74705SXin Li // a pointer to an integer.
1715*67e74705SXin Li assert(Value.isLValue() && "integral value neither int nor lvalue?");
1716*67e74705SXin Li Info.FFDiag(E);
1717*67e74705SXin Li return false;
1718*67e74705SXin Li }
1719*67e74705SXin Li
1720*67e74705SXin Li APSInt &Int = Value.getInt();
1721*67e74705SXin Li unsigned OldBitWidth = Int.getBitWidth();
1722*67e74705SXin Li unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1723*67e74705SXin Li if (NewBitWidth < OldBitWidth)
1724*67e74705SXin Li Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1725*67e74705SXin Li return true;
1726*67e74705SXin Li }
1727*67e74705SXin Li
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1728*67e74705SXin Li static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1729*67e74705SXin Li llvm::APInt &Res) {
1730*67e74705SXin Li APValue SVal;
1731*67e74705SXin Li if (!Evaluate(SVal, Info, E))
1732*67e74705SXin Li return false;
1733*67e74705SXin Li if (SVal.isInt()) {
1734*67e74705SXin Li Res = SVal.getInt();
1735*67e74705SXin Li return true;
1736*67e74705SXin Li }
1737*67e74705SXin Li if (SVal.isFloat()) {
1738*67e74705SXin Li Res = SVal.getFloat().bitcastToAPInt();
1739*67e74705SXin Li return true;
1740*67e74705SXin Li }
1741*67e74705SXin Li if (SVal.isVector()) {
1742*67e74705SXin Li QualType VecTy = E->getType();
1743*67e74705SXin Li unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1744*67e74705SXin Li QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1745*67e74705SXin Li unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1746*67e74705SXin Li bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1747*67e74705SXin Li Res = llvm::APInt::getNullValue(VecSize);
1748*67e74705SXin Li for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1749*67e74705SXin Li APValue &Elt = SVal.getVectorElt(i);
1750*67e74705SXin Li llvm::APInt EltAsInt;
1751*67e74705SXin Li if (Elt.isInt()) {
1752*67e74705SXin Li EltAsInt = Elt.getInt();
1753*67e74705SXin Li } else if (Elt.isFloat()) {
1754*67e74705SXin Li EltAsInt = Elt.getFloat().bitcastToAPInt();
1755*67e74705SXin Li } else {
1756*67e74705SXin Li // Don't try to handle vectors of anything other than int or float
1757*67e74705SXin Li // (not sure if it's possible to hit this case).
1758*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1759*67e74705SXin Li return false;
1760*67e74705SXin Li }
1761*67e74705SXin Li unsigned BaseEltSize = EltAsInt.getBitWidth();
1762*67e74705SXin Li if (BigEndian)
1763*67e74705SXin Li Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1764*67e74705SXin Li else
1765*67e74705SXin Li Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1766*67e74705SXin Li }
1767*67e74705SXin Li return true;
1768*67e74705SXin Li }
1769*67e74705SXin Li // Give up if the input isn't an int, float, or vector. For example, we
1770*67e74705SXin Li // reject "(v4i16)(intptr_t)&a".
1771*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1772*67e74705SXin Li return false;
1773*67e74705SXin Li }
1774*67e74705SXin Li
1775*67e74705SXin Li /// Perform the given integer operation, which is known to need at most BitWidth
1776*67e74705SXin Li /// bits, and check for overflow in the original type (if that type was not an
1777*67e74705SXin Li /// unsigned type).
1778*67e74705SXin Li template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)1779*67e74705SXin Li static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1780*67e74705SXin Li const APSInt &LHS, const APSInt &RHS,
1781*67e74705SXin Li unsigned BitWidth, Operation Op,
1782*67e74705SXin Li APSInt &Result) {
1783*67e74705SXin Li if (LHS.isUnsigned()) {
1784*67e74705SXin Li Result = Op(LHS, RHS);
1785*67e74705SXin Li return true;
1786*67e74705SXin Li }
1787*67e74705SXin Li
1788*67e74705SXin Li APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1789*67e74705SXin Li Result = Value.trunc(LHS.getBitWidth());
1790*67e74705SXin Li if (Result.extend(BitWidth) != Value) {
1791*67e74705SXin Li if (Info.checkingForOverflow())
1792*67e74705SXin Li Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1793*67e74705SXin Li diag::warn_integer_constant_overflow)
1794*67e74705SXin Li << Result.toString(10) << E->getType();
1795*67e74705SXin Li else
1796*67e74705SXin Li return HandleOverflow(Info, E, Value, E->getType());
1797*67e74705SXin Li }
1798*67e74705SXin Li return true;
1799*67e74705SXin Li }
1800*67e74705SXin Li
1801*67e74705SXin Li /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1802*67e74705SXin Li static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1803*67e74705SXin Li BinaryOperatorKind Opcode, APSInt RHS,
1804*67e74705SXin Li APSInt &Result) {
1805*67e74705SXin Li switch (Opcode) {
1806*67e74705SXin Li default:
1807*67e74705SXin Li Info.FFDiag(E);
1808*67e74705SXin Li return false;
1809*67e74705SXin Li case BO_Mul:
1810*67e74705SXin Li return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1811*67e74705SXin Li std::multiplies<APSInt>(), Result);
1812*67e74705SXin Li case BO_Add:
1813*67e74705SXin Li return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1814*67e74705SXin Li std::plus<APSInt>(), Result);
1815*67e74705SXin Li case BO_Sub:
1816*67e74705SXin Li return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1817*67e74705SXin Li std::minus<APSInt>(), Result);
1818*67e74705SXin Li case BO_And: Result = LHS & RHS; return true;
1819*67e74705SXin Li case BO_Xor: Result = LHS ^ RHS; return true;
1820*67e74705SXin Li case BO_Or: Result = LHS | RHS; return true;
1821*67e74705SXin Li case BO_Div:
1822*67e74705SXin Li case BO_Rem:
1823*67e74705SXin Li if (RHS == 0) {
1824*67e74705SXin Li Info.FFDiag(E, diag::note_expr_divide_by_zero);
1825*67e74705SXin Li return false;
1826*67e74705SXin Li }
1827*67e74705SXin Li Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1828*67e74705SXin Li // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
1829*67e74705SXin Li // this operation and gives the two's complement result.
1830*67e74705SXin Li if (RHS.isNegative() && RHS.isAllOnesValue() &&
1831*67e74705SXin Li LHS.isSigned() && LHS.isMinSignedValue())
1832*67e74705SXin Li return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
1833*67e74705SXin Li E->getType());
1834*67e74705SXin Li return true;
1835*67e74705SXin Li case BO_Shl: {
1836*67e74705SXin Li if (Info.getLangOpts().OpenCL)
1837*67e74705SXin Li // OpenCL 6.3j: shift values are effectively % word size of LHS.
1838*67e74705SXin Li RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1839*67e74705SXin Li static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1840*67e74705SXin Li RHS.isUnsigned());
1841*67e74705SXin Li else if (RHS.isSigned() && RHS.isNegative()) {
1842*67e74705SXin Li // During constant-folding, a negative shift is an opposite shift. Such
1843*67e74705SXin Li // a shift is not a constant expression.
1844*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1845*67e74705SXin Li RHS = -RHS;
1846*67e74705SXin Li goto shift_right;
1847*67e74705SXin Li }
1848*67e74705SXin Li shift_left:
1849*67e74705SXin Li // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1850*67e74705SXin Li // the shifted type.
1851*67e74705SXin Li unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1852*67e74705SXin Li if (SA != RHS) {
1853*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_large_shift)
1854*67e74705SXin Li << RHS << E->getType() << LHS.getBitWidth();
1855*67e74705SXin Li } else if (LHS.isSigned()) {
1856*67e74705SXin Li // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1857*67e74705SXin Li // operand, and must not overflow the corresponding unsigned type.
1858*67e74705SXin Li if (LHS.isNegative())
1859*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1860*67e74705SXin Li else if (LHS.countLeadingZeros() < SA)
1861*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1862*67e74705SXin Li }
1863*67e74705SXin Li Result = LHS << SA;
1864*67e74705SXin Li return true;
1865*67e74705SXin Li }
1866*67e74705SXin Li case BO_Shr: {
1867*67e74705SXin Li if (Info.getLangOpts().OpenCL)
1868*67e74705SXin Li // OpenCL 6.3j: shift values are effectively % word size of LHS.
1869*67e74705SXin Li RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1870*67e74705SXin Li static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1871*67e74705SXin Li RHS.isUnsigned());
1872*67e74705SXin Li else if (RHS.isSigned() && RHS.isNegative()) {
1873*67e74705SXin Li // During constant-folding, a negative shift is an opposite shift. Such a
1874*67e74705SXin Li // shift is not a constant expression.
1875*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1876*67e74705SXin Li RHS = -RHS;
1877*67e74705SXin Li goto shift_left;
1878*67e74705SXin Li }
1879*67e74705SXin Li shift_right:
1880*67e74705SXin Li // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1881*67e74705SXin Li // shifted type.
1882*67e74705SXin Li unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1883*67e74705SXin Li if (SA != RHS)
1884*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_large_shift)
1885*67e74705SXin Li << RHS << E->getType() << LHS.getBitWidth();
1886*67e74705SXin Li Result = LHS >> SA;
1887*67e74705SXin Li return true;
1888*67e74705SXin Li }
1889*67e74705SXin Li
1890*67e74705SXin Li case BO_LT: Result = LHS < RHS; return true;
1891*67e74705SXin Li case BO_GT: Result = LHS > RHS; return true;
1892*67e74705SXin Li case BO_LE: Result = LHS <= RHS; return true;
1893*67e74705SXin Li case BO_GE: Result = LHS >= RHS; return true;
1894*67e74705SXin Li case BO_EQ: Result = LHS == RHS; return true;
1895*67e74705SXin Li case BO_NE: Result = LHS != RHS; return true;
1896*67e74705SXin Li }
1897*67e74705SXin Li }
1898*67e74705SXin Li
1899*67e74705SXin Li /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1900*67e74705SXin Li static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1901*67e74705SXin Li APFloat &LHS, BinaryOperatorKind Opcode,
1902*67e74705SXin Li const APFloat &RHS) {
1903*67e74705SXin Li switch (Opcode) {
1904*67e74705SXin Li default:
1905*67e74705SXin Li Info.FFDiag(E);
1906*67e74705SXin Li return false;
1907*67e74705SXin Li case BO_Mul:
1908*67e74705SXin Li LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1909*67e74705SXin Li break;
1910*67e74705SXin Li case BO_Add:
1911*67e74705SXin Li LHS.add(RHS, APFloat::rmNearestTiesToEven);
1912*67e74705SXin Li break;
1913*67e74705SXin Li case BO_Sub:
1914*67e74705SXin Li LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1915*67e74705SXin Li break;
1916*67e74705SXin Li case BO_Div:
1917*67e74705SXin Li LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1918*67e74705SXin Li break;
1919*67e74705SXin Li }
1920*67e74705SXin Li
1921*67e74705SXin Li if (LHS.isInfinity() || LHS.isNaN()) {
1922*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1923*67e74705SXin Li return Info.noteUndefinedBehavior();
1924*67e74705SXin Li }
1925*67e74705SXin Li return true;
1926*67e74705SXin Li }
1927*67e74705SXin Li
1928*67e74705SXin Li /// Cast an lvalue referring to a base subobject to a derived class, by
1929*67e74705SXin Li /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1930*67e74705SXin Li static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1931*67e74705SXin Li const RecordDecl *TruncatedType,
1932*67e74705SXin Li unsigned TruncatedElements) {
1933*67e74705SXin Li SubobjectDesignator &D = Result.Designator;
1934*67e74705SXin Li
1935*67e74705SXin Li // Check we actually point to a derived class object.
1936*67e74705SXin Li if (TruncatedElements == D.Entries.size())
1937*67e74705SXin Li return true;
1938*67e74705SXin Li assert(TruncatedElements >= D.MostDerivedPathLength &&
1939*67e74705SXin Li "not casting to a derived class");
1940*67e74705SXin Li if (!Result.checkSubobject(Info, E, CSK_Derived))
1941*67e74705SXin Li return false;
1942*67e74705SXin Li
1943*67e74705SXin Li // Truncate the path to the subobject, and remove any derived-to-base offsets.
1944*67e74705SXin Li const RecordDecl *RD = TruncatedType;
1945*67e74705SXin Li for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1946*67e74705SXin Li if (RD->isInvalidDecl()) return false;
1947*67e74705SXin Li const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1948*67e74705SXin Li const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1949*67e74705SXin Li if (isVirtualBaseClass(D.Entries[I]))
1950*67e74705SXin Li Result.Offset -= Layout.getVBaseClassOffset(Base);
1951*67e74705SXin Li else
1952*67e74705SXin Li Result.Offset -= Layout.getBaseClassOffset(Base);
1953*67e74705SXin Li RD = Base;
1954*67e74705SXin Li }
1955*67e74705SXin Li D.Entries.resize(TruncatedElements);
1956*67e74705SXin Li return true;
1957*67e74705SXin Li }
1958*67e74705SXin Li
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1959*67e74705SXin Li static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1960*67e74705SXin Li const CXXRecordDecl *Derived,
1961*67e74705SXin Li const CXXRecordDecl *Base,
1962*67e74705SXin Li const ASTRecordLayout *RL = nullptr) {
1963*67e74705SXin Li if (!RL) {
1964*67e74705SXin Li if (Derived->isInvalidDecl()) return false;
1965*67e74705SXin Li RL = &Info.Ctx.getASTRecordLayout(Derived);
1966*67e74705SXin Li }
1967*67e74705SXin Li
1968*67e74705SXin Li Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1969*67e74705SXin Li Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1970*67e74705SXin Li return true;
1971*67e74705SXin Li }
1972*67e74705SXin Li
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1973*67e74705SXin Li static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1974*67e74705SXin Li const CXXRecordDecl *DerivedDecl,
1975*67e74705SXin Li const CXXBaseSpecifier *Base) {
1976*67e74705SXin Li const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1977*67e74705SXin Li
1978*67e74705SXin Li if (!Base->isVirtual())
1979*67e74705SXin Li return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1980*67e74705SXin Li
1981*67e74705SXin Li SubobjectDesignator &D = Obj.Designator;
1982*67e74705SXin Li if (D.Invalid)
1983*67e74705SXin Li return false;
1984*67e74705SXin Li
1985*67e74705SXin Li // Extract most-derived object and corresponding type.
1986*67e74705SXin Li DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1987*67e74705SXin Li if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1988*67e74705SXin Li return false;
1989*67e74705SXin Li
1990*67e74705SXin Li // Find the virtual base class.
1991*67e74705SXin Li if (DerivedDecl->isInvalidDecl()) return false;
1992*67e74705SXin Li const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1993*67e74705SXin Li Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1994*67e74705SXin Li Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1995*67e74705SXin Li return true;
1996*67e74705SXin Li }
1997*67e74705SXin Li
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1998*67e74705SXin Li static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1999*67e74705SXin Li QualType Type, LValue &Result) {
2000*67e74705SXin Li for (CastExpr::path_const_iterator PathI = E->path_begin(),
2001*67e74705SXin Li PathE = E->path_end();
2002*67e74705SXin Li PathI != PathE; ++PathI) {
2003*67e74705SXin Li if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2004*67e74705SXin Li *PathI))
2005*67e74705SXin Li return false;
2006*67e74705SXin Li Type = (*PathI)->getType();
2007*67e74705SXin Li }
2008*67e74705SXin Li return true;
2009*67e74705SXin Li }
2010*67e74705SXin Li
2011*67e74705SXin Li /// Update LVal to refer to the given field, which must be a member of the type
2012*67e74705SXin Li /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)2013*67e74705SXin Li static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2014*67e74705SXin Li const FieldDecl *FD,
2015*67e74705SXin Li const ASTRecordLayout *RL = nullptr) {
2016*67e74705SXin Li if (!RL) {
2017*67e74705SXin Li if (FD->getParent()->isInvalidDecl()) return false;
2018*67e74705SXin Li RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2019*67e74705SXin Li }
2020*67e74705SXin Li
2021*67e74705SXin Li unsigned I = FD->getFieldIndex();
2022*67e74705SXin Li LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
2023*67e74705SXin Li LVal.addDecl(Info, E, FD);
2024*67e74705SXin Li return true;
2025*67e74705SXin Li }
2026*67e74705SXin Li
2027*67e74705SXin Li /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)2028*67e74705SXin Li static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2029*67e74705SXin Li LValue &LVal,
2030*67e74705SXin Li const IndirectFieldDecl *IFD) {
2031*67e74705SXin Li for (const auto *C : IFD->chain())
2032*67e74705SXin Li if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2033*67e74705SXin Li return false;
2034*67e74705SXin Li return true;
2035*67e74705SXin Li }
2036*67e74705SXin Li
2037*67e74705SXin Li /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)2038*67e74705SXin Li static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2039*67e74705SXin Li QualType Type, CharUnits &Size) {
2040*67e74705SXin Li // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2041*67e74705SXin Li // extension.
2042*67e74705SXin Li if (Type->isVoidType() || Type->isFunctionType()) {
2043*67e74705SXin Li Size = CharUnits::One();
2044*67e74705SXin Li return true;
2045*67e74705SXin Li }
2046*67e74705SXin Li
2047*67e74705SXin Li if (Type->isDependentType()) {
2048*67e74705SXin Li Info.FFDiag(Loc);
2049*67e74705SXin Li return false;
2050*67e74705SXin Li }
2051*67e74705SXin Li
2052*67e74705SXin Li if (!Type->isConstantSizeType()) {
2053*67e74705SXin Li // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2054*67e74705SXin Li // FIXME: Better diagnostic.
2055*67e74705SXin Li Info.FFDiag(Loc);
2056*67e74705SXin Li return false;
2057*67e74705SXin Li }
2058*67e74705SXin Li
2059*67e74705SXin Li Size = Info.Ctx.getTypeSizeInChars(Type);
2060*67e74705SXin Li return true;
2061*67e74705SXin Li }
2062*67e74705SXin Li
2063*67e74705SXin Li /// Update a pointer value to model pointer arithmetic.
2064*67e74705SXin Li /// \param Info - Information about the ongoing evaluation.
2065*67e74705SXin Li /// \param E - The expression being evaluated, for diagnostic purposes.
2066*67e74705SXin Li /// \param LVal - The pointer value to be updated.
2067*67e74705SXin Li /// \param EltTy - The pointee type represented by LVal.
2068*67e74705SXin Li /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)2069*67e74705SXin Li static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2070*67e74705SXin Li LValue &LVal, QualType EltTy,
2071*67e74705SXin Li int64_t Adjustment) {
2072*67e74705SXin Li CharUnits SizeOfPointee;
2073*67e74705SXin Li if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2074*67e74705SXin Li return false;
2075*67e74705SXin Li
2076*67e74705SXin Li // Compute the new offset in the appropriate width.
2077*67e74705SXin Li LVal.Offset += Adjustment * SizeOfPointee;
2078*67e74705SXin Li LVal.adjustIndex(Info, E, Adjustment);
2079*67e74705SXin Li return true;
2080*67e74705SXin Li }
2081*67e74705SXin Li
2082*67e74705SXin Li /// Update an lvalue to refer to a component of a complex number.
2083*67e74705SXin Li /// \param Info - Information about the ongoing evaluation.
2084*67e74705SXin Li /// \param LVal - The lvalue to be updated.
2085*67e74705SXin Li /// \param EltTy - The complex number's component type.
2086*67e74705SXin Li /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)2087*67e74705SXin Li static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2088*67e74705SXin Li LValue &LVal, QualType EltTy,
2089*67e74705SXin Li bool Imag) {
2090*67e74705SXin Li if (Imag) {
2091*67e74705SXin Li CharUnits SizeOfComponent;
2092*67e74705SXin Li if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2093*67e74705SXin Li return false;
2094*67e74705SXin Li LVal.Offset += SizeOfComponent;
2095*67e74705SXin Li }
2096*67e74705SXin Li LVal.addComplex(Info, E, EltTy, Imag);
2097*67e74705SXin Li return true;
2098*67e74705SXin Li }
2099*67e74705SXin Li
2100*67e74705SXin Li /// Try to evaluate the initializer for a variable declaration.
2101*67e74705SXin Li ///
2102*67e74705SXin Li /// \param Info Information about the ongoing evaluation.
2103*67e74705SXin Li /// \param E An expression to be used when printing diagnostics.
2104*67e74705SXin Li /// \param VD The variable whose initializer should be obtained.
2105*67e74705SXin Li /// \param Frame The frame in which the variable was created. Must be null
2106*67e74705SXin Li /// if this variable is not local to the evaluation.
2107*67e74705SXin Li /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)2108*67e74705SXin Li static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2109*67e74705SXin Li const VarDecl *VD, CallStackFrame *Frame,
2110*67e74705SXin Li APValue *&Result) {
2111*67e74705SXin Li // If this is a parameter to an active constexpr function call, perform
2112*67e74705SXin Li // argument substitution.
2113*67e74705SXin Li if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2114*67e74705SXin Li // Assume arguments of a potential constant expression are unknown
2115*67e74705SXin Li // constant expressions.
2116*67e74705SXin Li if (Info.checkingPotentialConstantExpression())
2117*67e74705SXin Li return false;
2118*67e74705SXin Li if (!Frame || !Frame->Arguments) {
2119*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2120*67e74705SXin Li return false;
2121*67e74705SXin Li }
2122*67e74705SXin Li Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2123*67e74705SXin Li return true;
2124*67e74705SXin Li }
2125*67e74705SXin Li
2126*67e74705SXin Li // If this is a local variable, dig out its value.
2127*67e74705SXin Li if (Frame) {
2128*67e74705SXin Li Result = Frame->getTemporary(VD);
2129*67e74705SXin Li if (!Result) {
2130*67e74705SXin Li // Assume variables referenced within a lambda's call operator that were
2131*67e74705SXin Li // not declared within the call operator are captures and during checking
2132*67e74705SXin Li // of a potential constant expression, assume they are unknown constant
2133*67e74705SXin Li // expressions.
2134*67e74705SXin Li assert(isLambdaCallOperator(Frame->Callee) &&
2135*67e74705SXin Li (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2136*67e74705SXin Li "missing value for local variable");
2137*67e74705SXin Li if (Info.checkingPotentialConstantExpression())
2138*67e74705SXin Li return false;
2139*67e74705SXin Li // FIXME: implement capture evaluation during constant expr evaluation.
2140*67e74705SXin Li Info.FFDiag(E->getLocStart(),
2141*67e74705SXin Li diag::note_unimplemented_constexpr_lambda_feature_ast)
2142*67e74705SXin Li << "captures not currently allowed";
2143*67e74705SXin Li return false;
2144*67e74705SXin Li }
2145*67e74705SXin Li return true;
2146*67e74705SXin Li }
2147*67e74705SXin Li
2148*67e74705SXin Li // Dig out the initializer, and use the declaration which it's attached to.
2149*67e74705SXin Li const Expr *Init = VD->getAnyInitializer(VD);
2150*67e74705SXin Li if (!Init || Init->isValueDependent()) {
2151*67e74705SXin Li // If we're checking a potential constant expression, the variable could be
2152*67e74705SXin Li // initialized later.
2153*67e74705SXin Li if (!Info.checkingPotentialConstantExpression())
2154*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2155*67e74705SXin Li return false;
2156*67e74705SXin Li }
2157*67e74705SXin Li
2158*67e74705SXin Li // If we're currently evaluating the initializer of this declaration, use that
2159*67e74705SXin Li // in-flight value.
2160*67e74705SXin Li if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2161*67e74705SXin Li Result = Info.EvaluatingDeclValue;
2162*67e74705SXin Li return true;
2163*67e74705SXin Li }
2164*67e74705SXin Li
2165*67e74705SXin Li // Never evaluate the initializer of a weak variable. We can't be sure that
2166*67e74705SXin Li // this is the definition which will be used.
2167*67e74705SXin Li if (VD->isWeak()) {
2168*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2169*67e74705SXin Li return false;
2170*67e74705SXin Li }
2171*67e74705SXin Li
2172*67e74705SXin Li // Check that we can fold the initializer. In C++, we will have already done
2173*67e74705SXin Li // this in the cases where it matters for conformance.
2174*67e74705SXin Li SmallVector<PartialDiagnosticAt, 8> Notes;
2175*67e74705SXin Li if (!VD->evaluateValue(Notes)) {
2176*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2177*67e74705SXin Li Notes.size() + 1) << VD;
2178*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2179*67e74705SXin Li Info.addNotes(Notes);
2180*67e74705SXin Li return false;
2181*67e74705SXin Li } else if (!VD->checkInitIsICE()) {
2182*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2183*67e74705SXin Li Notes.size() + 1) << VD;
2184*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2185*67e74705SXin Li Info.addNotes(Notes);
2186*67e74705SXin Li }
2187*67e74705SXin Li
2188*67e74705SXin Li Result = VD->getEvaluatedValue();
2189*67e74705SXin Li return true;
2190*67e74705SXin Li }
2191*67e74705SXin Li
IsConstNonVolatile(QualType T)2192*67e74705SXin Li static bool IsConstNonVolatile(QualType T) {
2193*67e74705SXin Li Qualifiers Quals = T.getQualifiers();
2194*67e74705SXin Li return Quals.hasConst() && !Quals.hasVolatile();
2195*67e74705SXin Li }
2196*67e74705SXin Li
2197*67e74705SXin Li /// Get the base index of the given base class within an APValue representing
2198*67e74705SXin Li /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2199*67e74705SXin Li static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2200*67e74705SXin Li const CXXRecordDecl *Base) {
2201*67e74705SXin Li Base = Base->getCanonicalDecl();
2202*67e74705SXin Li unsigned Index = 0;
2203*67e74705SXin Li for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2204*67e74705SXin Li E = Derived->bases_end(); I != E; ++I, ++Index) {
2205*67e74705SXin Li if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2206*67e74705SXin Li return Index;
2207*67e74705SXin Li }
2208*67e74705SXin Li
2209*67e74705SXin Li llvm_unreachable("base class missing from derived class's bases list");
2210*67e74705SXin Li }
2211*67e74705SXin Li
2212*67e74705SXin Li /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2213*67e74705SXin Li static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2214*67e74705SXin Li uint64_t Index) {
2215*67e74705SXin Li // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2216*67e74705SXin Li if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2217*67e74705SXin Li Lit = PE->getFunctionName();
2218*67e74705SXin Li const StringLiteral *S = cast<StringLiteral>(Lit);
2219*67e74705SXin Li const ConstantArrayType *CAT =
2220*67e74705SXin Li Info.Ctx.getAsConstantArrayType(S->getType());
2221*67e74705SXin Li assert(CAT && "string literal isn't an array");
2222*67e74705SXin Li QualType CharType = CAT->getElementType();
2223*67e74705SXin Li assert(CharType->isIntegerType() && "unexpected character type");
2224*67e74705SXin Li
2225*67e74705SXin Li APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2226*67e74705SXin Li CharType->isUnsignedIntegerType());
2227*67e74705SXin Li if (Index < S->getLength())
2228*67e74705SXin Li Value = S->getCodeUnit(Index);
2229*67e74705SXin Li return Value;
2230*67e74705SXin Li }
2231*67e74705SXin Li
2232*67e74705SXin Li // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2233*67e74705SXin Li static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2234*67e74705SXin Li APValue &Result) {
2235*67e74705SXin Li const StringLiteral *S = cast<StringLiteral>(Lit);
2236*67e74705SXin Li const ConstantArrayType *CAT =
2237*67e74705SXin Li Info.Ctx.getAsConstantArrayType(S->getType());
2238*67e74705SXin Li assert(CAT && "string literal isn't an array");
2239*67e74705SXin Li QualType CharType = CAT->getElementType();
2240*67e74705SXin Li assert(CharType->isIntegerType() && "unexpected character type");
2241*67e74705SXin Li
2242*67e74705SXin Li unsigned Elts = CAT->getSize().getZExtValue();
2243*67e74705SXin Li Result = APValue(APValue::UninitArray(),
2244*67e74705SXin Li std::min(S->getLength(), Elts), Elts);
2245*67e74705SXin Li APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2246*67e74705SXin Li CharType->isUnsignedIntegerType());
2247*67e74705SXin Li if (Result.hasArrayFiller())
2248*67e74705SXin Li Result.getArrayFiller() = APValue(Value);
2249*67e74705SXin Li for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2250*67e74705SXin Li Value = S->getCodeUnit(I);
2251*67e74705SXin Li Result.getArrayInitializedElt(I) = APValue(Value);
2252*67e74705SXin Li }
2253*67e74705SXin Li }
2254*67e74705SXin Li
2255*67e74705SXin Li // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2256*67e74705SXin Li static void expandArray(APValue &Array, unsigned Index) {
2257*67e74705SXin Li unsigned Size = Array.getArraySize();
2258*67e74705SXin Li assert(Index < Size);
2259*67e74705SXin Li
2260*67e74705SXin Li // Always at least double the number of elements for which we store a value.
2261*67e74705SXin Li unsigned OldElts = Array.getArrayInitializedElts();
2262*67e74705SXin Li unsigned NewElts = std::max(Index+1, OldElts * 2);
2263*67e74705SXin Li NewElts = std::min(Size, std::max(NewElts, 8u));
2264*67e74705SXin Li
2265*67e74705SXin Li // Copy the data across.
2266*67e74705SXin Li APValue NewValue(APValue::UninitArray(), NewElts, Size);
2267*67e74705SXin Li for (unsigned I = 0; I != OldElts; ++I)
2268*67e74705SXin Li NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2269*67e74705SXin Li for (unsigned I = OldElts; I != NewElts; ++I)
2270*67e74705SXin Li NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2271*67e74705SXin Li if (NewValue.hasArrayFiller())
2272*67e74705SXin Li NewValue.getArrayFiller() = Array.getArrayFiller();
2273*67e74705SXin Li Array.swap(NewValue);
2274*67e74705SXin Li }
2275*67e74705SXin Li
2276*67e74705SXin Li /// Determine whether a type would actually be read by an lvalue-to-rvalue
2277*67e74705SXin Li /// conversion. If it's of class type, we may assume that the copy operation
2278*67e74705SXin Li /// is trivial. Note that this is never true for a union type with fields
2279*67e74705SXin Li /// (because the copy always "reads" the active member) and always true for
2280*67e74705SXin Li /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2281*67e74705SXin Li static bool isReadByLvalueToRvalueConversion(QualType T) {
2282*67e74705SXin Li CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2283*67e74705SXin Li if (!RD || (RD->isUnion() && !RD->field_empty()))
2284*67e74705SXin Li return true;
2285*67e74705SXin Li if (RD->isEmpty())
2286*67e74705SXin Li return false;
2287*67e74705SXin Li
2288*67e74705SXin Li for (auto *Field : RD->fields())
2289*67e74705SXin Li if (isReadByLvalueToRvalueConversion(Field->getType()))
2290*67e74705SXin Li return true;
2291*67e74705SXin Li
2292*67e74705SXin Li for (auto &BaseSpec : RD->bases())
2293*67e74705SXin Li if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2294*67e74705SXin Li return true;
2295*67e74705SXin Li
2296*67e74705SXin Li return false;
2297*67e74705SXin Li }
2298*67e74705SXin Li
2299*67e74705SXin Li /// Diagnose an attempt to read from any unreadable field within the specified
2300*67e74705SXin Li /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2301*67e74705SXin Li static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2302*67e74705SXin Li QualType T) {
2303*67e74705SXin Li CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2304*67e74705SXin Li if (!RD)
2305*67e74705SXin Li return false;
2306*67e74705SXin Li
2307*67e74705SXin Li if (!RD->hasMutableFields())
2308*67e74705SXin Li return false;
2309*67e74705SXin Li
2310*67e74705SXin Li for (auto *Field : RD->fields()) {
2311*67e74705SXin Li // If we're actually going to read this field in some way, then it can't
2312*67e74705SXin Li // be mutable. If we're in a union, then assigning to a mutable field
2313*67e74705SXin Li // (even an empty one) can change the active member, so that's not OK.
2314*67e74705SXin Li // FIXME: Add core issue number for the union case.
2315*67e74705SXin Li if (Field->isMutable() &&
2316*67e74705SXin Li (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2317*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2318*67e74705SXin Li Info.Note(Field->getLocation(), diag::note_declared_at);
2319*67e74705SXin Li return true;
2320*67e74705SXin Li }
2321*67e74705SXin Li
2322*67e74705SXin Li if (diagnoseUnreadableFields(Info, E, Field->getType()))
2323*67e74705SXin Li return true;
2324*67e74705SXin Li }
2325*67e74705SXin Li
2326*67e74705SXin Li for (auto &BaseSpec : RD->bases())
2327*67e74705SXin Li if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2328*67e74705SXin Li return true;
2329*67e74705SXin Li
2330*67e74705SXin Li // All mutable fields were empty, and thus not actually read.
2331*67e74705SXin Li return false;
2332*67e74705SXin Li }
2333*67e74705SXin Li
2334*67e74705SXin Li /// Kinds of access we can perform on an object, for diagnostics.
2335*67e74705SXin Li enum AccessKinds {
2336*67e74705SXin Li AK_Read,
2337*67e74705SXin Li AK_Assign,
2338*67e74705SXin Li AK_Increment,
2339*67e74705SXin Li AK_Decrement
2340*67e74705SXin Li };
2341*67e74705SXin Li
2342*67e74705SXin Li namespace {
2343*67e74705SXin Li /// A handle to a complete object (an object that is not a subobject of
2344*67e74705SXin Li /// another object).
2345*67e74705SXin Li struct CompleteObject {
2346*67e74705SXin Li /// The value of the complete object.
2347*67e74705SXin Li APValue *Value;
2348*67e74705SXin Li /// The type of the complete object.
2349*67e74705SXin Li QualType Type;
2350*67e74705SXin Li
CompleteObject__anon2db4a5520311::CompleteObject2351*67e74705SXin Li CompleteObject() : Value(nullptr) {}
CompleteObject__anon2db4a5520311::CompleteObject2352*67e74705SXin Li CompleteObject(APValue *Value, QualType Type)
2353*67e74705SXin Li : Value(Value), Type(Type) {
2354*67e74705SXin Li assert(Value && "missing value for complete object");
2355*67e74705SXin Li }
2356*67e74705SXin Li
operator bool__anon2db4a5520311::CompleteObject2357*67e74705SXin Li explicit operator bool() const { return Value; }
2358*67e74705SXin Li };
2359*67e74705SXin Li } // end anonymous namespace
2360*67e74705SXin Li
2361*67e74705SXin Li /// Find the designated sub-object of an rvalue.
2362*67e74705SXin Li template<typename SubobjectHandler>
2363*67e74705SXin Li typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2364*67e74705SXin Li findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2365*67e74705SXin Li const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2366*67e74705SXin Li if (Sub.Invalid)
2367*67e74705SXin Li // A diagnostic will have already been produced.
2368*67e74705SXin Li return handler.failed();
2369*67e74705SXin Li if (Sub.isOnePastTheEnd()) {
2370*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
2371*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_past_end)
2372*67e74705SXin Li << handler.AccessKind;
2373*67e74705SXin Li else
2374*67e74705SXin Li Info.FFDiag(E);
2375*67e74705SXin Li return handler.failed();
2376*67e74705SXin Li }
2377*67e74705SXin Li
2378*67e74705SXin Li APValue *O = Obj.Value;
2379*67e74705SXin Li QualType ObjType = Obj.Type;
2380*67e74705SXin Li const FieldDecl *LastField = nullptr;
2381*67e74705SXin Li
2382*67e74705SXin Li // Walk the designator's path to find the subobject.
2383*67e74705SXin Li for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2384*67e74705SXin Li if (O->isUninit()) {
2385*67e74705SXin Li if (!Info.checkingPotentialConstantExpression())
2386*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2387*67e74705SXin Li return handler.failed();
2388*67e74705SXin Li }
2389*67e74705SXin Li
2390*67e74705SXin Li if (I == N) {
2391*67e74705SXin Li // If we are reading an object of class type, there may still be more
2392*67e74705SXin Li // things we need to check: if there are any mutable subobjects, we
2393*67e74705SXin Li // cannot perform this read. (This only happens when performing a trivial
2394*67e74705SXin Li // copy or assignment.)
2395*67e74705SXin Li if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2396*67e74705SXin Li diagnoseUnreadableFields(Info, E, ObjType))
2397*67e74705SXin Li return handler.failed();
2398*67e74705SXin Li
2399*67e74705SXin Li if (!handler.found(*O, ObjType))
2400*67e74705SXin Li return false;
2401*67e74705SXin Li
2402*67e74705SXin Li // If we modified a bit-field, truncate it to the right width.
2403*67e74705SXin Li if (handler.AccessKind != AK_Read &&
2404*67e74705SXin Li LastField && LastField->isBitField() &&
2405*67e74705SXin Li !truncateBitfieldValue(Info, E, *O, LastField))
2406*67e74705SXin Li return false;
2407*67e74705SXin Li
2408*67e74705SXin Li return true;
2409*67e74705SXin Li }
2410*67e74705SXin Li
2411*67e74705SXin Li LastField = nullptr;
2412*67e74705SXin Li if (ObjType->isArrayType()) {
2413*67e74705SXin Li // Next subobject is an array element.
2414*67e74705SXin Li const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2415*67e74705SXin Li assert(CAT && "vla in literal type?");
2416*67e74705SXin Li uint64_t Index = Sub.Entries[I].ArrayIndex;
2417*67e74705SXin Li if (CAT->getSize().ule(Index)) {
2418*67e74705SXin Li // Note, it should not be possible to form a pointer with a valid
2419*67e74705SXin Li // designator which points more than one past the end of the array.
2420*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
2421*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_past_end)
2422*67e74705SXin Li << handler.AccessKind;
2423*67e74705SXin Li else
2424*67e74705SXin Li Info.FFDiag(E);
2425*67e74705SXin Li return handler.failed();
2426*67e74705SXin Li }
2427*67e74705SXin Li
2428*67e74705SXin Li ObjType = CAT->getElementType();
2429*67e74705SXin Li
2430*67e74705SXin Li // An array object is represented as either an Array APValue or as an
2431*67e74705SXin Li // LValue which refers to a string literal.
2432*67e74705SXin Li if (O->isLValue()) {
2433*67e74705SXin Li assert(I == N - 1 && "extracting subobject of character?");
2434*67e74705SXin Li assert(!O->hasLValuePath() || O->getLValuePath().empty());
2435*67e74705SXin Li if (handler.AccessKind != AK_Read)
2436*67e74705SXin Li expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2437*67e74705SXin Li *O);
2438*67e74705SXin Li else
2439*67e74705SXin Li return handler.foundString(*O, ObjType, Index);
2440*67e74705SXin Li }
2441*67e74705SXin Li
2442*67e74705SXin Li if (O->getArrayInitializedElts() > Index)
2443*67e74705SXin Li O = &O->getArrayInitializedElt(Index);
2444*67e74705SXin Li else if (handler.AccessKind != AK_Read) {
2445*67e74705SXin Li expandArray(*O, Index);
2446*67e74705SXin Li O = &O->getArrayInitializedElt(Index);
2447*67e74705SXin Li } else
2448*67e74705SXin Li O = &O->getArrayFiller();
2449*67e74705SXin Li } else if (ObjType->isAnyComplexType()) {
2450*67e74705SXin Li // Next subobject is a complex number.
2451*67e74705SXin Li uint64_t Index = Sub.Entries[I].ArrayIndex;
2452*67e74705SXin Li if (Index > 1) {
2453*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
2454*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_past_end)
2455*67e74705SXin Li << handler.AccessKind;
2456*67e74705SXin Li else
2457*67e74705SXin Li Info.FFDiag(E);
2458*67e74705SXin Li return handler.failed();
2459*67e74705SXin Li }
2460*67e74705SXin Li
2461*67e74705SXin Li bool WasConstQualified = ObjType.isConstQualified();
2462*67e74705SXin Li ObjType = ObjType->castAs<ComplexType>()->getElementType();
2463*67e74705SXin Li if (WasConstQualified)
2464*67e74705SXin Li ObjType.addConst();
2465*67e74705SXin Li
2466*67e74705SXin Li assert(I == N - 1 && "extracting subobject of scalar?");
2467*67e74705SXin Li if (O->isComplexInt()) {
2468*67e74705SXin Li return handler.found(Index ? O->getComplexIntImag()
2469*67e74705SXin Li : O->getComplexIntReal(), ObjType);
2470*67e74705SXin Li } else {
2471*67e74705SXin Li assert(O->isComplexFloat());
2472*67e74705SXin Li return handler.found(Index ? O->getComplexFloatImag()
2473*67e74705SXin Li : O->getComplexFloatReal(), ObjType);
2474*67e74705SXin Li }
2475*67e74705SXin Li } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2476*67e74705SXin Li if (Field->isMutable() && handler.AccessKind == AK_Read) {
2477*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
2478*67e74705SXin Li << Field;
2479*67e74705SXin Li Info.Note(Field->getLocation(), diag::note_declared_at);
2480*67e74705SXin Li return handler.failed();
2481*67e74705SXin Li }
2482*67e74705SXin Li
2483*67e74705SXin Li // Next subobject is a class, struct or union field.
2484*67e74705SXin Li RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2485*67e74705SXin Li if (RD->isUnion()) {
2486*67e74705SXin Li const FieldDecl *UnionField = O->getUnionField();
2487*67e74705SXin Li if (!UnionField ||
2488*67e74705SXin Li UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2489*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
2490*67e74705SXin Li << handler.AccessKind << Field << !UnionField << UnionField;
2491*67e74705SXin Li return handler.failed();
2492*67e74705SXin Li }
2493*67e74705SXin Li O = &O->getUnionValue();
2494*67e74705SXin Li } else
2495*67e74705SXin Li O = &O->getStructField(Field->getFieldIndex());
2496*67e74705SXin Li
2497*67e74705SXin Li bool WasConstQualified = ObjType.isConstQualified();
2498*67e74705SXin Li ObjType = Field->getType();
2499*67e74705SXin Li if (WasConstQualified && !Field->isMutable())
2500*67e74705SXin Li ObjType.addConst();
2501*67e74705SXin Li
2502*67e74705SXin Li if (ObjType.isVolatileQualified()) {
2503*67e74705SXin Li if (Info.getLangOpts().CPlusPlus) {
2504*67e74705SXin Li // FIXME: Include a description of the path to the volatile subobject.
2505*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2506*67e74705SXin Li << handler.AccessKind << 2 << Field;
2507*67e74705SXin Li Info.Note(Field->getLocation(), diag::note_declared_at);
2508*67e74705SXin Li } else {
2509*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2510*67e74705SXin Li }
2511*67e74705SXin Li return handler.failed();
2512*67e74705SXin Li }
2513*67e74705SXin Li
2514*67e74705SXin Li LastField = Field;
2515*67e74705SXin Li } else {
2516*67e74705SXin Li // Next subobject is a base class.
2517*67e74705SXin Li const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2518*67e74705SXin Li const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2519*67e74705SXin Li O = &O->getStructBase(getBaseIndex(Derived, Base));
2520*67e74705SXin Li
2521*67e74705SXin Li bool WasConstQualified = ObjType.isConstQualified();
2522*67e74705SXin Li ObjType = Info.Ctx.getRecordType(Base);
2523*67e74705SXin Li if (WasConstQualified)
2524*67e74705SXin Li ObjType.addConst();
2525*67e74705SXin Li }
2526*67e74705SXin Li }
2527*67e74705SXin Li }
2528*67e74705SXin Li
2529*67e74705SXin Li namespace {
2530*67e74705SXin Li struct ExtractSubobjectHandler {
2531*67e74705SXin Li EvalInfo &Info;
2532*67e74705SXin Li APValue &Result;
2533*67e74705SXin Li
2534*67e74705SXin Li static const AccessKinds AccessKind = AK_Read;
2535*67e74705SXin Li
2536*67e74705SXin Li typedef bool result_type;
failed__anon2db4a5520411::ExtractSubobjectHandler2537*67e74705SXin Li bool failed() { return false; }
found__anon2db4a5520411::ExtractSubobjectHandler2538*67e74705SXin Li bool found(APValue &Subobj, QualType SubobjType) {
2539*67e74705SXin Li Result = Subobj;
2540*67e74705SXin Li return true;
2541*67e74705SXin Li }
found__anon2db4a5520411::ExtractSubobjectHandler2542*67e74705SXin Li bool found(APSInt &Value, QualType SubobjType) {
2543*67e74705SXin Li Result = APValue(Value);
2544*67e74705SXin Li return true;
2545*67e74705SXin Li }
found__anon2db4a5520411::ExtractSubobjectHandler2546*67e74705SXin Li bool found(APFloat &Value, QualType SubobjType) {
2547*67e74705SXin Li Result = APValue(Value);
2548*67e74705SXin Li return true;
2549*67e74705SXin Li }
foundString__anon2db4a5520411::ExtractSubobjectHandler2550*67e74705SXin Li bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2551*67e74705SXin Li Result = APValue(extractStringLiteralCharacter(
2552*67e74705SXin Li Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2553*67e74705SXin Li return true;
2554*67e74705SXin Li }
2555*67e74705SXin Li };
2556*67e74705SXin Li } // end anonymous namespace
2557*67e74705SXin Li
2558*67e74705SXin Li const AccessKinds ExtractSubobjectHandler::AccessKind;
2559*67e74705SXin Li
2560*67e74705SXin Li /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2561*67e74705SXin Li static bool extractSubobject(EvalInfo &Info, const Expr *E,
2562*67e74705SXin Li const CompleteObject &Obj,
2563*67e74705SXin Li const SubobjectDesignator &Sub,
2564*67e74705SXin Li APValue &Result) {
2565*67e74705SXin Li ExtractSubobjectHandler Handler = { Info, Result };
2566*67e74705SXin Li return findSubobject(Info, E, Obj, Sub, Handler);
2567*67e74705SXin Li }
2568*67e74705SXin Li
2569*67e74705SXin Li namespace {
2570*67e74705SXin Li struct ModifySubobjectHandler {
2571*67e74705SXin Li EvalInfo &Info;
2572*67e74705SXin Li APValue &NewVal;
2573*67e74705SXin Li const Expr *E;
2574*67e74705SXin Li
2575*67e74705SXin Li typedef bool result_type;
2576*67e74705SXin Li static const AccessKinds AccessKind = AK_Assign;
2577*67e74705SXin Li
checkConst__anon2db4a5520511::ModifySubobjectHandler2578*67e74705SXin Li bool checkConst(QualType QT) {
2579*67e74705SXin Li // Assigning to a const object has undefined behavior.
2580*67e74705SXin Li if (QT.isConstQualified()) {
2581*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2582*67e74705SXin Li return false;
2583*67e74705SXin Li }
2584*67e74705SXin Li return true;
2585*67e74705SXin Li }
2586*67e74705SXin Li
failed__anon2db4a5520511::ModifySubobjectHandler2587*67e74705SXin Li bool failed() { return false; }
found__anon2db4a5520511::ModifySubobjectHandler2588*67e74705SXin Li bool found(APValue &Subobj, QualType SubobjType) {
2589*67e74705SXin Li if (!checkConst(SubobjType))
2590*67e74705SXin Li return false;
2591*67e74705SXin Li // We've been given ownership of NewVal, so just swap it in.
2592*67e74705SXin Li Subobj.swap(NewVal);
2593*67e74705SXin Li return true;
2594*67e74705SXin Li }
found__anon2db4a5520511::ModifySubobjectHandler2595*67e74705SXin Li bool found(APSInt &Value, QualType SubobjType) {
2596*67e74705SXin Li if (!checkConst(SubobjType))
2597*67e74705SXin Li return false;
2598*67e74705SXin Li if (!NewVal.isInt()) {
2599*67e74705SXin Li // Maybe trying to write a cast pointer value into a complex?
2600*67e74705SXin Li Info.FFDiag(E);
2601*67e74705SXin Li return false;
2602*67e74705SXin Li }
2603*67e74705SXin Li Value = NewVal.getInt();
2604*67e74705SXin Li return true;
2605*67e74705SXin Li }
found__anon2db4a5520511::ModifySubobjectHandler2606*67e74705SXin Li bool found(APFloat &Value, QualType SubobjType) {
2607*67e74705SXin Li if (!checkConst(SubobjType))
2608*67e74705SXin Li return false;
2609*67e74705SXin Li Value = NewVal.getFloat();
2610*67e74705SXin Li return true;
2611*67e74705SXin Li }
foundString__anon2db4a5520511::ModifySubobjectHandler2612*67e74705SXin Li bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2613*67e74705SXin Li llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2614*67e74705SXin Li }
2615*67e74705SXin Li };
2616*67e74705SXin Li } // end anonymous namespace
2617*67e74705SXin Li
2618*67e74705SXin Li const AccessKinds ModifySubobjectHandler::AccessKind;
2619*67e74705SXin Li
2620*67e74705SXin Li /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2621*67e74705SXin Li static bool modifySubobject(EvalInfo &Info, const Expr *E,
2622*67e74705SXin Li const CompleteObject &Obj,
2623*67e74705SXin Li const SubobjectDesignator &Sub,
2624*67e74705SXin Li APValue &NewVal) {
2625*67e74705SXin Li ModifySubobjectHandler Handler = { Info, NewVal, E };
2626*67e74705SXin Li return findSubobject(Info, E, Obj, Sub, Handler);
2627*67e74705SXin Li }
2628*67e74705SXin Li
2629*67e74705SXin Li /// Find the position where two subobject designators diverge, or equivalently
2630*67e74705SXin Li /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2631*67e74705SXin Li static unsigned FindDesignatorMismatch(QualType ObjType,
2632*67e74705SXin Li const SubobjectDesignator &A,
2633*67e74705SXin Li const SubobjectDesignator &B,
2634*67e74705SXin Li bool &WasArrayIndex) {
2635*67e74705SXin Li unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2636*67e74705SXin Li for (/**/; I != N; ++I) {
2637*67e74705SXin Li if (!ObjType.isNull() &&
2638*67e74705SXin Li (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2639*67e74705SXin Li // Next subobject is an array element.
2640*67e74705SXin Li if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2641*67e74705SXin Li WasArrayIndex = true;
2642*67e74705SXin Li return I;
2643*67e74705SXin Li }
2644*67e74705SXin Li if (ObjType->isAnyComplexType())
2645*67e74705SXin Li ObjType = ObjType->castAs<ComplexType>()->getElementType();
2646*67e74705SXin Li else
2647*67e74705SXin Li ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2648*67e74705SXin Li } else {
2649*67e74705SXin Li if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2650*67e74705SXin Li WasArrayIndex = false;
2651*67e74705SXin Li return I;
2652*67e74705SXin Li }
2653*67e74705SXin Li if (const FieldDecl *FD = getAsField(A.Entries[I]))
2654*67e74705SXin Li // Next subobject is a field.
2655*67e74705SXin Li ObjType = FD->getType();
2656*67e74705SXin Li else
2657*67e74705SXin Li // Next subobject is a base class.
2658*67e74705SXin Li ObjType = QualType();
2659*67e74705SXin Li }
2660*67e74705SXin Li }
2661*67e74705SXin Li WasArrayIndex = false;
2662*67e74705SXin Li return I;
2663*67e74705SXin Li }
2664*67e74705SXin Li
2665*67e74705SXin Li /// Determine whether the given subobject designators refer to elements of the
2666*67e74705SXin Li /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2667*67e74705SXin Li static bool AreElementsOfSameArray(QualType ObjType,
2668*67e74705SXin Li const SubobjectDesignator &A,
2669*67e74705SXin Li const SubobjectDesignator &B) {
2670*67e74705SXin Li if (A.Entries.size() != B.Entries.size())
2671*67e74705SXin Li return false;
2672*67e74705SXin Li
2673*67e74705SXin Li bool IsArray = A.MostDerivedIsArrayElement;
2674*67e74705SXin Li if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2675*67e74705SXin Li // A is a subobject of the array element.
2676*67e74705SXin Li return false;
2677*67e74705SXin Li
2678*67e74705SXin Li // If A (and B) designates an array element, the last entry will be the array
2679*67e74705SXin Li // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2680*67e74705SXin Li // of length 1' case, and the entire path must match.
2681*67e74705SXin Li bool WasArrayIndex;
2682*67e74705SXin Li unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2683*67e74705SXin Li return CommonLength >= A.Entries.size() - IsArray;
2684*67e74705SXin Li }
2685*67e74705SXin Li
2686*67e74705SXin Li /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2687*67e74705SXin Li static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2688*67e74705SXin Li AccessKinds AK, const LValue &LVal,
2689*67e74705SXin Li QualType LValType) {
2690*67e74705SXin Li if (!LVal.Base) {
2691*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
2692*67e74705SXin Li return CompleteObject();
2693*67e74705SXin Li }
2694*67e74705SXin Li
2695*67e74705SXin Li CallStackFrame *Frame = nullptr;
2696*67e74705SXin Li if (LVal.CallIndex) {
2697*67e74705SXin Li Frame = Info.getCallFrame(LVal.CallIndex);
2698*67e74705SXin Li if (!Frame) {
2699*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
2700*67e74705SXin Li << AK << LVal.Base.is<const ValueDecl*>();
2701*67e74705SXin Li NoteLValueLocation(Info, LVal.Base);
2702*67e74705SXin Li return CompleteObject();
2703*67e74705SXin Li }
2704*67e74705SXin Li }
2705*67e74705SXin Li
2706*67e74705SXin Li // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2707*67e74705SXin Li // is not a constant expression (even if the object is non-volatile). We also
2708*67e74705SXin Li // apply this rule to C++98, in order to conform to the expected 'volatile'
2709*67e74705SXin Li // semantics.
2710*67e74705SXin Li if (LValType.isVolatileQualified()) {
2711*67e74705SXin Li if (Info.getLangOpts().CPlusPlus)
2712*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
2713*67e74705SXin Li << AK << LValType;
2714*67e74705SXin Li else
2715*67e74705SXin Li Info.FFDiag(E);
2716*67e74705SXin Li return CompleteObject();
2717*67e74705SXin Li }
2718*67e74705SXin Li
2719*67e74705SXin Li // Compute value storage location and type of base object.
2720*67e74705SXin Li APValue *BaseVal = nullptr;
2721*67e74705SXin Li QualType BaseType = getType(LVal.Base);
2722*67e74705SXin Li
2723*67e74705SXin Li if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2724*67e74705SXin Li // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2725*67e74705SXin Li // In C++11, constexpr, non-volatile variables initialized with constant
2726*67e74705SXin Li // expressions are constant expressions too. Inside constexpr functions,
2727*67e74705SXin Li // parameters are constant expressions even if they're non-const.
2728*67e74705SXin Li // In C++1y, objects local to a constant expression (those with a Frame) are
2729*67e74705SXin Li // both readable and writable inside constant expressions.
2730*67e74705SXin Li // In C, such things can also be folded, although they are not ICEs.
2731*67e74705SXin Li const VarDecl *VD = dyn_cast<VarDecl>(D);
2732*67e74705SXin Li if (VD) {
2733*67e74705SXin Li if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2734*67e74705SXin Li VD = VDef;
2735*67e74705SXin Li }
2736*67e74705SXin Li if (!VD || VD->isInvalidDecl()) {
2737*67e74705SXin Li Info.FFDiag(E);
2738*67e74705SXin Li return CompleteObject();
2739*67e74705SXin Li }
2740*67e74705SXin Li
2741*67e74705SXin Li // Accesses of volatile-qualified objects are not allowed.
2742*67e74705SXin Li if (BaseType.isVolatileQualified()) {
2743*67e74705SXin Li if (Info.getLangOpts().CPlusPlus) {
2744*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2745*67e74705SXin Li << AK << 1 << VD;
2746*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2747*67e74705SXin Li } else {
2748*67e74705SXin Li Info.FFDiag(E);
2749*67e74705SXin Li }
2750*67e74705SXin Li return CompleteObject();
2751*67e74705SXin Li }
2752*67e74705SXin Li
2753*67e74705SXin Li // Unless we're looking at a local variable or argument in a constexpr call,
2754*67e74705SXin Li // the variable we're reading must be const.
2755*67e74705SXin Li if (!Frame) {
2756*67e74705SXin Li if (Info.getLangOpts().CPlusPlus14 &&
2757*67e74705SXin Li VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2758*67e74705SXin Li // OK, we can read and modify an object if we're in the process of
2759*67e74705SXin Li // evaluating its initializer, because its lifetime began in this
2760*67e74705SXin Li // evaluation.
2761*67e74705SXin Li } else if (AK != AK_Read) {
2762*67e74705SXin Li // All the remaining cases only permit reading.
2763*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_modify_global);
2764*67e74705SXin Li return CompleteObject();
2765*67e74705SXin Li } else if (VD->isConstexpr()) {
2766*67e74705SXin Li // OK, we can read this variable.
2767*67e74705SXin Li } else if (BaseType->isIntegralOrEnumerationType()) {
2768*67e74705SXin Li // In OpenCL if a variable is in constant address space it is a const value.
2769*67e74705SXin Li if (!(BaseType.isConstQualified() ||
2770*67e74705SXin Li (Info.getLangOpts().OpenCL &&
2771*67e74705SXin Li BaseType.getAddressSpace() == LangAS::opencl_constant))) {
2772*67e74705SXin Li if (Info.getLangOpts().CPlusPlus) {
2773*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2774*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2775*67e74705SXin Li } else {
2776*67e74705SXin Li Info.FFDiag(E);
2777*67e74705SXin Li }
2778*67e74705SXin Li return CompleteObject();
2779*67e74705SXin Li }
2780*67e74705SXin Li } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2781*67e74705SXin Li // We support folding of const floating-point types, in order to make
2782*67e74705SXin Li // static const data members of such types (supported as an extension)
2783*67e74705SXin Li // more useful.
2784*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11) {
2785*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2786*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2787*67e74705SXin Li } else {
2788*67e74705SXin Li Info.CCEDiag(E);
2789*67e74705SXin Li }
2790*67e74705SXin Li } else {
2791*67e74705SXin Li // FIXME: Allow folding of values of any literal type in all languages.
2792*67e74705SXin Li if (Info.checkingPotentialConstantExpression() &&
2793*67e74705SXin Li VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
2794*67e74705SXin Li // The definition of this variable could be constexpr. We can't
2795*67e74705SXin Li // access it right now, but may be able to in future.
2796*67e74705SXin Li } else if (Info.getLangOpts().CPlusPlus11) {
2797*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2798*67e74705SXin Li Info.Note(VD->getLocation(), diag::note_declared_at);
2799*67e74705SXin Li } else {
2800*67e74705SXin Li Info.FFDiag(E);
2801*67e74705SXin Li }
2802*67e74705SXin Li return CompleteObject();
2803*67e74705SXin Li }
2804*67e74705SXin Li }
2805*67e74705SXin Li
2806*67e74705SXin Li if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2807*67e74705SXin Li return CompleteObject();
2808*67e74705SXin Li } else {
2809*67e74705SXin Li const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2810*67e74705SXin Li
2811*67e74705SXin Li if (!Frame) {
2812*67e74705SXin Li if (const MaterializeTemporaryExpr *MTE =
2813*67e74705SXin Li dyn_cast<MaterializeTemporaryExpr>(Base)) {
2814*67e74705SXin Li assert(MTE->getStorageDuration() == SD_Static &&
2815*67e74705SXin Li "should have a frame for a non-global materialized temporary");
2816*67e74705SXin Li
2817*67e74705SXin Li // Per C++1y [expr.const]p2:
2818*67e74705SXin Li // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2819*67e74705SXin Li // - a [...] glvalue of integral or enumeration type that refers to
2820*67e74705SXin Li // a non-volatile const object [...]
2821*67e74705SXin Li // [...]
2822*67e74705SXin Li // - a [...] glvalue of literal type that refers to a non-volatile
2823*67e74705SXin Li // object whose lifetime began within the evaluation of e.
2824*67e74705SXin Li //
2825*67e74705SXin Li // C++11 misses the 'began within the evaluation of e' check and
2826*67e74705SXin Li // instead allows all temporaries, including things like:
2827*67e74705SXin Li // int &&r = 1;
2828*67e74705SXin Li // int x = ++r;
2829*67e74705SXin Li // constexpr int k = r;
2830*67e74705SXin Li // Therefore we use the C++1y rules in C++11 too.
2831*67e74705SXin Li const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2832*67e74705SXin Li const ValueDecl *ED = MTE->getExtendingDecl();
2833*67e74705SXin Li if (!(BaseType.isConstQualified() &&
2834*67e74705SXin Li BaseType->isIntegralOrEnumerationType()) &&
2835*67e74705SXin Li !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2836*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2837*67e74705SXin Li Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2838*67e74705SXin Li return CompleteObject();
2839*67e74705SXin Li }
2840*67e74705SXin Li
2841*67e74705SXin Li BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2842*67e74705SXin Li assert(BaseVal && "got reference to unevaluated temporary");
2843*67e74705SXin Li } else {
2844*67e74705SXin Li Info.FFDiag(E);
2845*67e74705SXin Li return CompleteObject();
2846*67e74705SXin Li }
2847*67e74705SXin Li } else {
2848*67e74705SXin Li BaseVal = Frame->getTemporary(Base);
2849*67e74705SXin Li assert(BaseVal && "missing value for temporary");
2850*67e74705SXin Li }
2851*67e74705SXin Li
2852*67e74705SXin Li // Volatile temporary objects cannot be accessed in constant expressions.
2853*67e74705SXin Li if (BaseType.isVolatileQualified()) {
2854*67e74705SXin Li if (Info.getLangOpts().CPlusPlus) {
2855*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2856*67e74705SXin Li << AK << 0;
2857*67e74705SXin Li Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2858*67e74705SXin Li } else {
2859*67e74705SXin Li Info.FFDiag(E);
2860*67e74705SXin Li }
2861*67e74705SXin Li return CompleteObject();
2862*67e74705SXin Li }
2863*67e74705SXin Li }
2864*67e74705SXin Li
2865*67e74705SXin Li // During the construction of an object, it is not yet 'const'.
2866*67e74705SXin Li // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2867*67e74705SXin Li // and this doesn't do quite the right thing for const subobjects of the
2868*67e74705SXin Li // object under construction.
2869*67e74705SXin Li if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2870*67e74705SXin Li BaseType = Info.Ctx.getCanonicalType(BaseType);
2871*67e74705SXin Li BaseType.removeLocalConst();
2872*67e74705SXin Li }
2873*67e74705SXin Li
2874*67e74705SXin Li // In C++1y, we can't safely access any mutable state when we might be
2875*67e74705SXin Li // evaluating after an unmodeled side effect.
2876*67e74705SXin Li //
2877*67e74705SXin Li // FIXME: Not all local state is mutable. Allow local constant subobjects
2878*67e74705SXin Li // to be read here (but take care with 'mutable' fields).
2879*67e74705SXin Li if ((Frame && Info.getLangOpts().CPlusPlus14 &&
2880*67e74705SXin Li Info.EvalStatus.HasSideEffects) ||
2881*67e74705SXin Li (AK != AK_Read && Info.IsSpeculativelyEvaluating))
2882*67e74705SXin Li return CompleteObject();
2883*67e74705SXin Li
2884*67e74705SXin Li return CompleteObject(BaseVal, BaseType);
2885*67e74705SXin Li }
2886*67e74705SXin Li
2887*67e74705SXin Li /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2888*67e74705SXin Li /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2889*67e74705SXin Li /// glvalue referred to by an entity of reference type.
2890*67e74705SXin Li ///
2891*67e74705SXin Li /// \param Info - Information about the ongoing evaluation.
2892*67e74705SXin Li /// \param Conv - The expression for which we are performing the conversion.
2893*67e74705SXin Li /// Used for diagnostics.
2894*67e74705SXin Li /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2895*67e74705SXin Li /// case of a non-class type).
2896*67e74705SXin Li /// \param LVal - The glvalue on which we are attempting to perform this action.
2897*67e74705SXin Li /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2898*67e74705SXin Li static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2899*67e74705SXin Li QualType Type,
2900*67e74705SXin Li const LValue &LVal, APValue &RVal) {
2901*67e74705SXin Li if (LVal.Designator.Invalid)
2902*67e74705SXin Li return false;
2903*67e74705SXin Li
2904*67e74705SXin Li // Check for special cases where there is no existing APValue to look at.
2905*67e74705SXin Li const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2906*67e74705SXin Li if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
2907*67e74705SXin Li if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2908*67e74705SXin Li // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2909*67e74705SXin Li // initializer until now for such expressions. Such an expression can't be
2910*67e74705SXin Li // an ICE in C, so this only matters for fold.
2911*67e74705SXin Li assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2912*67e74705SXin Li if (Type.isVolatileQualified()) {
2913*67e74705SXin Li Info.FFDiag(Conv);
2914*67e74705SXin Li return false;
2915*67e74705SXin Li }
2916*67e74705SXin Li APValue Lit;
2917*67e74705SXin Li if (!Evaluate(Lit, Info, CLE->getInitializer()))
2918*67e74705SXin Li return false;
2919*67e74705SXin Li CompleteObject LitObj(&Lit, Base->getType());
2920*67e74705SXin Li return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2921*67e74705SXin Li } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2922*67e74705SXin Li // We represent a string literal array as an lvalue pointing at the
2923*67e74705SXin Li // corresponding expression, rather than building an array of chars.
2924*67e74705SXin Li // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2925*67e74705SXin Li APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2926*67e74705SXin Li CompleteObject StrObj(&Str, Base->getType());
2927*67e74705SXin Li return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2928*67e74705SXin Li }
2929*67e74705SXin Li }
2930*67e74705SXin Li
2931*67e74705SXin Li CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2932*67e74705SXin Li return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2933*67e74705SXin Li }
2934*67e74705SXin Li
2935*67e74705SXin Li /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2936*67e74705SXin Li static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2937*67e74705SXin Li QualType LValType, APValue &Val) {
2938*67e74705SXin Li if (LVal.Designator.Invalid)
2939*67e74705SXin Li return false;
2940*67e74705SXin Li
2941*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14) {
2942*67e74705SXin Li Info.FFDiag(E);
2943*67e74705SXin Li return false;
2944*67e74705SXin Li }
2945*67e74705SXin Li
2946*67e74705SXin Li CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2947*67e74705SXin Li return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2948*67e74705SXin Li }
2949*67e74705SXin Li
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2950*67e74705SXin Li static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2951*67e74705SXin Li return T->isSignedIntegerType() &&
2952*67e74705SXin Li Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2953*67e74705SXin Li }
2954*67e74705SXin Li
2955*67e74705SXin Li namespace {
2956*67e74705SXin Li struct CompoundAssignSubobjectHandler {
2957*67e74705SXin Li EvalInfo &Info;
2958*67e74705SXin Li const Expr *E;
2959*67e74705SXin Li QualType PromotedLHSType;
2960*67e74705SXin Li BinaryOperatorKind Opcode;
2961*67e74705SXin Li const APValue &RHS;
2962*67e74705SXin Li
2963*67e74705SXin Li static const AccessKinds AccessKind = AK_Assign;
2964*67e74705SXin Li
2965*67e74705SXin Li typedef bool result_type;
2966*67e74705SXin Li
checkConst__anon2db4a5520611::CompoundAssignSubobjectHandler2967*67e74705SXin Li bool checkConst(QualType QT) {
2968*67e74705SXin Li // Assigning to a const object has undefined behavior.
2969*67e74705SXin Li if (QT.isConstQualified()) {
2970*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2971*67e74705SXin Li return false;
2972*67e74705SXin Li }
2973*67e74705SXin Li return true;
2974*67e74705SXin Li }
2975*67e74705SXin Li
failed__anon2db4a5520611::CompoundAssignSubobjectHandler2976*67e74705SXin Li bool failed() { return false; }
found__anon2db4a5520611::CompoundAssignSubobjectHandler2977*67e74705SXin Li bool found(APValue &Subobj, QualType SubobjType) {
2978*67e74705SXin Li switch (Subobj.getKind()) {
2979*67e74705SXin Li case APValue::Int:
2980*67e74705SXin Li return found(Subobj.getInt(), SubobjType);
2981*67e74705SXin Li case APValue::Float:
2982*67e74705SXin Li return found(Subobj.getFloat(), SubobjType);
2983*67e74705SXin Li case APValue::ComplexInt:
2984*67e74705SXin Li case APValue::ComplexFloat:
2985*67e74705SXin Li // FIXME: Implement complex compound assignment.
2986*67e74705SXin Li Info.FFDiag(E);
2987*67e74705SXin Li return false;
2988*67e74705SXin Li case APValue::LValue:
2989*67e74705SXin Li return foundPointer(Subobj, SubobjType);
2990*67e74705SXin Li default:
2991*67e74705SXin Li // FIXME: can this happen?
2992*67e74705SXin Li Info.FFDiag(E);
2993*67e74705SXin Li return false;
2994*67e74705SXin Li }
2995*67e74705SXin Li }
found__anon2db4a5520611::CompoundAssignSubobjectHandler2996*67e74705SXin Li bool found(APSInt &Value, QualType SubobjType) {
2997*67e74705SXin Li if (!checkConst(SubobjType))
2998*67e74705SXin Li return false;
2999*67e74705SXin Li
3000*67e74705SXin Li if (!SubobjType->isIntegerType() || !RHS.isInt()) {
3001*67e74705SXin Li // We don't support compound assignment on integer-cast-to-pointer
3002*67e74705SXin Li // values.
3003*67e74705SXin Li Info.FFDiag(E);
3004*67e74705SXin Li return false;
3005*67e74705SXin Li }
3006*67e74705SXin Li
3007*67e74705SXin Li APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
3008*67e74705SXin Li SubobjType, Value);
3009*67e74705SXin Li if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3010*67e74705SXin Li return false;
3011*67e74705SXin Li Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3012*67e74705SXin Li return true;
3013*67e74705SXin Li }
found__anon2db4a5520611::CompoundAssignSubobjectHandler3014*67e74705SXin Li bool found(APFloat &Value, QualType SubobjType) {
3015*67e74705SXin Li return checkConst(SubobjType) &&
3016*67e74705SXin Li HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3017*67e74705SXin Li Value) &&
3018*67e74705SXin Li handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3019*67e74705SXin Li HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3020*67e74705SXin Li }
foundPointer__anon2db4a5520611::CompoundAssignSubobjectHandler3021*67e74705SXin Li bool foundPointer(APValue &Subobj, QualType SubobjType) {
3022*67e74705SXin Li if (!checkConst(SubobjType))
3023*67e74705SXin Li return false;
3024*67e74705SXin Li
3025*67e74705SXin Li QualType PointeeType;
3026*67e74705SXin Li if (const PointerType *PT = SubobjType->getAs<PointerType>())
3027*67e74705SXin Li PointeeType = PT->getPointeeType();
3028*67e74705SXin Li
3029*67e74705SXin Li if (PointeeType.isNull() || !RHS.isInt() ||
3030*67e74705SXin Li (Opcode != BO_Add && Opcode != BO_Sub)) {
3031*67e74705SXin Li Info.FFDiag(E);
3032*67e74705SXin Li return false;
3033*67e74705SXin Li }
3034*67e74705SXin Li
3035*67e74705SXin Li int64_t Offset = getExtValue(RHS.getInt());
3036*67e74705SXin Li if (Opcode == BO_Sub)
3037*67e74705SXin Li Offset = -Offset;
3038*67e74705SXin Li
3039*67e74705SXin Li LValue LVal;
3040*67e74705SXin Li LVal.setFrom(Info.Ctx, Subobj);
3041*67e74705SXin Li if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3042*67e74705SXin Li return false;
3043*67e74705SXin Li LVal.moveInto(Subobj);
3044*67e74705SXin Li return true;
3045*67e74705SXin Li }
foundString__anon2db4a5520611::CompoundAssignSubobjectHandler3046*67e74705SXin Li bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3047*67e74705SXin Li llvm_unreachable("shouldn't encounter string elements here");
3048*67e74705SXin Li }
3049*67e74705SXin Li };
3050*67e74705SXin Li } // end anonymous namespace
3051*67e74705SXin Li
3052*67e74705SXin Li const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3053*67e74705SXin Li
3054*67e74705SXin Li /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)3055*67e74705SXin Li static bool handleCompoundAssignment(
3056*67e74705SXin Li EvalInfo &Info, const Expr *E,
3057*67e74705SXin Li const LValue &LVal, QualType LValType, QualType PromotedLValType,
3058*67e74705SXin Li BinaryOperatorKind Opcode, const APValue &RVal) {
3059*67e74705SXin Li if (LVal.Designator.Invalid)
3060*67e74705SXin Li return false;
3061*67e74705SXin Li
3062*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14) {
3063*67e74705SXin Li Info.FFDiag(E);
3064*67e74705SXin Li return false;
3065*67e74705SXin Li }
3066*67e74705SXin Li
3067*67e74705SXin Li CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3068*67e74705SXin Li CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3069*67e74705SXin Li RVal };
3070*67e74705SXin Li return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3071*67e74705SXin Li }
3072*67e74705SXin Li
3073*67e74705SXin Li namespace {
3074*67e74705SXin Li struct IncDecSubobjectHandler {
3075*67e74705SXin Li EvalInfo &Info;
3076*67e74705SXin Li const Expr *E;
3077*67e74705SXin Li AccessKinds AccessKind;
3078*67e74705SXin Li APValue *Old;
3079*67e74705SXin Li
3080*67e74705SXin Li typedef bool result_type;
3081*67e74705SXin Li
checkConst__anon2db4a5520711::IncDecSubobjectHandler3082*67e74705SXin Li bool checkConst(QualType QT) {
3083*67e74705SXin Li // Assigning to a const object has undefined behavior.
3084*67e74705SXin Li if (QT.isConstQualified()) {
3085*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3086*67e74705SXin Li return false;
3087*67e74705SXin Li }
3088*67e74705SXin Li return true;
3089*67e74705SXin Li }
3090*67e74705SXin Li
failed__anon2db4a5520711::IncDecSubobjectHandler3091*67e74705SXin Li bool failed() { return false; }
found__anon2db4a5520711::IncDecSubobjectHandler3092*67e74705SXin Li bool found(APValue &Subobj, QualType SubobjType) {
3093*67e74705SXin Li // Stash the old value. Also clear Old, so we don't clobber it later
3094*67e74705SXin Li // if we're post-incrementing a complex.
3095*67e74705SXin Li if (Old) {
3096*67e74705SXin Li *Old = Subobj;
3097*67e74705SXin Li Old = nullptr;
3098*67e74705SXin Li }
3099*67e74705SXin Li
3100*67e74705SXin Li switch (Subobj.getKind()) {
3101*67e74705SXin Li case APValue::Int:
3102*67e74705SXin Li return found(Subobj.getInt(), SubobjType);
3103*67e74705SXin Li case APValue::Float:
3104*67e74705SXin Li return found(Subobj.getFloat(), SubobjType);
3105*67e74705SXin Li case APValue::ComplexInt:
3106*67e74705SXin Li return found(Subobj.getComplexIntReal(),
3107*67e74705SXin Li SubobjType->castAs<ComplexType>()->getElementType()
3108*67e74705SXin Li .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3109*67e74705SXin Li case APValue::ComplexFloat:
3110*67e74705SXin Li return found(Subobj.getComplexFloatReal(),
3111*67e74705SXin Li SubobjType->castAs<ComplexType>()->getElementType()
3112*67e74705SXin Li .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3113*67e74705SXin Li case APValue::LValue:
3114*67e74705SXin Li return foundPointer(Subobj, SubobjType);
3115*67e74705SXin Li default:
3116*67e74705SXin Li // FIXME: can this happen?
3117*67e74705SXin Li Info.FFDiag(E);
3118*67e74705SXin Li return false;
3119*67e74705SXin Li }
3120*67e74705SXin Li }
found__anon2db4a5520711::IncDecSubobjectHandler3121*67e74705SXin Li bool found(APSInt &Value, QualType SubobjType) {
3122*67e74705SXin Li if (!checkConst(SubobjType))
3123*67e74705SXin Li return false;
3124*67e74705SXin Li
3125*67e74705SXin Li if (!SubobjType->isIntegerType()) {
3126*67e74705SXin Li // We don't support increment / decrement on integer-cast-to-pointer
3127*67e74705SXin Li // values.
3128*67e74705SXin Li Info.FFDiag(E);
3129*67e74705SXin Li return false;
3130*67e74705SXin Li }
3131*67e74705SXin Li
3132*67e74705SXin Li if (Old) *Old = APValue(Value);
3133*67e74705SXin Li
3134*67e74705SXin Li // bool arithmetic promotes to int, and the conversion back to bool
3135*67e74705SXin Li // doesn't reduce mod 2^n, so special-case it.
3136*67e74705SXin Li if (SubobjType->isBooleanType()) {
3137*67e74705SXin Li if (AccessKind == AK_Increment)
3138*67e74705SXin Li Value = 1;
3139*67e74705SXin Li else
3140*67e74705SXin Li Value = !Value;
3141*67e74705SXin Li return true;
3142*67e74705SXin Li }
3143*67e74705SXin Li
3144*67e74705SXin Li bool WasNegative = Value.isNegative();
3145*67e74705SXin Li if (AccessKind == AK_Increment) {
3146*67e74705SXin Li ++Value;
3147*67e74705SXin Li
3148*67e74705SXin Li if (!WasNegative && Value.isNegative() &&
3149*67e74705SXin Li isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3150*67e74705SXin Li APSInt ActualValue(Value, /*IsUnsigned*/true);
3151*67e74705SXin Li return HandleOverflow(Info, E, ActualValue, SubobjType);
3152*67e74705SXin Li }
3153*67e74705SXin Li } else {
3154*67e74705SXin Li --Value;
3155*67e74705SXin Li
3156*67e74705SXin Li if (WasNegative && !Value.isNegative() &&
3157*67e74705SXin Li isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3158*67e74705SXin Li unsigned BitWidth = Value.getBitWidth();
3159*67e74705SXin Li APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3160*67e74705SXin Li ActualValue.setBit(BitWidth);
3161*67e74705SXin Li return HandleOverflow(Info, E, ActualValue, SubobjType);
3162*67e74705SXin Li }
3163*67e74705SXin Li }
3164*67e74705SXin Li return true;
3165*67e74705SXin Li }
found__anon2db4a5520711::IncDecSubobjectHandler3166*67e74705SXin Li bool found(APFloat &Value, QualType SubobjType) {
3167*67e74705SXin Li if (!checkConst(SubobjType))
3168*67e74705SXin Li return false;
3169*67e74705SXin Li
3170*67e74705SXin Li if (Old) *Old = APValue(Value);
3171*67e74705SXin Li
3172*67e74705SXin Li APFloat One(Value.getSemantics(), 1);
3173*67e74705SXin Li if (AccessKind == AK_Increment)
3174*67e74705SXin Li Value.add(One, APFloat::rmNearestTiesToEven);
3175*67e74705SXin Li else
3176*67e74705SXin Li Value.subtract(One, APFloat::rmNearestTiesToEven);
3177*67e74705SXin Li return true;
3178*67e74705SXin Li }
foundPointer__anon2db4a5520711::IncDecSubobjectHandler3179*67e74705SXin Li bool foundPointer(APValue &Subobj, QualType SubobjType) {
3180*67e74705SXin Li if (!checkConst(SubobjType))
3181*67e74705SXin Li return false;
3182*67e74705SXin Li
3183*67e74705SXin Li QualType PointeeType;
3184*67e74705SXin Li if (const PointerType *PT = SubobjType->getAs<PointerType>())
3185*67e74705SXin Li PointeeType = PT->getPointeeType();
3186*67e74705SXin Li else {
3187*67e74705SXin Li Info.FFDiag(E);
3188*67e74705SXin Li return false;
3189*67e74705SXin Li }
3190*67e74705SXin Li
3191*67e74705SXin Li LValue LVal;
3192*67e74705SXin Li LVal.setFrom(Info.Ctx, Subobj);
3193*67e74705SXin Li if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3194*67e74705SXin Li AccessKind == AK_Increment ? 1 : -1))
3195*67e74705SXin Li return false;
3196*67e74705SXin Li LVal.moveInto(Subobj);
3197*67e74705SXin Li return true;
3198*67e74705SXin Li }
foundString__anon2db4a5520711::IncDecSubobjectHandler3199*67e74705SXin Li bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3200*67e74705SXin Li llvm_unreachable("shouldn't encounter string elements here");
3201*67e74705SXin Li }
3202*67e74705SXin Li };
3203*67e74705SXin Li } // end anonymous namespace
3204*67e74705SXin Li
3205*67e74705SXin Li /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3206*67e74705SXin Li static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3207*67e74705SXin Li QualType LValType, bool IsIncrement, APValue *Old) {
3208*67e74705SXin Li if (LVal.Designator.Invalid)
3209*67e74705SXin Li return false;
3210*67e74705SXin Li
3211*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14) {
3212*67e74705SXin Li Info.FFDiag(E);
3213*67e74705SXin Li return false;
3214*67e74705SXin Li }
3215*67e74705SXin Li
3216*67e74705SXin Li AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3217*67e74705SXin Li CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3218*67e74705SXin Li IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3219*67e74705SXin Li return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3220*67e74705SXin Li }
3221*67e74705SXin Li
3222*67e74705SXin Li /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3223*67e74705SXin Li static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3224*67e74705SXin Li LValue &This) {
3225*67e74705SXin Li if (Object->getType()->isPointerType())
3226*67e74705SXin Li return EvaluatePointer(Object, This, Info);
3227*67e74705SXin Li
3228*67e74705SXin Li if (Object->isGLValue())
3229*67e74705SXin Li return EvaluateLValue(Object, This, Info);
3230*67e74705SXin Li
3231*67e74705SXin Li if (Object->getType()->isLiteralType(Info.Ctx))
3232*67e74705SXin Li return EvaluateTemporary(Object, This, Info);
3233*67e74705SXin Li
3234*67e74705SXin Li Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3235*67e74705SXin Li return false;
3236*67e74705SXin Li }
3237*67e74705SXin Li
3238*67e74705SXin Li /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3239*67e74705SXin Li /// lvalue referring to the result.
3240*67e74705SXin Li ///
3241*67e74705SXin Li /// \param Info - Information about the ongoing evaluation.
3242*67e74705SXin Li /// \param LV - An lvalue referring to the base of the member pointer.
3243*67e74705SXin Li /// \param RHS - The member pointer expression.
3244*67e74705SXin Li /// \param IncludeMember - Specifies whether the member itself is included in
3245*67e74705SXin Li /// the resulting LValue subobject designator. This is not possible when
3246*67e74705SXin Li /// creating a bound member function.
3247*67e74705SXin Li /// \return The field or method declaration to which the member pointer refers,
3248*67e74705SXin Li /// or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3249*67e74705SXin Li static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3250*67e74705SXin Li QualType LVType,
3251*67e74705SXin Li LValue &LV,
3252*67e74705SXin Li const Expr *RHS,
3253*67e74705SXin Li bool IncludeMember = true) {
3254*67e74705SXin Li MemberPtr MemPtr;
3255*67e74705SXin Li if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3256*67e74705SXin Li return nullptr;
3257*67e74705SXin Li
3258*67e74705SXin Li // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3259*67e74705SXin Li // member value, the behavior is undefined.
3260*67e74705SXin Li if (!MemPtr.getDecl()) {
3261*67e74705SXin Li // FIXME: Specific diagnostic.
3262*67e74705SXin Li Info.FFDiag(RHS);
3263*67e74705SXin Li return nullptr;
3264*67e74705SXin Li }
3265*67e74705SXin Li
3266*67e74705SXin Li if (MemPtr.isDerivedMember()) {
3267*67e74705SXin Li // This is a member of some derived class. Truncate LV appropriately.
3268*67e74705SXin Li // The end of the derived-to-base path for the base object must match the
3269*67e74705SXin Li // derived-to-base path for the member pointer.
3270*67e74705SXin Li if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3271*67e74705SXin Li LV.Designator.Entries.size()) {
3272*67e74705SXin Li Info.FFDiag(RHS);
3273*67e74705SXin Li return nullptr;
3274*67e74705SXin Li }
3275*67e74705SXin Li unsigned PathLengthToMember =
3276*67e74705SXin Li LV.Designator.Entries.size() - MemPtr.Path.size();
3277*67e74705SXin Li for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3278*67e74705SXin Li const CXXRecordDecl *LVDecl = getAsBaseClass(
3279*67e74705SXin Li LV.Designator.Entries[PathLengthToMember + I]);
3280*67e74705SXin Li const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3281*67e74705SXin Li if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3282*67e74705SXin Li Info.FFDiag(RHS);
3283*67e74705SXin Li return nullptr;
3284*67e74705SXin Li }
3285*67e74705SXin Li }
3286*67e74705SXin Li
3287*67e74705SXin Li // Truncate the lvalue to the appropriate derived class.
3288*67e74705SXin Li if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3289*67e74705SXin Li PathLengthToMember))
3290*67e74705SXin Li return nullptr;
3291*67e74705SXin Li } else if (!MemPtr.Path.empty()) {
3292*67e74705SXin Li // Extend the LValue path with the member pointer's path.
3293*67e74705SXin Li LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3294*67e74705SXin Li MemPtr.Path.size() + IncludeMember);
3295*67e74705SXin Li
3296*67e74705SXin Li // Walk down to the appropriate base class.
3297*67e74705SXin Li if (const PointerType *PT = LVType->getAs<PointerType>())
3298*67e74705SXin Li LVType = PT->getPointeeType();
3299*67e74705SXin Li const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3300*67e74705SXin Li assert(RD && "member pointer access on non-class-type expression");
3301*67e74705SXin Li // The first class in the path is that of the lvalue.
3302*67e74705SXin Li for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3303*67e74705SXin Li const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3304*67e74705SXin Li if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3305*67e74705SXin Li return nullptr;
3306*67e74705SXin Li RD = Base;
3307*67e74705SXin Li }
3308*67e74705SXin Li // Finally cast to the class containing the member.
3309*67e74705SXin Li if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3310*67e74705SXin Li MemPtr.getContainingRecord()))
3311*67e74705SXin Li return nullptr;
3312*67e74705SXin Li }
3313*67e74705SXin Li
3314*67e74705SXin Li // Add the member. Note that we cannot build bound member functions here.
3315*67e74705SXin Li if (IncludeMember) {
3316*67e74705SXin Li if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3317*67e74705SXin Li if (!HandleLValueMember(Info, RHS, LV, FD))
3318*67e74705SXin Li return nullptr;
3319*67e74705SXin Li } else if (const IndirectFieldDecl *IFD =
3320*67e74705SXin Li dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3321*67e74705SXin Li if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3322*67e74705SXin Li return nullptr;
3323*67e74705SXin Li } else {
3324*67e74705SXin Li llvm_unreachable("can't construct reference to bound member function");
3325*67e74705SXin Li }
3326*67e74705SXin Li }
3327*67e74705SXin Li
3328*67e74705SXin Li return MemPtr.getDecl();
3329*67e74705SXin Li }
3330*67e74705SXin Li
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3331*67e74705SXin Li static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3332*67e74705SXin Li const BinaryOperator *BO,
3333*67e74705SXin Li LValue &LV,
3334*67e74705SXin Li bool IncludeMember = true) {
3335*67e74705SXin Li assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3336*67e74705SXin Li
3337*67e74705SXin Li if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3338*67e74705SXin Li if (Info.noteFailure()) {
3339*67e74705SXin Li MemberPtr MemPtr;
3340*67e74705SXin Li EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3341*67e74705SXin Li }
3342*67e74705SXin Li return nullptr;
3343*67e74705SXin Li }
3344*67e74705SXin Li
3345*67e74705SXin Li return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3346*67e74705SXin Li BO->getRHS(), IncludeMember);
3347*67e74705SXin Li }
3348*67e74705SXin Li
3349*67e74705SXin Li /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3350*67e74705SXin Li /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3351*67e74705SXin Li static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3352*67e74705SXin Li LValue &Result) {
3353*67e74705SXin Li SubobjectDesignator &D = Result.Designator;
3354*67e74705SXin Li if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3355*67e74705SXin Li return false;
3356*67e74705SXin Li
3357*67e74705SXin Li QualType TargetQT = E->getType();
3358*67e74705SXin Li if (const PointerType *PT = TargetQT->getAs<PointerType>())
3359*67e74705SXin Li TargetQT = PT->getPointeeType();
3360*67e74705SXin Li
3361*67e74705SXin Li // Check this cast lands within the final derived-to-base subobject path.
3362*67e74705SXin Li if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3363*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3364*67e74705SXin Li << D.MostDerivedType << TargetQT;
3365*67e74705SXin Li return false;
3366*67e74705SXin Li }
3367*67e74705SXin Li
3368*67e74705SXin Li // Check the type of the final cast. We don't need to check the path,
3369*67e74705SXin Li // since a cast can only be formed if the path is unique.
3370*67e74705SXin Li unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3371*67e74705SXin Li const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3372*67e74705SXin Li const CXXRecordDecl *FinalType;
3373*67e74705SXin Li if (NewEntriesSize == D.MostDerivedPathLength)
3374*67e74705SXin Li FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3375*67e74705SXin Li else
3376*67e74705SXin Li FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3377*67e74705SXin Li if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3378*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3379*67e74705SXin Li << D.MostDerivedType << TargetQT;
3380*67e74705SXin Li return false;
3381*67e74705SXin Li }
3382*67e74705SXin Li
3383*67e74705SXin Li // Truncate the lvalue to the appropriate derived class.
3384*67e74705SXin Li return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3385*67e74705SXin Li }
3386*67e74705SXin Li
3387*67e74705SXin Li namespace {
3388*67e74705SXin Li enum EvalStmtResult {
3389*67e74705SXin Li /// Evaluation failed.
3390*67e74705SXin Li ESR_Failed,
3391*67e74705SXin Li /// Hit a 'return' statement.
3392*67e74705SXin Li ESR_Returned,
3393*67e74705SXin Li /// Evaluation succeeded.
3394*67e74705SXin Li ESR_Succeeded,
3395*67e74705SXin Li /// Hit a 'continue' statement.
3396*67e74705SXin Li ESR_Continue,
3397*67e74705SXin Li /// Hit a 'break' statement.
3398*67e74705SXin Li ESR_Break,
3399*67e74705SXin Li /// Still scanning for 'case' or 'default' statement.
3400*67e74705SXin Li ESR_CaseNotFound
3401*67e74705SXin Li };
3402*67e74705SXin Li }
3403*67e74705SXin Li
EvaluateDecl(EvalInfo & Info,const Decl * D)3404*67e74705SXin Li static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3405*67e74705SXin Li if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3406*67e74705SXin Li // We don't need to evaluate the initializer for a static local.
3407*67e74705SXin Li if (!VD->hasLocalStorage())
3408*67e74705SXin Li return true;
3409*67e74705SXin Li
3410*67e74705SXin Li LValue Result;
3411*67e74705SXin Li Result.set(VD, Info.CurrentCall->Index);
3412*67e74705SXin Li APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3413*67e74705SXin Li
3414*67e74705SXin Li const Expr *InitE = VD->getInit();
3415*67e74705SXin Li if (!InitE) {
3416*67e74705SXin Li Info.FFDiag(D->getLocStart(), diag::note_constexpr_uninitialized)
3417*67e74705SXin Li << false << VD->getType();
3418*67e74705SXin Li Val = APValue();
3419*67e74705SXin Li return false;
3420*67e74705SXin Li }
3421*67e74705SXin Li
3422*67e74705SXin Li if (InitE->isValueDependent())
3423*67e74705SXin Li return false;
3424*67e74705SXin Li
3425*67e74705SXin Li if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3426*67e74705SXin Li // Wipe out any partially-computed value, to allow tracking that this
3427*67e74705SXin Li // evaluation failed.
3428*67e74705SXin Li Val = APValue();
3429*67e74705SXin Li return false;
3430*67e74705SXin Li }
3431*67e74705SXin Li }
3432*67e74705SXin Li
3433*67e74705SXin Li return true;
3434*67e74705SXin Li }
3435*67e74705SXin Li
3436*67e74705SXin Li /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3437*67e74705SXin Li static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3438*67e74705SXin Li const Expr *Cond, bool &Result) {
3439*67e74705SXin Li FullExpressionRAII Scope(Info);
3440*67e74705SXin Li if (CondDecl && !EvaluateDecl(Info, CondDecl))
3441*67e74705SXin Li return false;
3442*67e74705SXin Li return EvaluateAsBooleanCondition(Cond, Result, Info);
3443*67e74705SXin Li }
3444*67e74705SXin Li
3445*67e74705SXin Li namespace {
3446*67e74705SXin Li /// \brief A location where the result (returned value) of evaluating a
3447*67e74705SXin Li /// statement should be stored.
3448*67e74705SXin Li struct StmtResult {
3449*67e74705SXin Li /// The APValue that should be filled in with the returned value.
3450*67e74705SXin Li APValue &Value;
3451*67e74705SXin Li /// The location containing the result, if any (used to support RVO).
3452*67e74705SXin Li const LValue *Slot;
3453*67e74705SXin Li };
3454*67e74705SXin Li }
3455*67e74705SXin Li
3456*67e74705SXin Li static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3457*67e74705SXin Li const Stmt *S,
3458*67e74705SXin Li const SwitchCase *SC = nullptr);
3459*67e74705SXin Li
3460*67e74705SXin Li /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3461*67e74705SXin Li static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3462*67e74705SXin Li const Stmt *Body,
3463*67e74705SXin Li const SwitchCase *Case = nullptr) {
3464*67e74705SXin Li BlockScopeRAII Scope(Info);
3465*67e74705SXin Li switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3466*67e74705SXin Li case ESR_Break:
3467*67e74705SXin Li return ESR_Succeeded;
3468*67e74705SXin Li case ESR_Succeeded:
3469*67e74705SXin Li case ESR_Continue:
3470*67e74705SXin Li return ESR_Continue;
3471*67e74705SXin Li case ESR_Failed:
3472*67e74705SXin Li case ESR_Returned:
3473*67e74705SXin Li case ESR_CaseNotFound:
3474*67e74705SXin Li return ESR;
3475*67e74705SXin Li }
3476*67e74705SXin Li llvm_unreachable("Invalid EvalStmtResult!");
3477*67e74705SXin Li }
3478*67e74705SXin Li
3479*67e74705SXin Li /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)3480*67e74705SXin Li static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3481*67e74705SXin Li const SwitchStmt *SS) {
3482*67e74705SXin Li BlockScopeRAII Scope(Info);
3483*67e74705SXin Li
3484*67e74705SXin Li // Evaluate the switch condition.
3485*67e74705SXin Li APSInt Value;
3486*67e74705SXin Li {
3487*67e74705SXin Li FullExpressionRAII Scope(Info);
3488*67e74705SXin Li if (const Stmt *Init = SS->getInit()) {
3489*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3490*67e74705SXin Li if (ESR != ESR_Succeeded)
3491*67e74705SXin Li return ESR;
3492*67e74705SXin Li }
3493*67e74705SXin Li if (SS->getConditionVariable() &&
3494*67e74705SXin Li !EvaluateDecl(Info, SS->getConditionVariable()))
3495*67e74705SXin Li return ESR_Failed;
3496*67e74705SXin Li if (!EvaluateInteger(SS->getCond(), Value, Info))
3497*67e74705SXin Li return ESR_Failed;
3498*67e74705SXin Li }
3499*67e74705SXin Li
3500*67e74705SXin Li // Find the switch case corresponding to the value of the condition.
3501*67e74705SXin Li // FIXME: Cache this lookup.
3502*67e74705SXin Li const SwitchCase *Found = nullptr;
3503*67e74705SXin Li for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3504*67e74705SXin Li SC = SC->getNextSwitchCase()) {
3505*67e74705SXin Li if (isa<DefaultStmt>(SC)) {
3506*67e74705SXin Li Found = SC;
3507*67e74705SXin Li continue;
3508*67e74705SXin Li }
3509*67e74705SXin Li
3510*67e74705SXin Li const CaseStmt *CS = cast<CaseStmt>(SC);
3511*67e74705SXin Li APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3512*67e74705SXin Li APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3513*67e74705SXin Li : LHS;
3514*67e74705SXin Li if (LHS <= Value && Value <= RHS) {
3515*67e74705SXin Li Found = SC;
3516*67e74705SXin Li break;
3517*67e74705SXin Li }
3518*67e74705SXin Li }
3519*67e74705SXin Li
3520*67e74705SXin Li if (!Found)
3521*67e74705SXin Li return ESR_Succeeded;
3522*67e74705SXin Li
3523*67e74705SXin Li // Search the switch body for the switch case and evaluate it from there.
3524*67e74705SXin Li switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3525*67e74705SXin Li case ESR_Break:
3526*67e74705SXin Li return ESR_Succeeded;
3527*67e74705SXin Li case ESR_Succeeded:
3528*67e74705SXin Li case ESR_Continue:
3529*67e74705SXin Li case ESR_Failed:
3530*67e74705SXin Li case ESR_Returned:
3531*67e74705SXin Li return ESR;
3532*67e74705SXin Li case ESR_CaseNotFound:
3533*67e74705SXin Li // This can only happen if the switch case is nested within a statement
3534*67e74705SXin Li // expression. We have no intention of supporting that.
3535*67e74705SXin Li Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3536*67e74705SXin Li return ESR_Failed;
3537*67e74705SXin Li }
3538*67e74705SXin Li llvm_unreachable("Invalid EvalStmtResult!");
3539*67e74705SXin Li }
3540*67e74705SXin Li
3541*67e74705SXin Li // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3542*67e74705SXin Li static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3543*67e74705SXin Li const Stmt *S, const SwitchCase *Case) {
3544*67e74705SXin Li if (!Info.nextStep(S))
3545*67e74705SXin Li return ESR_Failed;
3546*67e74705SXin Li
3547*67e74705SXin Li // If we're hunting down a 'case' or 'default' label, recurse through
3548*67e74705SXin Li // substatements until we hit the label.
3549*67e74705SXin Li if (Case) {
3550*67e74705SXin Li // FIXME: We don't start the lifetime of objects whose initialization we
3551*67e74705SXin Li // jump over. However, such objects must be of class type with a trivial
3552*67e74705SXin Li // default constructor that initialize all subobjects, so must be empty,
3553*67e74705SXin Li // so this almost never matters.
3554*67e74705SXin Li switch (S->getStmtClass()) {
3555*67e74705SXin Li case Stmt::CompoundStmtClass:
3556*67e74705SXin Li // FIXME: Precompute which substatement of a compound statement we
3557*67e74705SXin Li // would jump to, and go straight there rather than performing a
3558*67e74705SXin Li // linear scan each time.
3559*67e74705SXin Li case Stmt::LabelStmtClass:
3560*67e74705SXin Li case Stmt::AttributedStmtClass:
3561*67e74705SXin Li case Stmt::DoStmtClass:
3562*67e74705SXin Li break;
3563*67e74705SXin Li
3564*67e74705SXin Li case Stmt::CaseStmtClass:
3565*67e74705SXin Li case Stmt::DefaultStmtClass:
3566*67e74705SXin Li if (Case == S)
3567*67e74705SXin Li Case = nullptr;
3568*67e74705SXin Li break;
3569*67e74705SXin Li
3570*67e74705SXin Li case Stmt::IfStmtClass: {
3571*67e74705SXin Li // FIXME: Precompute which side of an 'if' we would jump to, and go
3572*67e74705SXin Li // straight there rather than scanning both sides.
3573*67e74705SXin Li const IfStmt *IS = cast<IfStmt>(S);
3574*67e74705SXin Li
3575*67e74705SXin Li // Wrap the evaluation in a block scope, in case it's a DeclStmt
3576*67e74705SXin Li // preceded by our switch label.
3577*67e74705SXin Li BlockScopeRAII Scope(Info);
3578*67e74705SXin Li
3579*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3580*67e74705SXin Li if (ESR != ESR_CaseNotFound || !IS->getElse())
3581*67e74705SXin Li return ESR;
3582*67e74705SXin Li return EvaluateStmt(Result, Info, IS->getElse(), Case);
3583*67e74705SXin Li }
3584*67e74705SXin Li
3585*67e74705SXin Li case Stmt::WhileStmtClass: {
3586*67e74705SXin Li EvalStmtResult ESR =
3587*67e74705SXin Li EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3588*67e74705SXin Li if (ESR != ESR_Continue)
3589*67e74705SXin Li return ESR;
3590*67e74705SXin Li break;
3591*67e74705SXin Li }
3592*67e74705SXin Li
3593*67e74705SXin Li case Stmt::ForStmtClass: {
3594*67e74705SXin Li const ForStmt *FS = cast<ForStmt>(S);
3595*67e74705SXin Li EvalStmtResult ESR =
3596*67e74705SXin Li EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3597*67e74705SXin Li if (ESR != ESR_Continue)
3598*67e74705SXin Li return ESR;
3599*67e74705SXin Li if (FS->getInc()) {
3600*67e74705SXin Li FullExpressionRAII IncScope(Info);
3601*67e74705SXin Li if (!EvaluateIgnoredValue(Info, FS->getInc()))
3602*67e74705SXin Li return ESR_Failed;
3603*67e74705SXin Li }
3604*67e74705SXin Li break;
3605*67e74705SXin Li }
3606*67e74705SXin Li
3607*67e74705SXin Li case Stmt::DeclStmtClass:
3608*67e74705SXin Li // FIXME: If the variable has initialization that can't be jumped over,
3609*67e74705SXin Li // bail out of any immediately-surrounding compound-statement too.
3610*67e74705SXin Li default:
3611*67e74705SXin Li return ESR_CaseNotFound;
3612*67e74705SXin Li }
3613*67e74705SXin Li }
3614*67e74705SXin Li
3615*67e74705SXin Li switch (S->getStmtClass()) {
3616*67e74705SXin Li default:
3617*67e74705SXin Li if (const Expr *E = dyn_cast<Expr>(S)) {
3618*67e74705SXin Li // Don't bother evaluating beyond an expression-statement which couldn't
3619*67e74705SXin Li // be evaluated.
3620*67e74705SXin Li FullExpressionRAII Scope(Info);
3621*67e74705SXin Li if (!EvaluateIgnoredValue(Info, E))
3622*67e74705SXin Li return ESR_Failed;
3623*67e74705SXin Li return ESR_Succeeded;
3624*67e74705SXin Li }
3625*67e74705SXin Li
3626*67e74705SXin Li Info.FFDiag(S->getLocStart());
3627*67e74705SXin Li return ESR_Failed;
3628*67e74705SXin Li
3629*67e74705SXin Li case Stmt::NullStmtClass:
3630*67e74705SXin Li return ESR_Succeeded;
3631*67e74705SXin Li
3632*67e74705SXin Li case Stmt::DeclStmtClass: {
3633*67e74705SXin Li const DeclStmt *DS = cast<DeclStmt>(S);
3634*67e74705SXin Li for (const auto *DclIt : DS->decls()) {
3635*67e74705SXin Li // Each declaration initialization is its own full-expression.
3636*67e74705SXin Li // FIXME: This isn't quite right; if we're performing aggregate
3637*67e74705SXin Li // initialization, each braced subexpression is its own full-expression.
3638*67e74705SXin Li FullExpressionRAII Scope(Info);
3639*67e74705SXin Li if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
3640*67e74705SXin Li return ESR_Failed;
3641*67e74705SXin Li }
3642*67e74705SXin Li return ESR_Succeeded;
3643*67e74705SXin Li }
3644*67e74705SXin Li
3645*67e74705SXin Li case Stmt::ReturnStmtClass: {
3646*67e74705SXin Li const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3647*67e74705SXin Li FullExpressionRAII Scope(Info);
3648*67e74705SXin Li if (RetExpr &&
3649*67e74705SXin Li !(Result.Slot
3650*67e74705SXin Li ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3651*67e74705SXin Li : Evaluate(Result.Value, Info, RetExpr)))
3652*67e74705SXin Li return ESR_Failed;
3653*67e74705SXin Li return ESR_Returned;
3654*67e74705SXin Li }
3655*67e74705SXin Li
3656*67e74705SXin Li case Stmt::CompoundStmtClass: {
3657*67e74705SXin Li BlockScopeRAII Scope(Info);
3658*67e74705SXin Li
3659*67e74705SXin Li const CompoundStmt *CS = cast<CompoundStmt>(S);
3660*67e74705SXin Li for (const auto *BI : CS->body()) {
3661*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3662*67e74705SXin Li if (ESR == ESR_Succeeded)
3663*67e74705SXin Li Case = nullptr;
3664*67e74705SXin Li else if (ESR != ESR_CaseNotFound)
3665*67e74705SXin Li return ESR;
3666*67e74705SXin Li }
3667*67e74705SXin Li return Case ? ESR_CaseNotFound : ESR_Succeeded;
3668*67e74705SXin Li }
3669*67e74705SXin Li
3670*67e74705SXin Li case Stmt::IfStmtClass: {
3671*67e74705SXin Li const IfStmt *IS = cast<IfStmt>(S);
3672*67e74705SXin Li
3673*67e74705SXin Li // Evaluate the condition, as either a var decl or as an expression.
3674*67e74705SXin Li BlockScopeRAII Scope(Info);
3675*67e74705SXin Li if (const Stmt *Init = IS->getInit()) {
3676*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3677*67e74705SXin Li if (ESR != ESR_Succeeded)
3678*67e74705SXin Li return ESR;
3679*67e74705SXin Li }
3680*67e74705SXin Li bool Cond;
3681*67e74705SXin Li if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3682*67e74705SXin Li return ESR_Failed;
3683*67e74705SXin Li
3684*67e74705SXin Li if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3685*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3686*67e74705SXin Li if (ESR != ESR_Succeeded)
3687*67e74705SXin Li return ESR;
3688*67e74705SXin Li }
3689*67e74705SXin Li return ESR_Succeeded;
3690*67e74705SXin Li }
3691*67e74705SXin Li
3692*67e74705SXin Li case Stmt::WhileStmtClass: {
3693*67e74705SXin Li const WhileStmt *WS = cast<WhileStmt>(S);
3694*67e74705SXin Li while (true) {
3695*67e74705SXin Li BlockScopeRAII Scope(Info);
3696*67e74705SXin Li bool Continue;
3697*67e74705SXin Li if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3698*67e74705SXin Li Continue))
3699*67e74705SXin Li return ESR_Failed;
3700*67e74705SXin Li if (!Continue)
3701*67e74705SXin Li break;
3702*67e74705SXin Li
3703*67e74705SXin Li EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3704*67e74705SXin Li if (ESR != ESR_Continue)
3705*67e74705SXin Li return ESR;
3706*67e74705SXin Li }
3707*67e74705SXin Li return ESR_Succeeded;
3708*67e74705SXin Li }
3709*67e74705SXin Li
3710*67e74705SXin Li case Stmt::DoStmtClass: {
3711*67e74705SXin Li const DoStmt *DS = cast<DoStmt>(S);
3712*67e74705SXin Li bool Continue;
3713*67e74705SXin Li do {
3714*67e74705SXin Li EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3715*67e74705SXin Li if (ESR != ESR_Continue)
3716*67e74705SXin Li return ESR;
3717*67e74705SXin Li Case = nullptr;
3718*67e74705SXin Li
3719*67e74705SXin Li FullExpressionRAII CondScope(Info);
3720*67e74705SXin Li if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3721*67e74705SXin Li return ESR_Failed;
3722*67e74705SXin Li } while (Continue);
3723*67e74705SXin Li return ESR_Succeeded;
3724*67e74705SXin Li }
3725*67e74705SXin Li
3726*67e74705SXin Li case Stmt::ForStmtClass: {
3727*67e74705SXin Li const ForStmt *FS = cast<ForStmt>(S);
3728*67e74705SXin Li BlockScopeRAII Scope(Info);
3729*67e74705SXin Li if (FS->getInit()) {
3730*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3731*67e74705SXin Li if (ESR != ESR_Succeeded)
3732*67e74705SXin Li return ESR;
3733*67e74705SXin Li }
3734*67e74705SXin Li while (true) {
3735*67e74705SXin Li BlockScopeRAII Scope(Info);
3736*67e74705SXin Li bool Continue = true;
3737*67e74705SXin Li if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3738*67e74705SXin Li FS->getCond(), Continue))
3739*67e74705SXin Li return ESR_Failed;
3740*67e74705SXin Li if (!Continue)
3741*67e74705SXin Li break;
3742*67e74705SXin Li
3743*67e74705SXin Li EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3744*67e74705SXin Li if (ESR != ESR_Continue)
3745*67e74705SXin Li return ESR;
3746*67e74705SXin Li
3747*67e74705SXin Li if (FS->getInc()) {
3748*67e74705SXin Li FullExpressionRAII IncScope(Info);
3749*67e74705SXin Li if (!EvaluateIgnoredValue(Info, FS->getInc()))
3750*67e74705SXin Li return ESR_Failed;
3751*67e74705SXin Li }
3752*67e74705SXin Li }
3753*67e74705SXin Li return ESR_Succeeded;
3754*67e74705SXin Li }
3755*67e74705SXin Li
3756*67e74705SXin Li case Stmt::CXXForRangeStmtClass: {
3757*67e74705SXin Li const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3758*67e74705SXin Li BlockScopeRAII Scope(Info);
3759*67e74705SXin Li
3760*67e74705SXin Li // Initialize the __range variable.
3761*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3762*67e74705SXin Li if (ESR != ESR_Succeeded)
3763*67e74705SXin Li return ESR;
3764*67e74705SXin Li
3765*67e74705SXin Li // Create the __begin and __end iterators.
3766*67e74705SXin Li ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
3767*67e74705SXin Li if (ESR != ESR_Succeeded)
3768*67e74705SXin Li return ESR;
3769*67e74705SXin Li ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
3770*67e74705SXin Li if (ESR != ESR_Succeeded)
3771*67e74705SXin Li return ESR;
3772*67e74705SXin Li
3773*67e74705SXin Li while (true) {
3774*67e74705SXin Li // Condition: __begin != __end.
3775*67e74705SXin Li {
3776*67e74705SXin Li bool Continue = true;
3777*67e74705SXin Li FullExpressionRAII CondExpr(Info);
3778*67e74705SXin Li if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3779*67e74705SXin Li return ESR_Failed;
3780*67e74705SXin Li if (!Continue)
3781*67e74705SXin Li break;
3782*67e74705SXin Li }
3783*67e74705SXin Li
3784*67e74705SXin Li // User's variable declaration, initialized by *__begin.
3785*67e74705SXin Li BlockScopeRAII InnerScope(Info);
3786*67e74705SXin Li ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3787*67e74705SXin Li if (ESR != ESR_Succeeded)
3788*67e74705SXin Li return ESR;
3789*67e74705SXin Li
3790*67e74705SXin Li // Loop body.
3791*67e74705SXin Li ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3792*67e74705SXin Li if (ESR != ESR_Continue)
3793*67e74705SXin Li return ESR;
3794*67e74705SXin Li
3795*67e74705SXin Li // Increment: ++__begin
3796*67e74705SXin Li if (!EvaluateIgnoredValue(Info, FS->getInc()))
3797*67e74705SXin Li return ESR_Failed;
3798*67e74705SXin Li }
3799*67e74705SXin Li
3800*67e74705SXin Li return ESR_Succeeded;
3801*67e74705SXin Li }
3802*67e74705SXin Li
3803*67e74705SXin Li case Stmt::SwitchStmtClass:
3804*67e74705SXin Li return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3805*67e74705SXin Li
3806*67e74705SXin Li case Stmt::ContinueStmtClass:
3807*67e74705SXin Li return ESR_Continue;
3808*67e74705SXin Li
3809*67e74705SXin Li case Stmt::BreakStmtClass:
3810*67e74705SXin Li return ESR_Break;
3811*67e74705SXin Li
3812*67e74705SXin Li case Stmt::LabelStmtClass:
3813*67e74705SXin Li return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3814*67e74705SXin Li
3815*67e74705SXin Li case Stmt::AttributedStmtClass:
3816*67e74705SXin Li // As a general principle, C++11 attributes can be ignored without
3817*67e74705SXin Li // any semantic impact.
3818*67e74705SXin Li return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3819*67e74705SXin Li Case);
3820*67e74705SXin Li
3821*67e74705SXin Li case Stmt::CaseStmtClass:
3822*67e74705SXin Li case Stmt::DefaultStmtClass:
3823*67e74705SXin Li return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3824*67e74705SXin Li }
3825*67e74705SXin Li }
3826*67e74705SXin Li
3827*67e74705SXin Li /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3828*67e74705SXin Li /// default constructor. If so, we'll fold it whether or not it's marked as
3829*67e74705SXin Li /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3830*67e74705SXin Li /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3831*67e74705SXin Li static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3832*67e74705SXin Li const CXXConstructorDecl *CD,
3833*67e74705SXin Li bool IsValueInitialization) {
3834*67e74705SXin Li if (!CD->isTrivial() || !CD->isDefaultConstructor())
3835*67e74705SXin Li return false;
3836*67e74705SXin Li
3837*67e74705SXin Li // Value-initialization does not call a trivial default constructor, so such a
3838*67e74705SXin Li // call is a core constant expression whether or not the constructor is
3839*67e74705SXin Li // constexpr.
3840*67e74705SXin Li if (!CD->isConstexpr() && !IsValueInitialization) {
3841*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11) {
3842*67e74705SXin Li // FIXME: If DiagDecl is an implicitly-declared special member function,
3843*67e74705SXin Li // we should be much more explicit about why it's not constexpr.
3844*67e74705SXin Li Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3845*67e74705SXin Li << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3846*67e74705SXin Li Info.Note(CD->getLocation(), diag::note_declared_at);
3847*67e74705SXin Li } else {
3848*67e74705SXin Li Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3849*67e74705SXin Li }
3850*67e74705SXin Li }
3851*67e74705SXin Li return true;
3852*67e74705SXin Li }
3853*67e74705SXin Li
3854*67e74705SXin Li /// CheckConstexprFunction - Check that a function can be called in a constant
3855*67e74705SXin Li /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)3856*67e74705SXin Li static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3857*67e74705SXin Li const FunctionDecl *Declaration,
3858*67e74705SXin Li const FunctionDecl *Definition,
3859*67e74705SXin Li const Stmt *Body) {
3860*67e74705SXin Li // Potential constant expressions can contain calls to declared, but not yet
3861*67e74705SXin Li // defined, constexpr functions.
3862*67e74705SXin Li if (Info.checkingPotentialConstantExpression() && !Definition &&
3863*67e74705SXin Li Declaration->isConstexpr())
3864*67e74705SXin Li return false;
3865*67e74705SXin Li
3866*67e74705SXin Li // Bail out with no diagnostic if the function declaration itself is invalid.
3867*67e74705SXin Li // We will have produced a relevant diagnostic while parsing it.
3868*67e74705SXin Li if (Declaration->isInvalidDecl())
3869*67e74705SXin Li return false;
3870*67e74705SXin Li
3871*67e74705SXin Li // Can we evaluate this function call?
3872*67e74705SXin Li if (Definition && Definition->isConstexpr() &&
3873*67e74705SXin Li !Definition->isInvalidDecl() && Body)
3874*67e74705SXin Li return true;
3875*67e74705SXin Li
3876*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11) {
3877*67e74705SXin Li const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3878*67e74705SXin Li
3879*67e74705SXin Li // If this function is not constexpr because it is an inherited
3880*67e74705SXin Li // non-constexpr constructor, diagnose that directly.
3881*67e74705SXin Li auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
3882*67e74705SXin Li if (CD && CD->isInheritingConstructor()) {
3883*67e74705SXin Li auto *Inherited = CD->getInheritedConstructor().getConstructor();
3884*67e74705SXin Li if (!Inherited->isConstexpr())
3885*67e74705SXin Li DiagDecl = CD = Inherited;
3886*67e74705SXin Li }
3887*67e74705SXin Li
3888*67e74705SXin Li // FIXME: If DiagDecl is an implicitly-declared special member function
3889*67e74705SXin Li // or an inheriting constructor, we should be much more explicit about why
3890*67e74705SXin Li // it's not constexpr.
3891*67e74705SXin Li if (CD && CD->isInheritingConstructor())
3892*67e74705SXin Li Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
3893*67e74705SXin Li << CD->getInheritedConstructor().getConstructor()->getParent();
3894*67e74705SXin Li else
3895*67e74705SXin Li Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
3896*67e74705SXin Li << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
3897*67e74705SXin Li Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3898*67e74705SXin Li } else {
3899*67e74705SXin Li Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3900*67e74705SXin Li }
3901*67e74705SXin Li return false;
3902*67e74705SXin Li }
3903*67e74705SXin Li
3904*67e74705SXin Li /// Determine if a class has any fields that might need to be copied by a
3905*67e74705SXin Li /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)3906*67e74705SXin Li static bool hasFields(const CXXRecordDecl *RD) {
3907*67e74705SXin Li if (!RD || RD->isEmpty())
3908*67e74705SXin Li return false;
3909*67e74705SXin Li for (auto *FD : RD->fields()) {
3910*67e74705SXin Li if (FD->isUnnamedBitfield())
3911*67e74705SXin Li continue;
3912*67e74705SXin Li return true;
3913*67e74705SXin Li }
3914*67e74705SXin Li for (auto &Base : RD->bases())
3915*67e74705SXin Li if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3916*67e74705SXin Li return true;
3917*67e74705SXin Li return false;
3918*67e74705SXin Li }
3919*67e74705SXin Li
3920*67e74705SXin Li namespace {
3921*67e74705SXin Li typedef SmallVector<APValue, 8> ArgVector;
3922*67e74705SXin Li }
3923*67e74705SXin Li
3924*67e74705SXin Li /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3925*67e74705SXin Li static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3926*67e74705SXin Li EvalInfo &Info) {
3927*67e74705SXin Li bool Success = true;
3928*67e74705SXin Li for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3929*67e74705SXin Li I != E; ++I) {
3930*67e74705SXin Li if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3931*67e74705SXin Li // If we're checking for a potential constant expression, evaluate all
3932*67e74705SXin Li // initializers even if some of them fail.
3933*67e74705SXin Li if (!Info.noteFailure())
3934*67e74705SXin Li return false;
3935*67e74705SXin Li Success = false;
3936*67e74705SXin Li }
3937*67e74705SXin Li }
3938*67e74705SXin Li return Success;
3939*67e74705SXin Li }
3940*67e74705SXin Li
3941*67e74705SXin Li /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)3942*67e74705SXin Li static bool HandleFunctionCall(SourceLocation CallLoc,
3943*67e74705SXin Li const FunctionDecl *Callee, const LValue *This,
3944*67e74705SXin Li ArrayRef<const Expr*> Args, const Stmt *Body,
3945*67e74705SXin Li EvalInfo &Info, APValue &Result,
3946*67e74705SXin Li const LValue *ResultSlot) {
3947*67e74705SXin Li ArgVector ArgValues(Args.size());
3948*67e74705SXin Li if (!EvaluateArgs(Args, ArgValues, Info))
3949*67e74705SXin Li return false;
3950*67e74705SXin Li
3951*67e74705SXin Li if (!Info.CheckCallLimit(CallLoc))
3952*67e74705SXin Li return false;
3953*67e74705SXin Li
3954*67e74705SXin Li CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3955*67e74705SXin Li
3956*67e74705SXin Li // For a trivial copy or move assignment, perform an APValue copy. This is
3957*67e74705SXin Li // essential for unions, where the operations performed by the assignment
3958*67e74705SXin Li // operator cannot be represented as statements.
3959*67e74705SXin Li //
3960*67e74705SXin Li // Skip this for non-union classes with no fields; in that case, the defaulted
3961*67e74705SXin Li // copy/move does not actually read the object.
3962*67e74705SXin Li const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3963*67e74705SXin Li if (MD && MD->isDefaulted() &&
3964*67e74705SXin Li (MD->getParent()->isUnion() ||
3965*67e74705SXin Li (MD->isTrivial() && hasFields(MD->getParent())))) {
3966*67e74705SXin Li assert(This &&
3967*67e74705SXin Li (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3968*67e74705SXin Li LValue RHS;
3969*67e74705SXin Li RHS.setFrom(Info.Ctx, ArgValues[0]);
3970*67e74705SXin Li APValue RHSValue;
3971*67e74705SXin Li if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3972*67e74705SXin Li RHS, RHSValue))
3973*67e74705SXin Li return false;
3974*67e74705SXin Li if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3975*67e74705SXin Li RHSValue))
3976*67e74705SXin Li return false;
3977*67e74705SXin Li This->moveInto(Result);
3978*67e74705SXin Li return true;
3979*67e74705SXin Li }
3980*67e74705SXin Li
3981*67e74705SXin Li StmtResult Ret = {Result, ResultSlot};
3982*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
3983*67e74705SXin Li if (ESR == ESR_Succeeded) {
3984*67e74705SXin Li if (Callee->getReturnType()->isVoidType())
3985*67e74705SXin Li return true;
3986*67e74705SXin Li Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3987*67e74705SXin Li }
3988*67e74705SXin Li return ESR == ESR_Returned;
3989*67e74705SXin Li }
3990*67e74705SXin Li
3991*67e74705SXin Li /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,APValue * ArgValues,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3992*67e74705SXin Li static bool HandleConstructorCall(const Expr *E, const LValue &This,
3993*67e74705SXin Li APValue *ArgValues,
3994*67e74705SXin Li const CXXConstructorDecl *Definition,
3995*67e74705SXin Li EvalInfo &Info, APValue &Result) {
3996*67e74705SXin Li SourceLocation CallLoc = E->getExprLoc();
3997*67e74705SXin Li if (!Info.CheckCallLimit(CallLoc))
3998*67e74705SXin Li return false;
3999*67e74705SXin Li
4000*67e74705SXin Li const CXXRecordDecl *RD = Definition->getParent();
4001*67e74705SXin Li if (RD->getNumVBases()) {
4002*67e74705SXin Li Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
4003*67e74705SXin Li return false;
4004*67e74705SXin Li }
4005*67e74705SXin Li
4006*67e74705SXin Li CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
4007*67e74705SXin Li
4008*67e74705SXin Li // FIXME: Creating an APValue just to hold a nonexistent return value is
4009*67e74705SXin Li // wasteful.
4010*67e74705SXin Li APValue RetVal;
4011*67e74705SXin Li StmtResult Ret = {RetVal, nullptr};
4012*67e74705SXin Li
4013*67e74705SXin Li // If it's a delegating constructor, delegate.
4014*67e74705SXin Li if (Definition->isDelegatingConstructor()) {
4015*67e74705SXin Li CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
4016*67e74705SXin Li {
4017*67e74705SXin Li FullExpressionRAII InitScope(Info);
4018*67e74705SXin Li if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
4019*67e74705SXin Li return false;
4020*67e74705SXin Li }
4021*67e74705SXin Li return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4022*67e74705SXin Li }
4023*67e74705SXin Li
4024*67e74705SXin Li // For a trivial copy or move constructor, perform an APValue copy. This is
4025*67e74705SXin Li // essential for unions (or classes with anonymous union members), where the
4026*67e74705SXin Li // operations performed by the constructor cannot be represented by
4027*67e74705SXin Li // ctor-initializers.
4028*67e74705SXin Li //
4029*67e74705SXin Li // Skip this for empty non-union classes; we should not perform an
4030*67e74705SXin Li // lvalue-to-rvalue conversion on them because their copy constructor does not
4031*67e74705SXin Li // actually read them.
4032*67e74705SXin Li if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
4033*67e74705SXin Li (Definition->getParent()->isUnion() ||
4034*67e74705SXin Li (Definition->isTrivial() && hasFields(Definition->getParent())))) {
4035*67e74705SXin Li LValue RHS;
4036*67e74705SXin Li RHS.setFrom(Info.Ctx, ArgValues[0]);
4037*67e74705SXin Li return handleLValueToRValueConversion(
4038*67e74705SXin Li Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
4039*67e74705SXin Li RHS, Result);
4040*67e74705SXin Li }
4041*67e74705SXin Li
4042*67e74705SXin Li // Reserve space for the struct members.
4043*67e74705SXin Li if (!RD->isUnion() && Result.isUninit())
4044*67e74705SXin Li Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4045*67e74705SXin Li std::distance(RD->field_begin(), RD->field_end()));
4046*67e74705SXin Li
4047*67e74705SXin Li if (RD->isInvalidDecl()) return false;
4048*67e74705SXin Li const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4049*67e74705SXin Li
4050*67e74705SXin Li // A scope for temporaries lifetime-extended by reference members.
4051*67e74705SXin Li BlockScopeRAII LifetimeExtendedScope(Info);
4052*67e74705SXin Li
4053*67e74705SXin Li bool Success = true;
4054*67e74705SXin Li unsigned BasesSeen = 0;
4055*67e74705SXin Li #ifndef NDEBUG
4056*67e74705SXin Li CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
4057*67e74705SXin Li #endif
4058*67e74705SXin Li for (const auto *I : Definition->inits()) {
4059*67e74705SXin Li LValue Subobject = This;
4060*67e74705SXin Li APValue *Value = &Result;
4061*67e74705SXin Li
4062*67e74705SXin Li // Determine the subobject to initialize.
4063*67e74705SXin Li FieldDecl *FD = nullptr;
4064*67e74705SXin Li if (I->isBaseInitializer()) {
4065*67e74705SXin Li QualType BaseType(I->getBaseClass(), 0);
4066*67e74705SXin Li #ifndef NDEBUG
4067*67e74705SXin Li // Non-virtual base classes are initialized in the order in the class
4068*67e74705SXin Li // definition. We have already checked for virtual base classes.
4069*67e74705SXin Li assert(!BaseIt->isVirtual() && "virtual base for literal type");
4070*67e74705SXin Li assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
4071*67e74705SXin Li "base class initializers not in expected order");
4072*67e74705SXin Li ++BaseIt;
4073*67e74705SXin Li #endif
4074*67e74705SXin Li if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
4075*67e74705SXin Li BaseType->getAsCXXRecordDecl(), &Layout))
4076*67e74705SXin Li return false;
4077*67e74705SXin Li Value = &Result.getStructBase(BasesSeen++);
4078*67e74705SXin Li } else if ((FD = I->getMember())) {
4079*67e74705SXin Li if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
4080*67e74705SXin Li return false;
4081*67e74705SXin Li if (RD->isUnion()) {
4082*67e74705SXin Li Result = APValue(FD);
4083*67e74705SXin Li Value = &Result.getUnionValue();
4084*67e74705SXin Li } else {
4085*67e74705SXin Li Value = &Result.getStructField(FD->getFieldIndex());
4086*67e74705SXin Li }
4087*67e74705SXin Li } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
4088*67e74705SXin Li // Walk the indirect field decl's chain to find the object to initialize,
4089*67e74705SXin Li // and make sure we've initialized every step along it.
4090*67e74705SXin Li for (auto *C : IFD->chain()) {
4091*67e74705SXin Li FD = cast<FieldDecl>(C);
4092*67e74705SXin Li CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
4093*67e74705SXin Li // Switch the union field if it differs. This happens if we had
4094*67e74705SXin Li // preceding zero-initialization, and we're now initializing a union
4095*67e74705SXin Li // subobject other than the first.
4096*67e74705SXin Li // FIXME: In this case, the values of the other subobjects are
4097*67e74705SXin Li // specified, since zero-initialization sets all padding bits to zero.
4098*67e74705SXin Li if (Value->isUninit() ||
4099*67e74705SXin Li (Value->isUnion() && Value->getUnionField() != FD)) {
4100*67e74705SXin Li if (CD->isUnion())
4101*67e74705SXin Li *Value = APValue(FD);
4102*67e74705SXin Li else
4103*67e74705SXin Li *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
4104*67e74705SXin Li std::distance(CD->field_begin(), CD->field_end()));
4105*67e74705SXin Li }
4106*67e74705SXin Li if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
4107*67e74705SXin Li return false;
4108*67e74705SXin Li if (CD->isUnion())
4109*67e74705SXin Li Value = &Value->getUnionValue();
4110*67e74705SXin Li else
4111*67e74705SXin Li Value = &Value->getStructField(FD->getFieldIndex());
4112*67e74705SXin Li }
4113*67e74705SXin Li } else {
4114*67e74705SXin Li llvm_unreachable("unknown base initializer kind");
4115*67e74705SXin Li }
4116*67e74705SXin Li
4117*67e74705SXin Li FullExpressionRAII InitScope(Info);
4118*67e74705SXin Li if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
4119*67e74705SXin Li (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
4120*67e74705SXin Li *Value, FD))) {
4121*67e74705SXin Li // If we're checking for a potential constant expression, evaluate all
4122*67e74705SXin Li // initializers even if some of them fail.
4123*67e74705SXin Li if (!Info.noteFailure())
4124*67e74705SXin Li return false;
4125*67e74705SXin Li Success = false;
4126*67e74705SXin Li }
4127*67e74705SXin Li }
4128*67e74705SXin Li
4129*67e74705SXin Li return Success &&
4130*67e74705SXin Li EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4131*67e74705SXin Li }
4132*67e74705SXin Li
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)4133*67e74705SXin Li static bool HandleConstructorCall(const Expr *E, const LValue &This,
4134*67e74705SXin Li ArrayRef<const Expr*> Args,
4135*67e74705SXin Li const CXXConstructorDecl *Definition,
4136*67e74705SXin Li EvalInfo &Info, APValue &Result) {
4137*67e74705SXin Li ArgVector ArgValues(Args.size());
4138*67e74705SXin Li if (!EvaluateArgs(Args, ArgValues, Info))
4139*67e74705SXin Li return false;
4140*67e74705SXin Li
4141*67e74705SXin Li return HandleConstructorCall(E, This, ArgValues.data(), Definition,
4142*67e74705SXin Li Info, Result);
4143*67e74705SXin Li }
4144*67e74705SXin Li
4145*67e74705SXin Li //===----------------------------------------------------------------------===//
4146*67e74705SXin Li // Generic Evaluation
4147*67e74705SXin Li //===----------------------------------------------------------------------===//
4148*67e74705SXin Li namespace {
4149*67e74705SXin Li
4150*67e74705SXin Li template <class Derived>
4151*67e74705SXin Li class ExprEvaluatorBase
4152*67e74705SXin Li : public ConstStmtVisitor<Derived, bool> {
4153*67e74705SXin Li private:
getDerived()4154*67e74705SXin Li Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)4155*67e74705SXin Li bool DerivedSuccess(const APValue &V, const Expr *E) {
4156*67e74705SXin Li return getDerived().Success(V, E);
4157*67e74705SXin Li }
DerivedZeroInitialization(const Expr * E)4158*67e74705SXin Li bool DerivedZeroInitialization(const Expr *E) {
4159*67e74705SXin Li return getDerived().ZeroInitialization(E);
4160*67e74705SXin Li }
4161*67e74705SXin Li
4162*67e74705SXin Li // Check whether a conditional operator with a non-constant condition is a
4163*67e74705SXin Li // potential constant expression. If neither arm is a potential constant
4164*67e74705SXin Li // expression, then the conditional operator is not either.
4165*67e74705SXin Li template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)4166*67e74705SXin Li void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4167*67e74705SXin Li assert(Info.checkingPotentialConstantExpression());
4168*67e74705SXin Li
4169*67e74705SXin Li // Speculatively evaluate both arms.
4170*67e74705SXin Li SmallVector<PartialDiagnosticAt, 8> Diag;
4171*67e74705SXin Li {
4172*67e74705SXin Li SpeculativeEvaluationRAII Speculate(Info, &Diag);
4173*67e74705SXin Li StmtVisitorTy::Visit(E->getFalseExpr());
4174*67e74705SXin Li if (Diag.empty())
4175*67e74705SXin Li return;
4176*67e74705SXin Li }
4177*67e74705SXin Li
4178*67e74705SXin Li {
4179*67e74705SXin Li SpeculativeEvaluationRAII Speculate(Info, &Diag);
4180*67e74705SXin Li Diag.clear();
4181*67e74705SXin Li StmtVisitorTy::Visit(E->getTrueExpr());
4182*67e74705SXin Li if (Diag.empty())
4183*67e74705SXin Li return;
4184*67e74705SXin Li }
4185*67e74705SXin Li
4186*67e74705SXin Li Error(E, diag::note_constexpr_conditional_never_const);
4187*67e74705SXin Li }
4188*67e74705SXin Li
4189*67e74705SXin Li
4190*67e74705SXin Li template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)4191*67e74705SXin Li bool HandleConditionalOperator(const ConditionalOperator *E) {
4192*67e74705SXin Li bool BoolResult;
4193*67e74705SXin Li if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4194*67e74705SXin Li if (Info.checkingPotentialConstantExpression() && Info.noteFailure())
4195*67e74705SXin Li CheckPotentialConstantConditional(E);
4196*67e74705SXin Li return false;
4197*67e74705SXin Li }
4198*67e74705SXin Li
4199*67e74705SXin Li Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4200*67e74705SXin Li return StmtVisitorTy::Visit(EvalExpr);
4201*67e74705SXin Li }
4202*67e74705SXin Li
4203*67e74705SXin Li protected:
4204*67e74705SXin Li EvalInfo &Info;
4205*67e74705SXin Li typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4206*67e74705SXin Li typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4207*67e74705SXin Li
CCEDiag(const Expr * E,diag::kind D)4208*67e74705SXin Li OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4209*67e74705SXin Li return Info.CCEDiag(E, D);
4210*67e74705SXin Li }
4211*67e74705SXin Li
ZeroInitialization(const Expr * E)4212*67e74705SXin Li bool ZeroInitialization(const Expr *E) { return Error(E); }
4213*67e74705SXin Li
4214*67e74705SXin Li public:
ExprEvaluatorBase(EvalInfo & Info)4215*67e74705SXin Li ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4216*67e74705SXin Li
getEvalInfo()4217*67e74705SXin Li EvalInfo &getEvalInfo() { return Info; }
4218*67e74705SXin Li
4219*67e74705SXin Li /// Report an evaluation error. This should only be called when an error is
4220*67e74705SXin Li /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)4221*67e74705SXin Li bool Error(const Expr *E, diag::kind D) {
4222*67e74705SXin Li Info.FFDiag(E, D);
4223*67e74705SXin Li return false;
4224*67e74705SXin Li }
Error(const Expr * E)4225*67e74705SXin Li bool Error(const Expr *E) {
4226*67e74705SXin Li return Error(E, diag::note_invalid_subexpr_in_const_expr);
4227*67e74705SXin Li }
4228*67e74705SXin Li
VisitStmt(const Stmt *)4229*67e74705SXin Li bool VisitStmt(const Stmt *) {
4230*67e74705SXin Li llvm_unreachable("Expression evaluator should not be called on stmts");
4231*67e74705SXin Li }
VisitExpr(const Expr * E)4232*67e74705SXin Li bool VisitExpr(const Expr *E) {
4233*67e74705SXin Li return Error(E);
4234*67e74705SXin Li }
4235*67e74705SXin Li
VisitParenExpr(const ParenExpr * E)4236*67e74705SXin Li bool VisitParenExpr(const ParenExpr *E)
4237*67e74705SXin Li { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)4238*67e74705SXin Li bool VisitUnaryExtension(const UnaryOperator *E)
4239*67e74705SXin Li { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)4240*67e74705SXin Li bool VisitUnaryPlus(const UnaryOperator *E)
4241*67e74705SXin Li { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)4242*67e74705SXin Li bool VisitChooseExpr(const ChooseExpr *E)
4243*67e74705SXin Li { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)4244*67e74705SXin Li bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4245*67e74705SXin Li { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)4246*67e74705SXin Li bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4247*67e74705SXin Li { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)4248*67e74705SXin Li bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4249*67e74705SXin Li { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)4250*67e74705SXin Li bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4251*67e74705SXin Li // The initializer may not have been parsed yet, or might be erroneous.
4252*67e74705SXin Li if (!E->getExpr())
4253*67e74705SXin Li return Error(E);
4254*67e74705SXin Li return StmtVisitorTy::Visit(E->getExpr());
4255*67e74705SXin Li }
4256*67e74705SXin Li // We cannot create any objects for which cleanups are required, so there is
4257*67e74705SXin Li // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4258*67e74705SXin Li bool VisitExprWithCleanups(const ExprWithCleanups *E)
4259*67e74705SXin Li { return StmtVisitorTy::Visit(E->getSubExpr()); }
4260*67e74705SXin Li
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4261*67e74705SXin Li bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4262*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4263*67e74705SXin Li return static_cast<Derived*>(this)->VisitCastExpr(E);
4264*67e74705SXin Li }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4265*67e74705SXin Li bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4266*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4267*67e74705SXin Li return static_cast<Derived*>(this)->VisitCastExpr(E);
4268*67e74705SXin Li }
4269*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)4270*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E) {
4271*67e74705SXin Li switch (E->getOpcode()) {
4272*67e74705SXin Li default:
4273*67e74705SXin Li return Error(E);
4274*67e74705SXin Li
4275*67e74705SXin Li case BO_Comma:
4276*67e74705SXin Li VisitIgnoredValue(E->getLHS());
4277*67e74705SXin Li return StmtVisitorTy::Visit(E->getRHS());
4278*67e74705SXin Li
4279*67e74705SXin Li case BO_PtrMemD:
4280*67e74705SXin Li case BO_PtrMemI: {
4281*67e74705SXin Li LValue Obj;
4282*67e74705SXin Li if (!HandleMemberPointerAccess(Info, E, Obj))
4283*67e74705SXin Li return false;
4284*67e74705SXin Li APValue Result;
4285*67e74705SXin Li if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4286*67e74705SXin Li return false;
4287*67e74705SXin Li return DerivedSuccess(Result, E);
4288*67e74705SXin Li }
4289*67e74705SXin Li }
4290*67e74705SXin Li }
4291*67e74705SXin Li
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4292*67e74705SXin Li bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4293*67e74705SXin Li // Evaluate and cache the common expression. We treat it as a temporary,
4294*67e74705SXin Li // even though it's not quite the same thing.
4295*67e74705SXin Li if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4296*67e74705SXin Li Info, E->getCommon()))
4297*67e74705SXin Li return false;
4298*67e74705SXin Li
4299*67e74705SXin Li return HandleConditionalOperator(E);
4300*67e74705SXin Li }
4301*67e74705SXin Li
VisitConditionalOperator(const ConditionalOperator * E)4302*67e74705SXin Li bool VisitConditionalOperator(const ConditionalOperator *E) {
4303*67e74705SXin Li bool IsBcpCall = false;
4304*67e74705SXin Li // If the condition (ignoring parens) is a __builtin_constant_p call,
4305*67e74705SXin Li // the result is a constant expression if it can be folded without
4306*67e74705SXin Li // side-effects. This is an important GNU extension. See GCC PR38377
4307*67e74705SXin Li // for discussion.
4308*67e74705SXin Li if (const CallExpr *CallCE =
4309*67e74705SXin Li dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4310*67e74705SXin Li if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4311*67e74705SXin Li IsBcpCall = true;
4312*67e74705SXin Li
4313*67e74705SXin Li // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4314*67e74705SXin Li // constant expression; we can't check whether it's potentially foldable.
4315*67e74705SXin Li if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4316*67e74705SXin Li return false;
4317*67e74705SXin Li
4318*67e74705SXin Li FoldConstant Fold(Info, IsBcpCall);
4319*67e74705SXin Li if (!HandleConditionalOperator(E)) {
4320*67e74705SXin Li Fold.keepDiagnostics();
4321*67e74705SXin Li return false;
4322*67e74705SXin Li }
4323*67e74705SXin Li
4324*67e74705SXin Li return true;
4325*67e74705SXin Li }
4326*67e74705SXin Li
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4327*67e74705SXin Li bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4328*67e74705SXin Li if (APValue *Value = Info.CurrentCall->getTemporary(E))
4329*67e74705SXin Li return DerivedSuccess(*Value, E);
4330*67e74705SXin Li
4331*67e74705SXin Li const Expr *Source = E->getSourceExpr();
4332*67e74705SXin Li if (!Source)
4333*67e74705SXin Li return Error(E);
4334*67e74705SXin Li if (Source == E) { // sanity checking.
4335*67e74705SXin Li assert(0 && "OpaqueValueExpr recursively refers to itself");
4336*67e74705SXin Li return Error(E);
4337*67e74705SXin Li }
4338*67e74705SXin Li return StmtVisitorTy::Visit(Source);
4339*67e74705SXin Li }
4340*67e74705SXin Li
VisitCallExpr(const CallExpr * E)4341*67e74705SXin Li bool VisitCallExpr(const CallExpr *E) {
4342*67e74705SXin Li APValue Result;
4343*67e74705SXin Li if (!handleCallExpr(E, Result, nullptr))
4344*67e74705SXin Li return false;
4345*67e74705SXin Li return DerivedSuccess(Result, E);
4346*67e74705SXin Li }
4347*67e74705SXin Li
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)4348*67e74705SXin Li bool handleCallExpr(const CallExpr *E, APValue &Result,
4349*67e74705SXin Li const LValue *ResultSlot) {
4350*67e74705SXin Li const Expr *Callee = E->getCallee()->IgnoreParens();
4351*67e74705SXin Li QualType CalleeType = Callee->getType();
4352*67e74705SXin Li
4353*67e74705SXin Li const FunctionDecl *FD = nullptr;
4354*67e74705SXin Li LValue *This = nullptr, ThisVal;
4355*67e74705SXin Li auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4356*67e74705SXin Li bool HasQualifier = false;
4357*67e74705SXin Li
4358*67e74705SXin Li // Extract function decl and 'this' pointer from the callee.
4359*67e74705SXin Li if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4360*67e74705SXin Li const ValueDecl *Member = nullptr;
4361*67e74705SXin Li if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4362*67e74705SXin Li // Explicit bound member calls, such as x.f() or p->g();
4363*67e74705SXin Li if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4364*67e74705SXin Li return false;
4365*67e74705SXin Li Member = ME->getMemberDecl();
4366*67e74705SXin Li This = &ThisVal;
4367*67e74705SXin Li HasQualifier = ME->hasQualifier();
4368*67e74705SXin Li } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4369*67e74705SXin Li // Indirect bound member calls ('.*' or '->*').
4370*67e74705SXin Li Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4371*67e74705SXin Li if (!Member) return false;
4372*67e74705SXin Li This = &ThisVal;
4373*67e74705SXin Li } else
4374*67e74705SXin Li return Error(Callee);
4375*67e74705SXin Li
4376*67e74705SXin Li FD = dyn_cast<FunctionDecl>(Member);
4377*67e74705SXin Li if (!FD)
4378*67e74705SXin Li return Error(Callee);
4379*67e74705SXin Li } else if (CalleeType->isFunctionPointerType()) {
4380*67e74705SXin Li LValue Call;
4381*67e74705SXin Li if (!EvaluatePointer(Callee, Call, Info))
4382*67e74705SXin Li return false;
4383*67e74705SXin Li
4384*67e74705SXin Li if (!Call.getLValueOffset().isZero())
4385*67e74705SXin Li return Error(Callee);
4386*67e74705SXin Li FD = dyn_cast_or_null<FunctionDecl>(
4387*67e74705SXin Li Call.getLValueBase().dyn_cast<const ValueDecl*>());
4388*67e74705SXin Li if (!FD)
4389*67e74705SXin Li return Error(Callee);
4390*67e74705SXin Li
4391*67e74705SXin Li // Overloaded operator calls to member functions are represented as normal
4392*67e74705SXin Li // calls with '*this' as the first argument.
4393*67e74705SXin Li const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4394*67e74705SXin Li if (MD && !MD->isStatic()) {
4395*67e74705SXin Li // FIXME: When selecting an implicit conversion for an overloaded
4396*67e74705SXin Li // operator delete, we sometimes try to evaluate calls to conversion
4397*67e74705SXin Li // operators without a 'this' parameter!
4398*67e74705SXin Li if (Args.empty())
4399*67e74705SXin Li return Error(E);
4400*67e74705SXin Li
4401*67e74705SXin Li if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4402*67e74705SXin Li return false;
4403*67e74705SXin Li This = &ThisVal;
4404*67e74705SXin Li Args = Args.slice(1);
4405*67e74705SXin Li }
4406*67e74705SXin Li
4407*67e74705SXin Li // Don't call function pointers which have been cast to some other type.
4408*67e74705SXin Li if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4409*67e74705SXin Li return Error(E);
4410*67e74705SXin Li } else
4411*67e74705SXin Li return Error(E);
4412*67e74705SXin Li
4413*67e74705SXin Li if (This && !This->checkSubobject(Info, E, CSK_This))
4414*67e74705SXin Li return false;
4415*67e74705SXin Li
4416*67e74705SXin Li // DR1358 allows virtual constexpr functions in some cases. Don't allow
4417*67e74705SXin Li // calls to such functions in constant expressions.
4418*67e74705SXin Li if (This && !HasQualifier &&
4419*67e74705SXin Li isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4420*67e74705SXin Li return Error(E, diag::note_constexpr_virtual_call);
4421*67e74705SXin Li
4422*67e74705SXin Li const FunctionDecl *Definition = nullptr;
4423*67e74705SXin Li Stmt *Body = FD->getBody(Definition);
4424*67e74705SXin Li
4425*67e74705SXin Li if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
4426*67e74705SXin Li !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4427*67e74705SXin Li Result, ResultSlot))
4428*67e74705SXin Li return false;
4429*67e74705SXin Li
4430*67e74705SXin Li return true;
4431*67e74705SXin Li }
4432*67e74705SXin Li
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4433*67e74705SXin Li bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4434*67e74705SXin Li return StmtVisitorTy::Visit(E->getInitializer());
4435*67e74705SXin Li }
VisitInitListExpr(const InitListExpr * E)4436*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E) {
4437*67e74705SXin Li if (E->getNumInits() == 0)
4438*67e74705SXin Li return DerivedZeroInitialization(E);
4439*67e74705SXin Li if (E->getNumInits() == 1)
4440*67e74705SXin Li return StmtVisitorTy::Visit(E->getInit(0));
4441*67e74705SXin Li return Error(E);
4442*67e74705SXin Li }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4443*67e74705SXin Li bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4444*67e74705SXin Li return DerivedZeroInitialization(E);
4445*67e74705SXin Li }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4446*67e74705SXin Li bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4447*67e74705SXin Li return DerivedZeroInitialization(E);
4448*67e74705SXin Li }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4449*67e74705SXin Li bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4450*67e74705SXin Li return DerivedZeroInitialization(E);
4451*67e74705SXin Li }
4452*67e74705SXin Li
4453*67e74705SXin Li /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4454*67e74705SXin Li bool VisitMemberExpr(const MemberExpr *E) {
4455*67e74705SXin Li assert(!E->isArrow() && "missing call to bound member function?");
4456*67e74705SXin Li
4457*67e74705SXin Li APValue Val;
4458*67e74705SXin Li if (!Evaluate(Val, Info, E->getBase()))
4459*67e74705SXin Li return false;
4460*67e74705SXin Li
4461*67e74705SXin Li QualType BaseTy = E->getBase()->getType();
4462*67e74705SXin Li
4463*67e74705SXin Li const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4464*67e74705SXin Li if (!FD) return Error(E);
4465*67e74705SXin Li assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4466*67e74705SXin Li assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4467*67e74705SXin Li FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4468*67e74705SXin Li
4469*67e74705SXin Li CompleteObject Obj(&Val, BaseTy);
4470*67e74705SXin Li SubobjectDesignator Designator(BaseTy);
4471*67e74705SXin Li Designator.addDeclUnchecked(FD);
4472*67e74705SXin Li
4473*67e74705SXin Li APValue Result;
4474*67e74705SXin Li return extractSubobject(Info, E, Obj, Designator, Result) &&
4475*67e74705SXin Li DerivedSuccess(Result, E);
4476*67e74705SXin Li }
4477*67e74705SXin Li
VisitCastExpr(const CastExpr * E)4478*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
4479*67e74705SXin Li switch (E->getCastKind()) {
4480*67e74705SXin Li default:
4481*67e74705SXin Li break;
4482*67e74705SXin Li
4483*67e74705SXin Li case CK_AtomicToNonAtomic: {
4484*67e74705SXin Li APValue AtomicVal;
4485*67e74705SXin Li if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4486*67e74705SXin Li return false;
4487*67e74705SXin Li return DerivedSuccess(AtomicVal, E);
4488*67e74705SXin Li }
4489*67e74705SXin Li
4490*67e74705SXin Li case CK_NoOp:
4491*67e74705SXin Li case CK_UserDefinedConversion:
4492*67e74705SXin Li return StmtVisitorTy::Visit(E->getSubExpr());
4493*67e74705SXin Li
4494*67e74705SXin Li case CK_LValueToRValue: {
4495*67e74705SXin Li LValue LVal;
4496*67e74705SXin Li if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4497*67e74705SXin Li return false;
4498*67e74705SXin Li APValue RVal;
4499*67e74705SXin Li // Note, we use the subexpression's type in order to retain cv-qualifiers.
4500*67e74705SXin Li if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4501*67e74705SXin Li LVal, RVal))
4502*67e74705SXin Li return false;
4503*67e74705SXin Li return DerivedSuccess(RVal, E);
4504*67e74705SXin Li }
4505*67e74705SXin Li }
4506*67e74705SXin Li
4507*67e74705SXin Li return Error(E);
4508*67e74705SXin Li }
4509*67e74705SXin Li
VisitUnaryPostInc(const UnaryOperator * UO)4510*67e74705SXin Li bool VisitUnaryPostInc(const UnaryOperator *UO) {
4511*67e74705SXin Li return VisitUnaryPostIncDec(UO);
4512*67e74705SXin Li }
VisitUnaryPostDec(const UnaryOperator * UO)4513*67e74705SXin Li bool VisitUnaryPostDec(const UnaryOperator *UO) {
4514*67e74705SXin Li return VisitUnaryPostIncDec(UO);
4515*67e74705SXin Li }
VisitUnaryPostIncDec(const UnaryOperator * UO)4516*67e74705SXin Li bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4517*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4518*67e74705SXin Li return Error(UO);
4519*67e74705SXin Li
4520*67e74705SXin Li LValue LVal;
4521*67e74705SXin Li if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4522*67e74705SXin Li return false;
4523*67e74705SXin Li APValue RVal;
4524*67e74705SXin Li if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4525*67e74705SXin Li UO->isIncrementOp(), &RVal))
4526*67e74705SXin Li return false;
4527*67e74705SXin Li return DerivedSuccess(RVal, UO);
4528*67e74705SXin Li }
4529*67e74705SXin Li
VisitStmtExpr(const StmtExpr * E)4530*67e74705SXin Li bool VisitStmtExpr(const StmtExpr *E) {
4531*67e74705SXin Li // We will have checked the full-expressions inside the statement expression
4532*67e74705SXin Li // when they were completed, and don't need to check them again now.
4533*67e74705SXin Li if (Info.checkingForOverflow())
4534*67e74705SXin Li return Error(E);
4535*67e74705SXin Li
4536*67e74705SXin Li BlockScopeRAII Scope(Info);
4537*67e74705SXin Li const CompoundStmt *CS = E->getSubStmt();
4538*67e74705SXin Li if (CS->body_empty())
4539*67e74705SXin Li return true;
4540*67e74705SXin Li
4541*67e74705SXin Li for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4542*67e74705SXin Li BE = CS->body_end();
4543*67e74705SXin Li /**/; ++BI) {
4544*67e74705SXin Li if (BI + 1 == BE) {
4545*67e74705SXin Li const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4546*67e74705SXin Li if (!FinalExpr) {
4547*67e74705SXin Li Info.FFDiag((*BI)->getLocStart(),
4548*67e74705SXin Li diag::note_constexpr_stmt_expr_unsupported);
4549*67e74705SXin Li return false;
4550*67e74705SXin Li }
4551*67e74705SXin Li return this->Visit(FinalExpr);
4552*67e74705SXin Li }
4553*67e74705SXin Li
4554*67e74705SXin Li APValue ReturnValue;
4555*67e74705SXin Li StmtResult Result = { ReturnValue, nullptr };
4556*67e74705SXin Li EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4557*67e74705SXin Li if (ESR != ESR_Succeeded) {
4558*67e74705SXin Li // FIXME: If the statement-expression terminated due to 'return',
4559*67e74705SXin Li // 'break', or 'continue', it would be nice to propagate that to
4560*67e74705SXin Li // the outer statement evaluation rather than bailing out.
4561*67e74705SXin Li if (ESR != ESR_Failed)
4562*67e74705SXin Li Info.FFDiag((*BI)->getLocStart(),
4563*67e74705SXin Li diag::note_constexpr_stmt_expr_unsupported);
4564*67e74705SXin Li return false;
4565*67e74705SXin Li }
4566*67e74705SXin Li }
4567*67e74705SXin Li
4568*67e74705SXin Li llvm_unreachable("Return from function from the loop above.");
4569*67e74705SXin Li }
4570*67e74705SXin Li
4571*67e74705SXin Li /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4572*67e74705SXin Li void VisitIgnoredValue(const Expr *E) {
4573*67e74705SXin Li EvaluateIgnoredValue(Info, E);
4574*67e74705SXin Li }
4575*67e74705SXin Li
4576*67e74705SXin Li /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)4577*67e74705SXin Li void VisitIgnoredBaseExpression(const Expr *E) {
4578*67e74705SXin Li // While MSVC doesn't evaluate the base expression, it does diagnose the
4579*67e74705SXin Li // presence of side-effecting behavior.
4580*67e74705SXin Li if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
4581*67e74705SXin Li return;
4582*67e74705SXin Li VisitIgnoredValue(E);
4583*67e74705SXin Li }
4584*67e74705SXin Li };
4585*67e74705SXin Li
4586*67e74705SXin Li }
4587*67e74705SXin Li
4588*67e74705SXin Li //===----------------------------------------------------------------------===//
4589*67e74705SXin Li // Common base class for lvalue and temporary evaluation.
4590*67e74705SXin Li //===----------------------------------------------------------------------===//
4591*67e74705SXin Li namespace {
4592*67e74705SXin Li template<class Derived>
4593*67e74705SXin Li class LValueExprEvaluatorBase
4594*67e74705SXin Li : public ExprEvaluatorBase<Derived> {
4595*67e74705SXin Li protected:
4596*67e74705SXin Li LValue &Result;
4597*67e74705SXin Li typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4598*67e74705SXin Li typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4599*67e74705SXin Li
Success(APValue::LValueBase B)4600*67e74705SXin Li bool Success(APValue::LValueBase B) {
4601*67e74705SXin Li Result.set(B);
4602*67e74705SXin Li return true;
4603*67e74705SXin Li }
4604*67e74705SXin Li
4605*67e74705SXin Li public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4606*67e74705SXin Li LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4607*67e74705SXin Li ExprEvaluatorBaseTy(Info), Result(Result) {}
4608*67e74705SXin Li
Success(const APValue & V,const Expr * E)4609*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
4610*67e74705SXin Li Result.setFrom(this->Info.Ctx, V);
4611*67e74705SXin Li return true;
4612*67e74705SXin Li }
4613*67e74705SXin Li
VisitMemberExpr(const MemberExpr * E)4614*67e74705SXin Li bool VisitMemberExpr(const MemberExpr *E) {
4615*67e74705SXin Li // Handle non-static data members.
4616*67e74705SXin Li QualType BaseTy;
4617*67e74705SXin Li bool EvalOK;
4618*67e74705SXin Li if (E->isArrow()) {
4619*67e74705SXin Li EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
4620*67e74705SXin Li BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4621*67e74705SXin Li } else if (E->getBase()->isRValue()) {
4622*67e74705SXin Li assert(E->getBase()->getType()->isRecordType());
4623*67e74705SXin Li EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
4624*67e74705SXin Li BaseTy = E->getBase()->getType();
4625*67e74705SXin Li } else {
4626*67e74705SXin Li EvalOK = this->Visit(E->getBase());
4627*67e74705SXin Li BaseTy = E->getBase()->getType();
4628*67e74705SXin Li }
4629*67e74705SXin Li if (!EvalOK) {
4630*67e74705SXin Li if (!this->Info.allowInvalidBaseExpr())
4631*67e74705SXin Li return false;
4632*67e74705SXin Li Result.setInvalid(E);
4633*67e74705SXin Li return true;
4634*67e74705SXin Li }
4635*67e74705SXin Li
4636*67e74705SXin Li const ValueDecl *MD = E->getMemberDecl();
4637*67e74705SXin Li if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4638*67e74705SXin Li assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4639*67e74705SXin Li FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4640*67e74705SXin Li (void)BaseTy;
4641*67e74705SXin Li if (!HandleLValueMember(this->Info, E, Result, FD))
4642*67e74705SXin Li return false;
4643*67e74705SXin Li } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4644*67e74705SXin Li if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4645*67e74705SXin Li return false;
4646*67e74705SXin Li } else
4647*67e74705SXin Li return this->Error(E);
4648*67e74705SXin Li
4649*67e74705SXin Li if (MD->getType()->isReferenceType()) {
4650*67e74705SXin Li APValue RefValue;
4651*67e74705SXin Li if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4652*67e74705SXin Li RefValue))
4653*67e74705SXin Li return false;
4654*67e74705SXin Li return Success(RefValue, E);
4655*67e74705SXin Li }
4656*67e74705SXin Li return true;
4657*67e74705SXin Li }
4658*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)4659*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E) {
4660*67e74705SXin Li switch (E->getOpcode()) {
4661*67e74705SXin Li default:
4662*67e74705SXin Li return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4663*67e74705SXin Li
4664*67e74705SXin Li case BO_PtrMemD:
4665*67e74705SXin Li case BO_PtrMemI:
4666*67e74705SXin Li return HandleMemberPointerAccess(this->Info, E, Result);
4667*67e74705SXin Li }
4668*67e74705SXin Li }
4669*67e74705SXin Li
VisitCastExpr(const CastExpr * E)4670*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
4671*67e74705SXin Li switch (E->getCastKind()) {
4672*67e74705SXin Li default:
4673*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
4674*67e74705SXin Li
4675*67e74705SXin Li case CK_DerivedToBase:
4676*67e74705SXin Li case CK_UncheckedDerivedToBase:
4677*67e74705SXin Li if (!this->Visit(E->getSubExpr()))
4678*67e74705SXin Li return false;
4679*67e74705SXin Li
4680*67e74705SXin Li // Now figure out the necessary offset to add to the base LV to get from
4681*67e74705SXin Li // the derived class to the base class.
4682*67e74705SXin Li return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4683*67e74705SXin Li Result);
4684*67e74705SXin Li }
4685*67e74705SXin Li }
4686*67e74705SXin Li };
4687*67e74705SXin Li }
4688*67e74705SXin Li
4689*67e74705SXin Li //===----------------------------------------------------------------------===//
4690*67e74705SXin Li // LValue Evaluation
4691*67e74705SXin Li //
4692*67e74705SXin Li // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4693*67e74705SXin Li // function designators (in C), decl references to void objects (in C), and
4694*67e74705SXin Li // temporaries (if building with -Wno-address-of-temporary).
4695*67e74705SXin Li //
4696*67e74705SXin Li // LValue evaluation produces values comprising a base expression of one of the
4697*67e74705SXin Li // following types:
4698*67e74705SXin Li // - Declarations
4699*67e74705SXin Li // * VarDecl
4700*67e74705SXin Li // * FunctionDecl
4701*67e74705SXin Li // - Literals
4702*67e74705SXin Li // * CompoundLiteralExpr in C
4703*67e74705SXin Li // * StringLiteral
4704*67e74705SXin Li // * CXXTypeidExpr
4705*67e74705SXin Li // * PredefinedExpr
4706*67e74705SXin Li // * ObjCStringLiteralExpr
4707*67e74705SXin Li // * ObjCEncodeExpr
4708*67e74705SXin Li // * AddrLabelExpr
4709*67e74705SXin Li // * BlockExpr
4710*67e74705SXin Li // * CallExpr for a MakeStringConstant builtin
4711*67e74705SXin Li // - Locals and temporaries
4712*67e74705SXin Li // * MaterializeTemporaryExpr
4713*67e74705SXin Li // * Any Expr, with a CallIndex indicating the function in which the temporary
4714*67e74705SXin Li // was evaluated, for cases where the MaterializeTemporaryExpr is missing
4715*67e74705SXin Li // from the AST (FIXME).
4716*67e74705SXin Li // * A MaterializeTemporaryExpr that has static storage duration, with no
4717*67e74705SXin Li // CallIndex, for a lifetime-extended temporary.
4718*67e74705SXin Li // plus an offset in bytes.
4719*67e74705SXin Li //===----------------------------------------------------------------------===//
4720*67e74705SXin Li namespace {
4721*67e74705SXin Li class LValueExprEvaluator
4722*67e74705SXin Li : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4723*67e74705SXin Li public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4724*67e74705SXin Li LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4725*67e74705SXin Li LValueExprEvaluatorBaseTy(Info, Result) {}
4726*67e74705SXin Li
4727*67e74705SXin Li bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4728*67e74705SXin Li bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4729*67e74705SXin Li
4730*67e74705SXin Li bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4731*67e74705SXin Li bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4732*67e74705SXin Li bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4733*67e74705SXin Li bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4734*67e74705SXin Li bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4735*67e74705SXin Li bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4736*67e74705SXin Li bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4737*67e74705SXin Li bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4738*67e74705SXin Li bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4739*67e74705SXin Li bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4740*67e74705SXin Li bool VisitUnaryDeref(const UnaryOperator *E);
4741*67e74705SXin Li bool VisitUnaryReal(const UnaryOperator *E);
4742*67e74705SXin Li bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4743*67e74705SXin Li bool VisitUnaryPreInc(const UnaryOperator *UO) {
4744*67e74705SXin Li return VisitUnaryPreIncDec(UO);
4745*67e74705SXin Li }
VisitUnaryPreDec(const UnaryOperator * UO)4746*67e74705SXin Li bool VisitUnaryPreDec(const UnaryOperator *UO) {
4747*67e74705SXin Li return VisitUnaryPreIncDec(UO);
4748*67e74705SXin Li }
4749*67e74705SXin Li bool VisitBinAssign(const BinaryOperator *BO);
4750*67e74705SXin Li bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4751*67e74705SXin Li
VisitCastExpr(const CastExpr * E)4752*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
4753*67e74705SXin Li switch (E->getCastKind()) {
4754*67e74705SXin Li default:
4755*67e74705SXin Li return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4756*67e74705SXin Li
4757*67e74705SXin Li case CK_LValueBitCast:
4758*67e74705SXin Li this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4759*67e74705SXin Li if (!Visit(E->getSubExpr()))
4760*67e74705SXin Li return false;
4761*67e74705SXin Li Result.Designator.setInvalid();
4762*67e74705SXin Li return true;
4763*67e74705SXin Li
4764*67e74705SXin Li case CK_BaseToDerived:
4765*67e74705SXin Li if (!Visit(E->getSubExpr()))
4766*67e74705SXin Li return false;
4767*67e74705SXin Li return HandleBaseToDerivedCast(Info, E, Result);
4768*67e74705SXin Li }
4769*67e74705SXin Li }
4770*67e74705SXin Li };
4771*67e74705SXin Li } // end anonymous namespace
4772*67e74705SXin Li
4773*67e74705SXin Li /// Evaluate an expression as an lvalue. This can be legitimately called on
4774*67e74705SXin Li /// expressions which are not glvalues, in three cases:
4775*67e74705SXin Li /// * function designators in C, and
4776*67e74705SXin Li /// * "extern void" objects
4777*67e74705SXin Li /// * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4778*67e74705SXin Li static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4779*67e74705SXin Li assert(E->isGLValue() || E->getType()->isFunctionType() ||
4780*67e74705SXin Li E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
4781*67e74705SXin Li return LValueExprEvaluator(Info, Result).Visit(E);
4782*67e74705SXin Li }
4783*67e74705SXin Li
VisitDeclRefExpr(const DeclRefExpr * E)4784*67e74705SXin Li bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4785*67e74705SXin Li if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4786*67e74705SXin Li return Success(FD);
4787*67e74705SXin Li if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4788*67e74705SXin Li return VisitVarDecl(E, VD);
4789*67e74705SXin Li return Error(E);
4790*67e74705SXin Li }
4791*67e74705SXin Li
VisitVarDecl(const Expr * E,const VarDecl * VD)4792*67e74705SXin Li bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4793*67e74705SXin Li CallStackFrame *Frame = nullptr;
4794*67e74705SXin Li if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4795*67e74705SXin Li Frame = Info.CurrentCall;
4796*67e74705SXin Li
4797*67e74705SXin Li if (!VD->getType()->isReferenceType()) {
4798*67e74705SXin Li if (Frame) {
4799*67e74705SXin Li Result.set(VD, Frame->Index);
4800*67e74705SXin Li return true;
4801*67e74705SXin Li }
4802*67e74705SXin Li return Success(VD);
4803*67e74705SXin Li }
4804*67e74705SXin Li
4805*67e74705SXin Li APValue *V;
4806*67e74705SXin Li if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4807*67e74705SXin Li return false;
4808*67e74705SXin Li if (V->isUninit()) {
4809*67e74705SXin Li if (!Info.checkingPotentialConstantExpression())
4810*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
4811*67e74705SXin Li return false;
4812*67e74705SXin Li }
4813*67e74705SXin Li return Success(*V, E);
4814*67e74705SXin Li }
4815*67e74705SXin Li
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4816*67e74705SXin Li bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4817*67e74705SXin Li const MaterializeTemporaryExpr *E) {
4818*67e74705SXin Li // Walk through the expression to find the materialized temporary itself.
4819*67e74705SXin Li SmallVector<const Expr *, 2> CommaLHSs;
4820*67e74705SXin Li SmallVector<SubobjectAdjustment, 2> Adjustments;
4821*67e74705SXin Li const Expr *Inner = E->GetTemporaryExpr()->
4822*67e74705SXin Li skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4823*67e74705SXin Li
4824*67e74705SXin Li // If we passed any comma operators, evaluate their LHSs.
4825*67e74705SXin Li for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4826*67e74705SXin Li if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4827*67e74705SXin Li return false;
4828*67e74705SXin Li
4829*67e74705SXin Li // A materialized temporary with static storage duration can appear within the
4830*67e74705SXin Li // result of a constant expression evaluation, so we need to preserve its
4831*67e74705SXin Li // value for use outside this evaluation.
4832*67e74705SXin Li APValue *Value;
4833*67e74705SXin Li if (E->getStorageDuration() == SD_Static) {
4834*67e74705SXin Li Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4835*67e74705SXin Li *Value = APValue();
4836*67e74705SXin Li Result.set(E);
4837*67e74705SXin Li } else {
4838*67e74705SXin Li Value = &Info.CurrentCall->
4839*67e74705SXin Li createTemporary(E, E->getStorageDuration() == SD_Automatic);
4840*67e74705SXin Li Result.set(E, Info.CurrentCall->Index);
4841*67e74705SXin Li }
4842*67e74705SXin Li
4843*67e74705SXin Li QualType Type = Inner->getType();
4844*67e74705SXin Li
4845*67e74705SXin Li // Materialize the temporary itself.
4846*67e74705SXin Li if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4847*67e74705SXin Li (E->getStorageDuration() == SD_Static &&
4848*67e74705SXin Li !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4849*67e74705SXin Li *Value = APValue();
4850*67e74705SXin Li return false;
4851*67e74705SXin Li }
4852*67e74705SXin Li
4853*67e74705SXin Li // Adjust our lvalue to refer to the desired subobject.
4854*67e74705SXin Li for (unsigned I = Adjustments.size(); I != 0; /**/) {
4855*67e74705SXin Li --I;
4856*67e74705SXin Li switch (Adjustments[I].Kind) {
4857*67e74705SXin Li case SubobjectAdjustment::DerivedToBaseAdjustment:
4858*67e74705SXin Li if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4859*67e74705SXin Li Type, Result))
4860*67e74705SXin Li return false;
4861*67e74705SXin Li Type = Adjustments[I].DerivedToBase.BasePath->getType();
4862*67e74705SXin Li break;
4863*67e74705SXin Li
4864*67e74705SXin Li case SubobjectAdjustment::FieldAdjustment:
4865*67e74705SXin Li if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4866*67e74705SXin Li return false;
4867*67e74705SXin Li Type = Adjustments[I].Field->getType();
4868*67e74705SXin Li break;
4869*67e74705SXin Li
4870*67e74705SXin Li case SubobjectAdjustment::MemberPointerAdjustment:
4871*67e74705SXin Li if (!HandleMemberPointerAccess(this->Info, Type, Result,
4872*67e74705SXin Li Adjustments[I].Ptr.RHS))
4873*67e74705SXin Li return false;
4874*67e74705SXin Li Type = Adjustments[I].Ptr.MPT->getPointeeType();
4875*67e74705SXin Li break;
4876*67e74705SXin Li }
4877*67e74705SXin Li }
4878*67e74705SXin Li
4879*67e74705SXin Li return true;
4880*67e74705SXin Li }
4881*67e74705SXin Li
4882*67e74705SXin Li bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4883*67e74705SXin Li LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4884*67e74705SXin Li assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4885*67e74705SXin Li // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4886*67e74705SXin Li // only see this when folding in C, so there's no standard to follow here.
4887*67e74705SXin Li return Success(E);
4888*67e74705SXin Li }
4889*67e74705SXin Li
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4890*67e74705SXin Li bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4891*67e74705SXin Li if (!E->isPotentiallyEvaluated())
4892*67e74705SXin Li return Success(E);
4893*67e74705SXin Li
4894*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
4895*67e74705SXin Li << E->getExprOperand()->getType()
4896*67e74705SXin Li << E->getExprOperand()->getSourceRange();
4897*67e74705SXin Li return false;
4898*67e74705SXin Li }
4899*67e74705SXin Li
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4900*67e74705SXin Li bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4901*67e74705SXin Li return Success(E);
4902*67e74705SXin Li }
4903*67e74705SXin Li
VisitMemberExpr(const MemberExpr * E)4904*67e74705SXin Li bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4905*67e74705SXin Li // Handle static data members.
4906*67e74705SXin Li if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4907*67e74705SXin Li VisitIgnoredBaseExpression(E->getBase());
4908*67e74705SXin Li return VisitVarDecl(E, VD);
4909*67e74705SXin Li }
4910*67e74705SXin Li
4911*67e74705SXin Li // Handle static member functions.
4912*67e74705SXin Li if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4913*67e74705SXin Li if (MD->isStatic()) {
4914*67e74705SXin Li VisitIgnoredBaseExpression(E->getBase());
4915*67e74705SXin Li return Success(MD);
4916*67e74705SXin Li }
4917*67e74705SXin Li }
4918*67e74705SXin Li
4919*67e74705SXin Li // Handle non-static data members.
4920*67e74705SXin Li return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4921*67e74705SXin Li }
4922*67e74705SXin Li
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4923*67e74705SXin Li bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4924*67e74705SXin Li // FIXME: Deal with vectors as array subscript bases.
4925*67e74705SXin Li if (E->getBase()->getType()->isVectorType())
4926*67e74705SXin Li return Error(E);
4927*67e74705SXin Li
4928*67e74705SXin Li if (!EvaluatePointer(E->getBase(), Result, Info))
4929*67e74705SXin Li return false;
4930*67e74705SXin Li
4931*67e74705SXin Li APSInt Index;
4932*67e74705SXin Li if (!EvaluateInteger(E->getIdx(), Index, Info))
4933*67e74705SXin Li return false;
4934*67e74705SXin Li
4935*67e74705SXin Li return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4936*67e74705SXin Li getExtValue(Index));
4937*67e74705SXin Li }
4938*67e74705SXin Li
VisitUnaryDeref(const UnaryOperator * E)4939*67e74705SXin Li bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4940*67e74705SXin Li return EvaluatePointer(E->getSubExpr(), Result, Info);
4941*67e74705SXin Li }
4942*67e74705SXin Li
VisitUnaryReal(const UnaryOperator * E)4943*67e74705SXin Li bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4944*67e74705SXin Li if (!Visit(E->getSubExpr()))
4945*67e74705SXin Li return false;
4946*67e74705SXin Li // __real is a no-op on scalar lvalues.
4947*67e74705SXin Li if (E->getSubExpr()->getType()->isAnyComplexType())
4948*67e74705SXin Li HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4949*67e74705SXin Li return true;
4950*67e74705SXin Li }
4951*67e74705SXin Li
VisitUnaryImag(const UnaryOperator * E)4952*67e74705SXin Li bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4953*67e74705SXin Li assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4954*67e74705SXin Li "lvalue __imag__ on scalar?");
4955*67e74705SXin Li if (!Visit(E->getSubExpr()))
4956*67e74705SXin Li return false;
4957*67e74705SXin Li HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4958*67e74705SXin Li return true;
4959*67e74705SXin Li }
4960*67e74705SXin Li
VisitUnaryPreIncDec(const UnaryOperator * UO)4961*67e74705SXin Li bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4962*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4963*67e74705SXin Li return Error(UO);
4964*67e74705SXin Li
4965*67e74705SXin Li if (!this->Visit(UO->getSubExpr()))
4966*67e74705SXin Li return false;
4967*67e74705SXin Li
4968*67e74705SXin Li return handleIncDec(
4969*67e74705SXin Li this->Info, UO, Result, UO->getSubExpr()->getType(),
4970*67e74705SXin Li UO->isIncrementOp(), nullptr);
4971*67e74705SXin Li }
4972*67e74705SXin Li
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4973*67e74705SXin Li bool LValueExprEvaluator::VisitCompoundAssignOperator(
4974*67e74705SXin Li const CompoundAssignOperator *CAO) {
4975*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4976*67e74705SXin Li return Error(CAO);
4977*67e74705SXin Li
4978*67e74705SXin Li APValue RHS;
4979*67e74705SXin Li
4980*67e74705SXin Li // The overall lvalue result is the result of evaluating the LHS.
4981*67e74705SXin Li if (!this->Visit(CAO->getLHS())) {
4982*67e74705SXin Li if (Info.noteFailure())
4983*67e74705SXin Li Evaluate(RHS, this->Info, CAO->getRHS());
4984*67e74705SXin Li return false;
4985*67e74705SXin Li }
4986*67e74705SXin Li
4987*67e74705SXin Li if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4988*67e74705SXin Li return false;
4989*67e74705SXin Li
4990*67e74705SXin Li return handleCompoundAssignment(
4991*67e74705SXin Li this->Info, CAO,
4992*67e74705SXin Li Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4993*67e74705SXin Li CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4994*67e74705SXin Li }
4995*67e74705SXin Li
VisitBinAssign(const BinaryOperator * E)4996*67e74705SXin Li bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4997*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4998*67e74705SXin Li return Error(E);
4999*67e74705SXin Li
5000*67e74705SXin Li APValue NewVal;
5001*67e74705SXin Li
5002*67e74705SXin Li if (!this->Visit(E->getLHS())) {
5003*67e74705SXin Li if (Info.noteFailure())
5004*67e74705SXin Li Evaluate(NewVal, this->Info, E->getRHS());
5005*67e74705SXin Li return false;
5006*67e74705SXin Li }
5007*67e74705SXin Li
5008*67e74705SXin Li if (!Evaluate(NewVal, this->Info, E->getRHS()))
5009*67e74705SXin Li return false;
5010*67e74705SXin Li
5011*67e74705SXin Li return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
5012*67e74705SXin Li NewVal);
5013*67e74705SXin Li }
5014*67e74705SXin Li
5015*67e74705SXin Li //===----------------------------------------------------------------------===//
5016*67e74705SXin Li // Pointer Evaluation
5017*67e74705SXin Li //===----------------------------------------------------------------------===//
5018*67e74705SXin Li
5019*67e74705SXin Li namespace {
5020*67e74705SXin Li class PointerExprEvaluator
5021*67e74705SXin Li : public ExprEvaluatorBase<PointerExprEvaluator> {
5022*67e74705SXin Li LValue &Result;
5023*67e74705SXin Li
Success(const Expr * E)5024*67e74705SXin Li bool Success(const Expr *E) {
5025*67e74705SXin Li Result.set(E);
5026*67e74705SXin Li return true;
5027*67e74705SXin Li }
5028*67e74705SXin Li public:
5029*67e74705SXin Li
PointerExprEvaluator(EvalInfo & info,LValue & Result)5030*67e74705SXin Li PointerExprEvaluator(EvalInfo &info, LValue &Result)
5031*67e74705SXin Li : ExprEvaluatorBaseTy(info), Result(Result) {}
5032*67e74705SXin Li
Success(const APValue & V,const Expr * E)5033*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
5034*67e74705SXin Li Result.setFrom(Info.Ctx, V);
5035*67e74705SXin Li return true;
5036*67e74705SXin Li }
ZeroInitialization(const Expr * E)5037*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
5038*67e74705SXin Li return Success((Expr*)nullptr);
5039*67e74705SXin Li }
5040*67e74705SXin Li
5041*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E);
5042*67e74705SXin Li bool VisitCastExpr(const CastExpr* E);
5043*67e74705SXin Li bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)5044*67e74705SXin Li bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
5045*67e74705SXin Li { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)5046*67e74705SXin Li bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
5047*67e74705SXin Li { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)5048*67e74705SXin Li bool VisitAddrLabelExpr(const AddrLabelExpr *E)
5049*67e74705SXin Li { return Success(E); }
5050*67e74705SXin Li bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)5051*67e74705SXin Li bool VisitBlockExpr(const BlockExpr *E) {
5052*67e74705SXin Li if (!E->getBlockDecl()->hasCaptures())
5053*67e74705SXin Li return Success(E);
5054*67e74705SXin Li return Error(E);
5055*67e74705SXin Li }
VisitCXXThisExpr(const CXXThisExpr * E)5056*67e74705SXin Li bool VisitCXXThisExpr(const CXXThisExpr *E) {
5057*67e74705SXin Li // Can't look at 'this' when checking a potential constant expression.
5058*67e74705SXin Li if (Info.checkingPotentialConstantExpression())
5059*67e74705SXin Li return false;
5060*67e74705SXin Li if (!Info.CurrentCall->This) {
5061*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
5062*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
5063*67e74705SXin Li else
5064*67e74705SXin Li Info.FFDiag(E);
5065*67e74705SXin Li return false;
5066*67e74705SXin Li }
5067*67e74705SXin Li Result = *Info.CurrentCall->This;
5068*67e74705SXin Li return true;
5069*67e74705SXin Li }
5070*67e74705SXin Li
5071*67e74705SXin Li // FIXME: Missing: @protocol, @selector
5072*67e74705SXin Li };
5073*67e74705SXin Li } // end anonymous namespace
5074*67e74705SXin Li
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)5075*67e74705SXin Li static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
5076*67e74705SXin Li assert(E->isRValue() && E->getType()->hasPointerRepresentation());
5077*67e74705SXin Li return PointerExprEvaluator(Info, Result).Visit(E);
5078*67e74705SXin Li }
5079*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)5080*67e74705SXin Li bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5081*67e74705SXin Li if (E->getOpcode() != BO_Add &&
5082*67e74705SXin Li E->getOpcode() != BO_Sub)
5083*67e74705SXin Li return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5084*67e74705SXin Li
5085*67e74705SXin Li const Expr *PExp = E->getLHS();
5086*67e74705SXin Li const Expr *IExp = E->getRHS();
5087*67e74705SXin Li if (IExp->getType()->isPointerType())
5088*67e74705SXin Li std::swap(PExp, IExp);
5089*67e74705SXin Li
5090*67e74705SXin Li bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
5091*67e74705SXin Li if (!EvalPtrOK && !Info.noteFailure())
5092*67e74705SXin Li return false;
5093*67e74705SXin Li
5094*67e74705SXin Li llvm::APSInt Offset;
5095*67e74705SXin Li if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
5096*67e74705SXin Li return false;
5097*67e74705SXin Li
5098*67e74705SXin Li int64_t AdditionalOffset = getExtValue(Offset);
5099*67e74705SXin Li if (E->getOpcode() == BO_Sub)
5100*67e74705SXin Li AdditionalOffset = -AdditionalOffset;
5101*67e74705SXin Li
5102*67e74705SXin Li QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
5103*67e74705SXin Li return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
5104*67e74705SXin Li AdditionalOffset);
5105*67e74705SXin Li }
5106*67e74705SXin Li
VisitUnaryAddrOf(const UnaryOperator * E)5107*67e74705SXin Li bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5108*67e74705SXin Li return EvaluateLValue(E->getSubExpr(), Result, Info);
5109*67e74705SXin Li }
5110*67e74705SXin Li
VisitCastExpr(const CastExpr * E)5111*67e74705SXin Li bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
5112*67e74705SXin Li const Expr* SubExpr = E->getSubExpr();
5113*67e74705SXin Li
5114*67e74705SXin Li switch (E->getCastKind()) {
5115*67e74705SXin Li default:
5116*67e74705SXin Li break;
5117*67e74705SXin Li
5118*67e74705SXin Li case CK_BitCast:
5119*67e74705SXin Li case CK_CPointerToObjCPointerCast:
5120*67e74705SXin Li case CK_BlockPointerToObjCPointerCast:
5121*67e74705SXin Li case CK_AnyPointerToBlockPointerCast:
5122*67e74705SXin Li case CK_AddressSpaceConversion:
5123*67e74705SXin Li if (!Visit(SubExpr))
5124*67e74705SXin Li return false;
5125*67e74705SXin Li // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
5126*67e74705SXin Li // permitted in constant expressions in C++11. Bitcasts from cv void* are
5127*67e74705SXin Li // also static_casts, but we disallow them as a resolution to DR1312.
5128*67e74705SXin Li if (!E->getType()->isVoidPointerType()) {
5129*67e74705SXin Li Result.Designator.setInvalid();
5130*67e74705SXin Li if (SubExpr->getType()->isVoidPointerType())
5131*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast)
5132*67e74705SXin Li << 3 << SubExpr->getType();
5133*67e74705SXin Li else
5134*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5135*67e74705SXin Li }
5136*67e74705SXin Li return true;
5137*67e74705SXin Li
5138*67e74705SXin Li case CK_DerivedToBase:
5139*67e74705SXin Li case CK_UncheckedDerivedToBase:
5140*67e74705SXin Li if (!EvaluatePointer(E->getSubExpr(), Result, Info))
5141*67e74705SXin Li return false;
5142*67e74705SXin Li if (!Result.Base && Result.Offset.isZero())
5143*67e74705SXin Li return true;
5144*67e74705SXin Li
5145*67e74705SXin Li // Now figure out the necessary offset to add to the base LV to get from
5146*67e74705SXin Li // the derived class to the base class.
5147*67e74705SXin Li return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
5148*67e74705SXin Li castAs<PointerType>()->getPointeeType(),
5149*67e74705SXin Li Result);
5150*67e74705SXin Li
5151*67e74705SXin Li case CK_BaseToDerived:
5152*67e74705SXin Li if (!Visit(E->getSubExpr()))
5153*67e74705SXin Li return false;
5154*67e74705SXin Li if (!Result.Base && Result.Offset.isZero())
5155*67e74705SXin Li return true;
5156*67e74705SXin Li return HandleBaseToDerivedCast(Info, E, Result);
5157*67e74705SXin Li
5158*67e74705SXin Li case CK_NullToPointer:
5159*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
5160*67e74705SXin Li return ZeroInitialization(E);
5161*67e74705SXin Li
5162*67e74705SXin Li case CK_IntegralToPointer: {
5163*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5164*67e74705SXin Li
5165*67e74705SXin Li APValue Value;
5166*67e74705SXin Li if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5167*67e74705SXin Li break;
5168*67e74705SXin Li
5169*67e74705SXin Li if (Value.isInt()) {
5170*67e74705SXin Li unsigned Size = Info.Ctx.getTypeSize(E->getType());
5171*67e74705SXin Li uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5172*67e74705SXin Li Result.Base = (Expr*)nullptr;
5173*67e74705SXin Li Result.InvalidBase = false;
5174*67e74705SXin Li Result.Offset = CharUnits::fromQuantity(N);
5175*67e74705SXin Li Result.CallIndex = 0;
5176*67e74705SXin Li Result.Designator.setInvalid();
5177*67e74705SXin Li return true;
5178*67e74705SXin Li } else {
5179*67e74705SXin Li // Cast is of an lvalue, no need to change value.
5180*67e74705SXin Li Result.setFrom(Info.Ctx, Value);
5181*67e74705SXin Li return true;
5182*67e74705SXin Li }
5183*67e74705SXin Li }
5184*67e74705SXin Li case CK_ArrayToPointerDecay:
5185*67e74705SXin Li if (SubExpr->isGLValue()) {
5186*67e74705SXin Li if (!EvaluateLValue(SubExpr, Result, Info))
5187*67e74705SXin Li return false;
5188*67e74705SXin Li } else {
5189*67e74705SXin Li Result.set(SubExpr, Info.CurrentCall->Index);
5190*67e74705SXin Li if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5191*67e74705SXin Li Info, Result, SubExpr))
5192*67e74705SXin Li return false;
5193*67e74705SXin Li }
5194*67e74705SXin Li // The result is a pointer to the first element of the array.
5195*67e74705SXin Li if (const ConstantArrayType *CAT
5196*67e74705SXin Li = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
5197*67e74705SXin Li Result.addArray(Info, E, CAT);
5198*67e74705SXin Li else
5199*67e74705SXin Li Result.Designator.setInvalid();
5200*67e74705SXin Li return true;
5201*67e74705SXin Li
5202*67e74705SXin Li case CK_FunctionToPointerDecay:
5203*67e74705SXin Li return EvaluateLValue(SubExpr, Result, Info);
5204*67e74705SXin Li }
5205*67e74705SXin Li
5206*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
5207*67e74705SXin Li }
5208*67e74705SXin Li
GetAlignOfType(EvalInfo & Info,QualType T)5209*67e74705SXin Li static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5210*67e74705SXin Li // C++ [expr.alignof]p3:
5211*67e74705SXin Li // When alignof is applied to a reference type, the result is the
5212*67e74705SXin Li // alignment of the referenced type.
5213*67e74705SXin Li if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5214*67e74705SXin Li T = Ref->getPointeeType();
5215*67e74705SXin Li
5216*67e74705SXin Li // __alignof is defined to return the preferred alignment.
5217*67e74705SXin Li return Info.Ctx.toCharUnitsFromBits(
5218*67e74705SXin Li Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5219*67e74705SXin Li }
5220*67e74705SXin Li
GetAlignOfExpr(EvalInfo & Info,const Expr * E)5221*67e74705SXin Li static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5222*67e74705SXin Li E = E->IgnoreParens();
5223*67e74705SXin Li
5224*67e74705SXin Li // The kinds of expressions that we have special-case logic here for
5225*67e74705SXin Li // should be kept up to date with the special checks for those
5226*67e74705SXin Li // expressions in Sema.
5227*67e74705SXin Li
5228*67e74705SXin Li // alignof decl is always accepted, even if it doesn't make sense: we default
5229*67e74705SXin Li // to 1 in those cases.
5230*67e74705SXin Li if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5231*67e74705SXin Li return Info.Ctx.getDeclAlign(DRE->getDecl(),
5232*67e74705SXin Li /*RefAsPointee*/true);
5233*67e74705SXin Li
5234*67e74705SXin Li if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5235*67e74705SXin Li return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5236*67e74705SXin Li /*RefAsPointee*/true);
5237*67e74705SXin Li
5238*67e74705SXin Li return GetAlignOfType(Info, E->getType());
5239*67e74705SXin Li }
5240*67e74705SXin Li
VisitCallExpr(const CallExpr * E)5241*67e74705SXin Li bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5242*67e74705SXin Li if (IsStringLiteralCall(E))
5243*67e74705SXin Li return Success(E);
5244*67e74705SXin Li
5245*67e74705SXin Li switch (E->getBuiltinCallee()) {
5246*67e74705SXin Li case Builtin::BI__builtin_addressof:
5247*67e74705SXin Li return EvaluateLValue(E->getArg(0), Result, Info);
5248*67e74705SXin Li case Builtin::BI__builtin_assume_aligned: {
5249*67e74705SXin Li // We need to be very careful here because: if the pointer does not have the
5250*67e74705SXin Li // asserted alignment, then the behavior is undefined, and undefined
5251*67e74705SXin Li // behavior is non-constant.
5252*67e74705SXin Li if (!EvaluatePointer(E->getArg(0), Result, Info))
5253*67e74705SXin Li return false;
5254*67e74705SXin Li
5255*67e74705SXin Li LValue OffsetResult(Result);
5256*67e74705SXin Li APSInt Alignment;
5257*67e74705SXin Li if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5258*67e74705SXin Li return false;
5259*67e74705SXin Li CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
5260*67e74705SXin Li
5261*67e74705SXin Li if (E->getNumArgs() > 2) {
5262*67e74705SXin Li APSInt Offset;
5263*67e74705SXin Li if (!EvaluateInteger(E->getArg(2), Offset, Info))
5264*67e74705SXin Li return false;
5265*67e74705SXin Li
5266*67e74705SXin Li int64_t AdditionalOffset = -getExtValue(Offset);
5267*67e74705SXin Li OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5268*67e74705SXin Li }
5269*67e74705SXin Li
5270*67e74705SXin Li // If there is a base object, then it must have the correct alignment.
5271*67e74705SXin Li if (OffsetResult.Base) {
5272*67e74705SXin Li CharUnits BaseAlignment;
5273*67e74705SXin Li if (const ValueDecl *VD =
5274*67e74705SXin Li OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5275*67e74705SXin Li BaseAlignment = Info.Ctx.getDeclAlign(VD);
5276*67e74705SXin Li } else {
5277*67e74705SXin Li BaseAlignment =
5278*67e74705SXin Li GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5279*67e74705SXin Li }
5280*67e74705SXin Li
5281*67e74705SXin Li if (BaseAlignment < Align) {
5282*67e74705SXin Li Result.Designator.setInvalid();
5283*67e74705SXin Li // FIXME: Quantities here cast to integers because the plural modifier
5284*67e74705SXin Li // does not work on APSInts yet.
5285*67e74705SXin Li CCEDiag(E->getArg(0),
5286*67e74705SXin Li diag::note_constexpr_baa_insufficient_alignment) << 0
5287*67e74705SXin Li << (int) BaseAlignment.getQuantity()
5288*67e74705SXin Li << (unsigned) getExtValue(Alignment);
5289*67e74705SXin Li return false;
5290*67e74705SXin Li }
5291*67e74705SXin Li }
5292*67e74705SXin Li
5293*67e74705SXin Li // The offset must also have the correct alignment.
5294*67e74705SXin Li if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
5295*67e74705SXin Li Result.Designator.setInvalid();
5296*67e74705SXin Li APSInt Offset(64, false);
5297*67e74705SXin Li Offset = OffsetResult.Offset.getQuantity();
5298*67e74705SXin Li
5299*67e74705SXin Li if (OffsetResult.Base)
5300*67e74705SXin Li CCEDiag(E->getArg(0),
5301*67e74705SXin Li diag::note_constexpr_baa_insufficient_alignment) << 1
5302*67e74705SXin Li << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5303*67e74705SXin Li else
5304*67e74705SXin Li CCEDiag(E->getArg(0),
5305*67e74705SXin Li diag::note_constexpr_baa_value_insufficient_alignment)
5306*67e74705SXin Li << Offset << (unsigned) getExtValue(Alignment);
5307*67e74705SXin Li
5308*67e74705SXin Li return false;
5309*67e74705SXin Li }
5310*67e74705SXin Li
5311*67e74705SXin Li return true;
5312*67e74705SXin Li }
5313*67e74705SXin Li default:
5314*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCallExpr(E);
5315*67e74705SXin Li }
5316*67e74705SXin Li }
5317*67e74705SXin Li
5318*67e74705SXin Li //===----------------------------------------------------------------------===//
5319*67e74705SXin Li // Member Pointer Evaluation
5320*67e74705SXin Li //===----------------------------------------------------------------------===//
5321*67e74705SXin Li
5322*67e74705SXin Li namespace {
5323*67e74705SXin Li class MemberPointerExprEvaluator
5324*67e74705SXin Li : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5325*67e74705SXin Li MemberPtr &Result;
5326*67e74705SXin Li
Success(const ValueDecl * D)5327*67e74705SXin Li bool Success(const ValueDecl *D) {
5328*67e74705SXin Li Result = MemberPtr(D);
5329*67e74705SXin Li return true;
5330*67e74705SXin Li }
5331*67e74705SXin Li public:
5332*67e74705SXin Li
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)5333*67e74705SXin Li MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5334*67e74705SXin Li : ExprEvaluatorBaseTy(Info), Result(Result) {}
5335*67e74705SXin Li
Success(const APValue & V,const Expr * E)5336*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
5337*67e74705SXin Li Result.setFrom(V);
5338*67e74705SXin Li return true;
5339*67e74705SXin Li }
ZeroInitialization(const Expr * E)5340*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
5341*67e74705SXin Li return Success((const ValueDecl*)nullptr);
5342*67e74705SXin Li }
5343*67e74705SXin Li
5344*67e74705SXin Li bool VisitCastExpr(const CastExpr *E);
5345*67e74705SXin Li bool VisitUnaryAddrOf(const UnaryOperator *E);
5346*67e74705SXin Li };
5347*67e74705SXin Li } // end anonymous namespace
5348*67e74705SXin Li
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)5349*67e74705SXin Li static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5350*67e74705SXin Li EvalInfo &Info) {
5351*67e74705SXin Li assert(E->isRValue() && E->getType()->isMemberPointerType());
5352*67e74705SXin Li return MemberPointerExprEvaluator(Info, Result).Visit(E);
5353*67e74705SXin Li }
5354*67e74705SXin Li
VisitCastExpr(const CastExpr * E)5355*67e74705SXin Li bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5356*67e74705SXin Li switch (E->getCastKind()) {
5357*67e74705SXin Li default:
5358*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
5359*67e74705SXin Li
5360*67e74705SXin Li case CK_NullToMemberPointer:
5361*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
5362*67e74705SXin Li return ZeroInitialization(E);
5363*67e74705SXin Li
5364*67e74705SXin Li case CK_BaseToDerivedMemberPointer: {
5365*67e74705SXin Li if (!Visit(E->getSubExpr()))
5366*67e74705SXin Li return false;
5367*67e74705SXin Li if (E->path_empty())
5368*67e74705SXin Li return true;
5369*67e74705SXin Li // Base-to-derived member pointer casts store the path in derived-to-base
5370*67e74705SXin Li // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5371*67e74705SXin Li // the wrong end of the derived->base arc, so stagger the path by one class.
5372*67e74705SXin Li typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5373*67e74705SXin Li for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5374*67e74705SXin Li PathI != PathE; ++PathI) {
5375*67e74705SXin Li assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5376*67e74705SXin Li const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5377*67e74705SXin Li if (!Result.castToDerived(Derived))
5378*67e74705SXin Li return Error(E);
5379*67e74705SXin Li }
5380*67e74705SXin Li const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5381*67e74705SXin Li if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5382*67e74705SXin Li return Error(E);
5383*67e74705SXin Li return true;
5384*67e74705SXin Li }
5385*67e74705SXin Li
5386*67e74705SXin Li case CK_DerivedToBaseMemberPointer:
5387*67e74705SXin Li if (!Visit(E->getSubExpr()))
5388*67e74705SXin Li return false;
5389*67e74705SXin Li for (CastExpr::path_const_iterator PathI = E->path_begin(),
5390*67e74705SXin Li PathE = E->path_end(); PathI != PathE; ++PathI) {
5391*67e74705SXin Li assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5392*67e74705SXin Li const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5393*67e74705SXin Li if (!Result.castToBase(Base))
5394*67e74705SXin Li return Error(E);
5395*67e74705SXin Li }
5396*67e74705SXin Li return true;
5397*67e74705SXin Li }
5398*67e74705SXin Li }
5399*67e74705SXin Li
VisitUnaryAddrOf(const UnaryOperator * E)5400*67e74705SXin Li bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5401*67e74705SXin Li // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5402*67e74705SXin Li // member can be formed.
5403*67e74705SXin Li return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5404*67e74705SXin Li }
5405*67e74705SXin Li
5406*67e74705SXin Li //===----------------------------------------------------------------------===//
5407*67e74705SXin Li // Record Evaluation
5408*67e74705SXin Li //===----------------------------------------------------------------------===//
5409*67e74705SXin Li
5410*67e74705SXin Li namespace {
5411*67e74705SXin Li class RecordExprEvaluator
5412*67e74705SXin Li : public ExprEvaluatorBase<RecordExprEvaluator> {
5413*67e74705SXin Li const LValue &This;
5414*67e74705SXin Li APValue &Result;
5415*67e74705SXin Li public:
5416*67e74705SXin Li
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)5417*67e74705SXin Li RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5418*67e74705SXin Li : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5419*67e74705SXin Li
Success(const APValue & V,const Expr * E)5420*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
5421*67e74705SXin Li Result = V;
5422*67e74705SXin Li return true;
5423*67e74705SXin Li }
ZeroInitialization(const Expr * E)5424*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
5425*67e74705SXin Li return ZeroInitialization(E, E->getType());
5426*67e74705SXin Li }
5427*67e74705SXin Li bool ZeroInitialization(const Expr *E, QualType T);
5428*67e74705SXin Li
VisitCallExpr(const CallExpr * E)5429*67e74705SXin Li bool VisitCallExpr(const CallExpr *E) {
5430*67e74705SXin Li return handleCallExpr(E, Result, &This);
5431*67e74705SXin Li }
5432*67e74705SXin Li bool VisitCastExpr(const CastExpr *E);
5433*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)5434*67e74705SXin Li bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5435*67e74705SXin Li return VisitCXXConstructExpr(E, E->getType());
5436*67e74705SXin Li }
5437*67e74705SXin Li bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
5438*67e74705SXin Li bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
5439*67e74705SXin Li bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5440*67e74705SXin Li };
5441*67e74705SXin Li }
5442*67e74705SXin Li
5443*67e74705SXin Li /// Perform zero-initialization on an object of non-union class type.
5444*67e74705SXin Li /// C++11 [dcl.init]p5:
5445*67e74705SXin Li /// To zero-initialize an object or reference of type T means:
5446*67e74705SXin Li /// [...]
5447*67e74705SXin Li /// -- if T is a (possibly cv-qualified) non-union class type,
5448*67e74705SXin Li /// each non-static data member and each base-class subobject is
5449*67e74705SXin Li /// zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)5450*67e74705SXin Li static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5451*67e74705SXin Li const RecordDecl *RD,
5452*67e74705SXin Li const LValue &This, APValue &Result) {
5453*67e74705SXin Li assert(!RD->isUnion() && "Expected non-union class type");
5454*67e74705SXin Li const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5455*67e74705SXin Li Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5456*67e74705SXin Li std::distance(RD->field_begin(), RD->field_end()));
5457*67e74705SXin Li
5458*67e74705SXin Li if (RD->isInvalidDecl()) return false;
5459*67e74705SXin Li const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5460*67e74705SXin Li
5461*67e74705SXin Li if (CD) {
5462*67e74705SXin Li unsigned Index = 0;
5463*67e74705SXin Li for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5464*67e74705SXin Li End = CD->bases_end(); I != End; ++I, ++Index) {
5465*67e74705SXin Li const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5466*67e74705SXin Li LValue Subobject = This;
5467*67e74705SXin Li if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5468*67e74705SXin Li return false;
5469*67e74705SXin Li if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5470*67e74705SXin Li Result.getStructBase(Index)))
5471*67e74705SXin Li return false;
5472*67e74705SXin Li }
5473*67e74705SXin Li }
5474*67e74705SXin Li
5475*67e74705SXin Li for (const auto *I : RD->fields()) {
5476*67e74705SXin Li // -- if T is a reference type, no initialization is performed.
5477*67e74705SXin Li if (I->getType()->isReferenceType())
5478*67e74705SXin Li continue;
5479*67e74705SXin Li
5480*67e74705SXin Li LValue Subobject = This;
5481*67e74705SXin Li if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5482*67e74705SXin Li return false;
5483*67e74705SXin Li
5484*67e74705SXin Li ImplicitValueInitExpr VIE(I->getType());
5485*67e74705SXin Li if (!EvaluateInPlace(
5486*67e74705SXin Li Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5487*67e74705SXin Li return false;
5488*67e74705SXin Li }
5489*67e74705SXin Li
5490*67e74705SXin Li return true;
5491*67e74705SXin Li }
5492*67e74705SXin Li
ZeroInitialization(const Expr * E,QualType T)5493*67e74705SXin Li bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
5494*67e74705SXin Li const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
5495*67e74705SXin Li if (RD->isInvalidDecl()) return false;
5496*67e74705SXin Li if (RD->isUnion()) {
5497*67e74705SXin Li // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5498*67e74705SXin Li // object's first non-static named data member is zero-initialized
5499*67e74705SXin Li RecordDecl::field_iterator I = RD->field_begin();
5500*67e74705SXin Li if (I == RD->field_end()) {
5501*67e74705SXin Li Result = APValue((const FieldDecl*)nullptr);
5502*67e74705SXin Li return true;
5503*67e74705SXin Li }
5504*67e74705SXin Li
5505*67e74705SXin Li LValue Subobject = This;
5506*67e74705SXin Li if (!HandleLValueMember(Info, E, Subobject, *I))
5507*67e74705SXin Li return false;
5508*67e74705SXin Li Result = APValue(*I);
5509*67e74705SXin Li ImplicitValueInitExpr VIE(I->getType());
5510*67e74705SXin Li return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5511*67e74705SXin Li }
5512*67e74705SXin Li
5513*67e74705SXin Li if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5514*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
5515*67e74705SXin Li return false;
5516*67e74705SXin Li }
5517*67e74705SXin Li
5518*67e74705SXin Li return HandleClassZeroInitialization(Info, E, RD, This, Result);
5519*67e74705SXin Li }
5520*67e74705SXin Li
VisitCastExpr(const CastExpr * E)5521*67e74705SXin Li bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5522*67e74705SXin Li switch (E->getCastKind()) {
5523*67e74705SXin Li default:
5524*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
5525*67e74705SXin Li
5526*67e74705SXin Li case CK_ConstructorConversion:
5527*67e74705SXin Li return Visit(E->getSubExpr());
5528*67e74705SXin Li
5529*67e74705SXin Li case CK_DerivedToBase:
5530*67e74705SXin Li case CK_UncheckedDerivedToBase: {
5531*67e74705SXin Li APValue DerivedObject;
5532*67e74705SXin Li if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5533*67e74705SXin Li return false;
5534*67e74705SXin Li if (!DerivedObject.isStruct())
5535*67e74705SXin Li return Error(E->getSubExpr());
5536*67e74705SXin Li
5537*67e74705SXin Li // Derived-to-base rvalue conversion: just slice off the derived part.
5538*67e74705SXin Li APValue *Value = &DerivedObject;
5539*67e74705SXin Li const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5540*67e74705SXin Li for (CastExpr::path_const_iterator PathI = E->path_begin(),
5541*67e74705SXin Li PathE = E->path_end(); PathI != PathE; ++PathI) {
5542*67e74705SXin Li assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5543*67e74705SXin Li const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5544*67e74705SXin Li Value = &Value->getStructBase(getBaseIndex(RD, Base));
5545*67e74705SXin Li RD = Base;
5546*67e74705SXin Li }
5547*67e74705SXin Li Result = *Value;
5548*67e74705SXin Li return true;
5549*67e74705SXin Li }
5550*67e74705SXin Li }
5551*67e74705SXin Li }
5552*67e74705SXin Li
VisitInitListExpr(const InitListExpr * E)5553*67e74705SXin Li bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5554*67e74705SXin Li const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5555*67e74705SXin Li if (RD->isInvalidDecl()) return false;
5556*67e74705SXin Li const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5557*67e74705SXin Li
5558*67e74705SXin Li if (RD->isUnion()) {
5559*67e74705SXin Li const FieldDecl *Field = E->getInitializedFieldInUnion();
5560*67e74705SXin Li Result = APValue(Field);
5561*67e74705SXin Li if (!Field)
5562*67e74705SXin Li return true;
5563*67e74705SXin Li
5564*67e74705SXin Li // If the initializer list for a union does not contain any elements, the
5565*67e74705SXin Li // first element of the union is value-initialized.
5566*67e74705SXin Li // FIXME: The element should be initialized from an initializer list.
5567*67e74705SXin Li // Is this difference ever observable for initializer lists which
5568*67e74705SXin Li // we don't build?
5569*67e74705SXin Li ImplicitValueInitExpr VIE(Field->getType());
5570*67e74705SXin Li const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5571*67e74705SXin Li
5572*67e74705SXin Li LValue Subobject = This;
5573*67e74705SXin Li if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5574*67e74705SXin Li return false;
5575*67e74705SXin Li
5576*67e74705SXin Li // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5577*67e74705SXin Li ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5578*67e74705SXin Li isa<CXXDefaultInitExpr>(InitExpr));
5579*67e74705SXin Li
5580*67e74705SXin Li return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5581*67e74705SXin Li }
5582*67e74705SXin Li
5583*67e74705SXin Li auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
5584*67e74705SXin Li if (Result.isUninit())
5585*67e74705SXin Li Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
5586*67e74705SXin Li std::distance(RD->field_begin(), RD->field_end()));
5587*67e74705SXin Li unsigned ElementNo = 0;
5588*67e74705SXin Li bool Success = true;
5589*67e74705SXin Li
5590*67e74705SXin Li // Initialize base classes.
5591*67e74705SXin Li if (CXXRD) {
5592*67e74705SXin Li for (const auto &Base : CXXRD->bases()) {
5593*67e74705SXin Li assert(ElementNo < E->getNumInits() && "missing init for base class");
5594*67e74705SXin Li const Expr *Init = E->getInit(ElementNo);
5595*67e74705SXin Li
5596*67e74705SXin Li LValue Subobject = This;
5597*67e74705SXin Li if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
5598*67e74705SXin Li return false;
5599*67e74705SXin Li
5600*67e74705SXin Li APValue &FieldVal = Result.getStructBase(ElementNo);
5601*67e74705SXin Li if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
5602*67e74705SXin Li if (!Info.noteFailure())
5603*67e74705SXin Li return false;
5604*67e74705SXin Li Success = false;
5605*67e74705SXin Li }
5606*67e74705SXin Li ++ElementNo;
5607*67e74705SXin Li }
5608*67e74705SXin Li }
5609*67e74705SXin Li
5610*67e74705SXin Li // Initialize members.
5611*67e74705SXin Li for (const auto *Field : RD->fields()) {
5612*67e74705SXin Li // Anonymous bit-fields are not considered members of the class for
5613*67e74705SXin Li // purposes of aggregate initialization.
5614*67e74705SXin Li if (Field->isUnnamedBitfield())
5615*67e74705SXin Li continue;
5616*67e74705SXin Li
5617*67e74705SXin Li LValue Subobject = This;
5618*67e74705SXin Li
5619*67e74705SXin Li bool HaveInit = ElementNo < E->getNumInits();
5620*67e74705SXin Li
5621*67e74705SXin Li // FIXME: Diagnostics here should point to the end of the initializer
5622*67e74705SXin Li // list, not the start.
5623*67e74705SXin Li if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5624*67e74705SXin Li Subobject, Field, &Layout))
5625*67e74705SXin Li return false;
5626*67e74705SXin Li
5627*67e74705SXin Li // Perform an implicit value-initialization for members beyond the end of
5628*67e74705SXin Li // the initializer list.
5629*67e74705SXin Li ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5630*67e74705SXin Li const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5631*67e74705SXin Li
5632*67e74705SXin Li // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5633*67e74705SXin Li ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5634*67e74705SXin Li isa<CXXDefaultInitExpr>(Init));
5635*67e74705SXin Li
5636*67e74705SXin Li APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5637*67e74705SXin Li if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5638*67e74705SXin Li (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5639*67e74705SXin Li FieldVal, Field))) {
5640*67e74705SXin Li if (!Info.noteFailure())
5641*67e74705SXin Li return false;
5642*67e74705SXin Li Success = false;
5643*67e74705SXin Li }
5644*67e74705SXin Li }
5645*67e74705SXin Li
5646*67e74705SXin Li return Success;
5647*67e74705SXin Li }
5648*67e74705SXin Li
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)5649*67e74705SXin Li bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5650*67e74705SXin Li QualType T) {
5651*67e74705SXin Li // Note that E's type is not necessarily the type of our class here; we might
5652*67e74705SXin Li // be initializing an array element instead.
5653*67e74705SXin Li const CXXConstructorDecl *FD = E->getConstructor();
5654*67e74705SXin Li if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5655*67e74705SXin Li
5656*67e74705SXin Li bool ZeroInit = E->requiresZeroInitialization();
5657*67e74705SXin Li if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5658*67e74705SXin Li // If we've already performed zero-initialization, we're already done.
5659*67e74705SXin Li if (!Result.isUninit())
5660*67e74705SXin Li return true;
5661*67e74705SXin Li
5662*67e74705SXin Li // We can get here in two different ways:
5663*67e74705SXin Li // 1) We're performing value-initialization, and should zero-initialize
5664*67e74705SXin Li // the object, or
5665*67e74705SXin Li // 2) We're performing default-initialization of an object with a trivial
5666*67e74705SXin Li // constexpr default constructor, in which case we should start the
5667*67e74705SXin Li // lifetimes of all the base subobjects (there can be no data member
5668*67e74705SXin Li // subobjects in this case) per [basic.life]p1.
5669*67e74705SXin Li // Either way, ZeroInitialization is appropriate.
5670*67e74705SXin Li return ZeroInitialization(E, T);
5671*67e74705SXin Li }
5672*67e74705SXin Li
5673*67e74705SXin Li const FunctionDecl *Definition = nullptr;
5674*67e74705SXin Li auto Body = FD->getBody(Definition);
5675*67e74705SXin Li
5676*67e74705SXin Li if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5677*67e74705SXin Li return false;
5678*67e74705SXin Li
5679*67e74705SXin Li // Avoid materializing a temporary for an elidable copy/move constructor.
5680*67e74705SXin Li if (E->isElidable() && !ZeroInit)
5681*67e74705SXin Li if (const MaterializeTemporaryExpr *ME
5682*67e74705SXin Li = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5683*67e74705SXin Li return Visit(ME->GetTemporaryExpr());
5684*67e74705SXin Li
5685*67e74705SXin Li if (ZeroInit && !ZeroInitialization(E, T))
5686*67e74705SXin Li return false;
5687*67e74705SXin Li
5688*67e74705SXin Li auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5689*67e74705SXin Li return HandleConstructorCall(E, This, Args,
5690*67e74705SXin Li cast<CXXConstructorDecl>(Definition), Info,
5691*67e74705SXin Li Result);
5692*67e74705SXin Li }
5693*67e74705SXin Li
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)5694*67e74705SXin Li bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
5695*67e74705SXin Li const CXXInheritedCtorInitExpr *E) {
5696*67e74705SXin Li if (!Info.CurrentCall) {
5697*67e74705SXin Li assert(Info.checkingPotentialConstantExpression());
5698*67e74705SXin Li return false;
5699*67e74705SXin Li }
5700*67e74705SXin Li
5701*67e74705SXin Li const CXXConstructorDecl *FD = E->getConstructor();
5702*67e74705SXin Li if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
5703*67e74705SXin Li return false;
5704*67e74705SXin Li
5705*67e74705SXin Li const FunctionDecl *Definition = nullptr;
5706*67e74705SXin Li auto Body = FD->getBody(Definition);
5707*67e74705SXin Li
5708*67e74705SXin Li if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5709*67e74705SXin Li return false;
5710*67e74705SXin Li
5711*67e74705SXin Li return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
5712*67e74705SXin Li cast<CXXConstructorDecl>(Definition), Info,
5713*67e74705SXin Li Result);
5714*67e74705SXin Li }
5715*67e74705SXin Li
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5716*67e74705SXin Li bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5717*67e74705SXin Li const CXXStdInitializerListExpr *E) {
5718*67e74705SXin Li const ConstantArrayType *ArrayType =
5719*67e74705SXin Li Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5720*67e74705SXin Li
5721*67e74705SXin Li LValue Array;
5722*67e74705SXin Li if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5723*67e74705SXin Li return false;
5724*67e74705SXin Li
5725*67e74705SXin Li // Get a pointer to the first element of the array.
5726*67e74705SXin Li Array.addArray(Info, E, ArrayType);
5727*67e74705SXin Li
5728*67e74705SXin Li // FIXME: Perform the checks on the field types in SemaInit.
5729*67e74705SXin Li RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5730*67e74705SXin Li RecordDecl::field_iterator Field = Record->field_begin();
5731*67e74705SXin Li if (Field == Record->field_end())
5732*67e74705SXin Li return Error(E);
5733*67e74705SXin Li
5734*67e74705SXin Li // Start pointer.
5735*67e74705SXin Li if (!Field->getType()->isPointerType() ||
5736*67e74705SXin Li !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5737*67e74705SXin Li ArrayType->getElementType()))
5738*67e74705SXin Li return Error(E);
5739*67e74705SXin Li
5740*67e74705SXin Li // FIXME: What if the initializer_list type has base classes, etc?
5741*67e74705SXin Li Result = APValue(APValue::UninitStruct(), 0, 2);
5742*67e74705SXin Li Array.moveInto(Result.getStructField(0));
5743*67e74705SXin Li
5744*67e74705SXin Li if (++Field == Record->field_end())
5745*67e74705SXin Li return Error(E);
5746*67e74705SXin Li
5747*67e74705SXin Li if (Field->getType()->isPointerType() &&
5748*67e74705SXin Li Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5749*67e74705SXin Li ArrayType->getElementType())) {
5750*67e74705SXin Li // End pointer.
5751*67e74705SXin Li if (!HandleLValueArrayAdjustment(Info, E, Array,
5752*67e74705SXin Li ArrayType->getElementType(),
5753*67e74705SXin Li ArrayType->getSize().getZExtValue()))
5754*67e74705SXin Li return false;
5755*67e74705SXin Li Array.moveInto(Result.getStructField(1));
5756*67e74705SXin Li } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5757*67e74705SXin Li // Length.
5758*67e74705SXin Li Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5759*67e74705SXin Li else
5760*67e74705SXin Li return Error(E);
5761*67e74705SXin Li
5762*67e74705SXin Li if (++Field != Record->field_end())
5763*67e74705SXin Li return Error(E);
5764*67e74705SXin Li
5765*67e74705SXin Li return true;
5766*67e74705SXin Li }
5767*67e74705SXin Li
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5768*67e74705SXin Li static bool EvaluateRecord(const Expr *E, const LValue &This,
5769*67e74705SXin Li APValue &Result, EvalInfo &Info) {
5770*67e74705SXin Li assert(E->isRValue() && E->getType()->isRecordType() &&
5771*67e74705SXin Li "can't evaluate expression as a record rvalue");
5772*67e74705SXin Li return RecordExprEvaluator(Info, This, Result).Visit(E);
5773*67e74705SXin Li }
5774*67e74705SXin Li
5775*67e74705SXin Li //===----------------------------------------------------------------------===//
5776*67e74705SXin Li // Temporary Evaluation
5777*67e74705SXin Li //
5778*67e74705SXin Li // Temporaries are represented in the AST as rvalues, but generally behave like
5779*67e74705SXin Li // lvalues. The full-object of which the temporary is a subobject is implicitly
5780*67e74705SXin Li // materialized so that a reference can bind to it.
5781*67e74705SXin Li //===----------------------------------------------------------------------===//
5782*67e74705SXin Li namespace {
5783*67e74705SXin Li class TemporaryExprEvaluator
5784*67e74705SXin Li : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5785*67e74705SXin Li public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5786*67e74705SXin Li TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5787*67e74705SXin Li LValueExprEvaluatorBaseTy(Info, Result) {}
5788*67e74705SXin Li
5789*67e74705SXin Li /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5790*67e74705SXin Li bool VisitConstructExpr(const Expr *E) {
5791*67e74705SXin Li Result.set(E, Info.CurrentCall->Index);
5792*67e74705SXin Li return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5793*67e74705SXin Li Info, Result, E);
5794*67e74705SXin Li }
5795*67e74705SXin Li
VisitCastExpr(const CastExpr * E)5796*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
5797*67e74705SXin Li switch (E->getCastKind()) {
5798*67e74705SXin Li default:
5799*67e74705SXin Li return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5800*67e74705SXin Li
5801*67e74705SXin Li case CK_ConstructorConversion:
5802*67e74705SXin Li return VisitConstructExpr(E->getSubExpr());
5803*67e74705SXin Li }
5804*67e74705SXin Li }
VisitInitListExpr(const InitListExpr * E)5805*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E) {
5806*67e74705SXin Li return VisitConstructExpr(E);
5807*67e74705SXin Li }
VisitCXXConstructExpr(const CXXConstructExpr * E)5808*67e74705SXin Li bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5809*67e74705SXin Li return VisitConstructExpr(E);
5810*67e74705SXin Li }
VisitCallExpr(const CallExpr * E)5811*67e74705SXin Li bool VisitCallExpr(const CallExpr *E) {
5812*67e74705SXin Li return VisitConstructExpr(E);
5813*67e74705SXin Li }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5814*67e74705SXin Li bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5815*67e74705SXin Li return VisitConstructExpr(E);
5816*67e74705SXin Li }
5817*67e74705SXin Li };
5818*67e74705SXin Li } // end anonymous namespace
5819*67e74705SXin Li
5820*67e74705SXin Li /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5821*67e74705SXin Li static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5822*67e74705SXin Li assert(E->isRValue() && E->getType()->isRecordType());
5823*67e74705SXin Li return TemporaryExprEvaluator(Info, Result).Visit(E);
5824*67e74705SXin Li }
5825*67e74705SXin Li
5826*67e74705SXin Li //===----------------------------------------------------------------------===//
5827*67e74705SXin Li // Vector Evaluation
5828*67e74705SXin Li //===----------------------------------------------------------------------===//
5829*67e74705SXin Li
5830*67e74705SXin Li namespace {
5831*67e74705SXin Li class VectorExprEvaluator
5832*67e74705SXin Li : public ExprEvaluatorBase<VectorExprEvaluator> {
5833*67e74705SXin Li APValue &Result;
5834*67e74705SXin Li public:
5835*67e74705SXin Li
VectorExprEvaluator(EvalInfo & info,APValue & Result)5836*67e74705SXin Li VectorExprEvaluator(EvalInfo &info, APValue &Result)
5837*67e74705SXin Li : ExprEvaluatorBaseTy(info), Result(Result) {}
5838*67e74705SXin Li
Success(ArrayRef<APValue> V,const Expr * E)5839*67e74705SXin Li bool Success(ArrayRef<APValue> V, const Expr *E) {
5840*67e74705SXin Li assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5841*67e74705SXin Li // FIXME: remove this APValue copy.
5842*67e74705SXin Li Result = APValue(V.data(), V.size());
5843*67e74705SXin Li return true;
5844*67e74705SXin Li }
Success(const APValue & V,const Expr * E)5845*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
5846*67e74705SXin Li assert(V.isVector());
5847*67e74705SXin Li Result = V;
5848*67e74705SXin Li return true;
5849*67e74705SXin Li }
5850*67e74705SXin Li bool ZeroInitialization(const Expr *E);
5851*67e74705SXin Li
VisitUnaryReal(const UnaryOperator * E)5852*67e74705SXin Li bool VisitUnaryReal(const UnaryOperator *E)
5853*67e74705SXin Li { return Visit(E->getSubExpr()); }
5854*67e74705SXin Li bool VisitCastExpr(const CastExpr* E);
5855*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E);
5856*67e74705SXin Li bool VisitUnaryImag(const UnaryOperator *E);
5857*67e74705SXin Li // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5858*67e74705SXin Li // binary comparisons, binary and/or/xor,
5859*67e74705SXin Li // shufflevector, ExtVectorElementExpr
5860*67e74705SXin Li };
5861*67e74705SXin Li } // end anonymous namespace
5862*67e74705SXin Li
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5863*67e74705SXin Li static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5864*67e74705SXin Li assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5865*67e74705SXin Li return VectorExprEvaluator(Info, Result).Visit(E);
5866*67e74705SXin Li }
5867*67e74705SXin Li
VisitCastExpr(const CastExpr * E)5868*67e74705SXin Li bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
5869*67e74705SXin Li const VectorType *VTy = E->getType()->castAs<VectorType>();
5870*67e74705SXin Li unsigned NElts = VTy->getNumElements();
5871*67e74705SXin Li
5872*67e74705SXin Li const Expr *SE = E->getSubExpr();
5873*67e74705SXin Li QualType SETy = SE->getType();
5874*67e74705SXin Li
5875*67e74705SXin Li switch (E->getCastKind()) {
5876*67e74705SXin Li case CK_VectorSplat: {
5877*67e74705SXin Li APValue Val = APValue();
5878*67e74705SXin Li if (SETy->isIntegerType()) {
5879*67e74705SXin Li APSInt IntResult;
5880*67e74705SXin Li if (!EvaluateInteger(SE, IntResult, Info))
5881*67e74705SXin Li return false;
5882*67e74705SXin Li Val = APValue(std::move(IntResult));
5883*67e74705SXin Li } else if (SETy->isRealFloatingType()) {
5884*67e74705SXin Li APFloat FloatResult(0.0);
5885*67e74705SXin Li if (!EvaluateFloat(SE, FloatResult, Info))
5886*67e74705SXin Li return false;
5887*67e74705SXin Li Val = APValue(std::move(FloatResult));
5888*67e74705SXin Li } else {
5889*67e74705SXin Li return Error(E);
5890*67e74705SXin Li }
5891*67e74705SXin Li
5892*67e74705SXin Li // Splat and create vector APValue.
5893*67e74705SXin Li SmallVector<APValue, 4> Elts(NElts, Val);
5894*67e74705SXin Li return Success(Elts, E);
5895*67e74705SXin Li }
5896*67e74705SXin Li case CK_BitCast: {
5897*67e74705SXin Li // Evaluate the operand into an APInt we can extract from.
5898*67e74705SXin Li llvm::APInt SValInt;
5899*67e74705SXin Li if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5900*67e74705SXin Li return false;
5901*67e74705SXin Li // Extract the elements
5902*67e74705SXin Li QualType EltTy = VTy->getElementType();
5903*67e74705SXin Li unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5904*67e74705SXin Li bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5905*67e74705SXin Li SmallVector<APValue, 4> Elts;
5906*67e74705SXin Li if (EltTy->isRealFloatingType()) {
5907*67e74705SXin Li const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5908*67e74705SXin Li unsigned FloatEltSize = EltSize;
5909*67e74705SXin Li if (&Sem == &APFloat::x87DoubleExtended)
5910*67e74705SXin Li FloatEltSize = 80;
5911*67e74705SXin Li for (unsigned i = 0; i < NElts; i++) {
5912*67e74705SXin Li llvm::APInt Elt;
5913*67e74705SXin Li if (BigEndian)
5914*67e74705SXin Li Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5915*67e74705SXin Li else
5916*67e74705SXin Li Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5917*67e74705SXin Li Elts.push_back(APValue(APFloat(Sem, Elt)));
5918*67e74705SXin Li }
5919*67e74705SXin Li } else if (EltTy->isIntegerType()) {
5920*67e74705SXin Li for (unsigned i = 0; i < NElts; i++) {
5921*67e74705SXin Li llvm::APInt Elt;
5922*67e74705SXin Li if (BigEndian)
5923*67e74705SXin Li Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5924*67e74705SXin Li else
5925*67e74705SXin Li Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5926*67e74705SXin Li Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5927*67e74705SXin Li }
5928*67e74705SXin Li } else {
5929*67e74705SXin Li return Error(E);
5930*67e74705SXin Li }
5931*67e74705SXin Li return Success(Elts, E);
5932*67e74705SXin Li }
5933*67e74705SXin Li default:
5934*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
5935*67e74705SXin Li }
5936*67e74705SXin Li }
5937*67e74705SXin Li
5938*67e74705SXin Li bool
VisitInitListExpr(const InitListExpr * E)5939*67e74705SXin Li VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5940*67e74705SXin Li const VectorType *VT = E->getType()->castAs<VectorType>();
5941*67e74705SXin Li unsigned NumInits = E->getNumInits();
5942*67e74705SXin Li unsigned NumElements = VT->getNumElements();
5943*67e74705SXin Li
5944*67e74705SXin Li QualType EltTy = VT->getElementType();
5945*67e74705SXin Li SmallVector<APValue, 4> Elements;
5946*67e74705SXin Li
5947*67e74705SXin Li // The number of initializers can be less than the number of
5948*67e74705SXin Li // vector elements. For OpenCL, this can be due to nested vector
5949*67e74705SXin Li // initialization. For GCC compatibility, missing trailing elements
5950*67e74705SXin Li // should be initialized with zeroes.
5951*67e74705SXin Li unsigned CountInits = 0, CountElts = 0;
5952*67e74705SXin Li while (CountElts < NumElements) {
5953*67e74705SXin Li // Handle nested vector initialization.
5954*67e74705SXin Li if (CountInits < NumInits
5955*67e74705SXin Li && E->getInit(CountInits)->getType()->isVectorType()) {
5956*67e74705SXin Li APValue v;
5957*67e74705SXin Li if (!EvaluateVector(E->getInit(CountInits), v, Info))
5958*67e74705SXin Li return Error(E);
5959*67e74705SXin Li unsigned vlen = v.getVectorLength();
5960*67e74705SXin Li for (unsigned j = 0; j < vlen; j++)
5961*67e74705SXin Li Elements.push_back(v.getVectorElt(j));
5962*67e74705SXin Li CountElts += vlen;
5963*67e74705SXin Li } else if (EltTy->isIntegerType()) {
5964*67e74705SXin Li llvm::APSInt sInt(32);
5965*67e74705SXin Li if (CountInits < NumInits) {
5966*67e74705SXin Li if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5967*67e74705SXin Li return false;
5968*67e74705SXin Li } else // trailing integer zero.
5969*67e74705SXin Li sInt = Info.Ctx.MakeIntValue(0, EltTy);
5970*67e74705SXin Li Elements.push_back(APValue(sInt));
5971*67e74705SXin Li CountElts++;
5972*67e74705SXin Li } else {
5973*67e74705SXin Li llvm::APFloat f(0.0);
5974*67e74705SXin Li if (CountInits < NumInits) {
5975*67e74705SXin Li if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5976*67e74705SXin Li return false;
5977*67e74705SXin Li } else // trailing float zero.
5978*67e74705SXin Li f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5979*67e74705SXin Li Elements.push_back(APValue(f));
5980*67e74705SXin Li CountElts++;
5981*67e74705SXin Li }
5982*67e74705SXin Li CountInits++;
5983*67e74705SXin Li }
5984*67e74705SXin Li return Success(Elements, E);
5985*67e74705SXin Li }
5986*67e74705SXin Li
5987*67e74705SXin Li bool
ZeroInitialization(const Expr * E)5988*67e74705SXin Li VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5989*67e74705SXin Li const VectorType *VT = E->getType()->getAs<VectorType>();
5990*67e74705SXin Li QualType EltTy = VT->getElementType();
5991*67e74705SXin Li APValue ZeroElement;
5992*67e74705SXin Li if (EltTy->isIntegerType())
5993*67e74705SXin Li ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5994*67e74705SXin Li else
5995*67e74705SXin Li ZeroElement =
5996*67e74705SXin Li APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5997*67e74705SXin Li
5998*67e74705SXin Li SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5999*67e74705SXin Li return Success(Elements, E);
6000*67e74705SXin Li }
6001*67e74705SXin Li
VisitUnaryImag(const UnaryOperator * E)6002*67e74705SXin Li bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6003*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
6004*67e74705SXin Li return ZeroInitialization(E);
6005*67e74705SXin Li }
6006*67e74705SXin Li
6007*67e74705SXin Li //===----------------------------------------------------------------------===//
6008*67e74705SXin Li // Array Evaluation
6009*67e74705SXin Li //===----------------------------------------------------------------------===//
6010*67e74705SXin Li
6011*67e74705SXin Li namespace {
6012*67e74705SXin Li class ArrayExprEvaluator
6013*67e74705SXin Li : public ExprEvaluatorBase<ArrayExprEvaluator> {
6014*67e74705SXin Li const LValue &This;
6015*67e74705SXin Li APValue &Result;
6016*67e74705SXin Li public:
6017*67e74705SXin Li
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)6018*67e74705SXin Li ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
6019*67e74705SXin Li : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
6020*67e74705SXin Li
Success(const APValue & V,const Expr * E)6021*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
6022*67e74705SXin Li assert((V.isArray() || V.isLValue()) &&
6023*67e74705SXin Li "expected array or string literal");
6024*67e74705SXin Li Result = V;
6025*67e74705SXin Li return true;
6026*67e74705SXin Li }
6027*67e74705SXin Li
ZeroInitialization(const Expr * E)6028*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
6029*67e74705SXin Li const ConstantArrayType *CAT =
6030*67e74705SXin Li Info.Ctx.getAsConstantArrayType(E->getType());
6031*67e74705SXin Li if (!CAT)
6032*67e74705SXin Li return Error(E);
6033*67e74705SXin Li
6034*67e74705SXin Li Result = APValue(APValue::UninitArray(), 0,
6035*67e74705SXin Li CAT->getSize().getZExtValue());
6036*67e74705SXin Li if (!Result.hasArrayFiller()) return true;
6037*67e74705SXin Li
6038*67e74705SXin Li // Zero-initialize all elements.
6039*67e74705SXin Li LValue Subobject = This;
6040*67e74705SXin Li Subobject.addArray(Info, E, CAT);
6041*67e74705SXin Li ImplicitValueInitExpr VIE(CAT->getElementType());
6042*67e74705SXin Li return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
6043*67e74705SXin Li }
6044*67e74705SXin Li
VisitCallExpr(const CallExpr * E)6045*67e74705SXin Li bool VisitCallExpr(const CallExpr *E) {
6046*67e74705SXin Li return handleCallExpr(E, Result, &This);
6047*67e74705SXin Li }
6048*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E);
6049*67e74705SXin Li bool VisitCXXConstructExpr(const CXXConstructExpr *E);
6050*67e74705SXin Li bool VisitCXXConstructExpr(const CXXConstructExpr *E,
6051*67e74705SXin Li const LValue &Subobject,
6052*67e74705SXin Li APValue *Value, QualType Type);
6053*67e74705SXin Li };
6054*67e74705SXin Li } // end anonymous namespace
6055*67e74705SXin Li
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)6056*67e74705SXin Li static bool EvaluateArray(const Expr *E, const LValue &This,
6057*67e74705SXin Li APValue &Result, EvalInfo &Info) {
6058*67e74705SXin Li assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
6059*67e74705SXin Li return ArrayExprEvaluator(Info, This, Result).Visit(E);
6060*67e74705SXin Li }
6061*67e74705SXin Li
VisitInitListExpr(const InitListExpr * E)6062*67e74705SXin Li bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6063*67e74705SXin Li const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
6064*67e74705SXin Li if (!CAT)
6065*67e74705SXin Li return Error(E);
6066*67e74705SXin Li
6067*67e74705SXin Li // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
6068*67e74705SXin Li // an appropriately-typed string literal enclosed in braces.
6069*67e74705SXin Li if (E->isStringLiteralInit()) {
6070*67e74705SXin Li LValue LV;
6071*67e74705SXin Li if (!EvaluateLValue(E->getInit(0), LV, Info))
6072*67e74705SXin Li return false;
6073*67e74705SXin Li APValue Val;
6074*67e74705SXin Li LV.moveInto(Val);
6075*67e74705SXin Li return Success(Val, E);
6076*67e74705SXin Li }
6077*67e74705SXin Li
6078*67e74705SXin Li bool Success = true;
6079*67e74705SXin Li
6080*67e74705SXin Li assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
6081*67e74705SXin Li "zero-initialized array shouldn't have any initialized elts");
6082*67e74705SXin Li APValue Filler;
6083*67e74705SXin Li if (Result.isArray() && Result.hasArrayFiller())
6084*67e74705SXin Li Filler = Result.getArrayFiller();
6085*67e74705SXin Li
6086*67e74705SXin Li unsigned NumEltsToInit = E->getNumInits();
6087*67e74705SXin Li unsigned NumElts = CAT->getSize().getZExtValue();
6088*67e74705SXin Li const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
6089*67e74705SXin Li
6090*67e74705SXin Li // If the initializer might depend on the array index, run it for each
6091*67e74705SXin Li // array element. For now, just whitelist non-class value-initialization.
6092*67e74705SXin Li if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
6093*67e74705SXin Li NumEltsToInit = NumElts;
6094*67e74705SXin Li
6095*67e74705SXin Li Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
6096*67e74705SXin Li
6097*67e74705SXin Li // If the array was previously zero-initialized, preserve the
6098*67e74705SXin Li // zero-initialized values.
6099*67e74705SXin Li if (!Filler.isUninit()) {
6100*67e74705SXin Li for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
6101*67e74705SXin Li Result.getArrayInitializedElt(I) = Filler;
6102*67e74705SXin Li if (Result.hasArrayFiller())
6103*67e74705SXin Li Result.getArrayFiller() = Filler;
6104*67e74705SXin Li }
6105*67e74705SXin Li
6106*67e74705SXin Li LValue Subobject = This;
6107*67e74705SXin Li Subobject.addArray(Info, E, CAT);
6108*67e74705SXin Li for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
6109*67e74705SXin Li const Expr *Init =
6110*67e74705SXin Li Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
6111*67e74705SXin Li if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6112*67e74705SXin Li Info, Subobject, Init) ||
6113*67e74705SXin Li !HandleLValueArrayAdjustment(Info, Init, Subobject,
6114*67e74705SXin Li CAT->getElementType(), 1)) {
6115*67e74705SXin Li if (!Info.noteFailure())
6116*67e74705SXin Li return false;
6117*67e74705SXin Li Success = false;
6118*67e74705SXin Li }
6119*67e74705SXin Li }
6120*67e74705SXin Li
6121*67e74705SXin Li if (!Result.hasArrayFiller())
6122*67e74705SXin Li return Success;
6123*67e74705SXin Li
6124*67e74705SXin Li // If we get here, we have a trivial filler, which we can just evaluate
6125*67e74705SXin Li // once and splat over the rest of the array elements.
6126*67e74705SXin Li assert(FillerExpr && "no array filler for incomplete init list");
6127*67e74705SXin Li return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
6128*67e74705SXin Li FillerExpr) && Success;
6129*67e74705SXin Li }
6130*67e74705SXin Li
VisitCXXConstructExpr(const CXXConstructExpr * E)6131*67e74705SXin Li bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
6132*67e74705SXin Li return VisitCXXConstructExpr(E, This, &Result, E->getType());
6133*67e74705SXin Li }
6134*67e74705SXin Li
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)6135*67e74705SXin Li bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6136*67e74705SXin Li const LValue &Subobject,
6137*67e74705SXin Li APValue *Value,
6138*67e74705SXin Li QualType Type) {
6139*67e74705SXin Li bool HadZeroInit = !Value->isUninit();
6140*67e74705SXin Li
6141*67e74705SXin Li if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
6142*67e74705SXin Li unsigned N = CAT->getSize().getZExtValue();
6143*67e74705SXin Li
6144*67e74705SXin Li // Preserve the array filler if we had prior zero-initialization.
6145*67e74705SXin Li APValue Filler =
6146*67e74705SXin Li HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
6147*67e74705SXin Li : APValue();
6148*67e74705SXin Li
6149*67e74705SXin Li *Value = APValue(APValue::UninitArray(), N, N);
6150*67e74705SXin Li
6151*67e74705SXin Li if (HadZeroInit)
6152*67e74705SXin Li for (unsigned I = 0; I != N; ++I)
6153*67e74705SXin Li Value->getArrayInitializedElt(I) = Filler;
6154*67e74705SXin Li
6155*67e74705SXin Li // Initialize the elements.
6156*67e74705SXin Li LValue ArrayElt = Subobject;
6157*67e74705SXin Li ArrayElt.addArray(Info, E, CAT);
6158*67e74705SXin Li for (unsigned I = 0; I != N; ++I)
6159*67e74705SXin Li if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
6160*67e74705SXin Li CAT->getElementType()) ||
6161*67e74705SXin Li !HandleLValueArrayAdjustment(Info, E, ArrayElt,
6162*67e74705SXin Li CAT->getElementType(), 1))
6163*67e74705SXin Li return false;
6164*67e74705SXin Li
6165*67e74705SXin Li return true;
6166*67e74705SXin Li }
6167*67e74705SXin Li
6168*67e74705SXin Li if (!Type->isRecordType())
6169*67e74705SXin Li return Error(E);
6170*67e74705SXin Li
6171*67e74705SXin Li return RecordExprEvaluator(Info, Subobject, *Value)
6172*67e74705SXin Li .VisitCXXConstructExpr(E, Type);
6173*67e74705SXin Li }
6174*67e74705SXin Li
6175*67e74705SXin Li //===----------------------------------------------------------------------===//
6176*67e74705SXin Li // Integer Evaluation
6177*67e74705SXin Li //
6178*67e74705SXin Li // As a GNU extension, we support casting pointers to sufficiently-wide integer
6179*67e74705SXin Li // types and back in constant folding. Integer values are thus represented
6180*67e74705SXin Li // either as an integer-valued APValue, or as an lvalue-valued APValue.
6181*67e74705SXin Li //===----------------------------------------------------------------------===//
6182*67e74705SXin Li
6183*67e74705SXin Li namespace {
6184*67e74705SXin Li class IntExprEvaluator
6185*67e74705SXin Li : public ExprEvaluatorBase<IntExprEvaluator> {
6186*67e74705SXin Li APValue &Result;
6187*67e74705SXin Li public:
IntExprEvaluator(EvalInfo & info,APValue & result)6188*67e74705SXin Li IntExprEvaluator(EvalInfo &info, APValue &result)
6189*67e74705SXin Li : ExprEvaluatorBaseTy(info), Result(result) {}
6190*67e74705SXin Li
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)6191*67e74705SXin Li bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6192*67e74705SXin Li assert(E->getType()->isIntegralOrEnumerationType() &&
6193*67e74705SXin Li "Invalid evaluation result.");
6194*67e74705SXin Li assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
6195*67e74705SXin Li "Invalid evaluation result.");
6196*67e74705SXin Li assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6197*67e74705SXin Li "Invalid evaluation result.");
6198*67e74705SXin Li Result = APValue(SI);
6199*67e74705SXin Li return true;
6200*67e74705SXin Li }
Success(const llvm::APSInt & SI,const Expr * E)6201*67e74705SXin Li bool Success(const llvm::APSInt &SI, const Expr *E) {
6202*67e74705SXin Li return Success(SI, E, Result);
6203*67e74705SXin Li }
6204*67e74705SXin Li
Success(const llvm::APInt & I,const Expr * E,APValue & Result)6205*67e74705SXin Li bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
6206*67e74705SXin Li assert(E->getType()->isIntegralOrEnumerationType() &&
6207*67e74705SXin Li "Invalid evaluation result.");
6208*67e74705SXin Li assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6209*67e74705SXin Li "Invalid evaluation result.");
6210*67e74705SXin Li Result = APValue(APSInt(I));
6211*67e74705SXin Li Result.getInt().setIsUnsigned(
6212*67e74705SXin Li E->getType()->isUnsignedIntegerOrEnumerationType());
6213*67e74705SXin Li return true;
6214*67e74705SXin Li }
Success(const llvm::APInt & I,const Expr * E)6215*67e74705SXin Li bool Success(const llvm::APInt &I, const Expr *E) {
6216*67e74705SXin Li return Success(I, E, Result);
6217*67e74705SXin Li }
6218*67e74705SXin Li
Success(uint64_t Value,const Expr * E,APValue & Result)6219*67e74705SXin Li bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6220*67e74705SXin Li assert(E->getType()->isIntegralOrEnumerationType() &&
6221*67e74705SXin Li "Invalid evaluation result.");
6222*67e74705SXin Li Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
6223*67e74705SXin Li return true;
6224*67e74705SXin Li }
Success(uint64_t Value,const Expr * E)6225*67e74705SXin Li bool Success(uint64_t Value, const Expr *E) {
6226*67e74705SXin Li return Success(Value, E, Result);
6227*67e74705SXin Li }
6228*67e74705SXin Li
Success(CharUnits Size,const Expr * E)6229*67e74705SXin Li bool Success(CharUnits Size, const Expr *E) {
6230*67e74705SXin Li return Success(Size.getQuantity(), E);
6231*67e74705SXin Li }
6232*67e74705SXin Li
Success(const APValue & V,const Expr * E)6233*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
6234*67e74705SXin Li if (V.isLValue() || V.isAddrLabelDiff()) {
6235*67e74705SXin Li Result = V;
6236*67e74705SXin Li return true;
6237*67e74705SXin Li }
6238*67e74705SXin Li return Success(V.getInt(), E);
6239*67e74705SXin Li }
6240*67e74705SXin Li
ZeroInitialization(const Expr * E)6241*67e74705SXin Li bool ZeroInitialization(const Expr *E) { return Success(0, E); }
6242*67e74705SXin Li
6243*67e74705SXin Li //===--------------------------------------------------------------------===//
6244*67e74705SXin Li // Visitor Methods
6245*67e74705SXin Li //===--------------------------------------------------------------------===//
6246*67e74705SXin Li
VisitIntegerLiteral(const IntegerLiteral * E)6247*67e74705SXin Li bool VisitIntegerLiteral(const IntegerLiteral *E) {
6248*67e74705SXin Li return Success(E->getValue(), E);
6249*67e74705SXin Li }
VisitCharacterLiteral(const CharacterLiteral * E)6250*67e74705SXin Li bool VisitCharacterLiteral(const CharacterLiteral *E) {
6251*67e74705SXin Li return Success(E->getValue(), E);
6252*67e74705SXin Li }
6253*67e74705SXin Li
6254*67e74705SXin Li bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)6255*67e74705SXin Li bool VisitDeclRefExpr(const DeclRefExpr *E) {
6256*67e74705SXin Li if (CheckReferencedDecl(E, E->getDecl()))
6257*67e74705SXin Li return true;
6258*67e74705SXin Li
6259*67e74705SXin Li return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
6260*67e74705SXin Li }
VisitMemberExpr(const MemberExpr * E)6261*67e74705SXin Li bool VisitMemberExpr(const MemberExpr *E) {
6262*67e74705SXin Li if (CheckReferencedDecl(E, E->getMemberDecl())) {
6263*67e74705SXin Li VisitIgnoredBaseExpression(E->getBase());
6264*67e74705SXin Li return true;
6265*67e74705SXin Li }
6266*67e74705SXin Li
6267*67e74705SXin Li return ExprEvaluatorBaseTy::VisitMemberExpr(E);
6268*67e74705SXin Li }
6269*67e74705SXin Li
6270*67e74705SXin Li bool VisitCallExpr(const CallExpr *E);
6271*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E);
6272*67e74705SXin Li bool VisitOffsetOfExpr(const OffsetOfExpr *E);
6273*67e74705SXin Li bool VisitUnaryOperator(const UnaryOperator *E);
6274*67e74705SXin Li
6275*67e74705SXin Li bool VisitCastExpr(const CastExpr* E);
6276*67e74705SXin Li bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
6277*67e74705SXin Li
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)6278*67e74705SXin Li bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
6279*67e74705SXin Li return Success(E->getValue(), E);
6280*67e74705SXin Li }
6281*67e74705SXin Li
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)6282*67e74705SXin Li bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
6283*67e74705SXin Li return Success(E->getValue(), E);
6284*67e74705SXin Li }
6285*67e74705SXin Li
6286*67e74705SXin Li // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)6287*67e74705SXin Li bool VisitGNUNullExpr(const GNUNullExpr *E) {
6288*67e74705SXin Li return ZeroInitialization(E);
6289*67e74705SXin Li }
6290*67e74705SXin Li
VisitTypeTraitExpr(const TypeTraitExpr * E)6291*67e74705SXin Li bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
6292*67e74705SXin Li return Success(E->getValue(), E);
6293*67e74705SXin Li }
6294*67e74705SXin Li
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)6295*67e74705SXin Li bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
6296*67e74705SXin Li return Success(E->getValue(), E);
6297*67e74705SXin Li }
6298*67e74705SXin Li
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)6299*67e74705SXin Li bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
6300*67e74705SXin Li return Success(E->getValue(), E);
6301*67e74705SXin Li }
6302*67e74705SXin Li
6303*67e74705SXin Li bool VisitUnaryReal(const UnaryOperator *E);
6304*67e74705SXin Li bool VisitUnaryImag(const UnaryOperator *E);
6305*67e74705SXin Li
6306*67e74705SXin Li bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
6307*67e74705SXin Li bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
6308*67e74705SXin Li
6309*67e74705SXin Li private:
6310*67e74705SXin Li bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
6311*67e74705SXin Li // FIXME: Missing: array subscript of vector, member of vector
6312*67e74705SXin Li };
6313*67e74705SXin Li } // end anonymous namespace
6314*67e74705SXin Li
6315*67e74705SXin Li /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6316*67e74705SXin Li /// produce either the integer value or a pointer.
6317*67e74705SXin Li ///
6318*67e74705SXin Li /// GCC has a heinous extension which folds casts between pointer types and
6319*67e74705SXin Li /// pointer-sized integral types. We support this by allowing the evaluation of
6320*67e74705SXin Li /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6321*67e74705SXin Li /// Some simple arithmetic on such values is supported (they are treated much
6322*67e74705SXin Li /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)6323*67e74705SXin Li static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6324*67e74705SXin Li EvalInfo &Info) {
6325*67e74705SXin Li assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6326*67e74705SXin Li return IntExprEvaluator(Info, Result).Visit(E);
6327*67e74705SXin Li }
6328*67e74705SXin Li
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)6329*67e74705SXin Li static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6330*67e74705SXin Li APValue Val;
6331*67e74705SXin Li if (!EvaluateIntegerOrLValue(E, Val, Info))
6332*67e74705SXin Li return false;
6333*67e74705SXin Li if (!Val.isInt()) {
6334*67e74705SXin Li // FIXME: It would be better to produce the diagnostic for casting
6335*67e74705SXin Li // a pointer to an integer.
6336*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
6337*67e74705SXin Li return false;
6338*67e74705SXin Li }
6339*67e74705SXin Li Result = Val.getInt();
6340*67e74705SXin Li return true;
6341*67e74705SXin Li }
6342*67e74705SXin Li
6343*67e74705SXin Li /// Check whether the given declaration can be directly converted to an integral
6344*67e74705SXin Li /// rvalue. If not, no diagnostic is produced; there are other things we can
6345*67e74705SXin Li /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)6346*67e74705SXin Li bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6347*67e74705SXin Li // Enums are integer constant exprs.
6348*67e74705SXin Li if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6349*67e74705SXin Li // Check for signedness/width mismatches between E type and ECD value.
6350*67e74705SXin Li bool SameSign = (ECD->getInitVal().isSigned()
6351*67e74705SXin Li == E->getType()->isSignedIntegerOrEnumerationType());
6352*67e74705SXin Li bool SameWidth = (ECD->getInitVal().getBitWidth()
6353*67e74705SXin Li == Info.Ctx.getIntWidth(E->getType()));
6354*67e74705SXin Li if (SameSign && SameWidth)
6355*67e74705SXin Li return Success(ECD->getInitVal(), E);
6356*67e74705SXin Li else {
6357*67e74705SXin Li // Get rid of mismatch (otherwise Success assertions will fail)
6358*67e74705SXin Li // by computing a new value matching the type of E.
6359*67e74705SXin Li llvm::APSInt Val = ECD->getInitVal();
6360*67e74705SXin Li if (!SameSign)
6361*67e74705SXin Li Val.setIsSigned(!ECD->getInitVal().isSigned());
6362*67e74705SXin Li if (!SameWidth)
6363*67e74705SXin Li Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6364*67e74705SXin Li return Success(Val, E);
6365*67e74705SXin Li }
6366*67e74705SXin Li }
6367*67e74705SXin Li return false;
6368*67e74705SXin Li }
6369*67e74705SXin Li
6370*67e74705SXin Li /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6371*67e74705SXin Li /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)6372*67e74705SXin Li static int EvaluateBuiltinClassifyType(const CallExpr *E,
6373*67e74705SXin Li const LangOptions &LangOpts) {
6374*67e74705SXin Li // The following enum mimics the values returned by GCC.
6375*67e74705SXin Li // FIXME: Does GCC differ between lvalue and rvalue references here?
6376*67e74705SXin Li enum gcc_type_class {
6377*67e74705SXin Li no_type_class = -1,
6378*67e74705SXin Li void_type_class, integer_type_class, char_type_class,
6379*67e74705SXin Li enumeral_type_class, boolean_type_class,
6380*67e74705SXin Li pointer_type_class, reference_type_class, offset_type_class,
6381*67e74705SXin Li real_type_class, complex_type_class,
6382*67e74705SXin Li function_type_class, method_type_class,
6383*67e74705SXin Li record_type_class, union_type_class,
6384*67e74705SXin Li array_type_class, string_type_class,
6385*67e74705SXin Li lang_type_class
6386*67e74705SXin Li };
6387*67e74705SXin Li
6388*67e74705SXin Li // If no argument was supplied, default to "no_type_class". This isn't
6389*67e74705SXin Li // ideal, however it is what gcc does.
6390*67e74705SXin Li if (E->getNumArgs() == 0)
6391*67e74705SXin Li return no_type_class;
6392*67e74705SXin Li
6393*67e74705SXin Li QualType CanTy = E->getArg(0)->getType().getCanonicalType();
6394*67e74705SXin Li const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
6395*67e74705SXin Li
6396*67e74705SXin Li switch (CanTy->getTypeClass()) {
6397*67e74705SXin Li #define TYPE(ID, BASE)
6398*67e74705SXin Li #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
6399*67e74705SXin Li #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
6400*67e74705SXin Li #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
6401*67e74705SXin Li #include "clang/AST/TypeNodes.def"
6402*67e74705SXin Li llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6403*67e74705SXin Li
6404*67e74705SXin Li case Type::Builtin:
6405*67e74705SXin Li switch (BT->getKind()) {
6406*67e74705SXin Li #define BUILTIN_TYPE(ID, SINGLETON_ID)
6407*67e74705SXin Li #define SIGNED_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return integer_type_class;
6408*67e74705SXin Li #define FLOATING_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return real_type_class;
6409*67e74705SXin Li #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: break;
6410*67e74705SXin Li #include "clang/AST/BuiltinTypes.def"
6411*67e74705SXin Li case BuiltinType::Void:
6412*67e74705SXin Li return void_type_class;
6413*67e74705SXin Li
6414*67e74705SXin Li case BuiltinType::Bool:
6415*67e74705SXin Li return boolean_type_class;
6416*67e74705SXin Li
6417*67e74705SXin Li case BuiltinType::Char_U: // gcc doesn't appear to use char_type_class
6418*67e74705SXin Li case BuiltinType::UChar:
6419*67e74705SXin Li case BuiltinType::UShort:
6420*67e74705SXin Li case BuiltinType::UInt:
6421*67e74705SXin Li case BuiltinType::ULong:
6422*67e74705SXin Li case BuiltinType::ULongLong:
6423*67e74705SXin Li case BuiltinType::UInt128:
6424*67e74705SXin Li return integer_type_class;
6425*67e74705SXin Li
6426*67e74705SXin Li case BuiltinType::NullPtr:
6427*67e74705SXin Li return pointer_type_class;
6428*67e74705SXin Li
6429*67e74705SXin Li case BuiltinType::WChar_U:
6430*67e74705SXin Li case BuiltinType::Char16:
6431*67e74705SXin Li case BuiltinType::Char32:
6432*67e74705SXin Li case BuiltinType::ObjCId:
6433*67e74705SXin Li case BuiltinType::ObjCClass:
6434*67e74705SXin Li case BuiltinType::ObjCSel:
6435*67e74705SXin Li #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6436*67e74705SXin Li case BuiltinType::Id:
6437*67e74705SXin Li #include "clang/Basic/OpenCLImageTypes.def"
6438*67e74705SXin Li case BuiltinType::OCLSampler:
6439*67e74705SXin Li case BuiltinType::OCLEvent:
6440*67e74705SXin Li case BuiltinType::OCLClkEvent:
6441*67e74705SXin Li case BuiltinType::OCLQueue:
6442*67e74705SXin Li case BuiltinType::OCLNDRange:
6443*67e74705SXin Li case BuiltinType::OCLReserveID:
6444*67e74705SXin Li case BuiltinType::Dependent:
6445*67e74705SXin Li llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6446*67e74705SXin Li };
6447*67e74705SXin Li
6448*67e74705SXin Li case Type::Enum:
6449*67e74705SXin Li return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6450*67e74705SXin Li break;
6451*67e74705SXin Li
6452*67e74705SXin Li case Type::Pointer:
6453*67e74705SXin Li return pointer_type_class;
6454*67e74705SXin Li break;
6455*67e74705SXin Li
6456*67e74705SXin Li case Type::MemberPointer:
6457*67e74705SXin Li if (CanTy->isMemberDataPointerType())
6458*67e74705SXin Li return offset_type_class;
6459*67e74705SXin Li else {
6460*67e74705SXin Li // We expect member pointers to be either data or function pointers,
6461*67e74705SXin Li // nothing else.
6462*67e74705SXin Li assert(CanTy->isMemberFunctionPointerType());
6463*67e74705SXin Li return method_type_class;
6464*67e74705SXin Li }
6465*67e74705SXin Li
6466*67e74705SXin Li case Type::Complex:
6467*67e74705SXin Li return complex_type_class;
6468*67e74705SXin Li
6469*67e74705SXin Li case Type::FunctionNoProto:
6470*67e74705SXin Li case Type::FunctionProto:
6471*67e74705SXin Li return LangOpts.CPlusPlus ? function_type_class : pointer_type_class;
6472*67e74705SXin Li
6473*67e74705SXin Li case Type::Record:
6474*67e74705SXin Li if (const RecordType *RT = CanTy->getAs<RecordType>()) {
6475*67e74705SXin Li switch (RT->getDecl()->getTagKind()) {
6476*67e74705SXin Li case TagTypeKind::TTK_Struct:
6477*67e74705SXin Li case TagTypeKind::TTK_Class:
6478*67e74705SXin Li case TagTypeKind::TTK_Interface:
6479*67e74705SXin Li return record_type_class;
6480*67e74705SXin Li
6481*67e74705SXin Li case TagTypeKind::TTK_Enum:
6482*67e74705SXin Li return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6483*67e74705SXin Li
6484*67e74705SXin Li case TagTypeKind::TTK_Union:
6485*67e74705SXin Li return union_type_class;
6486*67e74705SXin Li }
6487*67e74705SXin Li }
6488*67e74705SXin Li llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6489*67e74705SXin Li
6490*67e74705SXin Li case Type::ConstantArray:
6491*67e74705SXin Li case Type::VariableArray:
6492*67e74705SXin Li case Type::IncompleteArray:
6493*67e74705SXin Li return LangOpts.CPlusPlus ? array_type_class : pointer_type_class;
6494*67e74705SXin Li
6495*67e74705SXin Li case Type::BlockPointer:
6496*67e74705SXin Li case Type::LValueReference:
6497*67e74705SXin Li case Type::RValueReference:
6498*67e74705SXin Li case Type::Vector:
6499*67e74705SXin Li case Type::ExtVector:
6500*67e74705SXin Li case Type::Auto:
6501*67e74705SXin Li case Type::ObjCObject:
6502*67e74705SXin Li case Type::ObjCInterface:
6503*67e74705SXin Li case Type::ObjCObjectPointer:
6504*67e74705SXin Li case Type::Pipe:
6505*67e74705SXin Li case Type::Atomic:
6506*67e74705SXin Li llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6507*67e74705SXin Li }
6508*67e74705SXin Li
6509*67e74705SXin Li llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6510*67e74705SXin Li }
6511*67e74705SXin Li
6512*67e74705SXin Li /// EvaluateBuiltinConstantPForLValue - Determine the result of
6513*67e74705SXin Li /// __builtin_constant_p when applied to the given lvalue.
6514*67e74705SXin Li ///
6515*67e74705SXin Li /// An lvalue is only "constant" if it is a pointer or reference to the first
6516*67e74705SXin Li /// character of a string literal.
6517*67e74705SXin Li template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)6518*67e74705SXin Li static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6519*67e74705SXin Li const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6520*67e74705SXin Li return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6521*67e74705SXin Li }
6522*67e74705SXin Li
6523*67e74705SXin Li /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6524*67e74705SXin Li /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)6525*67e74705SXin Li static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6526*67e74705SXin Li QualType ArgType = Arg->getType();
6527*67e74705SXin Li
6528*67e74705SXin Li // __builtin_constant_p always has one operand. The rules which gcc follows
6529*67e74705SXin Li // are not precisely documented, but are as follows:
6530*67e74705SXin Li //
6531*67e74705SXin Li // - If the operand is of integral, floating, complex or enumeration type,
6532*67e74705SXin Li // and can be folded to a known value of that type, it returns 1.
6533*67e74705SXin Li // - If the operand and can be folded to a pointer to the first character
6534*67e74705SXin Li // of a string literal (or such a pointer cast to an integral type), it
6535*67e74705SXin Li // returns 1.
6536*67e74705SXin Li //
6537*67e74705SXin Li // Otherwise, it returns 0.
6538*67e74705SXin Li //
6539*67e74705SXin Li // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6540*67e74705SXin Li // its support for this does not currently work.
6541*67e74705SXin Li if (ArgType->isIntegralOrEnumerationType()) {
6542*67e74705SXin Li Expr::EvalResult Result;
6543*67e74705SXin Li if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6544*67e74705SXin Li return false;
6545*67e74705SXin Li
6546*67e74705SXin Li APValue &V = Result.Val;
6547*67e74705SXin Li if (V.getKind() == APValue::Int)
6548*67e74705SXin Li return true;
6549*67e74705SXin Li if (V.getKind() == APValue::LValue)
6550*67e74705SXin Li return EvaluateBuiltinConstantPForLValue(V);
6551*67e74705SXin Li } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6552*67e74705SXin Li return Arg->isEvaluatable(Ctx);
6553*67e74705SXin Li } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6554*67e74705SXin Li LValue LV;
6555*67e74705SXin Li Expr::EvalStatus Status;
6556*67e74705SXin Li EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6557*67e74705SXin Li if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6558*67e74705SXin Li : EvaluatePointer(Arg, LV, Info)) &&
6559*67e74705SXin Li !Status.HasSideEffects)
6560*67e74705SXin Li return EvaluateBuiltinConstantPForLValue(LV);
6561*67e74705SXin Li }
6562*67e74705SXin Li
6563*67e74705SXin Li // Anything else isn't considered to be sufficiently constant.
6564*67e74705SXin Li return false;
6565*67e74705SXin Li }
6566*67e74705SXin Li
6567*67e74705SXin Li /// Retrieves the "underlying object type" of the given expression,
6568*67e74705SXin Li /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)6569*67e74705SXin Li static QualType getObjectType(APValue::LValueBase B) {
6570*67e74705SXin Li if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6571*67e74705SXin Li if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6572*67e74705SXin Li return VD->getType();
6573*67e74705SXin Li } else if (const Expr *E = B.get<const Expr*>()) {
6574*67e74705SXin Li if (isa<CompoundLiteralExpr>(E))
6575*67e74705SXin Li return E->getType();
6576*67e74705SXin Li }
6577*67e74705SXin Li
6578*67e74705SXin Li return QualType();
6579*67e74705SXin Li }
6580*67e74705SXin Li
6581*67e74705SXin Li /// A more selective version of E->IgnoreParenCasts for
6582*67e74705SXin Li /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
6583*67e74705SXin Li /// to change the type of E.
6584*67e74705SXin Li /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
6585*67e74705SXin Li ///
6586*67e74705SXin Li /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)6587*67e74705SXin Li static const Expr *ignorePointerCastsAndParens(const Expr *E) {
6588*67e74705SXin Li assert(E->isRValue() && E->getType()->hasPointerRepresentation());
6589*67e74705SXin Li
6590*67e74705SXin Li auto *NoParens = E->IgnoreParens();
6591*67e74705SXin Li auto *Cast = dyn_cast<CastExpr>(NoParens);
6592*67e74705SXin Li if (Cast == nullptr)
6593*67e74705SXin Li return NoParens;
6594*67e74705SXin Li
6595*67e74705SXin Li // We only conservatively allow a few kinds of casts, because this code is
6596*67e74705SXin Li // inherently a simple solution that seeks to support the common case.
6597*67e74705SXin Li auto CastKind = Cast->getCastKind();
6598*67e74705SXin Li if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
6599*67e74705SXin Li CastKind != CK_AddressSpaceConversion)
6600*67e74705SXin Li return NoParens;
6601*67e74705SXin Li
6602*67e74705SXin Li auto *SubExpr = Cast->getSubExpr();
6603*67e74705SXin Li if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
6604*67e74705SXin Li return NoParens;
6605*67e74705SXin Li return ignorePointerCastsAndParens(SubExpr);
6606*67e74705SXin Li }
6607*67e74705SXin Li
6608*67e74705SXin Li /// Checks to see if the given LValue's Designator is at the end of the LValue's
6609*67e74705SXin Li /// record layout. e.g.
6610*67e74705SXin Li /// struct { struct { int a, b; } fst, snd; } obj;
6611*67e74705SXin Li /// obj.fst // no
6612*67e74705SXin Li /// obj.snd // yes
6613*67e74705SXin Li /// obj.fst.a // no
6614*67e74705SXin Li /// obj.fst.b // no
6615*67e74705SXin Li /// obj.snd.a // no
6616*67e74705SXin Li /// obj.snd.b // yes
6617*67e74705SXin Li ///
6618*67e74705SXin Li /// Please note: this function is specialized for how __builtin_object_size
6619*67e74705SXin Li /// views "objects".
6620*67e74705SXin Li ///
6621*67e74705SXin Li /// If this encounters an invalid RecordDecl, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)6622*67e74705SXin Li static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
6623*67e74705SXin Li assert(!LVal.Designator.Invalid);
6624*67e74705SXin Li
6625*67e74705SXin Li auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
6626*67e74705SXin Li const RecordDecl *Parent = FD->getParent();
6627*67e74705SXin Li Invalid = Parent->isInvalidDecl();
6628*67e74705SXin Li if (Invalid || Parent->isUnion())
6629*67e74705SXin Li return true;
6630*67e74705SXin Li const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
6631*67e74705SXin Li return FD->getFieldIndex() + 1 == Layout.getFieldCount();
6632*67e74705SXin Li };
6633*67e74705SXin Li
6634*67e74705SXin Li auto &Base = LVal.getLValueBase();
6635*67e74705SXin Li if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
6636*67e74705SXin Li if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
6637*67e74705SXin Li bool Invalid;
6638*67e74705SXin Li if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6639*67e74705SXin Li return Invalid;
6640*67e74705SXin Li } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
6641*67e74705SXin Li for (auto *FD : IFD->chain()) {
6642*67e74705SXin Li bool Invalid;
6643*67e74705SXin Li if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
6644*67e74705SXin Li return Invalid;
6645*67e74705SXin Li }
6646*67e74705SXin Li }
6647*67e74705SXin Li }
6648*67e74705SXin Li
6649*67e74705SXin Li QualType BaseType = getType(Base);
6650*67e74705SXin Li for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
6651*67e74705SXin Li if (BaseType->isArrayType()) {
6652*67e74705SXin Li // Because __builtin_object_size treats arrays as objects, we can ignore
6653*67e74705SXin Li // the index iff this is the last array in the Designator.
6654*67e74705SXin Li if (I + 1 == E)
6655*67e74705SXin Li return true;
6656*67e74705SXin Li auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
6657*67e74705SXin Li uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6658*67e74705SXin Li if (Index + 1 != CAT->getSize())
6659*67e74705SXin Li return false;
6660*67e74705SXin Li BaseType = CAT->getElementType();
6661*67e74705SXin Li } else if (BaseType->isAnyComplexType()) {
6662*67e74705SXin Li auto *CT = BaseType->castAs<ComplexType>();
6663*67e74705SXin Li uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6664*67e74705SXin Li if (Index != 1)
6665*67e74705SXin Li return false;
6666*67e74705SXin Li BaseType = CT->getElementType();
6667*67e74705SXin Li } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
6668*67e74705SXin Li bool Invalid;
6669*67e74705SXin Li if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6670*67e74705SXin Li return Invalid;
6671*67e74705SXin Li BaseType = FD->getType();
6672*67e74705SXin Li } else {
6673*67e74705SXin Li assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
6674*67e74705SXin Li "Expecting cast to a base class");
6675*67e74705SXin Li return false;
6676*67e74705SXin Li }
6677*67e74705SXin Li }
6678*67e74705SXin Li return true;
6679*67e74705SXin Li }
6680*67e74705SXin Li
6681*67e74705SXin Li /// Tests to see if the LValue has a designator (that isn't necessarily valid).
refersToCompleteObject(const LValue & LVal)6682*67e74705SXin Li static bool refersToCompleteObject(const LValue &LVal) {
6683*67e74705SXin Li if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
6684*67e74705SXin Li return false;
6685*67e74705SXin Li
6686*67e74705SXin Li if (!LVal.InvalidBase)
6687*67e74705SXin Li return true;
6688*67e74705SXin Li
6689*67e74705SXin Li auto *E = LVal.Base.dyn_cast<const Expr *>();
6690*67e74705SXin Li (void)E;
6691*67e74705SXin Li assert(E != nullptr && isa<MemberExpr>(E));
6692*67e74705SXin Li return false;
6693*67e74705SXin Li }
6694*67e74705SXin Li
6695*67e74705SXin Li /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
6696*67e74705SXin Li /// true and stores the result in @p Size.
6697*67e74705SXin Li ///
6698*67e74705SXin Li /// If @p WasError is non-null, this will report whether the failure to evaluate
6699*67e74705SXin Li /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size,bool * WasError=nullptr)6700*67e74705SXin Li static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
6701*67e74705SXin Li EvalInfo &Info, uint64_t &Size,
6702*67e74705SXin Li bool *WasError = nullptr) {
6703*67e74705SXin Li if (WasError != nullptr)
6704*67e74705SXin Li *WasError = false;
6705*67e74705SXin Li
6706*67e74705SXin Li auto Error = [&](const Expr *E) {
6707*67e74705SXin Li if (WasError != nullptr)
6708*67e74705SXin Li *WasError = true;
6709*67e74705SXin Li return false;
6710*67e74705SXin Li };
6711*67e74705SXin Li
6712*67e74705SXin Li auto Success = [&](uint64_t S, const Expr *E) {
6713*67e74705SXin Li Size = S;
6714*67e74705SXin Li return true;
6715*67e74705SXin Li };
6716*67e74705SXin Li
6717*67e74705SXin Li // Determine the denoted object.
6718*67e74705SXin Li LValue Base;
6719*67e74705SXin Li {
6720*67e74705SXin Li // The operand of __builtin_object_size is never evaluated for side-effects.
6721*67e74705SXin Li // If there are any, but we can determine the pointed-to object anyway, then
6722*67e74705SXin Li // ignore the side-effects.
6723*67e74705SXin Li SpeculativeEvaluationRAII SpeculativeEval(Info);
6724*67e74705SXin Li FoldOffsetRAII Fold(Info, Type & 1);
6725*67e74705SXin Li
6726*67e74705SXin Li if (E->isGLValue()) {
6727*67e74705SXin Li // It's possible for us to be given GLValues if we're called via
6728*67e74705SXin Li // Expr::tryEvaluateObjectSize.
6729*67e74705SXin Li APValue RVal;
6730*67e74705SXin Li if (!EvaluateAsRValue(Info, E, RVal))
6731*67e74705SXin Li return false;
6732*67e74705SXin Li Base.setFrom(Info.Ctx, RVal);
6733*67e74705SXin Li } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
6734*67e74705SXin Li return false;
6735*67e74705SXin Li }
6736*67e74705SXin Li
6737*67e74705SXin Li CharUnits BaseOffset = Base.getLValueOffset();
6738*67e74705SXin Li // If we point to before the start of the object, there are no accessible
6739*67e74705SXin Li // bytes.
6740*67e74705SXin Li if (BaseOffset.isNegative())
6741*67e74705SXin Li return Success(0, E);
6742*67e74705SXin Li
6743*67e74705SXin Li // In the case where we're not dealing with a subobject, we discard the
6744*67e74705SXin Li // subobject bit.
6745*67e74705SXin Li bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
6746*67e74705SXin Li
6747*67e74705SXin Li // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
6748*67e74705SXin Li // exist. If we can't verify the base, then we can't do that.
6749*67e74705SXin Li //
6750*67e74705SXin Li // As a special case, we produce a valid object size for an unknown object
6751*67e74705SXin Li // with a known designator if Type & 1 is 1. For instance:
6752*67e74705SXin Li //
6753*67e74705SXin Li // extern struct X { char buff[32]; int a, b, c; } *p;
6754*67e74705SXin Li // int a = __builtin_object_size(p->buff + 4, 3); // returns 28
6755*67e74705SXin Li // int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
6756*67e74705SXin Li //
6757*67e74705SXin Li // This matches GCC's behavior.
6758*67e74705SXin Li if (Base.InvalidBase && !SubobjectOnly)
6759*67e74705SXin Li return Error(E);
6760*67e74705SXin Li
6761*67e74705SXin Li // If we're not examining only the subobject, then we reset to a complete
6762*67e74705SXin Li // object designator
6763*67e74705SXin Li //
6764*67e74705SXin Li // If Type is 1 and we've lost track of the subobject, just find the complete
6765*67e74705SXin Li // object instead. (If Type is 3, that's not correct behavior and we should
6766*67e74705SXin Li // return 0 instead.)
6767*67e74705SXin Li LValue End = Base;
6768*67e74705SXin Li if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
6769*67e74705SXin Li QualType T = getObjectType(End.getLValueBase());
6770*67e74705SXin Li if (T.isNull())
6771*67e74705SXin Li End.Designator.setInvalid();
6772*67e74705SXin Li else {
6773*67e74705SXin Li End.Designator = SubobjectDesignator(T);
6774*67e74705SXin Li End.Offset = CharUnits::Zero();
6775*67e74705SXin Li }
6776*67e74705SXin Li }
6777*67e74705SXin Li
6778*67e74705SXin Li // If it is not possible to determine which objects ptr points to at compile
6779*67e74705SXin Li // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
6780*67e74705SXin Li // and (size_t) 0 for type 2 or 3.
6781*67e74705SXin Li if (End.Designator.Invalid)
6782*67e74705SXin Li return false;
6783*67e74705SXin Li
6784*67e74705SXin Li // According to the GCC documentation, we want the size of the subobject
6785*67e74705SXin Li // denoted by the pointer. But that's not quite right -- what we actually
6786*67e74705SXin Li // want is the size of the immediately-enclosing array, if there is one.
6787*67e74705SXin Li int64_t AmountToAdd = 1;
6788*67e74705SXin Li if (End.Designator.MostDerivedIsArrayElement &&
6789*67e74705SXin Li End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
6790*67e74705SXin Li // We got a pointer to an array. Step to its end.
6791*67e74705SXin Li AmountToAdd = End.Designator.MostDerivedArraySize -
6792*67e74705SXin Li End.Designator.Entries.back().ArrayIndex;
6793*67e74705SXin Li } else if (End.Designator.isOnePastTheEnd()) {
6794*67e74705SXin Li // We're already pointing at the end of the object.
6795*67e74705SXin Li AmountToAdd = 0;
6796*67e74705SXin Li }
6797*67e74705SXin Li
6798*67e74705SXin Li QualType PointeeType = End.Designator.MostDerivedType;
6799*67e74705SXin Li assert(!PointeeType.isNull());
6800*67e74705SXin Li if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
6801*67e74705SXin Li return Error(E);
6802*67e74705SXin Li
6803*67e74705SXin Li if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
6804*67e74705SXin Li AmountToAdd))
6805*67e74705SXin Li return false;
6806*67e74705SXin Li
6807*67e74705SXin Li auto EndOffset = End.getLValueOffset();
6808*67e74705SXin Li
6809*67e74705SXin Li // The following is a moderately common idiom in C:
6810*67e74705SXin Li //
6811*67e74705SXin Li // struct Foo { int a; char c[1]; };
6812*67e74705SXin Li // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
6813*67e74705SXin Li // strcpy(&F->c[0], Bar);
6814*67e74705SXin Li //
6815*67e74705SXin Li // So, if we see that we're examining a 1-length (or 0-length) array at the
6816*67e74705SXin Li // end of a struct with an unknown base, we give up instead of breaking code
6817*67e74705SXin Li // that behaves this way. Note that we only do this when Type=1, because
6818*67e74705SXin Li // Type=3 is a lower bound, so answering conservatively is fine.
6819*67e74705SXin Li if (End.InvalidBase && SubobjectOnly && Type == 1 &&
6820*67e74705SXin Li End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
6821*67e74705SXin Li End.Designator.MostDerivedIsArrayElement &&
6822*67e74705SXin Li End.Designator.MostDerivedArraySize < 2 &&
6823*67e74705SXin Li isDesignatorAtObjectEnd(Info.Ctx, End))
6824*67e74705SXin Li return false;
6825*67e74705SXin Li
6826*67e74705SXin Li if (BaseOffset > EndOffset)
6827*67e74705SXin Li return Success(0, E);
6828*67e74705SXin Li
6829*67e74705SXin Li return Success((EndOffset - BaseOffset).getQuantity(), E);
6830*67e74705SXin Li }
6831*67e74705SXin Li
TryEvaluateBuiltinObjectSize(const CallExpr * E,unsigned Type)6832*67e74705SXin Li bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
6833*67e74705SXin Li unsigned Type) {
6834*67e74705SXin Li uint64_t Size;
6835*67e74705SXin Li bool WasError;
6836*67e74705SXin Li if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
6837*67e74705SXin Li return Success(Size, E);
6838*67e74705SXin Li if (WasError)
6839*67e74705SXin Li return Error(E);
6840*67e74705SXin Li return false;
6841*67e74705SXin Li }
6842*67e74705SXin Li
VisitCallExpr(const CallExpr * E)6843*67e74705SXin Li bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6844*67e74705SXin Li switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6845*67e74705SXin Li default:
6846*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCallExpr(E);
6847*67e74705SXin Li
6848*67e74705SXin Li case Builtin::BI__builtin_object_size: {
6849*67e74705SXin Li // The type was checked when we built the expression.
6850*67e74705SXin Li unsigned Type =
6851*67e74705SXin Li E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6852*67e74705SXin Li assert(Type <= 3 && "unexpected type");
6853*67e74705SXin Li
6854*67e74705SXin Li if (TryEvaluateBuiltinObjectSize(E, Type))
6855*67e74705SXin Li return true;
6856*67e74705SXin Li
6857*67e74705SXin Li if (E->getArg(0)->HasSideEffects(Info.Ctx))
6858*67e74705SXin Li return Success((Type & 2) ? 0 : -1, E);
6859*67e74705SXin Li
6860*67e74705SXin Li // Expression had no side effects, but we couldn't statically determine the
6861*67e74705SXin Li // size of the referenced object.
6862*67e74705SXin Li switch (Info.EvalMode) {
6863*67e74705SXin Li case EvalInfo::EM_ConstantExpression:
6864*67e74705SXin Li case EvalInfo::EM_PotentialConstantExpression:
6865*67e74705SXin Li case EvalInfo::EM_ConstantFold:
6866*67e74705SXin Li case EvalInfo::EM_EvaluateForOverflow:
6867*67e74705SXin Li case EvalInfo::EM_IgnoreSideEffects:
6868*67e74705SXin Li case EvalInfo::EM_DesignatorFold:
6869*67e74705SXin Li // Leave it to IR generation.
6870*67e74705SXin Li return Error(E);
6871*67e74705SXin Li case EvalInfo::EM_ConstantExpressionUnevaluated:
6872*67e74705SXin Li case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6873*67e74705SXin Li // Reduce it to a constant now.
6874*67e74705SXin Li return Success((Type & 2) ? 0 : -1, E);
6875*67e74705SXin Li }
6876*67e74705SXin Li }
6877*67e74705SXin Li
6878*67e74705SXin Li case Builtin::BI__builtin_bswap16:
6879*67e74705SXin Li case Builtin::BI__builtin_bswap32:
6880*67e74705SXin Li case Builtin::BI__builtin_bswap64: {
6881*67e74705SXin Li APSInt Val;
6882*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
6883*67e74705SXin Li return false;
6884*67e74705SXin Li
6885*67e74705SXin Li return Success(Val.byteSwap(), E);
6886*67e74705SXin Li }
6887*67e74705SXin Li
6888*67e74705SXin Li case Builtin::BI__builtin_classify_type:
6889*67e74705SXin Li return Success(EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
6890*67e74705SXin Li
6891*67e74705SXin Li // FIXME: BI__builtin_clrsb
6892*67e74705SXin Li // FIXME: BI__builtin_clrsbl
6893*67e74705SXin Li // FIXME: BI__builtin_clrsbll
6894*67e74705SXin Li
6895*67e74705SXin Li case Builtin::BI__builtin_clz:
6896*67e74705SXin Li case Builtin::BI__builtin_clzl:
6897*67e74705SXin Li case Builtin::BI__builtin_clzll:
6898*67e74705SXin Li case Builtin::BI__builtin_clzs: {
6899*67e74705SXin Li APSInt Val;
6900*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
6901*67e74705SXin Li return false;
6902*67e74705SXin Li if (!Val)
6903*67e74705SXin Li return Error(E);
6904*67e74705SXin Li
6905*67e74705SXin Li return Success(Val.countLeadingZeros(), E);
6906*67e74705SXin Li }
6907*67e74705SXin Li
6908*67e74705SXin Li case Builtin::BI__builtin_constant_p:
6909*67e74705SXin Li return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6910*67e74705SXin Li
6911*67e74705SXin Li case Builtin::BI__builtin_ctz:
6912*67e74705SXin Li case Builtin::BI__builtin_ctzl:
6913*67e74705SXin Li case Builtin::BI__builtin_ctzll:
6914*67e74705SXin Li case Builtin::BI__builtin_ctzs: {
6915*67e74705SXin Li APSInt Val;
6916*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
6917*67e74705SXin Li return false;
6918*67e74705SXin Li if (!Val)
6919*67e74705SXin Li return Error(E);
6920*67e74705SXin Li
6921*67e74705SXin Li return Success(Val.countTrailingZeros(), E);
6922*67e74705SXin Li }
6923*67e74705SXin Li
6924*67e74705SXin Li case Builtin::BI__builtin_eh_return_data_regno: {
6925*67e74705SXin Li int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6926*67e74705SXin Li Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6927*67e74705SXin Li return Success(Operand, E);
6928*67e74705SXin Li }
6929*67e74705SXin Li
6930*67e74705SXin Li case Builtin::BI__builtin_expect:
6931*67e74705SXin Li return Visit(E->getArg(0));
6932*67e74705SXin Li
6933*67e74705SXin Li case Builtin::BI__builtin_ffs:
6934*67e74705SXin Li case Builtin::BI__builtin_ffsl:
6935*67e74705SXin Li case Builtin::BI__builtin_ffsll: {
6936*67e74705SXin Li APSInt Val;
6937*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
6938*67e74705SXin Li return false;
6939*67e74705SXin Li
6940*67e74705SXin Li unsigned N = Val.countTrailingZeros();
6941*67e74705SXin Li return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6942*67e74705SXin Li }
6943*67e74705SXin Li
6944*67e74705SXin Li case Builtin::BI__builtin_fpclassify: {
6945*67e74705SXin Li APFloat Val(0.0);
6946*67e74705SXin Li if (!EvaluateFloat(E->getArg(5), Val, Info))
6947*67e74705SXin Li return false;
6948*67e74705SXin Li unsigned Arg;
6949*67e74705SXin Li switch (Val.getCategory()) {
6950*67e74705SXin Li case APFloat::fcNaN: Arg = 0; break;
6951*67e74705SXin Li case APFloat::fcInfinity: Arg = 1; break;
6952*67e74705SXin Li case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6953*67e74705SXin Li case APFloat::fcZero: Arg = 4; break;
6954*67e74705SXin Li }
6955*67e74705SXin Li return Visit(E->getArg(Arg));
6956*67e74705SXin Li }
6957*67e74705SXin Li
6958*67e74705SXin Li case Builtin::BI__builtin_isinf_sign: {
6959*67e74705SXin Li APFloat Val(0.0);
6960*67e74705SXin Li return EvaluateFloat(E->getArg(0), Val, Info) &&
6961*67e74705SXin Li Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6962*67e74705SXin Li }
6963*67e74705SXin Li
6964*67e74705SXin Li case Builtin::BI__builtin_isinf: {
6965*67e74705SXin Li APFloat Val(0.0);
6966*67e74705SXin Li return EvaluateFloat(E->getArg(0), Val, Info) &&
6967*67e74705SXin Li Success(Val.isInfinity() ? 1 : 0, E);
6968*67e74705SXin Li }
6969*67e74705SXin Li
6970*67e74705SXin Li case Builtin::BI__builtin_isfinite: {
6971*67e74705SXin Li APFloat Val(0.0);
6972*67e74705SXin Li return EvaluateFloat(E->getArg(0), Val, Info) &&
6973*67e74705SXin Li Success(Val.isFinite() ? 1 : 0, E);
6974*67e74705SXin Li }
6975*67e74705SXin Li
6976*67e74705SXin Li case Builtin::BI__builtin_isnan: {
6977*67e74705SXin Li APFloat Val(0.0);
6978*67e74705SXin Li return EvaluateFloat(E->getArg(0), Val, Info) &&
6979*67e74705SXin Li Success(Val.isNaN() ? 1 : 0, E);
6980*67e74705SXin Li }
6981*67e74705SXin Li
6982*67e74705SXin Li case Builtin::BI__builtin_isnormal: {
6983*67e74705SXin Li APFloat Val(0.0);
6984*67e74705SXin Li return EvaluateFloat(E->getArg(0), Val, Info) &&
6985*67e74705SXin Li Success(Val.isNormal() ? 1 : 0, E);
6986*67e74705SXin Li }
6987*67e74705SXin Li
6988*67e74705SXin Li case Builtin::BI__builtin_parity:
6989*67e74705SXin Li case Builtin::BI__builtin_parityl:
6990*67e74705SXin Li case Builtin::BI__builtin_parityll: {
6991*67e74705SXin Li APSInt Val;
6992*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
6993*67e74705SXin Li return false;
6994*67e74705SXin Li
6995*67e74705SXin Li return Success(Val.countPopulation() % 2, E);
6996*67e74705SXin Li }
6997*67e74705SXin Li
6998*67e74705SXin Li case Builtin::BI__builtin_popcount:
6999*67e74705SXin Li case Builtin::BI__builtin_popcountl:
7000*67e74705SXin Li case Builtin::BI__builtin_popcountll: {
7001*67e74705SXin Li APSInt Val;
7002*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), Val, Info))
7003*67e74705SXin Li return false;
7004*67e74705SXin Li
7005*67e74705SXin Li return Success(Val.countPopulation(), E);
7006*67e74705SXin Li }
7007*67e74705SXin Li
7008*67e74705SXin Li case Builtin::BIstrlen:
7009*67e74705SXin Li // A call to strlen is not a constant expression.
7010*67e74705SXin Li if (Info.getLangOpts().CPlusPlus11)
7011*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_invalid_function)
7012*67e74705SXin Li << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
7013*67e74705SXin Li else
7014*67e74705SXin Li Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
7015*67e74705SXin Li // Fall through.
7016*67e74705SXin Li case Builtin::BI__builtin_strlen: {
7017*67e74705SXin Li // As an extension, we support __builtin_strlen() as a constant expression,
7018*67e74705SXin Li // and support folding strlen() to a constant.
7019*67e74705SXin Li LValue String;
7020*67e74705SXin Li if (!EvaluatePointer(E->getArg(0), String, Info))
7021*67e74705SXin Li return false;
7022*67e74705SXin Li
7023*67e74705SXin Li // Fast path: if it's a string literal, search the string value.
7024*67e74705SXin Li if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
7025*67e74705SXin Li String.getLValueBase().dyn_cast<const Expr *>())) {
7026*67e74705SXin Li // The string literal may have embedded null characters. Find the first
7027*67e74705SXin Li // one and truncate there.
7028*67e74705SXin Li StringRef Str = S->getBytes();
7029*67e74705SXin Li int64_t Off = String.Offset.getQuantity();
7030*67e74705SXin Li if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
7031*67e74705SXin Li S->getCharByteWidth() == 1) {
7032*67e74705SXin Li Str = Str.substr(Off);
7033*67e74705SXin Li
7034*67e74705SXin Li StringRef::size_type Pos = Str.find(0);
7035*67e74705SXin Li if (Pos != StringRef::npos)
7036*67e74705SXin Li Str = Str.substr(0, Pos);
7037*67e74705SXin Li
7038*67e74705SXin Li return Success(Str.size(), E);
7039*67e74705SXin Li }
7040*67e74705SXin Li
7041*67e74705SXin Li // Fall through to slow path to issue appropriate diagnostic.
7042*67e74705SXin Li }
7043*67e74705SXin Li
7044*67e74705SXin Li // Slow path: scan the bytes of the string looking for the terminating 0.
7045*67e74705SXin Li QualType CharTy = E->getArg(0)->getType()->getPointeeType();
7046*67e74705SXin Li for (uint64_t Strlen = 0; /**/; ++Strlen) {
7047*67e74705SXin Li APValue Char;
7048*67e74705SXin Li if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
7049*67e74705SXin Li !Char.isInt())
7050*67e74705SXin Li return false;
7051*67e74705SXin Li if (!Char.getInt())
7052*67e74705SXin Li return Success(Strlen, E);
7053*67e74705SXin Li if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
7054*67e74705SXin Li return false;
7055*67e74705SXin Li }
7056*67e74705SXin Li }
7057*67e74705SXin Li
7058*67e74705SXin Li case Builtin::BI__atomic_always_lock_free:
7059*67e74705SXin Li case Builtin::BI__atomic_is_lock_free:
7060*67e74705SXin Li case Builtin::BI__c11_atomic_is_lock_free: {
7061*67e74705SXin Li APSInt SizeVal;
7062*67e74705SXin Li if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
7063*67e74705SXin Li return false;
7064*67e74705SXin Li
7065*67e74705SXin Li // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
7066*67e74705SXin Li // of two less than the maximum inline atomic width, we know it is
7067*67e74705SXin Li // lock-free. If the size isn't a power of two, or greater than the
7068*67e74705SXin Li // maximum alignment where we promote atomics, we know it is not lock-free
7069*67e74705SXin Li // (at least not in the sense of atomic_is_lock_free). Otherwise,
7070*67e74705SXin Li // the answer can only be determined at runtime; for example, 16-byte
7071*67e74705SXin Li // atomics have lock-free implementations on some, but not all,
7072*67e74705SXin Li // x86-64 processors.
7073*67e74705SXin Li
7074*67e74705SXin Li // Check power-of-two.
7075*67e74705SXin Li CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
7076*67e74705SXin Li if (Size.isPowerOfTwo()) {
7077*67e74705SXin Li // Check against inlining width.
7078*67e74705SXin Li unsigned InlineWidthBits =
7079*67e74705SXin Li Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
7080*67e74705SXin Li if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
7081*67e74705SXin Li if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
7082*67e74705SXin Li Size == CharUnits::One() ||
7083*67e74705SXin Li E->getArg(1)->isNullPointerConstant(Info.Ctx,
7084*67e74705SXin Li Expr::NPC_NeverValueDependent))
7085*67e74705SXin Li // OK, we will inline appropriately-aligned operations of this size,
7086*67e74705SXin Li // and _Atomic(T) is appropriately-aligned.
7087*67e74705SXin Li return Success(1, E);
7088*67e74705SXin Li
7089*67e74705SXin Li QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
7090*67e74705SXin Li castAs<PointerType>()->getPointeeType();
7091*67e74705SXin Li if (!PointeeType->isIncompleteType() &&
7092*67e74705SXin Li Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
7093*67e74705SXin Li // OK, we will inline operations on this object.
7094*67e74705SXin Li return Success(1, E);
7095*67e74705SXin Li }
7096*67e74705SXin Li }
7097*67e74705SXin Li }
7098*67e74705SXin Li
7099*67e74705SXin Li return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
7100*67e74705SXin Li Success(0, E) : Error(E);
7101*67e74705SXin Li }
7102*67e74705SXin Li }
7103*67e74705SXin Li }
7104*67e74705SXin Li
HasSameBase(const LValue & A,const LValue & B)7105*67e74705SXin Li static bool HasSameBase(const LValue &A, const LValue &B) {
7106*67e74705SXin Li if (!A.getLValueBase())
7107*67e74705SXin Li return !B.getLValueBase();
7108*67e74705SXin Li if (!B.getLValueBase())
7109*67e74705SXin Li return false;
7110*67e74705SXin Li
7111*67e74705SXin Li if (A.getLValueBase().getOpaqueValue() !=
7112*67e74705SXin Li B.getLValueBase().getOpaqueValue()) {
7113*67e74705SXin Li const Decl *ADecl = GetLValueBaseDecl(A);
7114*67e74705SXin Li if (!ADecl)
7115*67e74705SXin Li return false;
7116*67e74705SXin Li const Decl *BDecl = GetLValueBaseDecl(B);
7117*67e74705SXin Li if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
7118*67e74705SXin Li return false;
7119*67e74705SXin Li }
7120*67e74705SXin Li
7121*67e74705SXin Li return IsGlobalLValue(A.getLValueBase()) ||
7122*67e74705SXin Li A.getLValueCallIndex() == B.getLValueCallIndex();
7123*67e74705SXin Li }
7124*67e74705SXin Li
7125*67e74705SXin Li /// \brief Determine whether this is a pointer past the end of the complete
7126*67e74705SXin Li /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)7127*67e74705SXin Li static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
7128*67e74705SXin Li const LValue &LV) {
7129*67e74705SXin Li // A null pointer can be viewed as being "past the end" but we don't
7130*67e74705SXin Li // choose to look at it that way here.
7131*67e74705SXin Li if (!LV.getLValueBase())
7132*67e74705SXin Li return false;
7133*67e74705SXin Li
7134*67e74705SXin Li // If the designator is valid and refers to a subobject, we're not pointing
7135*67e74705SXin Li // past the end.
7136*67e74705SXin Li if (!LV.getLValueDesignator().Invalid &&
7137*67e74705SXin Li !LV.getLValueDesignator().isOnePastTheEnd())
7138*67e74705SXin Li return false;
7139*67e74705SXin Li
7140*67e74705SXin Li // A pointer to an incomplete type might be past-the-end if the type's size is
7141*67e74705SXin Li // zero. We cannot tell because the type is incomplete.
7142*67e74705SXin Li QualType Ty = getType(LV.getLValueBase());
7143*67e74705SXin Li if (Ty->isIncompleteType())
7144*67e74705SXin Li return true;
7145*67e74705SXin Li
7146*67e74705SXin Li // We're a past-the-end pointer if we point to the byte after the object,
7147*67e74705SXin Li // no matter what our type or path is.
7148*67e74705SXin Li auto Size = Ctx.getTypeSizeInChars(Ty);
7149*67e74705SXin Li return LV.getLValueOffset() == Size;
7150*67e74705SXin Li }
7151*67e74705SXin Li
7152*67e74705SXin Li namespace {
7153*67e74705SXin Li
7154*67e74705SXin Li /// \brief Data recursive integer evaluator of certain binary operators.
7155*67e74705SXin Li ///
7156*67e74705SXin Li /// We use a data recursive algorithm for binary operators so that we are able
7157*67e74705SXin Li /// to handle extreme cases of chained binary operators without causing stack
7158*67e74705SXin Li /// overflow.
7159*67e74705SXin Li class DataRecursiveIntBinOpEvaluator {
7160*67e74705SXin Li struct EvalResult {
7161*67e74705SXin Li APValue Val;
7162*67e74705SXin Li bool Failed;
7163*67e74705SXin Li
EvalResult__anon2db4a5521811::DataRecursiveIntBinOpEvaluator::EvalResult7164*67e74705SXin Li EvalResult() : Failed(false) { }
7165*67e74705SXin Li
swap__anon2db4a5521811::DataRecursiveIntBinOpEvaluator::EvalResult7166*67e74705SXin Li void swap(EvalResult &RHS) {
7167*67e74705SXin Li Val.swap(RHS.Val);
7168*67e74705SXin Li Failed = RHS.Failed;
7169*67e74705SXin Li RHS.Failed = false;
7170*67e74705SXin Li }
7171*67e74705SXin Li };
7172*67e74705SXin Li
7173*67e74705SXin Li struct Job {
7174*67e74705SXin Li const Expr *E;
7175*67e74705SXin Li EvalResult LHSResult; // meaningful only for binary operator expression.
7176*67e74705SXin Li enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
7177*67e74705SXin Li
7178*67e74705SXin Li Job() = default;
Job__anon2db4a5521811::DataRecursiveIntBinOpEvaluator::Job7179*67e74705SXin Li Job(Job &&J)
7180*67e74705SXin Li : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
7181*67e74705SXin Li SpecEvalRAII(std::move(J.SpecEvalRAII)) {}
7182*67e74705SXin Li
startSpeculativeEval__anon2db4a5521811::DataRecursiveIntBinOpEvaluator::Job7183*67e74705SXin Li void startSpeculativeEval(EvalInfo &Info) {
7184*67e74705SXin Li SpecEvalRAII = SpeculativeEvaluationRAII(Info);
7185*67e74705SXin Li }
7186*67e74705SXin Li
7187*67e74705SXin Li private:
7188*67e74705SXin Li SpeculativeEvaluationRAII SpecEvalRAII;
7189*67e74705SXin Li };
7190*67e74705SXin Li
7191*67e74705SXin Li SmallVector<Job, 16> Queue;
7192*67e74705SXin Li
7193*67e74705SXin Li IntExprEvaluator &IntEval;
7194*67e74705SXin Li EvalInfo &Info;
7195*67e74705SXin Li APValue &FinalResult;
7196*67e74705SXin Li
7197*67e74705SXin Li public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)7198*67e74705SXin Li DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
7199*67e74705SXin Li : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
7200*67e74705SXin Li
7201*67e74705SXin Li /// \brief True if \param E is a binary operator that we are going to handle
7202*67e74705SXin Li /// data recursively.
7203*67e74705SXin Li /// We handle binary operators that are comma, logical, or that have operands
7204*67e74705SXin Li /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)7205*67e74705SXin Li static bool shouldEnqueue(const BinaryOperator *E) {
7206*67e74705SXin Li return E->getOpcode() == BO_Comma ||
7207*67e74705SXin Li E->isLogicalOp() ||
7208*67e74705SXin Li (E->isRValue() &&
7209*67e74705SXin Li E->getType()->isIntegralOrEnumerationType() &&
7210*67e74705SXin Li E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7211*67e74705SXin Li E->getRHS()->getType()->isIntegralOrEnumerationType());
7212*67e74705SXin Li }
7213*67e74705SXin Li
Traverse(const BinaryOperator * E)7214*67e74705SXin Li bool Traverse(const BinaryOperator *E) {
7215*67e74705SXin Li enqueue(E);
7216*67e74705SXin Li EvalResult PrevResult;
7217*67e74705SXin Li while (!Queue.empty())
7218*67e74705SXin Li process(PrevResult);
7219*67e74705SXin Li
7220*67e74705SXin Li if (PrevResult.Failed) return false;
7221*67e74705SXin Li
7222*67e74705SXin Li FinalResult.swap(PrevResult.Val);
7223*67e74705SXin Li return true;
7224*67e74705SXin Li }
7225*67e74705SXin Li
7226*67e74705SXin Li private:
Success(uint64_t Value,const Expr * E,APValue & Result)7227*67e74705SXin Li bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7228*67e74705SXin Li return IntEval.Success(Value, E, Result);
7229*67e74705SXin Li }
Success(const APSInt & Value,const Expr * E,APValue & Result)7230*67e74705SXin Li bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
7231*67e74705SXin Li return IntEval.Success(Value, E, Result);
7232*67e74705SXin Li }
Error(const Expr * E)7233*67e74705SXin Li bool Error(const Expr *E) {
7234*67e74705SXin Li return IntEval.Error(E);
7235*67e74705SXin Li }
Error(const Expr * E,diag::kind D)7236*67e74705SXin Li bool Error(const Expr *E, diag::kind D) {
7237*67e74705SXin Li return IntEval.Error(E, D);
7238*67e74705SXin Li }
7239*67e74705SXin Li
CCEDiag(const Expr * E,diag::kind D)7240*67e74705SXin Li OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7241*67e74705SXin Li return Info.CCEDiag(E, D);
7242*67e74705SXin Li }
7243*67e74705SXin Li
7244*67e74705SXin Li // \brief Returns true if visiting the RHS is necessary, false otherwise.
7245*67e74705SXin Li bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7246*67e74705SXin Li bool &SuppressRHSDiags);
7247*67e74705SXin Li
7248*67e74705SXin Li bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7249*67e74705SXin Li const BinaryOperator *E, APValue &Result);
7250*67e74705SXin Li
EvaluateExpr(const Expr * E,EvalResult & Result)7251*67e74705SXin Li void EvaluateExpr(const Expr *E, EvalResult &Result) {
7252*67e74705SXin Li Result.Failed = !Evaluate(Result.Val, Info, E);
7253*67e74705SXin Li if (Result.Failed)
7254*67e74705SXin Li Result.Val = APValue();
7255*67e74705SXin Li }
7256*67e74705SXin Li
7257*67e74705SXin Li void process(EvalResult &Result);
7258*67e74705SXin Li
enqueue(const Expr * E)7259*67e74705SXin Li void enqueue(const Expr *E) {
7260*67e74705SXin Li E = E->IgnoreParens();
7261*67e74705SXin Li Queue.resize(Queue.size()+1);
7262*67e74705SXin Li Queue.back().E = E;
7263*67e74705SXin Li Queue.back().Kind = Job::AnyExprKind;
7264*67e74705SXin Li }
7265*67e74705SXin Li };
7266*67e74705SXin Li
7267*67e74705SXin Li }
7268*67e74705SXin Li
7269*67e74705SXin Li bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)7270*67e74705SXin Li VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7271*67e74705SXin Li bool &SuppressRHSDiags) {
7272*67e74705SXin Li if (E->getOpcode() == BO_Comma) {
7273*67e74705SXin Li // Ignore LHS but note if we could not evaluate it.
7274*67e74705SXin Li if (LHSResult.Failed)
7275*67e74705SXin Li return Info.noteSideEffect();
7276*67e74705SXin Li return true;
7277*67e74705SXin Li }
7278*67e74705SXin Li
7279*67e74705SXin Li if (E->isLogicalOp()) {
7280*67e74705SXin Li bool LHSAsBool;
7281*67e74705SXin Li if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
7282*67e74705SXin Li // We were able to evaluate the LHS, see if we can get away with not
7283*67e74705SXin Li // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
7284*67e74705SXin Li if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
7285*67e74705SXin Li Success(LHSAsBool, E, LHSResult.Val);
7286*67e74705SXin Li return false; // Ignore RHS
7287*67e74705SXin Li }
7288*67e74705SXin Li } else {
7289*67e74705SXin Li LHSResult.Failed = true;
7290*67e74705SXin Li
7291*67e74705SXin Li // Since we weren't able to evaluate the left hand side, it
7292*67e74705SXin Li // might have had side effects.
7293*67e74705SXin Li if (!Info.noteSideEffect())
7294*67e74705SXin Li return false;
7295*67e74705SXin Li
7296*67e74705SXin Li // We can't evaluate the LHS; however, sometimes the result
7297*67e74705SXin Li // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7298*67e74705SXin Li // Don't ignore RHS and suppress diagnostics from this arm.
7299*67e74705SXin Li SuppressRHSDiags = true;
7300*67e74705SXin Li }
7301*67e74705SXin Li
7302*67e74705SXin Li return true;
7303*67e74705SXin Li }
7304*67e74705SXin Li
7305*67e74705SXin Li assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7306*67e74705SXin Li E->getRHS()->getType()->isIntegralOrEnumerationType());
7307*67e74705SXin Li
7308*67e74705SXin Li if (LHSResult.Failed && !Info.noteFailure())
7309*67e74705SXin Li return false; // Ignore RHS;
7310*67e74705SXin Li
7311*67e74705SXin Li return true;
7312*67e74705SXin Li }
7313*67e74705SXin Li
7314*67e74705SXin Li bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)7315*67e74705SXin Li VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7316*67e74705SXin Li const BinaryOperator *E, APValue &Result) {
7317*67e74705SXin Li if (E->getOpcode() == BO_Comma) {
7318*67e74705SXin Li if (RHSResult.Failed)
7319*67e74705SXin Li return false;
7320*67e74705SXin Li Result = RHSResult.Val;
7321*67e74705SXin Li return true;
7322*67e74705SXin Li }
7323*67e74705SXin Li
7324*67e74705SXin Li if (E->isLogicalOp()) {
7325*67e74705SXin Li bool lhsResult, rhsResult;
7326*67e74705SXin Li bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
7327*67e74705SXin Li bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
7328*67e74705SXin Li
7329*67e74705SXin Li if (LHSIsOK) {
7330*67e74705SXin Li if (RHSIsOK) {
7331*67e74705SXin Li if (E->getOpcode() == BO_LOr)
7332*67e74705SXin Li return Success(lhsResult || rhsResult, E, Result);
7333*67e74705SXin Li else
7334*67e74705SXin Li return Success(lhsResult && rhsResult, E, Result);
7335*67e74705SXin Li }
7336*67e74705SXin Li } else {
7337*67e74705SXin Li if (RHSIsOK) {
7338*67e74705SXin Li // We can't evaluate the LHS; however, sometimes the result
7339*67e74705SXin Li // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7340*67e74705SXin Li if (rhsResult == (E->getOpcode() == BO_LOr))
7341*67e74705SXin Li return Success(rhsResult, E, Result);
7342*67e74705SXin Li }
7343*67e74705SXin Li }
7344*67e74705SXin Li
7345*67e74705SXin Li return false;
7346*67e74705SXin Li }
7347*67e74705SXin Li
7348*67e74705SXin Li assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7349*67e74705SXin Li E->getRHS()->getType()->isIntegralOrEnumerationType());
7350*67e74705SXin Li
7351*67e74705SXin Li if (LHSResult.Failed || RHSResult.Failed)
7352*67e74705SXin Li return false;
7353*67e74705SXin Li
7354*67e74705SXin Li const APValue &LHSVal = LHSResult.Val;
7355*67e74705SXin Li const APValue &RHSVal = RHSResult.Val;
7356*67e74705SXin Li
7357*67e74705SXin Li // Handle cases like (unsigned long)&a + 4.
7358*67e74705SXin Li if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
7359*67e74705SXin Li Result = LHSVal;
7360*67e74705SXin Li CharUnits AdditionalOffset =
7361*67e74705SXin Li CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
7362*67e74705SXin Li if (E->getOpcode() == BO_Add)
7363*67e74705SXin Li Result.getLValueOffset() += AdditionalOffset;
7364*67e74705SXin Li else
7365*67e74705SXin Li Result.getLValueOffset() -= AdditionalOffset;
7366*67e74705SXin Li return true;
7367*67e74705SXin Li }
7368*67e74705SXin Li
7369*67e74705SXin Li // Handle cases like 4 + (unsigned long)&a
7370*67e74705SXin Li if (E->getOpcode() == BO_Add &&
7371*67e74705SXin Li RHSVal.isLValue() && LHSVal.isInt()) {
7372*67e74705SXin Li Result = RHSVal;
7373*67e74705SXin Li Result.getLValueOffset() +=
7374*67e74705SXin Li CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
7375*67e74705SXin Li return true;
7376*67e74705SXin Li }
7377*67e74705SXin Li
7378*67e74705SXin Li if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
7379*67e74705SXin Li // Handle (intptr_t)&&A - (intptr_t)&&B.
7380*67e74705SXin Li if (!LHSVal.getLValueOffset().isZero() ||
7381*67e74705SXin Li !RHSVal.getLValueOffset().isZero())
7382*67e74705SXin Li return false;
7383*67e74705SXin Li const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
7384*67e74705SXin Li const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
7385*67e74705SXin Li if (!LHSExpr || !RHSExpr)
7386*67e74705SXin Li return false;
7387*67e74705SXin Li const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7388*67e74705SXin Li const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7389*67e74705SXin Li if (!LHSAddrExpr || !RHSAddrExpr)
7390*67e74705SXin Li return false;
7391*67e74705SXin Li // Make sure both labels come from the same function.
7392*67e74705SXin Li if (LHSAddrExpr->getLabel()->getDeclContext() !=
7393*67e74705SXin Li RHSAddrExpr->getLabel()->getDeclContext())
7394*67e74705SXin Li return false;
7395*67e74705SXin Li Result = APValue(LHSAddrExpr, RHSAddrExpr);
7396*67e74705SXin Li return true;
7397*67e74705SXin Li }
7398*67e74705SXin Li
7399*67e74705SXin Li // All the remaining cases expect both operands to be an integer
7400*67e74705SXin Li if (!LHSVal.isInt() || !RHSVal.isInt())
7401*67e74705SXin Li return Error(E);
7402*67e74705SXin Li
7403*67e74705SXin Li // Set up the width and signedness manually, in case it can't be deduced
7404*67e74705SXin Li // from the operation we're performing.
7405*67e74705SXin Li // FIXME: Don't do this in the cases where we can deduce it.
7406*67e74705SXin Li APSInt Value(Info.Ctx.getIntWidth(E->getType()),
7407*67e74705SXin Li E->getType()->isUnsignedIntegerOrEnumerationType());
7408*67e74705SXin Li if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
7409*67e74705SXin Li RHSVal.getInt(), Value))
7410*67e74705SXin Li return false;
7411*67e74705SXin Li return Success(Value, E, Result);
7412*67e74705SXin Li }
7413*67e74705SXin Li
process(EvalResult & Result)7414*67e74705SXin Li void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
7415*67e74705SXin Li Job &job = Queue.back();
7416*67e74705SXin Li
7417*67e74705SXin Li switch (job.Kind) {
7418*67e74705SXin Li case Job::AnyExprKind: {
7419*67e74705SXin Li if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
7420*67e74705SXin Li if (shouldEnqueue(Bop)) {
7421*67e74705SXin Li job.Kind = Job::BinOpKind;
7422*67e74705SXin Li enqueue(Bop->getLHS());
7423*67e74705SXin Li return;
7424*67e74705SXin Li }
7425*67e74705SXin Li }
7426*67e74705SXin Li
7427*67e74705SXin Li EvaluateExpr(job.E, Result);
7428*67e74705SXin Li Queue.pop_back();
7429*67e74705SXin Li return;
7430*67e74705SXin Li }
7431*67e74705SXin Li
7432*67e74705SXin Li case Job::BinOpKind: {
7433*67e74705SXin Li const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7434*67e74705SXin Li bool SuppressRHSDiags = false;
7435*67e74705SXin Li if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
7436*67e74705SXin Li Queue.pop_back();
7437*67e74705SXin Li return;
7438*67e74705SXin Li }
7439*67e74705SXin Li if (SuppressRHSDiags)
7440*67e74705SXin Li job.startSpeculativeEval(Info);
7441*67e74705SXin Li job.LHSResult.swap(Result);
7442*67e74705SXin Li job.Kind = Job::BinOpVisitedLHSKind;
7443*67e74705SXin Li enqueue(Bop->getRHS());
7444*67e74705SXin Li return;
7445*67e74705SXin Li }
7446*67e74705SXin Li
7447*67e74705SXin Li case Job::BinOpVisitedLHSKind: {
7448*67e74705SXin Li const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7449*67e74705SXin Li EvalResult RHS;
7450*67e74705SXin Li RHS.swap(Result);
7451*67e74705SXin Li Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
7452*67e74705SXin Li Queue.pop_back();
7453*67e74705SXin Li return;
7454*67e74705SXin Li }
7455*67e74705SXin Li }
7456*67e74705SXin Li
7457*67e74705SXin Li llvm_unreachable("Invalid Job::Kind!");
7458*67e74705SXin Li }
7459*67e74705SXin Li
7460*67e74705SXin Li namespace {
7461*67e74705SXin Li /// Used when we determine that we should fail, but can keep evaluating prior to
7462*67e74705SXin Li /// noting that we had a failure.
7463*67e74705SXin Li class DelayedNoteFailureRAII {
7464*67e74705SXin Li EvalInfo &Info;
7465*67e74705SXin Li bool NoteFailure;
7466*67e74705SXin Li
7467*67e74705SXin Li public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)7468*67e74705SXin Li DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
7469*67e74705SXin Li : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()7470*67e74705SXin Li ~DelayedNoteFailureRAII() {
7471*67e74705SXin Li if (NoteFailure) {
7472*67e74705SXin Li bool ContinueAfterFailure = Info.noteFailure();
7473*67e74705SXin Li (void)ContinueAfterFailure;
7474*67e74705SXin Li assert(ContinueAfterFailure &&
7475*67e74705SXin Li "Shouldn't have kept evaluating on failure.");
7476*67e74705SXin Li }
7477*67e74705SXin Li }
7478*67e74705SXin Li };
7479*67e74705SXin Li }
7480*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)7481*67e74705SXin Li bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7482*67e74705SXin Li // We don't call noteFailure immediately because the assignment happens after
7483*67e74705SXin Li // we evaluate LHS and RHS.
7484*67e74705SXin Li if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
7485*67e74705SXin Li return Error(E);
7486*67e74705SXin Li
7487*67e74705SXin Li DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
7488*67e74705SXin Li if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
7489*67e74705SXin Li return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
7490*67e74705SXin Li
7491*67e74705SXin Li QualType LHSTy = E->getLHS()->getType();
7492*67e74705SXin Li QualType RHSTy = E->getRHS()->getType();
7493*67e74705SXin Li
7494*67e74705SXin Li if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
7495*67e74705SXin Li ComplexValue LHS, RHS;
7496*67e74705SXin Li bool LHSOK;
7497*67e74705SXin Li if (E->isAssignmentOp()) {
7498*67e74705SXin Li LValue LV;
7499*67e74705SXin Li EvaluateLValue(E->getLHS(), LV, Info);
7500*67e74705SXin Li LHSOK = false;
7501*67e74705SXin Li } else if (LHSTy->isRealFloatingType()) {
7502*67e74705SXin Li LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
7503*67e74705SXin Li if (LHSOK) {
7504*67e74705SXin Li LHS.makeComplexFloat();
7505*67e74705SXin Li LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
7506*67e74705SXin Li }
7507*67e74705SXin Li } else {
7508*67e74705SXin Li LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
7509*67e74705SXin Li }
7510*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
7511*67e74705SXin Li return false;
7512*67e74705SXin Li
7513*67e74705SXin Li if (E->getRHS()->getType()->isRealFloatingType()) {
7514*67e74705SXin Li if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
7515*67e74705SXin Li return false;
7516*67e74705SXin Li RHS.makeComplexFloat();
7517*67e74705SXin Li RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
7518*67e74705SXin Li } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7519*67e74705SXin Li return false;
7520*67e74705SXin Li
7521*67e74705SXin Li if (LHS.isComplexFloat()) {
7522*67e74705SXin Li APFloat::cmpResult CR_r =
7523*67e74705SXin Li LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
7524*67e74705SXin Li APFloat::cmpResult CR_i =
7525*67e74705SXin Li LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
7526*67e74705SXin Li
7527*67e74705SXin Li if (E->getOpcode() == BO_EQ)
7528*67e74705SXin Li return Success((CR_r == APFloat::cmpEqual &&
7529*67e74705SXin Li CR_i == APFloat::cmpEqual), E);
7530*67e74705SXin Li else {
7531*67e74705SXin Li assert(E->getOpcode() == BO_NE &&
7532*67e74705SXin Li "Invalid complex comparison.");
7533*67e74705SXin Li return Success(((CR_r == APFloat::cmpGreaterThan ||
7534*67e74705SXin Li CR_r == APFloat::cmpLessThan ||
7535*67e74705SXin Li CR_r == APFloat::cmpUnordered) ||
7536*67e74705SXin Li (CR_i == APFloat::cmpGreaterThan ||
7537*67e74705SXin Li CR_i == APFloat::cmpLessThan ||
7538*67e74705SXin Li CR_i == APFloat::cmpUnordered)), E);
7539*67e74705SXin Li }
7540*67e74705SXin Li } else {
7541*67e74705SXin Li if (E->getOpcode() == BO_EQ)
7542*67e74705SXin Li return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
7543*67e74705SXin Li LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
7544*67e74705SXin Li else {
7545*67e74705SXin Li assert(E->getOpcode() == BO_NE &&
7546*67e74705SXin Li "Invalid compex comparison.");
7547*67e74705SXin Li return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
7548*67e74705SXin Li LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
7549*67e74705SXin Li }
7550*67e74705SXin Li }
7551*67e74705SXin Li }
7552*67e74705SXin Li
7553*67e74705SXin Li if (LHSTy->isRealFloatingType() &&
7554*67e74705SXin Li RHSTy->isRealFloatingType()) {
7555*67e74705SXin Li APFloat RHS(0.0), LHS(0.0);
7556*67e74705SXin Li
7557*67e74705SXin Li bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
7558*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
7559*67e74705SXin Li return false;
7560*67e74705SXin Li
7561*67e74705SXin Li if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
7562*67e74705SXin Li return false;
7563*67e74705SXin Li
7564*67e74705SXin Li APFloat::cmpResult CR = LHS.compare(RHS);
7565*67e74705SXin Li
7566*67e74705SXin Li switch (E->getOpcode()) {
7567*67e74705SXin Li default:
7568*67e74705SXin Li llvm_unreachable("Invalid binary operator!");
7569*67e74705SXin Li case BO_LT:
7570*67e74705SXin Li return Success(CR == APFloat::cmpLessThan, E);
7571*67e74705SXin Li case BO_GT:
7572*67e74705SXin Li return Success(CR == APFloat::cmpGreaterThan, E);
7573*67e74705SXin Li case BO_LE:
7574*67e74705SXin Li return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
7575*67e74705SXin Li case BO_GE:
7576*67e74705SXin Li return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
7577*67e74705SXin Li E);
7578*67e74705SXin Li case BO_EQ:
7579*67e74705SXin Li return Success(CR == APFloat::cmpEqual, E);
7580*67e74705SXin Li case BO_NE:
7581*67e74705SXin Li return Success(CR == APFloat::cmpGreaterThan
7582*67e74705SXin Li || CR == APFloat::cmpLessThan
7583*67e74705SXin Li || CR == APFloat::cmpUnordered, E);
7584*67e74705SXin Li }
7585*67e74705SXin Li }
7586*67e74705SXin Li
7587*67e74705SXin Li if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
7588*67e74705SXin Li if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
7589*67e74705SXin Li LValue LHSValue, RHSValue;
7590*67e74705SXin Li
7591*67e74705SXin Li bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
7592*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
7593*67e74705SXin Li return false;
7594*67e74705SXin Li
7595*67e74705SXin Li if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7596*67e74705SXin Li return false;
7597*67e74705SXin Li
7598*67e74705SXin Li // Reject differing bases from the normal codepath; we special-case
7599*67e74705SXin Li // comparisons to null.
7600*67e74705SXin Li if (!HasSameBase(LHSValue, RHSValue)) {
7601*67e74705SXin Li if (E->getOpcode() == BO_Sub) {
7602*67e74705SXin Li // Handle &&A - &&B.
7603*67e74705SXin Li if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
7604*67e74705SXin Li return Error(E);
7605*67e74705SXin Li const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
7606*67e74705SXin Li const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
7607*67e74705SXin Li if (!LHSExpr || !RHSExpr)
7608*67e74705SXin Li return Error(E);
7609*67e74705SXin Li const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7610*67e74705SXin Li const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7611*67e74705SXin Li if (!LHSAddrExpr || !RHSAddrExpr)
7612*67e74705SXin Li return Error(E);
7613*67e74705SXin Li // Make sure both labels come from the same function.
7614*67e74705SXin Li if (LHSAddrExpr->getLabel()->getDeclContext() !=
7615*67e74705SXin Li RHSAddrExpr->getLabel()->getDeclContext())
7616*67e74705SXin Li return Error(E);
7617*67e74705SXin Li return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
7618*67e74705SXin Li }
7619*67e74705SXin Li // Inequalities and subtractions between unrelated pointers have
7620*67e74705SXin Li // unspecified or undefined behavior.
7621*67e74705SXin Li if (!E->isEqualityOp())
7622*67e74705SXin Li return Error(E);
7623*67e74705SXin Li // A constant address may compare equal to the address of a symbol.
7624*67e74705SXin Li // The one exception is that address of an object cannot compare equal
7625*67e74705SXin Li // to a null pointer constant.
7626*67e74705SXin Li if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
7627*67e74705SXin Li (!RHSValue.Base && !RHSValue.Offset.isZero()))
7628*67e74705SXin Li return Error(E);
7629*67e74705SXin Li // It's implementation-defined whether distinct literals will have
7630*67e74705SXin Li // distinct addresses. In clang, the result of such a comparison is
7631*67e74705SXin Li // unspecified, so it is not a constant expression. However, we do know
7632*67e74705SXin Li // that the address of a literal will be non-null.
7633*67e74705SXin Li if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
7634*67e74705SXin Li LHSValue.Base && RHSValue.Base)
7635*67e74705SXin Li return Error(E);
7636*67e74705SXin Li // We can't tell whether weak symbols will end up pointing to the same
7637*67e74705SXin Li // object.
7638*67e74705SXin Li if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
7639*67e74705SXin Li return Error(E);
7640*67e74705SXin Li // We can't compare the address of the start of one object with the
7641*67e74705SXin Li // past-the-end address of another object, per C++ DR1652.
7642*67e74705SXin Li if ((LHSValue.Base && LHSValue.Offset.isZero() &&
7643*67e74705SXin Li isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
7644*67e74705SXin Li (RHSValue.Base && RHSValue.Offset.isZero() &&
7645*67e74705SXin Li isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7646*67e74705SXin Li return Error(E);
7647*67e74705SXin Li // We can't tell whether an object is at the same address as another
7648*67e74705SXin Li // zero sized object.
7649*67e74705SXin Li if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7650*67e74705SXin Li (LHSValue.Base && isZeroSized(RHSValue)))
7651*67e74705SXin Li return Error(E);
7652*67e74705SXin Li // Pointers with different bases cannot represent the same object.
7653*67e74705SXin Li // (Note that clang defaults to -fmerge-all-constants, which can
7654*67e74705SXin Li // lead to inconsistent results for comparisons involving the address
7655*67e74705SXin Li // of a constant; this generally doesn't matter in practice.)
7656*67e74705SXin Li return Success(E->getOpcode() == BO_NE, E);
7657*67e74705SXin Li }
7658*67e74705SXin Li
7659*67e74705SXin Li const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7660*67e74705SXin Li const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7661*67e74705SXin Li
7662*67e74705SXin Li SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7663*67e74705SXin Li SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7664*67e74705SXin Li
7665*67e74705SXin Li if (E->getOpcode() == BO_Sub) {
7666*67e74705SXin Li // C++11 [expr.add]p6:
7667*67e74705SXin Li // Unless both pointers point to elements of the same array object, or
7668*67e74705SXin Li // one past the last element of the array object, the behavior is
7669*67e74705SXin Li // undefined.
7670*67e74705SXin Li if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7671*67e74705SXin Li !AreElementsOfSameArray(getType(LHSValue.Base),
7672*67e74705SXin Li LHSDesignator, RHSDesignator))
7673*67e74705SXin Li CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7674*67e74705SXin Li
7675*67e74705SXin Li QualType Type = E->getLHS()->getType();
7676*67e74705SXin Li QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7677*67e74705SXin Li
7678*67e74705SXin Li CharUnits ElementSize;
7679*67e74705SXin Li if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7680*67e74705SXin Li return false;
7681*67e74705SXin Li
7682*67e74705SXin Li // As an extension, a type may have zero size (empty struct or union in
7683*67e74705SXin Li // C, array of zero length). Pointer subtraction in such cases has
7684*67e74705SXin Li // undefined behavior, so is not constant.
7685*67e74705SXin Li if (ElementSize.isZero()) {
7686*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7687*67e74705SXin Li << ElementType;
7688*67e74705SXin Li return false;
7689*67e74705SXin Li }
7690*67e74705SXin Li
7691*67e74705SXin Li // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7692*67e74705SXin Li // and produce incorrect results when it overflows. Such behavior
7693*67e74705SXin Li // appears to be non-conforming, but is common, so perhaps we should
7694*67e74705SXin Li // assume the standard intended for such cases to be undefined behavior
7695*67e74705SXin Li // and check for them.
7696*67e74705SXin Li
7697*67e74705SXin Li // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7698*67e74705SXin Li // overflow in the final conversion to ptrdiff_t.
7699*67e74705SXin Li APSInt LHS(
7700*67e74705SXin Li llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7701*67e74705SXin Li APSInt RHS(
7702*67e74705SXin Li llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7703*67e74705SXin Li APSInt ElemSize(
7704*67e74705SXin Li llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7705*67e74705SXin Li APSInt TrueResult = (LHS - RHS) / ElemSize;
7706*67e74705SXin Li APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7707*67e74705SXin Li
7708*67e74705SXin Li if (Result.extend(65) != TrueResult &&
7709*67e74705SXin Li !HandleOverflow(Info, E, TrueResult, E->getType()))
7710*67e74705SXin Li return false;
7711*67e74705SXin Li return Success(Result, E);
7712*67e74705SXin Li }
7713*67e74705SXin Li
7714*67e74705SXin Li // C++11 [expr.rel]p3:
7715*67e74705SXin Li // Pointers to void (after pointer conversions) can be compared, with a
7716*67e74705SXin Li // result defined as follows: If both pointers represent the same
7717*67e74705SXin Li // address or are both the null pointer value, the result is true if the
7718*67e74705SXin Li // operator is <= or >= and false otherwise; otherwise the result is
7719*67e74705SXin Li // unspecified.
7720*67e74705SXin Li // We interpret this as applying to pointers to *cv* void.
7721*67e74705SXin Li if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7722*67e74705SXin Li E->isRelationalOp())
7723*67e74705SXin Li CCEDiag(E, diag::note_constexpr_void_comparison);
7724*67e74705SXin Li
7725*67e74705SXin Li // C++11 [expr.rel]p2:
7726*67e74705SXin Li // - If two pointers point to non-static data members of the same object,
7727*67e74705SXin Li // or to subobjects or array elements fo such members, recursively, the
7728*67e74705SXin Li // pointer to the later declared member compares greater provided the
7729*67e74705SXin Li // two members have the same access control and provided their class is
7730*67e74705SXin Li // not a union.
7731*67e74705SXin Li // [...]
7732*67e74705SXin Li // - Otherwise pointer comparisons are unspecified.
7733*67e74705SXin Li if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7734*67e74705SXin Li E->isRelationalOp()) {
7735*67e74705SXin Li bool WasArrayIndex;
7736*67e74705SXin Li unsigned Mismatch =
7737*67e74705SXin Li FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7738*67e74705SXin Li RHSDesignator, WasArrayIndex);
7739*67e74705SXin Li // At the point where the designators diverge, the comparison has a
7740*67e74705SXin Li // specified value if:
7741*67e74705SXin Li // - we are comparing array indices
7742*67e74705SXin Li // - we are comparing fields of a union, or fields with the same access
7743*67e74705SXin Li // Otherwise, the result is unspecified and thus the comparison is not a
7744*67e74705SXin Li // constant expression.
7745*67e74705SXin Li if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7746*67e74705SXin Li Mismatch < RHSDesignator.Entries.size()) {
7747*67e74705SXin Li const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7748*67e74705SXin Li const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7749*67e74705SXin Li if (!LF && !RF)
7750*67e74705SXin Li CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7751*67e74705SXin Li else if (!LF)
7752*67e74705SXin Li CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7753*67e74705SXin Li << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7754*67e74705SXin Li << RF->getParent() << RF;
7755*67e74705SXin Li else if (!RF)
7756*67e74705SXin Li CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7757*67e74705SXin Li << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7758*67e74705SXin Li << LF->getParent() << LF;
7759*67e74705SXin Li else if (!LF->getParent()->isUnion() &&
7760*67e74705SXin Li LF->getAccess() != RF->getAccess())
7761*67e74705SXin Li CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7762*67e74705SXin Li << LF << LF->getAccess() << RF << RF->getAccess()
7763*67e74705SXin Li << LF->getParent();
7764*67e74705SXin Li }
7765*67e74705SXin Li }
7766*67e74705SXin Li
7767*67e74705SXin Li // The comparison here must be unsigned, and performed with the same
7768*67e74705SXin Li // width as the pointer.
7769*67e74705SXin Li unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7770*67e74705SXin Li uint64_t CompareLHS = LHSOffset.getQuantity();
7771*67e74705SXin Li uint64_t CompareRHS = RHSOffset.getQuantity();
7772*67e74705SXin Li assert(PtrSize <= 64 && "Unexpected pointer width");
7773*67e74705SXin Li uint64_t Mask = ~0ULL >> (64 - PtrSize);
7774*67e74705SXin Li CompareLHS &= Mask;
7775*67e74705SXin Li CompareRHS &= Mask;
7776*67e74705SXin Li
7777*67e74705SXin Li // If there is a base and this is a relational operator, we can only
7778*67e74705SXin Li // compare pointers within the object in question; otherwise, the result
7779*67e74705SXin Li // depends on where the object is located in memory.
7780*67e74705SXin Li if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7781*67e74705SXin Li QualType BaseTy = getType(LHSValue.Base);
7782*67e74705SXin Li if (BaseTy->isIncompleteType())
7783*67e74705SXin Li return Error(E);
7784*67e74705SXin Li CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7785*67e74705SXin Li uint64_t OffsetLimit = Size.getQuantity();
7786*67e74705SXin Li if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7787*67e74705SXin Li return Error(E);
7788*67e74705SXin Li }
7789*67e74705SXin Li
7790*67e74705SXin Li switch (E->getOpcode()) {
7791*67e74705SXin Li default: llvm_unreachable("missing comparison operator");
7792*67e74705SXin Li case BO_LT: return Success(CompareLHS < CompareRHS, E);
7793*67e74705SXin Li case BO_GT: return Success(CompareLHS > CompareRHS, E);
7794*67e74705SXin Li case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7795*67e74705SXin Li case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7796*67e74705SXin Li case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7797*67e74705SXin Li case BO_NE: return Success(CompareLHS != CompareRHS, E);
7798*67e74705SXin Li }
7799*67e74705SXin Li }
7800*67e74705SXin Li }
7801*67e74705SXin Li
7802*67e74705SXin Li if (LHSTy->isMemberPointerType()) {
7803*67e74705SXin Li assert(E->isEqualityOp() && "unexpected member pointer operation");
7804*67e74705SXin Li assert(RHSTy->isMemberPointerType() && "invalid comparison");
7805*67e74705SXin Li
7806*67e74705SXin Li MemberPtr LHSValue, RHSValue;
7807*67e74705SXin Li
7808*67e74705SXin Li bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7809*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
7810*67e74705SXin Li return false;
7811*67e74705SXin Li
7812*67e74705SXin Li if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7813*67e74705SXin Li return false;
7814*67e74705SXin Li
7815*67e74705SXin Li // C++11 [expr.eq]p2:
7816*67e74705SXin Li // If both operands are null, they compare equal. Otherwise if only one is
7817*67e74705SXin Li // null, they compare unequal.
7818*67e74705SXin Li if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7819*67e74705SXin Li bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7820*67e74705SXin Li return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7821*67e74705SXin Li }
7822*67e74705SXin Li
7823*67e74705SXin Li // Otherwise if either is a pointer to a virtual member function, the
7824*67e74705SXin Li // result is unspecified.
7825*67e74705SXin Li if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7826*67e74705SXin Li if (MD->isVirtual())
7827*67e74705SXin Li CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7828*67e74705SXin Li if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7829*67e74705SXin Li if (MD->isVirtual())
7830*67e74705SXin Li CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7831*67e74705SXin Li
7832*67e74705SXin Li // Otherwise they compare equal if and only if they would refer to the
7833*67e74705SXin Li // same member of the same most derived object or the same subobject if
7834*67e74705SXin Li // they were dereferenced with a hypothetical object of the associated
7835*67e74705SXin Li // class type.
7836*67e74705SXin Li bool Equal = LHSValue == RHSValue;
7837*67e74705SXin Li return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7838*67e74705SXin Li }
7839*67e74705SXin Li
7840*67e74705SXin Li if (LHSTy->isNullPtrType()) {
7841*67e74705SXin Li assert(E->isComparisonOp() && "unexpected nullptr operation");
7842*67e74705SXin Li assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7843*67e74705SXin Li // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7844*67e74705SXin Li // are compared, the result is true of the operator is <=, >= or ==, and
7845*67e74705SXin Li // false otherwise.
7846*67e74705SXin Li BinaryOperator::Opcode Opcode = E->getOpcode();
7847*67e74705SXin Li return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7848*67e74705SXin Li }
7849*67e74705SXin Li
7850*67e74705SXin Li assert((!LHSTy->isIntegralOrEnumerationType() ||
7851*67e74705SXin Li !RHSTy->isIntegralOrEnumerationType()) &&
7852*67e74705SXin Li "DataRecursiveIntBinOpEvaluator should have handled integral types");
7853*67e74705SXin Li // We can't continue from here for non-integral types.
7854*67e74705SXin Li return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7855*67e74705SXin Li }
7856*67e74705SXin Li
7857*67e74705SXin Li /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7858*67e74705SXin Li /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)7859*67e74705SXin Li bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7860*67e74705SXin Li const UnaryExprOrTypeTraitExpr *E) {
7861*67e74705SXin Li switch(E->getKind()) {
7862*67e74705SXin Li case UETT_AlignOf: {
7863*67e74705SXin Li if (E->isArgumentType())
7864*67e74705SXin Li return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7865*67e74705SXin Li else
7866*67e74705SXin Li return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7867*67e74705SXin Li }
7868*67e74705SXin Li
7869*67e74705SXin Li case UETT_VecStep: {
7870*67e74705SXin Li QualType Ty = E->getTypeOfArgument();
7871*67e74705SXin Li
7872*67e74705SXin Li if (Ty->isVectorType()) {
7873*67e74705SXin Li unsigned n = Ty->castAs<VectorType>()->getNumElements();
7874*67e74705SXin Li
7875*67e74705SXin Li // The vec_step built-in functions that take a 3-component
7876*67e74705SXin Li // vector return 4. (OpenCL 1.1 spec 6.11.12)
7877*67e74705SXin Li if (n == 3)
7878*67e74705SXin Li n = 4;
7879*67e74705SXin Li
7880*67e74705SXin Li return Success(n, E);
7881*67e74705SXin Li } else
7882*67e74705SXin Li return Success(1, E);
7883*67e74705SXin Li }
7884*67e74705SXin Li
7885*67e74705SXin Li case UETT_SizeOf: {
7886*67e74705SXin Li QualType SrcTy = E->getTypeOfArgument();
7887*67e74705SXin Li // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7888*67e74705SXin Li // the result is the size of the referenced type."
7889*67e74705SXin Li if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7890*67e74705SXin Li SrcTy = Ref->getPointeeType();
7891*67e74705SXin Li
7892*67e74705SXin Li CharUnits Sizeof;
7893*67e74705SXin Li if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7894*67e74705SXin Li return false;
7895*67e74705SXin Li return Success(Sizeof, E);
7896*67e74705SXin Li }
7897*67e74705SXin Li case UETT_OpenMPRequiredSimdAlign:
7898*67e74705SXin Li assert(E->isArgumentType());
7899*67e74705SXin Li return Success(
7900*67e74705SXin Li Info.Ctx.toCharUnitsFromBits(
7901*67e74705SXin Li Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
7902*67e74705SXin Li .getQuantity(),
7903*67e74705SXin Li E);
7904*67e74705SXin Li }
7905*67e74705SXin Li
7906*67e74705SXin Li llvm_unreachable("unknown expr/type trait");
7907*67e74705SXin Li }
7908*67e74705SXin Li
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7909*67e74705SXin Li bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7910*67e74705SXin Li CharUnits Result;
7911*67e74705SXin Li unsigned n = OOE->getNumComponents();
7912*67e74705SXin Li if (n == 0)
7913*67e74705SXin Li return Error(OOE);
7914*67e74705SXin Li QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7915*67e74705SXin Li for (unsigned i = 0; i != n; ++i) {
7916*67e74705SXin Li OffsetOfNode ON = OOE->getComponent(i);
7917*67e74705SXin Li switch (ON.getKind()) {
7918*67e74705SXin Li case OffsetOfNode::Array: {
7919*67e74705SXin Li const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7920*67e74705SXin Li APSInt IdxResult;
7921*67e74705SXin Li if (!EvaluateInteger(Idx, IdxResult, Info))
7922*67e74705SXin Li return false;
7923*67e74705SXin Li const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7924*67e74705SXin Li if (!AT)
7925*67e74705SXin Li return Error(OOE);
7926*67e74705SXin Li CurrentType = AT->getElementType();
7927*67e74705SXin Li CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7928*67e74705SXin Li Result += IdxResult.getSExtValue() * ElementSize;
7929*67e74705SXin Li break;
7930*67e74705SXin Li }
7931*67e74705SXin Li
7932*67e74705SXin Li case OffsetOfNode::Field: {
7933*67e74705SXin Li FieldDecl *MemberDecl = ON.getField();
7934*67e74705SXin Li const RecordType *RT = CurrentType->getAs<RecordType>();
7935*67e74705SXin Li if (!RT)
7936*67e74705SXin Li return Error(OOE);
7937*67e74705SXin Li RecordDecl *RD = RT->getDecl();
7938*67e74705SXin Li if (RD->isInvalidDecl()) return false;
7939*67e74705SXin Li const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7940*67e74705SXin Li unsigned i = MemberDecl->getFieldIndex();
7941*67e74705SXin Li assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7942*67e74705SXin Li Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7943*67e74705SXin Li CurrentType = MemberDecl->getType().getNonReferenceType();
7944*67e74705SXin Li break;
7945*67e74705SXin Li }
7946*67e74705SXin Li
7947*67e74705SXin Li case OffsetOfNode::Identifier:
7948*67e74705SXin Li llvm_unreachable("dependent __builtin_offsetof");
7949*67e74705SXin Li
7950*67e74705SXin Li case OffsetOfNode::Base: {
7951*67e74705SXin Li CXXBaseSpecifier *BaseSpec = ON.getBase();
7952*67e74705SXin Li if (BaseSpec->isVirtual())
7953*67e74705SXin Li return Error(OOE);
7954*67e74705SXin Li
7955*67e74705SXin Li // Find the layout of the class whose base we are looking into.
7956*67e74705SXin Li const RecordType *RT = CurrentType->getAs<RecordType>();
7957*67e74705SXin Li if (!RT)
7958*67e74705SXin Li return Error(OOE);
7959*67e74705SXin Li RecordDecl *RD = RT->getDecl();
7960*67e74705SXin Li if (RD->isInvalidDecl()) return false;
7961*67e74705SXin Li const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7962*67e74705SXin Li
7963*67e74705SXin Li // Find the base class itself.
7964*67e74705SXin Li CurrentType = BaseSpec->getType();
7965*67e74705SXin Li const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7966*67e74705SXin Li if (!BaseRT)
7967*67e74705SXin Li return Error(OOE);
7968*67e74705SXin Li
7969*67e74705SXin Li // Add the offset to the base.
7970*67e74705SXin Li Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7971*67e74705SXin Li break;
7972*67e74705SXin Li }
7973*67e74705SXin Li }
7974*67e74705SXin Li }
7975*67e74705SXin Li return Success(Result, OOE);
7976*67e74705SXin Li }
7977*67e74705SXin Li
VisitUnaryOperator(const UnaryOperator * E)7978*67e74705SXin Li bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7979*67e74705SXin Li switch (E->getOpcode()) {
7980*67e74705SXin Li default:
7981*67e74705SXin Li // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7982*67e74705SXin Li // See C99 6.6p3.
7983*67e74705SXin Li return Error(E);
7984*67e74705SXin Li case UO_Extension:
7985*67e74705SXin Li // FIXME: Should extension allow i-c-e extension expressions in its scope?
7986*67e74705SXin Li // If so, we could clear the diagnostic ID.
7987*67e74705SXin Li return Visit(E->getSubExpr());
7988*67e74705SXin Li case UO_Plus:
7989*67e74705SXin Li // The result is just the value.
7990*67e74705SXin Li return Visit(E->getSubExpr());
7991*67e74705SXin Li case UO_Minus: {
7992*67e74705SXin Li if (!Visit(E->getSubExpr()))
7993*67e74705SXin Li return false;
7994*67e74705SXin Li if (!Result.isInt()) return Error(E);
7995*67e74705SXin Li const APSInt &Value = Result.getInt();
7996*67e74705SXin Li if (Value.isSigned() && Value.isMinSignedValue() &&
7997*67e74705SXin Li !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7998*67e74705SXin Li E->getType()))
7999*67e74705SXin Li return false;
8000*67e74705SXin Li return Success(-Value, E);
8001*67e74705SXin Li }
8002*67e74705SXin Li case UO_Not: {
8003*67e74705SXin Li if (!Visit(E->getSubExpr()))
8004*67e74705SXin Li return false;
8005*67e74705SXin Li if (!Result.isInt()) return Error(E);
8006*67e74705SXin Li return Success(~Result.getInt(), E);
8007*67e74705SXin Li }
8008*67e74705SXin Li case UO_LNot: {
8009*67e74705SXin Li bool bres;
8010*67e74705SXin Li if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
8011*67e74705SXin Li return false;
8012*67e74705SXin Li return Success(!bres, E);
8013*67e74705SXin Li }
8014*67e74705SXin Li }
8015*67e74705SXin Li }
8016*67e74705SXin Li
8017*67e74705SXin Li /// HandleCast - This is used to evaluate implicit or explicit casts where the
8018*67e74705SXin Li /// result type is integer.
VisitCastExpr(const CastExpr * E)8019*67e74705SXin Li bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
8020*67e74705SXin Li const Expr *SubExpr = E->getSubExpr();
8021*67e74705SXin Li QualType DestType = E->getType();
8022*67e74705SXin Li QualType SrcType = SubExpr->getType();
8023*67e74705SXin Li
8024*67e74705SXin Li switch (E->getCastKind()) {
8025*67e74705SXin Li case CK_BaseToDerived:
8026*67e74705SXin Li case CK_DerivedToBase:
8027*67e74705SXin Li case CK_UncheckedDerivedToBase:
8028*67e74705SXin Li case CK_Dynamic:
8029*67e74705SXin Li case CK_ToUnion:
8030*67e74705SXin Li case CK_ArrayToPointerDecay:
8031*67e74705SXin Li case CK_FunctionToPointerDecay:
8032*67e74705SXin Li case CK_NullToPointer:
8033*67e74705SXin Li case CK_NullToMemberPointer:
8034*67e74705SXin Li case CK_BaseToDerivedMemberPointer:
8035*67e74705SXin Li case CK_DerivedToBaseMemberPointer:
8036*67e74705SXin Li case CK_ReinterpretMemberPointer:
8037*67e74705SXin Li case CK_ConstructorConversion:
8038*67e74705SXin Li case CK_IntegralToPointer:
8039*67e74705SXin Li case CK_ToVoid:
8040*67e74705SXin Li case CK_VectorSplat:
8041*67e74705SXin Li case CK_IntegralToFloating:
8042*67e74705SXin Li case CK_FloatingCast:
8043*67e74705SXin Li case CK_CPointerToObjCPointerCast:
8044*67e74705SXin Li case CK_BlockPointerToObjCPointerCast:
8045*67e74705SXin Li case CK_AnyPointerToBlockPointerCast:
8046*67e74705SXin Li case CK_ObjCObjectLValueCast:
8047*67e74705SXin Li case CK_FloatingRealToComplex:
8048*67e74705SXin Li case CK_FloatingComplexToReal:
8049*67e74705SXin Li case CK_FloatingComplexCast:
8050*67e74705SXin Li case CK_FloatingComplexToIntegralComplex:
8051*67e74705SXin Li case CK_IntegralRealToComplex:
8052*67e74705SXin Li case CK_IntegralComplexCast:
8053*67e74705SXin Li case CK_IntegralComplexToFloatingComplex:
8054*67e74705SXin Li case CK_BuiltinFnToFnPtr:
8055*67e74705SXin Li case CK_ZeroToOCLEvent:
8056*67e74705SXin Li case CK_NonAtomicToAtomic:
8057*67e74705SXin Li case CK_AddressSpaceConversion:
8058*67e74705SXin Li llvm_unreachable("invalid cast kind for integral value");
8059*67e74705SXin Li
8060*67e74705SXin Li case CK_BitCast:
8061*67e74705SXin Li case CK_Dependent:
8062*67e74705SXin Li case CK_LValueBitCast:
8063*67e74705SXin Li case CK_ARCProduceObject:
8064*67e74705SXin Li case CK_ARCConsumeObject:
8065*67e74705SXin Li case CK_ARCReclaimReturnedObject:
8066*67e74705SXin Li case CK_ARCExtendBlockObject:
8067*67e74705SXin Li case CK_CopyAndAutoreleaseBlockObject:
8068*67e74705SXin Li return Error(E);
8069*67e74705SXin Li
8070*67e74705SXin Li case CK_UserDefinedConversion:
8071*67e74705SXin Li case CK_LValueToRValue:
8072*67e74705SXin Li case CK_AtomicToNonAtomic:
8073*67e74705SXin Li case CK_NoOp:
8074*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
8075*67e74705SXin Li
8076*67e74705SXin Li case CK_MemberPointerToBoolean:
8077*67e74705SXin Li case CK_PointerToBoolean:
8078*67e74705SXin Li case CK_IntegralToBoolean:
8079*67e74705SXin Li case CK_FloatingToBoolean:
8080*67e74705SXin Li case CK_BooleanToSignedIntegral:
8081*67e74705SXin Li case CK_FloatingComplexToBoolean:
8082*67e74705SXin Li case CK_IntegralComplexToBoolean: {
8083*67e74705SXin Li bool BoolResult;
8084*67e74705SXin Li if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
8085*67e74705SXin Li return false;
8086*67e74705SXin Li uint64_t IntResult = BoolResult;
8087*67e74705SXin Li if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
8088*67e74705SXin Li IntResult = (uint64_t)-1;
8089*67e74705SXin Li return Success(IntResult, E);
8090*67e74705SXin Li }
8091*67e74705SXin Li
8092*67e74705SXin Li case CK_IntegralCast: {
8093*67e74705SXin Li if (!Visit(SubExpr))
8094*67e74705SXin Li return false;
8095*67e74705SXin Li
8096*67e74705SXin Li if (!Result.isInt()) {
8097*67e74705SXin Li // Allow casts of address-of-label differences if they are no-ops
8098*67e74705SXin Li // or narrowing. (The narrowing case isn't actually guaranteed to
8099*67e74705SXin Li // be constant-evaluatable except in some narrow cases which are hard
8100*67e74705SXin Li // to detect here. We let it through on the assumption the user knows
8101*67e74705SXin Li // what they are doing.)
8102*67e74705SXin Li if (Result.isAddrLabelDiff())
8103*67e74705SXin Li return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
8104*67e74705SXin Li // Only allow casts of lvalues if they are lossless.
8105*67e74705SXin Li return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
8106*67e74705SXin Li }
8107*67e74705SXin Li
8108*67e74705SXin Li return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
8109*67e74705SXin Li Result.getInt()), E);
8110*67e74705SXin Li }
8111*67e74705SXin Li
8112*67e74705SXin Li case CK_PointerToIntegral: {
8113*67e74705SXin Li CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8114*67e74705SXin Li
8115*67e74705SXin Li LValue LV;
8116*67e74705SXin Li if (!EvaluatePointer(SubExpr, LV, Info))
8117*67e74705SXin Li return false;
8118*67e74705SXin Li
8119*67e74705SXin Li if (LV.getLValueBase()) {
8120*67e74705SXin Li // Only allow based lvalue casts if they are lossless.
8121*67e74705SXin Li // FIXME: Allow a larger integer size than the pointer size, and allow
8122*67e74705SXin Li // narrowing back down to pointer width in subsequent integral casts.
8123*67e74705SXin Li // FIXME: Check integer type's active bits, not its type size.
8124*67e74705SXin Li if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
8125*67e74705SXin Li return Error(E);
8126*67e74705SXin Li
8127*67e74705SXin Li LV.Designator.setInvalid();
8128*67e74705SXin Li LV.moveInto(Result);
8129*67e74705SXin Li return true;
8130*67e74705SXin Li }
8131*67e74705SXin Li
8132*67e74705SXin Li APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
8133*67e74705SXin Li SrcType);
8134*67e74705SXin Li return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
8135*67e74705SXin Li }
8136*67e74705SXin Li
8137*67e74705SXin Li case CK_IntegralComplexToReal: {
8138*67e74705SXin Li ComplexValue C;
8139*67e74705SXin Li if (!EvaluateComplex(SubExpr, C, Info))
8140*67e74705SXin Li return false;
8141*67e74705SXin Li return Success(C.getComplexIntReal(), E);
8142*67e74705SXin Li }
8143*67e74705SXin Li
8144*67e74705SXin Li case CK_FloatingToIntegral: {
8145*67e74705SXin Li APFloat F(0.0);
8146*67e74705SXin Li if (!EvaluateFloat(SubExpr, F, Info))
8147*67e74705SXin Li return false;
8148*67e74705SXin Li
8149*67e74705SXin Li APSInt Value;
8150*67e74705SXin Li if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
8151*67e74705SXin Li return false;
8152*67e74705SXin Li return Success(Value, E);
8153*67e74705SXin Li }
8154*67e74705SXin Li }
8155*67e74705SXin Li
8156*67e74705SXin Li llvm_unreachable("unknown cast resulting in integral value");
8157*67e74705SXin Li }
8158*67e74705SXin Li
VisitUnaryReal(const UnaryOperator * E)8159*67e74705SXin Li bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8160*67e74705SXin Li if (E->getSubExpr()->getType()->isAnyComplexType()) {
8161*67e74705SXin Li ComplexValue LV;
8162*67e74705SXin Li if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8163*67e74705SXin Li return false;
8164*67e74705SXin Li if (!LV.isComplexInt())
8165*67e74705SXin Li return Error(E);
8166*67e74705SXin Li return Success(LV.getComplexIntReal(), E);
8167*67e74705SXin Li }
8168*67e74705SXin Li
8169*67e74705SXin Li return Visit(E->getSubExpr());
8170*67e74705SXin Li }
8171*67e74705SXin Li
VisitUnaryImag(const UnaryOperator * E)8172*67e74705SXin Li bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8173*67e74705SXin Li if (E->getSubExpr()->getType()->isComplexIntegerType()) {
8174*67e74705SXin Li ComplexValue LV;
8175*67e74705SXin Li if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8176*67e74705SXin Li return false;
8177*67e74705SXin Li if (!LV.isComplexInt())
8178*67e74705SXin Li return Error(E);
8179*67e74705SXin Li return Success(LV.getComplexIntImag(), E);
8180*67e74705SXin Li }
8181*67e74705SXin Li
8182*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
8183*67e74705SXin Li return Success(0, E);
8184*67e74705SXin Li }
8185*67e74705SXin Li
VisitSizeOfPackExpr(const SizeOfPackExpr * E)8186*67e74705SXin Li bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
8187*67e74705SXin Li return Success(E->getPackLength(), E);
8188*67e74705SXin Li }
8189*67e74705SXin Li
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)8190*67e74705SXin Li bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
8191*67e74705SXin Li return Success(E->getValue(), E);
8192*67e74705SXin Li }
8193*67e74705SXin Li
8194*67e74705SXin Li //===----------------------------------------------------------------------===//
8195*67e74705SXin Li // Float Evaluation
8196*67e74705SXin Li //===----------------------------------------------------------------------===//
8197*67e74705SXin Li
8198*67e74705SXin Li namespace {
8199*67e74705SXin Li class FloatExprEvaluator
8200*67e74705SXin Li : public ExprEvaluatorBase<FloatExprEvaluator> {
8201*67e74705SXin Li APFloat &Result;
8202*67e74705SXin Li public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)8203*67e74705SXin Li FloatExprEvaluator(EvalInfo &info, APFloat &result)
8204*67e74705SXin Li : ExprEvaluatorBaseTy(info), Result(result) {}
8205*67e74705SXin Li
Success(const APValue & V,const Expr * e)8206*67e74705SXin Li bool Success(const APValue &V, const Expr *e) {
8207*67e74705SXin Li Result = V.getFloat();
8208*67e74705SXin Li return true;
8209*67e74705SXin Li }
8210*67e74705SXin Li
ZeroInitialization(const Expr * E)8211*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
8212*67e74705SXin Li Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
8213*67e74705SXin Li return true;
8214*67e74705SXin Li }
8215*67e74705SXin Li
8216*67e74705SXin Li bool VisitCallExpr(const CallExpr *E);
8217*67e74705SXin Li
8218*67e74705SXin Li bool VisitUnaryOperator(const UnaryOperator *E);
8219*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E);
8220*67e74705SXin Li bool VisitFloatingLiteral(const FloatingLiteral *E);
8221*67e74705SXin Li bool VisitCastExpr(const CastExpr *E);
8222*67e74705SXin Li
8223*67e74705SXin Li bool VisitUnaryReal(const UnaryOperator *E);
8224*67e74705SXin Li bool VisitUnaryImag(const UnaryOperator *E);
8225*67e74705SXin Li
8226*67e74705SXin Li // FIXME: Missing: array subscript of vector, member of vector
8227*67e74705SXin Li };
8228*67e74705SXin Li } // end anonymous namespace
8229*67e74705SXin Li
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)8230*67e74705SXin Li static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
8231*67e74705SXin Li assert(E->isRValue() && E->getType()->isRealFloatingType());
8232*67e74705SXin Li return FloatExprEvaluator(Info, Result).Visit(E);
8233*67e74705SXin Li }
8234*67e74705SXin Li
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)8235*67e74705SXin Li static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
8236*67e74705SXin Li QualType ResultTy,
8237*67e74705SXin Li const Expr *Arg,
8238*67e74705SXin Li bool SNaN,
8239*67e74705SXin Li llvm::APFloat &Result) {
8240*67e74705SXin Li const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
8241*67e74705SXin Li if (!S) return false;
8242*67e74705SXin Li
8243*67e74705SXin Li const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
8244*67e74705SXin Li
8245*67e74705SXin Li llvm::APInt fill;
8246*67e74705SXin Li
8247*67e74705SXin Li // Treat empty strings as if they were zero.
8248*67e74705SXin Li if (S->getString().empty())
8249*67e74705SXin Li fill = llvm::APInt(32, 0);
8250*67e74705SXin Li else if (S->getString().getAsInteger(0, fill))
8251*67e74705SXin Li return false;
8252*67e74705SXin Li
8253*67e74705SXin Li if (Context.getTargetInfo().isNan2008()) {
8254*67e74705SXin Li if (SNaN)
8255*67e74705SXin Li Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8256*67e74705SXin Li else
8257*67e74705SXin Li Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8258*67e74705SXin Li } else {
8259*67e74705SXin Li // Prior to IEEE 754-2008, architectures were allowed to choose whether
8260*67e74705SXin Li // the first bit of their significand was set for qNaN or sNaN. MIPS chose
8261*67e74705SXin Li // a different encoding to what became a standard in 2008, and for pre-
8262*67e74705SXin Li // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
8263*67e74705SXin Li // sNaN. This is now known as "legacy NaN" encoding.
8264*67e74705SXin Li if (SNaN)
8265*67e74705SXin Li Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8266*67e74705SXin Li else
8267*67e74705SXin Li Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8268*67e74705SXin Li }
8269*67e74705SXin Li
8270*67e74705SXin Li return true;
8271*67e74705SXin Li }
8272*67e74705SXin Li
VisitCallExpr(const CallExpr * E)8273*67e74705SXin Li bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
8274*67e74705SXin Li switch (E->getBuiltinCallee()) {
8275*67e74705SXin Li default:
8276*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCallExpr(E);
8277*67e74705SXin Li
8278*67e74705SXin Li case Builtin::BI__builtin_huge_val:
8279*67e74705SXin Li case Builtin::BI__builtin_huge_valf:
8280*67e74705SXin Li case Builtin::BI__builtin_huge_vall:
8281*67e74705SXin Li case Builtin::BI__builtin_inf:
8282*67e74705SXin Li case Builtin::BI__builtin_inff:
8283*67e74705SXin Li case Builtin::BI__builtin_infl: {
8284*67e74705SXin Li const llvm::fltSemantics &Sem =
8285*67e74705SXin Li Info.Ctx.getFloatTypeSemantics(E->getType());
8286*67e74705SXin Li Result = llvm::APFloat::getInf(Sem);
8287*67e74705SXin Li return true;
8288*67e74705SXin Li }
8289*67e74705SXin Li
8290*67e74705SXin Li case Builtin::BI__builtin_nans:
8291*67e74705SXin Li case Builtin::BI__builtin_nansf:
8292*67e74705SXin Li case Builtin::BI__builtin_nansl:
8293*67e74705SXin Li if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8294*67e74705SXin Li true, Result))
8295*67e74705SXin Li return Error(E);
8296*67e74705SXin Li return true;
8297*67e74705SXin Li
8298*67e74705SXin Li case Builtin::BI__builtin_nan:
8299*67e74705SXin Li case Builtin::BI__builtin_nanf:
8300*67e74705SXin Li case Builtin::BI__builtin_nanl:
8301*67e74705SXin Li // If this is __builtin_nan() turn this into a nan, otherwise we
8302*67e74705SXin Li // can't constant fold it.
8303*67e74705SXin Li if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8304*67e74705SXin Li false, Result))
8305*67e74705SXin Li return Error(E);
8306*67e74705SXin Li return true;
8307*67e74705SXin Li
8308*67e74705SXin Li case Builtin::BI__builtin_fabs:
8309*67e74705SXin Li case Builtin::BI__builtin_fabsf:
8310*67e74705SXin Li case Builtin::BI__builtin_fabsl:
8311*67e74705SXin Li if (!EvaluateFloat(E->getArg(0), Result, Info))
8312*67e74705SXin Li return false;
8313*67e74705SXin Li
8314*67e74705SXin Li if (Result.isNegative())
8315*67e74705SXin Li Result.changeSign();
8316*67e74705SXin Li return true;
8317*67e74705SXin Li
8318*67e74705SXin Li // FIXME: Builtin::BI__builtin_powi
8319*67e74705SXin Li // FIXME: Builtin::BI__builtin_powif
8320*67e74705SXin Li // FIXME: Builtin::BI__builtin_powil
8321*67e74705SXin Li
8322*67e74705SXin Li case Builtin::BI__builtin_copysign:
8323*67e74705SXin Li case Builtin::BI__builtin_copysignf:
8324*67e74705SXin Li case Builtin::BI__builtin_copysignl: {
8325*67e74705SXin Li APFloat RHS(0.);
8326*67e74705SXin Li if (!EvaluateFloat(E->getArg(0), Result, Info) ||
8327*67e74705SXin Li !EvaluateFloat(E->getArg(1), RHS, Info))
8328*67e74705SXin Li return false;
8329*67e74705SXin Li Result.copySign(RHS);
8330*67e74705SXin Li return true;
8331*67e74705SXin Li }
8332*67e74705SXin Li }
8333*67e74705SXin Li }
8334*67e74705SXin Li
VisitUnaryReal(const UnaryOperator * E)8335*67e74705SXin Li bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8336*67e74705SXin Li if (E->getSubExpr()->getType()->isAnyComplexType()) {
8337*67e74705SXin Li ComplexValue CV;
8338*67e74705SXin Li if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8339*67e74705SXin Li return false;
8340*67e74705SXin Li Result = CV.FloatReal;
8341*67e74705SXin Li return true;
8342*67e74705SXin Li }
8343*67e74705SXin Li
8344*67e74705SXin Li return Visit(E->getSubExpr());
8345*67e74705SXin Li }
8346*67e74705SXin Li
VisitUnaryImag(const UnaryOperator * E)8347*67e74705SXin Li bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8348*67e74705SXin Li if (E->getSubExpr()->getType()->isAnyComplexType()) {
8349*67e74705SXin Li ComplexValue CV;
8350*67e74705SXin Li if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8351*67e74705SXin Li return false;
8352*67e74705SXin Li Result = CV.FloatImag;
8353*67e74705SXin Li return true;
8354*67e74705SXin Li }
8355*67e74705SXin Li
8356*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
8357*67e74705SXin Li const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
8358*67e74705SXin Li Result = llvm::APFloat::getZero(Sem);
8359*67e74705SXin Li return true;
8360*67e74705SXin Li }
8361*67e74705SXin Li
VisitUnaryOperator(const UnaryOperator * E)8362*67e74705SXin Li bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8363*67e74705SXin Li switch (E->getOpcode()) {
8364*67e74705SXin Li default: return Error(E);
8365*67e74705SXin Li case UO_Plus:
8366*67e74705SXin Li return EvaluateFloat(E->getSubExpr(), Result, Info);
8367*67e74705SXin Li case UO_Minus:
8368*67e74705SXin Li if (!EvaluateFloat(E->getSubExpr(), Result, Info))
8369*67e74705SXin Li return false;
8370*67e74705SXin Li Result.changeSign();
8371*67e74705SXin Li return true;
8372*67e74705SXin Li }
8373*67e74705SXin Li }
8374*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)8375*67e74705SXin Li bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8376*67e74705SXin Li if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8377*67e74705SXin Li return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8378*67e74705SXin Li
8379*67e74705SXin Li APFloat RHS(0.0);
8380*67e74705SXin Li bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
8381*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
8382*67e74705SXin Li return false;
8383*67e74705SXin Li return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
8384*67e74705SXin Li handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
8385*67e74705SXin Li }
8386*67e74705SXin Li
VisitFloatingLiteral(const FloatingLiteral * E)8387*67e74705SXin Li bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
8388*67e74705SXin Li Result = E->getValue();
8389*67e74705SXin Li return true;
8390*67e74705SXin Li }
8391*67e74705SXin Li
VisitCastExpr(const CastExpr * E)8392*67e74705SXin Li bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
8393*67e74705SXin Li const Expr* SubExpr = E->getSubExpr();
8394*67e74705SXin Li
8395*67e74705SXin Li switch (E->getCastKind()) {
8396*67e74705SXin Li default:
8397*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
8398*67e74705SXin Li
8399*67e74705SXin Li case CK_IntegralToFloating: {
8400*67e74705SXin Li APSInt IntResult;
8401*67e74705SXin Li return EvaluateInteger(SubExpr, IntResult, Info) &&
8402*67e74705SXin Li HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
8403*67e74705SXin Li E->getType(), Result);
8404*67e74705SXin Li }
8405*67e74705SXin Li
8406*67e74705SXin Li case CK_FloatingCast: {
8407*67e74705SXin Li if (!Visit(SubExpr))
8408*67e74705SXin Li return false;
8409*67e74705SXin Li return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
8410*67e74705SXin Li Result);
8411*67e74705SXin Li }
8412*67e74705SXin Li
8413*67e74705SXin Li case CK_FloatingComplexToReal: {
8414*67e74705SXin Li ComplexValue V;
8415*67e74705SXin Li if (!EvaluateComplex(SubExpr, V, Info))
8416*67e74705SXin Li return false;
8417*67e74705SXin Li Result = V.getComplexFloatReal();
8418*67e74705SXin Li return true;
8419*67e74705SXin Li }
8420*67e74705SXin Li }
8421*67e74705SXin Li }
8422*67e74705SXin Li
8423*67e74705SXin Li //===----------------------------------------------------------------------===//
8424*67e74705SXin Li // Complex Evaluation (for float and integer)
8425*67e74705SXin Li //===----------------------------------------------------------------------===//
8426*67e74705SXin Li
8427*67e74705SXin Li namespace {
8428*67e74705SXin Li class ComplexExprEvaluator
8429*67e74705SXin Li : public ExprEvaluatorBase<ComplexExprEvaluator> {
8430*67e74705SXin Li ComplexValue &Result;
8431*67e74705SXin Li
8432*67e74705SXin Li public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)8433*67e74705SXin Li ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
8434*67e74705SXin Li : ExprEvaluatorBaseTy(info), Result(Result) {}
8435*67e74705SXin Li
Success(const APValue & V,const Expr * e)8436*67e74705SXin Li bool Success(const APValue &V, const Expr *e) {
8437*67e74705SXin Li Result.setFrom(V);
8438*67e74705SXin Li return true;
8439*67e74705SXin Li }
8440*67e74705SXin Li
8441*67e74705SXin Li bool ZeroInitialization(const Expr *E);
8442*67e74705SXin Li
8443*67e74705SXin Li //===--------------------------------------------------------------------===//
8444*67e74705SXin Li // Visitor Methods
8445*67e74705SXin Li //===--------------------------------------------------------------------===//
8446*67e74705SXin Li
8447*67e74705SXin Li bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
8448*67e74705SXin Li bool VisitCastExpr(const CastExpr *E);
8449*67e74705SXin Li bool VisitBinaryOperator(const BinaryOperator *E);
8450*67e74705SXin Li bool VisitUnaryOperator(const UnaryOperator *E);
8451*67e74705SXin Li bool VisitInitListExpr(const InitListExpr *E);
8452*67e74705SXin Li };
8453*67e74705SXin Li } // end anonymous namespace
8454*67e74705SXin Li
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)8455*67e74705SXin Li static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
8456*67e74705SXin Li EvalInfo &Info) {
8457*67e74705SXin Li assert(E->isRValue() && E->getType()->isAnyComplexType());
8458*67e74705SXin Li return ComplexExprEvaluator(Info, Result).Visit(E);
8459*67e74705SXin Li }
8460*67e74705SXin Li
ZeroInitialization(const Expr * E)8461*67e74705SXin Li bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
8462*67e74705SXin Li QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
8463*67e74705SXin Li if (ElemTy->isRealFloatingType()) {
8464*67e74705SXin Li Result.makeComplexFloat();
8465*67e74705SXin Li APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
8466*67e74705SXin Li Result.FloatReal = Zero;
8467*67e74705SXin Li Result.FloatImag = Zero;
8468*67e74705SXin Li } else {
8469*67e74705SXin Li Result.makeComplexInt();
8470*67e74705SXin Li APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
8471*67e74705SXin Li Result.IntReal = Zero;
8472*67e74705SXin Li Result.IntImag = Zero;
8473*67e74705SXin Li }
8474*67e74705SXin Li return true;
8475*67e74705SXin Li }
8476*67e74705SXin Li
VisitImaginaryLiteral(const ImaginaryLiteral * E)8477*67e74705SXin Li bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
8478*67e74705SXin Li const Expr* SubExpr = E->getSubExpr();
8479*67e74705SXin Li
8480*67e74705SXin Li if (SubExpr->getType()->isRealFloatingType()) {
8481*67e74705SXin Li Result.makeComplexFloat();
8482*67e74705SXin Li APFloat &Imag = Result.FloatImag;
8483*67e74705SXin Li if (!EvaluateFloat(SubExpr, Imag, Info))
8484*67e74705SXin Li return false;
8485*67e74705SXin Li
8486*67e74705SXin Li Result.FloatReal = APFloat(Imag.getSemantics());
8487*67e74705SXin Li return true;
8488*67e74705SXin Li } else {
8489*67e74705SXin Li assert(SubExpr->getType()->isIntegerType() &&
8490*67e74705SXin Li "Unexpected imaginary literal.");
8491*67e74705SXin Li
8492*67e74705SXin Li Result.makeComplexInt();
8493*67e74705SXin Li APSInt &Imag = Result.IntImag;
8494*67e74705SXin Li if (!EvaluateInteger(SubExpr, Imag, Info))
8495*67e74705SXin Li return false;
8496*67e74705SXin Li
8497*67e74705SXin Li Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
8498*67e74705SXin Li return true;
8499*67e74705SXin Li }
8500*67e74705SXin Li }
8501*67e74705SXin Li
VisitCastExpr(const CastExpr * E)8502*67e74705SXin Li bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
8503*67e74705SXin Li
8504*67e74705SXin Li switch (E->getCastKind()) {
8505*67e74705SXin Li case CK_BitCast:
8506*67e74705SXin Li case CK_BaseToDerived:
8507*67e74705SXin Li case CK_DerivedToBase:
8508*67e74705SXin Li case CK_UncheckedDerivedToBase:
8509*67e74705SXin Li case CK_Dynamic:
8510*67e74705SXin Li case CK_ToUnion:
8511*67e74705SXin Li case CK_ArrayToPointerDecay:
8512*67e74705SXin Li case CK_FunctionToPointerDecay:
8513*67e74705SXin Li case CK_NullToPointer:
8514*67e74705SXin Li case CK_NullToMemberPointer:
8515*67e74705SXin Li case CK_BaseToDerivedMemberPointer:
8516*67e74705SXin Li case CK_DerivedToBaseMemberPointer:
8517*67e74705SXin Li case CK_MemberPointerToBoolean:
8518*67e74705SXin Li case CK_ReinterpretMemberPointer:
8519*67e74705SXin Li case CK_ConstructorConversion:
8520*67e74705SXin Li case CK_IntegralToPointer:
8521*67e74705SXin Li case CK_PointerToIntegral:
8522*67e74705SXin Li case CK_PointerToBoolean:
8523*67e74705SXin Li case CK_ToVoid:
8524*67e74705SXin Li case CK_VectorSplat:
8525*67e74705SXin Li case CK_IntegralCast:
8526*67e74705SXin Li case CK_BooleanToSignedIntegral:
8527*67e74705SXin Li case CK_IntegralToBoolean:
8528*67e74705SXin Li case CK_IntegralToFloating:
8529*67e74705SXin Li case CK_FloatingToIntegral:
8530*67e74705SXin Li case CK_FloatingToBoolean:
8531*67e74705SXin Li case CK_FloatingCast:
8532*67e74705SXin Li case CK_CPointerToObjCPointerCast:
8533*67e74705SXin Li case CK_BlockPointerToObjCPointerCast:
8534*67e74705SXin Li case CK_AnyPointerToBlockPointerCast:
8535*67e74705SXin Li case CK_ObjCObjectLValueCast:
8536*67e74705SXin Li case CK_FloatingComplexToReal:
8537*67e74705SXin Li case CK_FloatingComplexToBoolean:
8538*67e74705SXin Li case CK_IntegralComplexToReal:
8539*67e74705SXin Li case CK_IntegralComplexToBoolean:
8540*67e74705SXin Li case CK_ARCProduceObject:
8541*67e74705SXin Li case CK_ARCConsumeObject:
8542*67e74705SXin Li case CK_ARCReclaimReturnedObject:
8543*67e74705SXin Li case CK_ARCExtendBlockObject:
8544*67e74705SXin Li case CK_CopyAndAutoreleaseBlockObject:
8545*67e74705SXin Li case CK_BuiltinFnToFnPtr:
8546*67e74705SXin Li case CK_ZeroToOCLEvent:
8547*67e74705SXin Li case CK_NonAtomicToAtomic:
8548*67e74705SXin Li case CK_AddressSpaceConversion:
8549*67e74705SXin Li llvm_unreachable("invalid cast kind for complex value");
8550*67e74705SXin Li
8551*67e74705SXin Li case CK_LValueToRValue:
8552*67e74705SXin Li case CK_AtomicToNonAtomic:
8553*67e74705SXin Li case CK_NoOp:
8554*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
8555*67e74705SXin Li
8556*67e74705SXin Li case CK_Dependent:
8557*67e74705SXin Li case CK_LValueBitCast:
8558*67e74705SXin Li case CK_UserDefinedConversion:
8559*67e74705SXin Li return Error(E);
8560*67e74705SXin Li
8561*67e74705SXin Li case CK_FloatingRealToComplex: {
8562*67e74705SXin Li APFloat &Real = Result.FloatReal;
8563*67e74705SXin Li if (!EvaluateFloat(E->getSubExpr(), Real, Info))
8564*67e74705SXin Li return false;
8565*67e74705SXin Li
8566*67e74705SXin Li Result.makeComplexFloat();
8567*67e74705SXin Li Result.FloatImag = APFloat(Real.getSemantics());
8568*67e74705SXin Li return true;
8569*67e74705SXin Li }
8570*67e74705SXin Li
8571*67e74705SXin Li case CK_FloatingComplexCast: {
8572*67e74705SXin Li if (!Visit(E->getSubExpr()))
8573*67e74705SXin Li return false;
8574*67e74705SXin Li
8575*67e74705SXin Li QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8576*67e74705SXin Li QualType From
8577*67e74705SXin Li = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8578*67e74705SXin Li
8579*67e74705SXin Li return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
8580*67e74705SXin Li HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
8581*67e74705SXin Li }
8582*67e74705SXin Li
8583*67e74705SXin Li case CK_FloatingComplexToIntegralComplex: {
8584*67e74705SXin Li if (!Visit(E->getSubExpr()))
8585*67e74705SXin Li return false;
8586*67e74705SXin Li
8587*67e74705SXin Li QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8588*67e74705SXin Li QualType From
8589*67e74705SXin Li = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8590*67e74705SXin Li Result.makeComplexInt();
8591*67e74705SXin Li return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
8592*67e74705SXin Li To, Result.IntReal) &&
8593*67e74705SXin Li HandleFloatToIntCast(Info, E, From, Result.FloatImag,
8594*67e74705SXin Li To, Result.IntImag);
8595*67e74705SXin Li }
8596*67e74705SXin Li
8597*67e74705SXin Li case CK_IntegralRealToComplex: {
8598*67e74705SXin Li APSInt &Real = Result.IntReal;
8599*67e74705SXin Li if (!EvaluateInteger(E->getSubExpr(), Real, Info))
8600*67e74705SXin Li return false;
8601*67e74705SXin Li
8602*67e74705SXin Li Result.makeComplexInt();
8603*67e74705SXin Li Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
8604*67e74705SXin Li return true;
8605*67e74705SXin Li }
8606*67e74705SXin Li
8607*67e74705SXin Li case CK_IntegralComplexCast: {
8608*67e74705SXin Li if (!Visit(E->getSubExpr()))
8609*67e74705SXin Li return false;
8610*67e74705SXin Li
8611*67e74705SXin Li QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8612*67e74705SXin Li QualType From
8613*67e74705SXin Li = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8614*67e74705SXin Li
8615*67e74705SXin Li Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
8616*67e74705SXin Li Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
8617*67e74705SXin Li return true;
8618*67e74705SXin Li }
8619*67e74705SXin Li
8620*67e74705SXin Li case CK_IntegralComplexToFloatingComplex: {
8621*67e74705SXin Li if (!Visit(E->getSubExpr()))
8622*67e74705SXin Li return false;
8623*67e74705SXin Li
8624*67e74705SXin Li QualType To = E->getType()->castAs<ComplexType>()->getElementType();
8625*67e74705SXin Li QualType From
8626*67e74705SXin Li = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
8627*67e74705SXin Li Result.makeComplexFloat();
8628*67e74705SXin Li return HandleIntToFloatCast(Info, E, From, Result.IntReal,
8629*67e74705SXin Li To, Result.FloatReal) &&
8630*67e74705SXin Li HandleIntToFloatCast(Info, E, From, Result.IntImag,
8631*67e74705SXin Li To, Result.FloatImag);
8632*67e74705SXin Li }
8633*67e74705SXin Li }
8634*67e74705SXin Li
8635*67e74705SXin Li llvm_unreachable("unknown cast resulting in complex value");
8636*67e74705SXin Li }
8637*67e74705SXin Li
VisitBinaryOperator(const BinaryOperator * E)8638*67e74705SXin Li bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8639*67e74705SXin Li if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8640*67e74705SXin Li return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8641*67e74705SXin Li
8642*67e74705SXin Li // Track whether the LHS or RHS is real at the type system level. When this is
8643*67e74705SXin Li // the case we can simplify our evaluation strategy.
8644*67e74705SXin Li bool LHSReal = false, RHSReal = false;
8645*67e74705SXin Li
8646*67e74705SXin Li bool LHSOK;
8647*67e74705SXin Li if (E->getLHS()->getType()->isRealFloatingType()) {
8648*67e74705SXin Li LHSReal = true;
8649*67e74705SXin Li APFloat &Real = Result.FloatReal;
8650*67e74705SXin Li LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
8651*67e74705SXin Li if (LHSOK) {
8652*67e74705SXin Li Result.makeComplexFloat();
8653*67e74705SXin Li Result.FloatImag = APFloat(Real.getSemantics());
8654*67e74705SXin Li }
8655*67e74705SXin Li } else {
8656*67e74705SXin Li LHSOK = Visit(E->getLHS());
8657*67e74705SXin Li }
8658*67e74705SXin Li if (!LHSOK && !Info.noteFailure())
8659*67e74705SXin Li return false;
8660*67e74705SXin Li
8661*67e74705SXin Li ComplexValue RHS;
8662*67e74705SXin Li if (E->getRHS()->getType()->isRealFloatingType()) {
8663*67e74705SXin Li RHSReal = true;
8664*67e74705SXin Li APFloat &Real = RHS.FloatReal;
8665*67e74705SXin Li if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8666*67e74705SXin Li return false;
8667*67e74705SXin Li RHS.makeComplexFloat();
8668*67e74705SXin Li RHS.FloatImag = APFloat(Real.getSemantics());
8669*67e74705SXin Li } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8670*67e74705SXin Li return false;
8671*67e74705SXin Li
8672*67e74705SXin Li assert(!(LHSReal && RHSReal) &&
8673*67e74705SXin Li "Cannot have both operands of a complex operation be real.");
8674*67e74705SXin Li switch (E->getOpcode()) {
8675*67e74705SXin Li default: return Error(E);
8676*67e74705SXin Li case BO_Add:
8677*67e74705SXin Li if (Result.isComplexFloat()) {
8678*67e74705SXin Li Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8679*67e74705SXin Li APFloat::rmNearestTiesToEven);
8680*67e74705SXin Li if (LHSReal)
8681*67e74705SXin Li Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8682*67e74705SXin Li else if (!RHSReal)
8683*67e74705SXin Li Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8684*67e74705SXin Li APFloat::rmNearestTiesToEven);
8685*67e74705SXin Li } else {
8686*67e74705SXin Li Result.getComplexIntReal() += RHS.getComplexIntReal();
8687*67e74705SXin Li Result.getComplexIntImag() += RHS.getComplexIntImag();
8688*67e74705SXin Li }
8689*67e74705SXin Li break;
8690*67e74705SXin Li case BO_Sub:
8691*67e74705SXin Li if (Result.isComplexFloat()) {
8692*67e74705SXin Li Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8693*67e74705SXin Li APFloat::rmNearestTiesToEven);
8694*67e74705SXin Li if (LHSReal) {
8695*67e74705SXin Li Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8696*67e74705SXin Li Result.getComplexFloatImag().changeSign();
8697*67e74705SXin Li } else if (!RHSReal) {
8698*67e74705SXin Li Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8699*67e74705SXin Li APFloat::rmNearestTiesToEven);
8700*67e74705SXin Li }
8701*67e74705SXin Li } else {
8702*67e74705SXin Li Result.getComplexIntReal() -= RHS.getComplexIntReal();
8703*67e74705SXin Li Result.getComplexIntImag() -= RHS.getComplexIntImag();
8704*67e74705SXin Li }
8705*67e74705SXin Li break;
8706*67e74705SXin Li case BO_Mul:
8707*67e74705SXin Li if (Result.isComplexFloat()) {
8708*67e74705SXin Li // This is an implementation of complex multiplication according to the
8709*67e74705SXin Li // constraints laid out in C11 Annex G. The implemantion uses the
8710*67e74705SXin Li // following naming scheme:
8711*67e74705SXin Li // (a + ib) * (c + id)
8712*67e74705SXin Li ComplexValue LHS = Result;
8713*67e74705SXin Li APFloat &A = LHS.getComplexFloatReal();
8714*67e74705SXin Li APFloat &B = LHS.getComplexFloatImag();
8715*67e74705SXin Li APFloat &C = RHS.getComplexFloatReal();
8716*67e74705SXin Li APFloat &D = RHS.getComplexFloatImag();
8717*67e74705SXin Li APFloat &ResR = Result.getComplexFloatReal();
8718*67e74705SXin Li APFloat &ResI = Result.getComplexFloatImag();
8719*67e74705SXin Li if (LHSReal) {
8720*67e74705SXin Li assert(!RHSReal && "Cannot have two real operands for a complex op!");
8721*67e74705SXin Li ResR = A * C;
8722*67e74705SXin Li ResI = A * D;
8723*67e74705SXin Li } else if (RHSReal) {
8724*67e74705SXin Li ResR = C * A;
8725*67e74705SXin Li ResI = C * B;
8726*67e74705SXin Li } else {
8727*67e74705SXin Li // In the fully general case, we need to handle NaNs and infinities
8728*67e74705SXin Li // robustly.
8729*67e74705SXin Li APFloat AC = A * C;
8730*67e74705SXin Li APFloat BD = B * D;
8731*67e74705SXin Li APFloat AD = A * D;
8732*67e74705SXin Li APFloat BC = B * C;
8733*67e74705SXin Li ResR = AC - BD;
8734*67e74705SXin Li ResI = AD + BC;
8735*67e74705SXin Li if (ResR.isNaN() && ResI.isNaN()) {
8736*67e74705SXin Li bool Recalc = false;
8737*67e74705SXin Li if (A.isInfinity() || B.isInfinity()) {
8738*67e74705SXin Li A = APFloat::copySign(
8739*67e74705SXin Li APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8740*67e74705SXin Li B = APFloat::copySign(
8741*67e74705SXin Li APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8742*67e74705SXin Li if (C.isNaN())
8743*67e74705SXin Li C = APFloat::copySign(APFloat(C.getSemantics()), C);
8744*67e74705SXin Li if (D.isNaN())
8745*67e74705SXin Li D = APFloat::copySign(APFloat(D.getSemantics()), D);
8746*67e74705SXin Li Recalc = true;
8747*67e74705SXin Li }
8748*67e74705SXin Li if (C.isInfinity() || D.isInfinity()) {
8749*67e74705SXin Li C = APFloat::copySign(
8750*67e74705SXin Li APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8751*67e74705SXin Li D = APFloat::copySign(
8752*67e74705SXin Li APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8753*67e74705SXin Li if (A.isNaN())
8754*67e74705SXin Li A = APFloat::copySign(APFloat(A.getSemantics()), A);
8755*67e74705SXin Li if (B.isNaN())
8756*67e74705SXin Li B = APFloat::copySign(APFloat(B.getSemantics()), B);
8757*67e74705SXin Li Recalc = true;
8758*67e74705SXin Li }
8759*67e74705SXin Li if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8760*67e74705SXin Li AD.isInfinity() || BC.isInfinity())) {
8761*67e74705SXin Li if (A.isNaN())
8762*67e74705SXin Li A = APFloat::copySign(APFloat(A.getSemantics()), A);
8763*67e74705SXin Li if (B.isNaN())
8764*67e74705SXin Li B = APFloat::copySign(APFloat(B.getSemantics()), B);
8765*67e74705SXin Li if (C.isNaN())
8766*67e74705SXin Li C = APFloat::copySign(APFloat(C.getSemantics()), C);
8767*67e74705SXin Li if (D.isNaN())
8768*67e74705SXin Li D = APFloat::copySign(APFloat(D.getSemantics()), D);
8769*67e74705SXin Li Recalc = true;
8770*67e74705SXin Li }
8771*67e74705SXin Li if (Recalc) {
8772*67e74705SXin Li ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8773*67e74705SXin Li ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8774*67e74705SXin Li }
8775*67e74705SXin Li }
8776*67e74705SXin Li }
8777*67e74705SXin Li } else {
8778*67e74705SXin Li ComplexValue LHS = Result;
8779*67e74705SXin Li Result.getComplexIntReal() =
8780*67e74705SXin Li (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8781*67e74705SXin Li LHS.getComplexIntImag() * RHS.getComplexIntImag());
8782*67e74705SXin Li Result.getComplexIntImag() =
8783*67e74705SXin Li (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8784*67e74705SXin Li LHS.getComplexIntImag() * RHS.getComplexIntReal());
8785*67e74705SXin Li }
8786*67e74705SXin Li break;
8787*67e74705SXin Li case BO_Div:
8788*67e74705SXin Li if (Result.isComplexFloat()) {
8789*67e74705SXin Li // This is an implementation of complex division according to the
8790*67e74705SXin Li // constraints laid out in C11 Annex G. The implemantion uses the
8791*67e74705SXin Li // following naming scheme:
8792*67e74705SXin Li // (a + ib) / (c + id)
8793*67e74705SXin Li ComplexValue LHS = Result;
8794*67e74705SXin Li APFloat &A = LHS.getComplexFloatReal();
8795*67e74705SXin Li APFloat &B = LHS.getComplexFloatImag();
8796*67e74705SXin Li APFloat &C = RHS.getComplexFloatReal();
8797*67e74705SXin Li APFloat &D = RHS.getComplexFloatImag();
8798*67e74705SXin Li APFloat &ResR = Result.getComplexFloatReal();
8799*67e74705SXin Li APFloat &ResI = Result.getComplexFloatImag();
8800*67e74705SXin Li if (RHSReal) {
8801*67e74705SXin Li ResR = A / C;
8802*67e74705SXin Li ResI = B / C;
8803*67e74705SXin Li } else {
8804*67e74705SXin Li if (LHSReal) {
8805*67e74705SXin Li // No real optimizations we can do here, stub out with zero.
8806*67e74705SXin Li B = APFloat::getZero(A.getSemantics());
8807*67e74705SXin Li }
8808*67e74705SXin Li int DenomLogB = 0;
8809*67e74705SXin Li APFloat MaxCD = maxnum(abs(C), abs(D));
8810*67e74705SXin Li if (MaxCD.isFinite()) {
8811*67e74705SXin Li DenomLogB = ilogb(MaxCD);
8812*67e74705SXin Li C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
8813*67e74705SXin Li D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
8814*67e74705SXin Li }
8815*67e74705SXin Li APFloat Denom = C * C + D * D;
8816*67e74705SXin Li ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
8817*67e74705SXin Li APFloat::rmNearestTiesToEven);
8818*67e74705SXin Li ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
8819*67e74705SXin Li APFloat::rmNearestTiesToEven);
8820*67e74705SXin Li if (ResR.isNaN() && ResI.isNaN()) {
8821*67e74705SXin Li if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8822*67e74705SXin Li ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8823*67e74705SXin Li ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8824*67e74705SXin Li } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8825*67e74705SXin Li D.isFinite()) {
8826*67e74705SXin Li A = APFloat::copySign(
8827*67e74705SXin Li APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8828*67e74705SXin Li B = APFloat::copySign(
8829*67e74705SXin Li APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8830*67e74705SXin Li ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8831*67e74705SXin Li ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8832*67e74705SXin Li } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8833*67e74705SXin Li C = APFloat::copySign(
8834*67e74705SXin Li APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8835*67e74705SXin Li D = APFloat::copySign(
8836*67e74705SXin Li APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8837*67e74705SXin Li ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8838*67e74705SXin Li ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8839*67e74705SXin Li }
8840*67e74705SXin Li }
8841*67e74705SXin Li }
8842*67e74705SXin Li } else {
8843*67e74705SXin Li if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8844*67e74705SXin Li return Error(E, diag::note_expr_divide_by_zero);
8845*67e74705SXin Li
8846*67e74705SXin Li ComplexValue LHS = Result;
8847*67e74705SXin Li APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8848*67e74705SXin Li RHS.getComplexIntImag() * RHS.getComplexIntImag();
8849*67e74705SXin Li Result.getComplexIntReal() =
8850*67e74705SXin Li (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8851*67e74705SXin Li LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8852*67e74705SXin Li Result.getComplexIntImag() =
8853*67e74705SXin Li (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8854*67e74705SXin Li LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8855*67e74705SXin Li }
8856*67e74705SXin Li break;
8857*67e74705SXin Li }
8858*67e74705SXin Li
8859*67e74705SXin Li return true;
8860*67e74705SXin Li }
8861*67e74705SXin Li
VisitUnaryOperator(const UnaryOperator * E)8862*67e74705SXin Li bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8863*67e74705SXin Li // Get the operand value into 'Result'.
8864*67e74705SXin Li if (!Visit(E->getSubExpr()))
8865*67e74705SXin Li return false;
8866*67e74705SXin Li
8867*67e74705SXin Li switch (E->getOpcode()) {
8868*67e74705SXin Li default:
8869*67e74705SXin Li return Error(E);
8870*67e74705SXin Li case UO_Extension:
8871*67e74705SXin Li return true;
8872*67e74705SXin Li case UO_Plus:
8873*67e74705SXin Li // The result is always just the subexpr.
8874*67e74705SXin Li return true;
8875*67e74705SXin Li case UO_Minus:
8876*67e74705SXin Li if (Result.isComplexFloat()) {
8877*67e74705SXin Li Result.getComplexFloatReal().changeSign();
8878*67e74705SXin Li Result.getComplexFloatImag().changeSign();
8879*67e74705SXin Li }
8880*67e74705SXin Li else {
8881*67e74705SXin Li Result.getComplexIntReal() = -Result.getComplexIntReal();
8882*67e74705SXin Li Result.getComplexIntImag() = -Result.getComplexIntImag();
8883*67e74705SXin Li }
8884*67e74705SXin Li return true;
8885*67e74705SXin Li case UO_Not:
8886*67e74705SXin Li if (Result.isComplexFloat())
8887*67e74705SXin Li Result.getComplexFloatImag().changeSign();
8888*67e74705SXin Li else
8889*67e74705SXin Li Result.getComplexIntImag() = -Result.getComplexIntImag();
8890*67e74705SXin Li return true;
8891*67e74705SXin Li }
8892*67e74705SXin Li }
8893*67e74705SXin Li
VisitInitListExpr(const InitListExpr * E)8894*67e74705SXin Li bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8895*67e74705SXin Li if (E->getNumInits() == 2) {
8896*67e74705SXin Li if (E->getType()->isComplexType()) {
8897*67e74705SXin Li Result.makeComplexFloat();
8898*67e74705SXin Li if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8899*67e74705SXin Li return false;
8900*67e74705SXin Li if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8901*67e74705SXin Li return false;
8902*67e74705SXin Li } else {
8903*67e74705SXin Li Result.makeComplexInt();
8904*67e74705SXin Li if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8905*67e74705SXin Li return false;
8906*67e74705SXin Li if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8907*67e74705SXin Li return false;
8908*67e74705SXin Li }
8909*67e74705SXin Li return true;
8910*67e74705SXin Li }
8911*67e74705SXin Li return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8912*67e74705SXin Li }
8913*67e74705SXin Li
8914*67e74705SXin Li //===----------------------------------------------------------------------===//
8915*67e74705SXin Li // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8916*67e74705SXin Li // implicit conversion.
8917*67e74705SXin Li //===----------------------------------------------------------------------===//
8918*67e74705SXin Li
8919*67e74705SXin Li namespace {
8920*67e74705SXin Li class AtomicExprEvaluator :
8921*67e74705SXin Li public ExprEvaluatorBase<AtomicExprEvaluator> {
8922*67e74705SXin Li APValue &Result;
8923*67e74705SXin Li public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)8924*67e74705SXin Li AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8925*67e74705SXin Li : ExprEvaluatorBaseTy(Info), Result(Result) {}
8926*67e74705SXin Li
Success(const APValue & V,const Expr * E)8927*67e74705SXin Li bool Success(const APValue &V, const Expr *E) {
8928*67e74705SXin Li Result = V;
8929*67e74705SXin Li return true;
8930*67e74705SXin Li }
8931*67e74705SXin Li
ZeroInitialization(const Expr * E)8932*67e74705SXin Li bool ZeroInitialization(const Expr *E) {
8933*67e74705SXin Li ImplicitValueInitExpr VIE(
8934*67e74705SXin Li E->getType()->castAs<AtomicType>()->getValueType());
8935*67e74705SXin Li return Evaluate(Result, Info, &VIE);
8936*67e74705SXin Li }
8937*67e74705SXin Li
VisitCastExpr(const CastExpr * E)8938*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
8939*67e74705SXin Li switch (E->getCastKind()) {
8940*67e74705SXin Li default:
8941*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
8942*67e74705SXin Li case CK_NonAtomicToAtomic:
8943*67e74705SXin Li return Evaluate(Result, Info, E->getSubExpr());
8944*67e74705SXin Li }
8945*67e74705SXin Li }
8946*67e74705SXin Li };
8947*67e74705SXin Li } // end anonymous namespace
8948*67e74705SXin Li
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)8949*67e74705SXin Li static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8950*67e74705SXin Li assert(E->isRValue() && E->getType()->isAtomicType());
8951*67e74705SXin Li return AtomicExprEvaluator(Info, Result).Visit(E);
8952*67e74705SXin Li }
8953*67e74705SXin Li
8954*67e74705SXin Li //===----------------------------------------------------------------------===//
8955*67e74705SXin Li // Void expression evaluation, primarily for a cast to void on the LHS of a
8956*67e74705SXin Li // comma operator
8957*67e74705SXin Li //===----------------------------------------------------------------------===//
8958*67e74705SXin Li
8959*67e74705SXin Li namespace {
8960*67e74705SXin Li class VoidExprEvaluator
8961*67e74705SXin Li : public ExprEvaluatorBase<VoidExprEvaluator> {
8962*67e74705SXin Li public:
VoidExprEvaluator(EvalInfo & Info)8963*67e74705SXin Li VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8964*67e74705SXin Li
Success(const APValue & V,const Expr * e)8965*67e74705SXin Li bool Success(const APValue &V, const Expr *e) { return true; }
8966*67e74705SXin Li
VisitCastExpr(const CastExpr * E)8967*67e74705SXin Li bool VisitCastExpr(const CastExpr *E) {
8968*67e74705SXin Li switch (E->getCastKind()) {
8969*67e74705SXin Li default:
8970*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCastExpr(E);
8971*67e74705SXin Li case CK_ToVoid:
8972*67e74705SXin Li VisitIgnoredValue(E->getSubExpr());
8973*67e74705SXin Li return true;
8974*67e74705SXin Li }
8975*67e74705SXin Li }
8976*67e74705SXin Li
VisitCallExpr(const CallExpr * E)8977*67e74705SXin Li bool VisitCallExpr(const CallExpr *E) {
8978*67e74705SXin Li switch (E->getBuiltinCallee()) {
8979*67e74705SXin Li default:
8980*67e74705SXin Li return ExprEvaluatorBaseTy::VisitCallExpr(E);
8981*67e74705SXin Li case Builtin::BI__assume:
8982*67e74705SXin Li case Builtin::BI__builtin_assume:
8983*67e74705SXin Li // The argument is not evaluated!
8984*67e74705SXin Li return true;
8985*67e74705SXin Li }
8986*67e74705SXin Li }
8987*67e74705SXin Li };
8988*67e74705SXin Li } // end anonymous namespace
8989*67e74705SXin Li
EvaluateVoid(const Expr * E,EvalInfo & Info)8990*67e74705SXin Li static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8991*67e74705SXin Li assert(E->isRValue() && E->getType()->isVoidType());
8992*67e74705SXin Li return VoidExprEvaluator(Info).Visit(E);
8993*67e74705SXin Li }
8994*67e74705SXin Li
8995*67e74705SXin Li //===----------------------------------------------------------------------===//
8996*67e74705SXin Li // Top level Expr::EvaluateAsRValue method.
8997*67e74705SXin Li //===----------------------------------------------------------------------===//
8998*67e74705SXin Li
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)8999*67e74705SXin Li static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
9000*67e74705SXin Li // In C, function designators are not lvalues, but we evaluate them as if they
9001*67e74705SXin Li // are.
9002*67e74705SXin Li QualType T = E->getType();
9003*67e74705SXin Li if (E->isGLValue() || T->isFunctionType()) {
9004*67e74705SXin Li LValue LV;
9005*67e74705SXin Li if (!EvaluateLValue(E, LV, Info))
9006*67e74705SXin Li return false;
9007*67e74705SXin Li LV.moveInto(Result);
9008*67e74705SXin Li } else if (T->isVectorType()) {
9009*67e74705SXin Li if (!EvaluateVector(E, Result, Info))
9010*67e74705SXin Li return false;
9011*67e74705SXin Li } else if (T->isIntegralOrEnumerationType()) {
9012*67e74705SXin Li if (!IntExprEvaluator(Info, Result).Visit(E))
9013*67e74705SXin Li return false;
9014*67e74705SXin Li } else if (T->hasPointerRepresentation()) {
9015*67e74705SXin Li LValue LV;
9016*67e74705SXin Li if (!EvaluatePointer(E, LV, Info))
9017*67e74705SXin Li return false;
9018*67e74705SXin Li LV.moveInto(Result);
9019*67e74705SXin Li } else if (T->isRealFloatingType()) {
9020*67e74705SXin Li llvm::APFloat F(0.0);
9021*67e74705SXin Li if (!EvaluateFloat(E, F, Info))
9022*67e74705SXin Li return false;
9023*67e74705SXin Li Result = APValue(F);
9024*67e74705SXin Li } else if (T->isAnyComplexType()) {
9025*67e74705SXin Li ComplexValue C;
9026*67e74705SXin Li if (!EvaluateComplex(E, C, Info))
9027*67e74705SXin Li return false;
9028*67e74705SXin Li C.moveInto(Result);
9029*67e74705SXin Li } else if (T->isMemberPointerType()) {
9030*67e74705SXin Li MemberPtr P;
9031*67e74705SXin Li if (!EvaluateMemberPointer(E, P, Info))
9032*67e74705SXin Li return false;
9033*67e74705SXin Li P.moveInto(Result);
9034*67e74705SXin Li return true;
9035*67e74705SXin Li } else if (T->isArrayType()) {
9036*67e74705SXin Li LValue LV;
9037*67e74705SXin Li LV.set(E, Info.CurrentCall->Index);
9038*67e74705SXin Li APValue &Value = Info.CurrentCall->createTemporary(E, false);
9039*67e74705SXin Li if (!EvaluateArray(E, LV, Value, Info))
9040*67e74705SXin Li return false;
9041*67e74705SXin Li Result = Value;
9042*67e74705SXin Li } else if (T->isRecordType()) {
9043*67e74705SXin Li LValue LV;
9044*67e74705SXin Li LV.set(E, Info.CurrentCall->Index);
9045*67e74705SXin Li APValue &Value = Info.CurrentCall->createTemporary(E, false);
9046*67e74705SXin Li if (!EvaluateRecord(E, LV, Value, Info))
9047*67e74705SXin Li return false;
9048*67e74705SXin Li Result = Value;
9049*67e74705SXin Li } else if (T->isVoidType()) {
9050*67e74705SXin Li if (!Info.getLangOpts().CPlusPlus11)
9051*67e74705SXin Li Info.CCEDiag(E, diag::note_constexpr_nonliteral)
9052*67e74705SXin Li << E->getType();
9053*67e74705SXin Li if (!EvaluateVoid(E, Info))
9054*67e74705SXin Li return false;
9055*67e74705SXin Li } else if (T->isAtomicType()) {
9056*67e74705SXin Li if (!EvaluateAtomic(E, Result, Info))
9057*67e74705SXin Li return false;
9058*67e74705SXin Li } else if (Info.getLangOpts().CPlusPlus11) {
9059*67e74705SXin Li Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
9060*67e74705SXin Li return false;
9061*67e74705SXin Li } else {
9062*67e74705SXin Li Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9063*67e74705SXin Li return false;
9064*67e74705SXin Li }
9065*67e74705SXin Li
9066*67e74705SXin Li return true;
9067*67e74705SXin Li }
9068*67e74705SXin Li
9069*67e74705SXin Li /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
9070*67e74705SXin Li /// cases, the in-place evaluation is essential, since later initializers for
9071*67e74705SXin Li /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)9072*67e74705SXin Li static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
9073*67e74705SXin Li const Expr *E, bool AllowNonLiteralTypes) {
9074*67e74705SXin Li assert(!E->isValueDependent());
9075*67e74705SXin Li
9076*67e74705SXin Li if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
9077*67e74705SXin Li return false;
9078*67e74705SXin Li
9079*67e74705SXin Li if (E->isRValue()) {
9080*67e74705SXin Li // Evaluate arrays and record types in-place, so that later initializers can
9081*67e74705SXin Li // refer to earlier-initialized members of the object.
9082*67e74705SXin Li if (E->getType()->isArrayType())
9083*67e74705SXin Li return EvaluateArray(E, This, Result, Info);
9084*67e74705SXin Li else if (E->getType()->isRecordType())
9085*67e74705SXin Li return EvaluateRecord(E, This, Result, Info);
9086*67e74705SXin Li }
9087*67e74705SXin Li
9088*67e74705SXin Li // For any other type, in-place evaluation is unimportant.
9089*67e74705SXin Li return Evaluate(Result, Info, E);
9090*67e74705SXin Li }
9091*67e74705SXin Li
9092*67e74705SXin Li /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
9093*67e74705SXin Li /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)9094*67e74705SXin Li static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
9095*67e74705SXin Li if (E->getType().isNull())
9096*67e74705SXin Li return false;
9097*67e74705SXin Li
9098*67e74705SXin Li if (!CheckLiteralType(Info, E))
9099*67e74705SXin Li return false;
9100*67e74705SXin Li
9101*67e74705SXin Li if (!::Evaluate(Result, Info, E))
9102*67e74705SXin Li return false;
9103*67e74705SXin Li
9104*67e74705SXin Li if (E->isGLValue()) {
9105*67e74705SXin Li LValue LV;
9106*67e74705SXin Li LV.setFrom(Info.Ctx, Result);
9107*67e74705SXin Li if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
9108*67e74705SXin Li return false;
9109*67e74705SXin Li }
9110*67e74705SXin Li
9111*67e74705SXin Li // Check this core constant expression is a constant expression.
9112*67e74705SXin Li return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
9113*67e74705SXin Li }
9114*67e74705SXin Li
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)9115*67e74705SXin Li static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
9116*67e74705SXin Li const ASTContext &Ctx, bool &IsConst) {
9117*67e74705SXin Li // Fast-path evaluations of integer literals, since we sometimes see files
9118*67e74705SXin Li // containing vast quantities of these.
9119*67e74705SXin Li if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
9120*67e74705SXin Li Result.Val = APValue(APSInt(L->getValue(),
9121*67e74705SXin Li L->getType()->isUnsignedIntegerType()));
9122*67e74705SXin Li IsConst = true;
9123*67e74705SXin Li return true;
9124*67e74705SXin Li }
9125*67e74705SXin Li
9126*67e74705SXin Li // This case should be rare, but we need to check it before we check on
9127*67e74705SXin Li // the type below.
9128*67e74705SXin Li if (Exp->getType().isNull()) {
9129*67e74705SXin Li IsConst = false;
9130*67e74705SXin Li return true;
9131*67e74705SXin Li }
9132*67e74705SXin Li
9133*67e74705SXin Li // FIXME: Evaluating values of large array and record types can cause
9134*67e74705SXin Li // performance problems. Only do so in C++11 for now.
9135*67e74705SXin Li if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
9136*67e74705SXin Li Exp->getType()->isRecordType()) &&
9137*67e74705SXin Li !Ctx.getLangOpts().CPlusPlus11) {
9138*67e74705SXin Li IsConst = false;
9139*67e74705SXin Li return true;
9140*67e74705SXin Li }
9141*67e74705SXin Li return false;
9142*67e74705SXin Li }
9143*67e74705SXin Li
9144*67e74705SXin Li
9145*67e74705SXin Li /// EvaluateAsRValue - Return true if this is a constant which we can fold using
9146*67e74705SXin Li /// any crazy technique (that has nothing to do with language standards) that
9147*67e74705SXin Li /// we want to. If this function returns true, it returns the folded constant
9148*67e74705SXin Li /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
9149*67e74705SXin Li /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const9150*67e74705SXin Li bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
9151*67e74705SXin Li bool IsConst;
9152*67e74705SXin Li if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
9153*67e74705SXin Li return IsConst;
9154*67e74705SXin Li
9155*67e74705SXin Li EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
9156*67e74705SXin Li return ::EvaluateAsRValue(Info, this, Result.Val);
9157*67e74705SXin Li }
9158*67e74705SXin Li
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const9159*67e74705SXin Li bool Expr::EvaluateAsBooleanCondition(bool &Result,
9160*67e74705SXin Li const ASTContext &Ctx) const {
9161*67e74705SXin Li EvalResult Scratch;
9162*67e74705SXin Li return EvaluateAsRValue(Scratch, Ctx) &&
9163*67e74705SXin Li HandleConversionToBool(Scratch.Val, Result);
9164*67e74705SXin Li }
9165*67e74705SXin Li
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)9166*67e74705SXin Li static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
9167*67e74705SXin Li Expr::SideEffectsKind SEK) {
9168*67e74705SXin Li return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
9169*67e74705SXin Li (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
9170*67e74705SXin Li }
9171*67e74705SXin Li
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9172*67e74705SXin Li bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
9173*67e74705SXin Li SideEffectsKind AllowSideEffects) const {
9174*67e74705SXin Li if (!getType()->isIntegralOrEnumerationType())
9175*67e74705SXin Li return false;
9176*67e74705SXin Li
9177*67e74705SXin Li EvalResult ExprResult;
9178*67e74705SXin Li if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
9179*67e74705SXin Li hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9180*67e74705SXin Li return false;
9181*67e74705SXin Li
9182*67e74705SXin Li Result = ExprResult.Val.getInt();
9183*67e74705SXin Li return true;
9184*67e74705SXin Li }
9185*67e74705SXin Li
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9186*67e74705SXin Li bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
9187*67e74705SXin Li SideEffectsKind AllowSideEffects) const {
9188*67e74705SXin Li if (!getType()->isRealFloatingType())
9189*67e74705SXin Li return false;
9190*67e74705SXin Li
9191*67e74705SXin Li EvalResult ExprResult;
9192*67e74705SXin Li if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
9193*67e74705SXin Li hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9194*67e74705SXin Li return false;
9195*67e74705SXin Li
9196*67e74705SXin Li Result = ExprResult.Val.getFloat();
9197*67e74705SXin Li return true;
9198*67e74705SXin Li }
9199*67e74705SXin Li
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const9200*67e74705SXin Li bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
9201*67e74705SXin Li EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
9202*67e74705SXin Li
9203*67e74705SXin Li LValue LV;
9204*67e74705SXin Li if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
9205*67e74705SXin Li !CheckLValueConstantExpression(Info, getExprLoc(),
9206*67e74705SXin Li Ctx.getLValueReferenceType(getType()), LV))
9207*67e74705SXin Li return false;
9208*67e74705SXin Li
9209*67e74705SXin Li LV.moveInto(Result.Val);
9210*67e74705SXin Li return true;
9211*67e74705SXin Li }
9212*67e74705SXin Li
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const9213*67e74705SXin Li bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
9214*67e74705SXin Li const VarDecl *VD,
9215*67e74705SXin Li SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
9216*67e74705SXin Li // FIXME: Evaluating initializers for large array and record types can cause
9217*67e74705SXin Li // performance problems. Only do so in C++11 for now.
9218*67e74705SXin Li if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
9219*67e74705SXin Li !Ctx.getLangOpts().CPlusPlus11)
9220*67e74705SXin Li return false;
9221*67e74705SXin Li
9222*67e74705SXin Li Expr::EvalStatus EStatus;
9223*67e74705SXin Li EStatus.Diag = &Notes;
9224*67e74705SXin Li
9225*67e74705SXin Li EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
9226*67e74705SXin Li ? EvalInfo::EM_ConstantExpression
9227*67e74705SXin Li : EvalInfo::EM_ConstantFold);
9228*67e74705SXin Li InitInfo.setEvaluatingDecl(VD, Value);
9229*67e74705SXin Li
9230*67e74705SXin Li LValue LVal;
9231*67e74705SXin Li LVal.set(VD);
9232*67e74705SXin Li
9233*67e74705SXin Li // C++11 [basic.start.init]p2:
9234*67e74705SXin Li // Variables with static storage duration or thread storage duration shall be
9235*67e74705SXin Li // zero-initialized before any other initialization takes place.
9236*67e74705SXin Li // This behavior is not present in C.
9237*67e74705SXin Li if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
9238*67e74705SXin Li !VD->getType()->isReferenceType()) {
9239*67e74705SXin Li ImplicitValueInitExpr VIE(VD->getType());
9240*67e74705SXin Li if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
9241*67e74705SXin Li /*AllowNonLiteralTypes=*/true))
9242*67e74705SXin Li return false;
9243*67e74705SXin Li }
9244*67e74705SXin Li
9245*67e74705SXin Li if (!EvaluateInPlace(Value, InitInfo, LVal, this,
9246*67e74705SXin Li /*AllowNonLiteralTypes=*/true) ||
9247*67e74705SXin Li EStatus.HasSideEffects)
9248*67e74705SXin Li return false;
9249*67e74705SXin Li
9250*67e74705SXin Li return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
9251*67e74705SXin Li Value);
9252*67e74705SXin Li }
9253*67e74705SXin Li
9254*67e74705SXin Li /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
9255*67e74705SXin Li /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const9256*67e74705SXin Li bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
9257*67e74705SXin Li EvalResult Result;
9258*67e74705SXin Li return EvaluateAsRValue(Result, Ctx) &&
9259*67e74705SXin Li !hasUnacceptableSideEffect(Result, SEK);
9260*67e74705SXin Li }
9261*67e74705SXin Li
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const9262*67e74705SXin Li APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
9263*67e74705SXin Li SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
9264*67e74705SXin Li EvalResult EvalResult;
9265*67e74705SXin Li EvalResult.Diag = Diag;
9266*67e74705SXin Li bool Result = EvaluateAsRValue(EvalResult, Ctx);
9267*67e74705SXin Li (void)Result;
9268*67e74705SXin Li assert(Result && "Could not evaluate expression");
9269*67e74705SXin Li assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
9270*67e74705SXin Li
9271*67e74705SXin Li return EvalResult.Val.getInt();
9272*67e74705SXin Li }
9273*67e74705SXin Li
EvaluateForOverflow(const ASTContext & Ctx) const9274*67e74705SXin Li void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
9275*67e74705SXin Li bool IsConst;
9276*67e74705SXin Li EvalResult EvalResult;
9277*67e74705SXin Li if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
9278*67e74705SXin Li EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
9279*67e74705SXin Li (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
9280*67e74705SXin Li }
9281*67e74705SXin Li }
9282*67e74705SXin Li
isGlobalLValue() const9283*67e74705SXin Li bool Expr::EvalResult::isGlobalLValue() const {
9284*67e74705SXin Li assert(Val.isLValue());
9285*67e74705SXin Li return IsGlobalLValue(Val.getLValueBase());
9286*67e74705SXin Li }
9287*67e74705SXin Li
9288*67e74705SXin Li
9289*67e74705SXin Li /// isIntegerConstantExpr - this recursive routine will test if an expression is
9290*67e74705SXin Li /// an integer constant expression.
9291*67e74705SXin Li
9292*67e74705SXin Li /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
9293*67e74705SXin Li /// comma, etc
9294*67e74705SXin Li
9295*67e74705SXin Li // CheckICE - This function does the fundamental ICE checking: the returned
9296*67e74705SXin Li // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
9297*67e74705SXin Li // and a (possibly null) SourceLocation indicating the location of the problem.
9298*67e74705SXin Li //
9299*67e74705SXin Li // Note that to reduce code duplication, this helper does no evaluation
9300*67e74705SXin Li // itself; the caller checks whether the expression is evaluatable, and
9301*67e74705SXin Li // in the rare cases where CheckICE actually cares about the evaluated
9302*67e74705SXin Li // value, it calls into Evalute.
9303*67e74705SXin Li
9304*67e74705SXin Li namespace {
9305*67e74705SXin Li
9306*67e74705SXin Li enum ICEKind {
9307*67e74705SXin Li /// This expression is an ICE.
9308*67e74705SXin Li IK_ICE,
9309*67e74705SXin Li /// This expression is not an ICE, but if it isn't evaluated, it's
9310*67e74705SXin Li /// a legal subexpression for an ICE. This return value is used to handle
9311*67e74705SXin Li /// the comma operator in C99 mode, and non-constant subexpressions.
9312*67e74705SXin Li IK_ICEIfUnevaluated,
9313*67e74705SXin Li /// This expression is not an ICE, and is not a legal subexpression for one.
9314*67e74705SXin Li IK_NotICE
9315*67e74705SXin Li };
9316*67e74705SXin Li
9317*67e74705SXin Li struct ICEDiag {
9318*67e74705SXin Li ICEKind Kind;
9319*67e74705SXin Li SourceLocation Loc;
9320*67e74705SXin Li
ICEDiag__anon2db4a5521f11::ICEDiag9321*67e74705SXin Li ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
9322*67e74705SXin Li };
9323*67e74705SXin Li
9324*67e74705SXin Li }
9325*67e74705SXin Li
NoDiag()9326*67e74705SXin Li static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
9327*67e74705SXin Li
Worst(ICEDiag A,ICEDiag B)9328*67e74705SXin Li static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
9329*67e74705SXin Li
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)9330*67e74705SXin Li static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
9331*67e74705SXin Li Expr::EvalResult EVResult;
9332*67e74705SXin Li if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
9333*67e74705SXin Li !EVResult.Val.isInt())
9334*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9335*67e74705SXin Li
9336*67e74705SXin Li return NoDiag();
9337*67e74705SXin Li }
9338*67e74705SXin Li
CheckICE(const Expr * E,const ASTContext & Ctx)9339*67e74705SXin Li static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
9340*67e74705SXin Li assert(!E->isValueDependent() && "Should not see value dependent exprs!");
9341*67e74705SXin Li if (!E->getType()->isIntegralOrEnumerationType())
9342*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9343*67e74705SXin Li
9344*67e74705SXin Li switch (E->getStmtClass()) {
9345*67e74705SXin Li #define ABSTRACT_STMT(Node)
9346*67e74705SXin Li #define STMT(Node, Base) case Expr::Node##Class:
9347*67e74705SXin Li #define EXPR(Node, Base)
9348*67e74705SXin Li #include "clang/AST/StmtNodes.inc"
9349*67e74705SXin Li case Expr::PredefinedExprClass:
9350*67e74705SXin Li case Expr::FloatingLiteralClass:
9351*67e74705SXin Li case Expr::ImaginaryLiteralClass:
9352*67e74705SXin Li case Expr::StringLiteralClass:
9353*67e74705SXin Li case Expr::ArraySubscriptExprClass:
9354*67e74705SXin Li case Expr::OMPArraySectionExprClass:
9355*67e74705SXin Li case Expr::MemberExprClass:
9356*67e74705SXin Li case Expr::CompoundAssignOperatorClass:
9357*67e74705SXin Li case Expr::CompoundLiteralExprClass:
9358*67e74705SXin Li case Expr::ExtVectorElementExprClass:
9359*67e74705SXin Li case Expr::DesignatedInitExprClass:
9360*67e74705SXin Li case Expr::NoInitExprClass:
9361*67e74705SXin Li case Expr::DesignatedInitUpdateExprClass:
9362*67e74705SXin Li case Expr::ImplicitValueInitExprClass:
9363*67e74705SXin Li case Expr::ParenListExprClass:
9364*67e74705SXin Li case Expr::VAArgExprClass:
9365*67e74705SXin Li case Expr::AddrLabelExprClass:
9366*67e74705SXin Li case Expr::StmtExprClass:
9367*67e74705SXin Li case Expr::CXXMemberCallExprClass:
9368*67e74705SXin Li case Expr::CUDAKernelCallExprClass:
9369*67e74705SXin Li case Expr::CXXDynamicCastExprClass:
9370*67e74705SXin Li case Expr::CXXTypeidExprClass:
9371*67e74705SXin Li case Expr::CXXUuidofExprClass:
9372*67e74705SXin Li case Expr::MSPropertyRefExprClass:
9373*67e74705SXin Li case Expr::MSPropertySubscriptExprClass:
9374*67e74705SXin Li case Expr::CXXNullPtrLiteralExprClass:
9375*67e74705SXin Li case Expr::UserDefinedLiteralClass:
9376*67e74705SXin Li case Expr::CXXThisExprClass:
9377*67e74705SXin Li case Expr::CXXThrowExprClass:
9378*67e74705SXin Li case Expr::CXXNewExprClass:
9379*67e74705SXin Li case Expr::CXXDeleteExprClass:
9380*67e74705SXin Li case Expr::CXXPseudoDestructorExprClass:
9381*67e74705SXin Li case Expr::UnresolvedLookupExprClass:
9382*67e74705SXin Li case Expr::TypoExprClass:
9383*67e74705SXin Li case Expr::DependentScopeDeclRefExprClass:
9384*67e74705SXin Li case Expr::CXXConstructExprClass:
9385*67e74705SXin Li case Expr::CXXInheritedCtorInitExprClass:
9386*67e74705SXin Li case Expr::CXXStdInitializerListExprClass:
9387*67e74705SXin Li case Expr::CXXBindTemporaryExprClass:
9388*67e74705SXin Li case Expr::ExprWithCleanupsClass:
9389*67e74705SXin Li case Expr::CXXTemporaryObjectExprClass:
9390*67e74705SXin Li case Expr::CXXUnresolvedConstructExprClass:
9391*67e74705SXin Li case Expr::CXXDependentScopeMemberExprClass:
9392*67e74705SXin Li case Expr::UnresolvedMemberExprClass:
9393*67e74705SXin Li case Expr::ObjCStringLiteralClass:
9394*67e74705SXin Li case Expr::ObjCBoxedExprClass:
9395*67e74705SXin Li case Expr::ObjCArrayLiteralClass:
9396*67e74705SXin Li case Expr::ObjCDictionaryLiteralClass:
9397*67e74705SXin Li case Expr::ObjCEncodeExprClass:
9398*67e74705SXin Li case Expr::ObjCMessageExprClass:
9399*67e74705SXin Li case Expr::ObjCSelectorExprClass:
9400*67e74705SXin Li case Expr::ObjCProtocolExprClass:
9401*67e74705SXin Li case Expr::ObjCIvarRefExprClass:
9402*67e74705SXin Li case Expr::ObjCPropertyRefExprClass:
9403*67e74705SXin Li case Expr::ObjCSubscriptRefExprClass:
9404*67e74705SXin Li case Expr::ObjCIsaExprClass:
9405*67e74705SXin Li case Expr::ShuffleVectorExprClass:
9406*67e74705SXin Li case Expr::ConvertVectorExprClass:
9407*67e74705SXin Li case Expr::BlockExprClass:
9408*67e74705SXin Li case Expr::NoStmtClass:
9409*67e74705SXin Li case Expr::OpaqueValueExprClass:
9410*67e74705SXin Li case Expr::PackExpansionExprClass:
9411*67e74705SXin Li case Expr::SubstNonTypeTemplateParmPackExprClass:
9412*67e74705SXin Li case Expr::FunctionParmPackExprClass:
9413*67e74705SXin Li case Expr::AsTypeExprClass:
9414*67e74705SXin Li case Expr::ObjCIndirectCopyRestoreExprClass:
9415*67e74705SXin Li case Expr::MaterializeTemporaryExprClass:
9416*67e74705SXin Li case Expr::PseudoObjectExprClass:
9417*67e74705SXin Li case Expr::AtomicExprClass:
9418*67e74705SXin Li case Expr::LambdaExprClass:
9419*67e74705SXin Li case Expr::CXXFoldExprClass:
9420*67e74705SXin Li case Expr::CoawaitExprClass:
9421*67e74705SXin Li case Expr::CoyieldExprClass:
9422*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9423*67e74705SXin Li
9424*67e74705SXin Li case Expr::InitListExprClass: {
9425*67e74705SXin Li // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
9426*67e74705SXin Li // form "T x = { a };" is equivalent to "T x = a;".
9427*67e74705SXin Li // Unless we're initializing a reference, T is a scalar as it is known to be
9428*67e74705SXin Li // of integral or enumeration type.
9429*67e74705SXin Li if (E->isRValue())
9430*67e74705SXin Li if (cast<InitListExpr>(E)->getNumInits() == 1)
9431*67e74705SXin Li return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
9432*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9433*67e74705SXin Li }
9434*67e74705SXin Li
9435*67e74705SXin Li case Expr::SizeOfPackExprClass:
9436*67e74705SXin Li case Expr::GNUNullExprClass:
9437*67e74705SXin Li // GCC considers the GNU __null value to be an integral constant expression.
9438*67e74705SXin Li return NoDiag();
9439*67e74705SXin Li
9440*67e74705SXin Li case Expr::SubstNonTypeTemplateParmExprClass:
9441*67e74705SXin Li return
9442*67e74705SXin Li CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
9443*67e74705SXin Li
9444*67e74705SXin Li case Expr::ParenExprClass:
9445*67e74705SXin Li return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
9446*67e74705SXin Li case Expr::GenericSelectionExprClass:
9447*67e74705SXin Li return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
9448*67e74705SXin Li case Expr::IntegerLiteralClass:
9449*67e74705SXin Li case Expr::CharacterLiteralClass:
9450*67e74705SXin Li case Expr::ObjCBoolLiteralExprClass:
9451*67e74705SXin Li case Expr::CXXBoolLiteralExprClass:
9452*67e74705SXin Li case Expr::CXXScalarValueInitExprClass:
9453*67e74705SXin Li case Expr::TypeTraitExprClass:
9454*67e74705SXin Li case Expr::ArrayTypeTraitExprClass:
9455*67e74705SXin Li case Expr::ExpressionTraitExprClass:
9456*67e74705SXin Li case Expr::CXXNoexceptExprClass:
9457*67e74705SXin Li return NoDiag();
9458*67e74705SXin Li case Expr::CallExprClass:
9459*67e74705SXin Li case Expr::CXXOperatorCallExprClass: {
9460*67e74705SXin Li // C99 6.6/3 allows function calls within unevaluated subexpressions of
9461*67e74705SXin Li // constant expressions, but they can never be ICEs because an ICE cannot
9462*67e74705SXin Li // contain an operand of (pointer to) function type.
9463*67e74705SXin Li const CallExpr *CE = cast<CallExpr>(E);
9464*67e74705SXin Li if (CE->getBuiltinCallee())
9465*67e74705SXin Li return CheckEvalInICE(E, Ctx);
9466*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9467*67e74705SXin Li }
9468*67e74705SXin Li case Expr::DeclRefExprClass: {
9469*67e74705SXin Li if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
9470*67e74705SXin Li return NoDiag();
9471*67e74705SXin Li const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
9472*67e74705SXin Li if (Ctx.getLangOpts().CPlusPlus &&
9473*67e74705SXin Li D && IsConstNonVolatile(D->getType())) {
9474*67e74705SXin Li // Parameter variables are never constants. Without this check,
9475*67e74705SXin Li // getAnyInitializer() can find a default argument, which leads
9476*67e74705SXin Li // to chaos.
9477*67e74705SXin Li if (isa<ParmVarDecl>(D))
9478*67e74705SXin Li return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9479*67e74705SXin Li
9480*67e74705SXin Li // C++ 7.1.5.1p2
9481*67e74705SXin Li // A variable of non-volatile const-qualified integral or enumeration
9482*67e74705SXin Li // type initialized by an ICE can be used in ICEs.
9483*67e74705SXin Li if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
9484*67e74705SXin Li if (!Dcl->getType()->isIntegralOrEnumerationType())
9485*67e74705SXin Li return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9486*67e74705SXin Li
9487*67e74705SXin Li const VarDecl *VD;
9488*67e74705SXin Li // Look for a declaration of this variable that has an initializer, and
9489*67e74705SXin Li // check whether it is an ICE.
9490*67e74705SXin Li if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
9491*67e74705SXin Li return NoDiag();
9492*67e74705SXin Li else
9493*67e74705SXin Li return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9494*67e74705SXin Li }
9495*67e74705SXin Li }
9496*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9497*67e74705SXin Li }
9498*67e74705SXin Li case Expr::UnaryOperatorClass: {
9499*67e74705SXin Li const UnaryOperator *Exp = cast<UnaryOperator>(E);
9500*67e74705SXin Li switch (Exp->getOpcode()) {
9501*67e74705SXin Li case UO_PostInc:
9502*67e74705SXin Li case UO_PostDec:
9503*67e74705SXin Li case UO_PreInc:
9504*67e74705SXin Li case UO_PreDec:
9505*67e74705SXin Li case UO_AddrOf:
9506*67e74705SXin Li case UO_Deref:
9507*67e74705SXin Li case UO_Coawait:
9508*67e74705SXin Li // C99 6.6/3 allows increment and decrement within unevaluated
9509*67e74705SXin Li // subexpressions of constant expressions, but they can never be ICEs
9510*67e74705SXin Li // because an ICE cannot contain an lvalue operand.
9511*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9512*67e74705SXin Li case UO_Extension:
9513*67e74705SXin Li case UO_LNot:
9514*67e74705SXin Li case UO_Plus:
9515*67e74705SXin Li case UO_Minus:
9516*67e74705SXin Li case UO_Not:
9517*67e74705SXin Li case UO_Real:
9518*67e74705SXin Li case UO_Imag:
9519*67e74705SXin Li return CheckICE(Exp->getSubExpr(), Ctx);
9520*67e74705SXin Li }
9521*67e74705SXin Li
9522*67e74705SXin Li // OffsetOf falls through here.
9523*67e74705SXin Li }
9524*67e74705SXin Li case Expr::OffsetOfExprClass: {
9525*67e74705SXin Li // Note that per C99, offsetof must be an ICE. And AFAIK, using
9526*67e74705SXin Li // EvaluateAsRValue matches the proposed gcc behavior for cases like
9527*67e74705SXin Li // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
9528*67e74705SXin Li // compliance: we should warn earlier for offsetof expressions with
9529*67e74705SXin Li // array subscripts that aren't ICEs, and if the array subscripts
9530*67e74705SXin Li // are ICEs, the value of the offsetof must be an integer constant.
9531*67e74705SXin Li return CheckEvalInICE(E, Ctx);
9532*67e74705SXin Li }
9533*67e74705SXin Li case Expr::UnaryExprOrTypeTraitExprClass: {
9534*67e74705SXin Li const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
9535*67e74705SXin Li if ((Exp->getKind() == UETT_SizeOf) &&
9536*67e74705SXin Li Exp->getTypeOfArgument()->isVariableArrayType())
9537*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9538*67e74705SXin Li return NoDiag();
9539*67e74705SXin Li }
9540*67e74705SXin Li case Expr::BinaryOperatorClass: {
9541*67e74705SXin Li const BinaryOperator *Exp = cast<BinaryOperator>(E);
9542*67e74705SXin Li switch (Exp->getOpcode()) {
9543*67e74705SXin Li case BO_PtrMemD:
9544*67e74705SXin Li case BO_PtrMemI:
9545*67e74705SXin Li case BO_Assign:
9546*67e74705SXin Li case BO_MulAssign:
9547*67e74705SXin Li case BO_DivAssign:
9548*67e74705SXin Li case BO_RemAssign:
9549*67e74705SXin Li case BO_AddAssign:
9550*67e74705SXin Li case BO_SubAssign:
9551*67e74705SXin Li case BO_ShlAssign:
9552*67e74705SXin Li case BO_ShrAssign:
9553*67e74705SXin Li case BO_AndAssign:
9554*67e74705SXin Li case BO_XorAssign:
9555*67e74705SXin Li case BO_OrAssign:
9556*67e74705SXin Li // C99 6.6/3 allows assignments within unevaluated subexpressions of
9557*67e74705SXin Li // constant expressions, but they can never be ICEs because an ICE cannot
9558*67e74705SXin Li // contain an lvalue operand.
9559*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9560*67e74705SXin Li
9561*67e74705SXin Li case BO_Mul:
9562*67e74705SXin Li case BO_Div:
9563*67e74705SXin Li case BO_Rem:
9564*67e74705SXin Li case BO_Add:
9565*67e74705SXin Li case BO_Sub:
9566*67e74705SXin Li case BO_Shl:
9567*67e74705SXin Li case BO_Shr:
9568*67e74705SXin Li case BO_LT:
9569*67e74705SXin Li case BO_GT:
9570*67e74705SXin Li case BO_LE:
9571*67e74705SXin Li case BO_GE:
9572*67e74705SXin Li case BO_EQ:
9573*67e74705SXin Li case BO_NE:
9574*67e74705SXin Li case BO_And:
9575*67e74705SXin Li case BO_Xor:
9576*67e74705SXin Li case BO_Or:
9577*67e74705SXin Li case BO_Comma: {
9578*67e74705SXin Li ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9579*67e74705SXin Li ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9580*67e74705SXin Li if (Exp->getOpcode() == BO_Div ||
9581*67e74705SXin Li Exp->getOpcode() == BO_Rem) {
9582*67e74705SXin Li // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
9583*67e74705SXin Li // we don't evaluate one.
9584*67e74705SXin Li if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
9585*67e74705SXin Li llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
9586*67e74705SXin Li if (REval == 0)
9587*67e74705SXin Li return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9588*67e74705SXin Li if (REval.isSigned() && REval.isAllOnesValue()) {
9589*67e74705SXin Li llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
9590*67e74705SXin Li if (LEval.isMinSignedValue())
9591*67e74705SXin Li return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9592*67e74705SXin Li }
9593*67e74705SXin Li }
9594*67e74705SXin Li }
9595*67e74705SXin Li if (Exp->getOpcode() == BO_Comma) {
9596*67e74705SXin Li if (Ctx.getLangOpts().C99) {
9597*67e74705SXin Li // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
9598*67e74705SXin Li // if it isn't evaluated.
9599*67e74705SXin Li if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
9600*67e74705SXin Li return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9601*67e74705SXin Li } else {
9602*67e74705SXin Li // In both C89 and C++, commas in ICEs are illegal.
9603*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9604*67e74705SXin Li }
9605*67e74705SXin Li }
9606*67e74705SXin Li return Worst(LHSResult, RHSResult);
9607*67e74705SXin Li }
9608*67e74705SXin Li case BO_LAnd:
9609*67e74705SXin Li case BO_LOr: {
9610*67e74705SXin Li ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9611*67e74705SXin Li ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9612*67e74705SXin Li if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
9613*67e74705SXin Li // Rare case where the RHS has a comma "side-effect"; we need
9614*67e74705SXin Li // to actually check the condition to see whether the side
9615*67e74705SXin Li // with the comma is evaluated.
9616*67e74705SXin Li if ((Exp->getOpcode() == BO_LAnd) !=
9617*67e74705SXin Li (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
9618*67e74705SXin Li return RHSResult;
9619*67e74705SXin Li return NoDiag();
9620*67e74705SXin Li }
9621*67e74705SXin Li
9622*67e74705SXin Li return Worst(LHSResult, RHSResult);
9623*67e74705SXin Li }
9624*67e74705SXin Li }
9625*67e74705SXin Li }
9626*67e74705SXin Li case Expr::ImplicitCastExprClass:
9627*67e74705SXin Li case Expr::CStyleCastExprClass:
9628*67e74705SXin Li case Expr::CXXFunctionalCastExprClass:
9629*67e74705SXin Li case Expr::CXXStaticCastExprClass:
9630*67e74705SXin Li case Expr::CXXReinterpretCastExprClass:
9631*67e74705SXin Li case Expr::CXXConstCastExprClass:
9632*67e74705SXin Li case Expr::ObjCBridgedCastExprClass: {
9633*67e74705SXin Li const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
9634*67e74705SXin Li if (isa<ExplicitCastExpr>(E)) {
9635*67e74705SXin Li if (const FloatingLiteral *FL
9636*67e74705SXin Li = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
9637*67e74705SXin Li unsigned DestWidth = Ctx.getIntWidth(E->getType());
9638*67e74705SXin Li bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
9639*67e74705SXin Li APSInt IgnoredVal(DestWidth, !DestSigned);
9640*67e74705SXin Li bool Ignored;
9641*67e74705SXin Li // If the value does not fit in the destination type, the behavior is
9642*67e74705SXin Li // undefined, so we are not required to treat it as a constant
9643*67e74705SXin Li // expression.
9644*67e74705SXin Li if (FL->getValue().convertToInteger(IgnoredVal,
9645*67e74705SXin Li llvm::APFloat::rmTowardZero,
9646*67e74705SXin Li &Ignored) & APFloat::opInvalidOp)
9647*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9648*67e74705SXin Li return NoDiag();
9649*67e74705SXin Li }
9650*67e74705SXin Li }
9651*67e74705SXin Li switch (cast<CastExpr>(E)->getCastKind()) {
9652*67e74705SXin Li case CK_LValueToRValue:
9653*67e74705SXin Li case CK_AtomicToNonAtomic:
9654*67e74705SXin Li case CK_NonAtomicToAtomic:
9655*67e74705SXin Li case CK_NoOp:
9656*67e74705SXin Li case CK_IntegralToBoolean:
9657*67e74705SXin Li case CK_IntegralCast:
9658*67e74705SXin Li return CheckICE(SubExpr, Ctx);
9659*67e74705SXin Li default:
9660*67e74705SXin Li return ICEDiag(IK_NotICE, E->getLocStart());
9661*67e74705SXin Li }
9662*67e74705SXin Li }
9663*67e74705SXin Li case Expr::BinaryConditionalOperatorClass: {
9664*67e74705SXin Li const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
9665*67e74705SXin Li ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
9666*67e74705SXin Li if (CommonResult.Kind == IK_NotICE) return CommonResult;
9667*67e74705SXin Li ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9668*67e74705SXin Li if (FalseResult.Kind == IK_NotICE) return FalseResult;
9669*67e74705SXin Li if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
9670*67e74705SXin Li if (FalseResult.Kind == IK_ICEIfUnevaluated &&
9671*67e74705SXin Li Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
9672*67e74705SXin Li return FalseResult;
9673*67e74705SXin Li }
9674*67e74705SXin Li case Expr::ConditionalOperatorClass: {
9675*67e74705SXin Li const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
9676*67e74705SXin Li // If the condition (ignoring parens) is a __builtin_constant_p call,
9677*67e74705SXin Li // then only the true side is actually considered in an integer constant
9678*67e74705SXin Li // expression, and it is fully evaluated. This is an important GNU
9679*67e74705SXin Li // extension. See GCC PR38377 for discussion.
9680*67e74705SXin Li if (const CallExpr *CallCE
9681*67e74705SXin Li = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
9682*67e74705SXin Li if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
9683*67e74705SXin Li return CheckEvalInICE(E, Ctx);
9684*67e74705SXin Li ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
9685*67e74705SXin Li if (CondResult.Kind == IK_NotICE)
9686*67e74705SXin Li return CondResult;
9687*67e74705SXin Li
9688*67e74705SXin Li ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
9689*67e74705SXin Li ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9690*67e74705SXin Li
9691*67e74705SXin Li if (TrueResult.Kind == IK_NotICE)
9692*67e74705SXin Li return TrueResult;
9693*67e74705SXin Li if (FalseResult.Kind == IK_NotICE)
9694*67e74705SXin Li return FalseResult;
9695*67e74705SXin Li if (CondResult.Kind == IK_ICEIfUnevaluated)
9696*67e74705SXin Li return CondResult;
9697*67e74705SXin Li if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9698*67e74705SXin Li return NoDiag();
9699*67e74705SXin Li // Rare case where the diagnostics depend on which side is evaluated
9700*67e74705SXin Li // Note that if we get here, CondResult is 0, and at least one of
9701*67e74705SXin Li // TrueResult and FalseResult is non-zero.
9702*67e74705SXin Li if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9703*67e74705SXin Li return FalseResult;
9704*67e74705SXin Li return TrueResult;
9705*67e74705SXin Li }
9706*67e74705SXin Li case Expr::CXXDefaultArgExprClass:
9707*67e74705SXin Li return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9708*67e74705SXin Li case Expr::CXXDefaultInitExprClass:
9709*67e74705SXin Li return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9710*67e74705SXin Li case Expr::ChooseExprClass: {
9711*67e74705SXin Li return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9712*67e74705SXin Li }
9713*67e74705SXin Li }
9714*67e74705SXin Li
9715*67e74705SXin Li llvm_unreachable("Invalid StmtClass!");
9716*67e74705SXin Li }
9717*67e74705SXin Li
9718*67e74705SXin Li /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)9719*67e74705SXin Li static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9720*67e74705SXin Li const Expr *E,
9721*67e74705SXin Li llvm::APSInt *Value,
9722*67e74705SXin Li SourceLocation *Loc) {
9723*67e74705SXin Li if (!E->getType()->isIntegralOrEnumerationType()) {
9724*67e74705SXin Li if (Loc) *Loc = E->getExprLoc();
9725*67e74705SXin Li return false;
9726*67e74705SXin Li }
9727*67e74705SXin Li
9728*67e74705SXin Li APValue Result;
9729*67e74705SXin Li if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9730*67e74705SXin Li return false;
9731*67e74705SXin Li
9732*67e74705SXin Li if (!Result.isInt()) {
9733*67e74705SXin Li if (Loc) *Loc = E->getExprLoc();
9734*67e74705SXin Li return false;
9735*67e74705SXin Li }
9736*67e74705SXin Li
9737*67e74705SXin Li if (Value) *Value = Result.getInt();
9738*67e74705SXin Li return true;
9739*67e74705SXin Li }
9740*67e74705SXin Li
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const9741*67e74705SXin Li bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9742*67e74705SXin Li SourceLocation *Loc) const {
9743*67e74705SXin Li if (Ctx.getLangOpts().CPlusPlus11)
9744*67e74705SXin Li return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9745*67e74705SXin Li
9746*67e74705SXin Li ICEDiag D = CheckICE(this, Ctx);
9747*67e74705SXin Li if (D.Kind != IK_ICE) {
9748*67e74705SXin Li if (Loc) *Loc = D.Loc;
9749*67e74705SXin Li return false;
9750*67e74705SXin Li }
9751*67e74705SXin Li return true;
9752*67e74705SXin Li }
9753*67e74705SXin Li
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const9754*67e74705SXin Li bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9755*67e74705SXin Li SourceLocation *Loc, bool isEvaluated) const {
9756*67e74705SXin Li if (Ctx.getLangOpts().CPlusPlus11)
9757*67e74705SXin Li return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9758*67e74705SXin Li
9759*67e74705SXin Li if (!isIntegerConstantExpr(Ctx, Loc))
9760*67e74705SXin Li return false;
9761*67e74705SXin Li // The only possible side-effects here are due to UB discovered in the
9762*67e74705SXin Li // evaluation (for instance, INT_MAX + 1). In such a case, we are still
9763*67e74705SXin Li // required to treat the expression as an ICE, so we produce the folded
9764*67e74705SXin Li // value.
9765*67e74705SXin Li if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
9766*67e74705SXin Li llvm_unreachable("ICE cannot be evaluated!");
9767*67e74705SXin Li return true;
9768*67e74705SXin Li }
9769*67e74705SXin Li
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const9770*67e74705SXin Li bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9771*67e74705SXin Li return CheckICE(this, Ctx).Kind == IK_ICE;
9772*67e74705SXin Li }
9773*67e74705SXin Li
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const9774*67e74705SXin Li bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9775*67e74705SXin Li SourceLocation *Loc) const {
9776*67e74705SXin Li // We support this checking in C++98 mode in order to diagnose compatibility
9777*67e74705SXin Li // issues.
9778*67e74705SXin Li assert(Ctx.getLangOpts().CPlusPlus);
9779*67e74705SXin Li
9780*67e74705SXin Li // Build evaluation settings.
9781*67e74705SXin Li Expr::EvalStatus Status;
9782*67e74705SXin Li SmallVector<PartialDiagnosticAt, 8> Diags;
9783*67e74705SXin Li Status.Diag = &Diags;
9784*67e74705SXin Li EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9785*67e74705SXin Li
9786*67e74705SXin Li APValue Scratch;
9787*67e74705SXin Li bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9788*67e74705SXin Li
9789*67e74705SXin Li if (!Diags.empty()) {
9790*67e74705SXin Li IsConstExpr = false;
9791*67e74705SXin Li if (Loc) *Loc = Diags[0].first;
9792*67e74705SXin Li } else if (!IsConstExpr) {
9793*67e74705SXin Li // FIXME: This shouldn't happen.
9794*67e74705SXin Li if (Loc) *Loc = getExprLoc();
9795*67e74705SXin Li }
9796*67e74705SXin Li
9797*67e74705SXin Li return IsConstExpr;
9798*67e74705SXin Li }
9799*67e74705SXin Li
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const9800*67e74705SXin Li bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9801*67e74705SXin Li const FunctionDecl *Callee,
9802*67e74705SXin Li ArrayRef<const Expr*> Args) const {
9803*67e74705SXin Li Expr::EvalStatus Status;
9804*67e74705SXin Li EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9805*67e74705SXin Li
9806*67e74705SXin Li ArgVector ArgValues(Args.size());
9807*67e74705SXin Li for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9808*67e74705SXin Li I != E; ++I) {
9809*67e74705SXin Li if ((*I)->isValueDependent() ||
9810*67e74705SXin Li !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9811*67e74705SXin Li // If evaluation fails, throw away the argument entirely.
9812*67e74705SXin Li ArgValues[I - Args.begin()] = APValue();
9813*67e74705SXin Li if (Info.EvalStatus.HasSideEffects)
9814*67e74705SXin Li return false;
9815*67e74705SXin Li }
9816*67e74705SXin Li
9817*67e74705SXin Li // Build fake call to Callee.
9818*67e74705SXin Li CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9819*67e74705SXin Li ArgValues.data());
9820*67e74705SXin Li return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9821*67e74705SXin Li }
9822*67e74705SXin Li
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9823*67e74705SXin Li bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9824*67e74705SXin Li SmallVectorImpl<
9825*67e74705SXin Li PartialDiagnosticAt> &Diags) {
9826*67e74705SXin Li // FIXME: It would be useful to check constexpr function templates, but at the
9827*67e74705SXin Li // moment the constant expression evaluator cannot cope with the non-rigorous
9828*67e74705SXin Li // ASTs which we build for dependent expressions.
9829*67e74705SXin Li if (FD->isDependentContext())
9830*67e74705SXin Li return true;
9831*67e74705SXin Li
9832*67e74705SXin Li Expr::EvalStatus Status;
9833*67e74705SXin Li Status.Diag = &Diags;
9834*67e74705SXin Li
9835*67e74705SXin Li EvalInfo Info(FD->getASTContext(), Status,
9836*67e74705SXin Li EvalInfo::EM_PotentialConstantExpression);
9837*67e74705SXin Li
9838*67e74705SXin Li const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9839*67e74705SXin Li const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9840*67e74705SXin Li
9841*67e74705SXin Li // Fabricate an arbitrary expression on the stack and pretend that it
9842*67e74705SXin Li // is a temporary being used as the 'this' pointer.
9843*67e74705SXin Li LValue This;
9844*67e74705SXin Li ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9845*67e74705SXin Li This.set(&VIE, Info.CurrentCall->Index);
9846*67e74705SXin Li
9847*67e74705SXin Li ArrayRef<const Expr*> Args;
9848*67e74705SXin Li
9849*67e74705SXin Li APValue Scratch;
9850*67e74705SXin Li if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9851*67e74705SXin Li // Evaluate the call as a constant initializer, to allow the construction
9852*67e74705SXin Li // of objects of non-literal types.
9853*67e74705SXin Li Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9854*67e74705SXin Li HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
9855*67e74705SXin Li } else {
9856*67e74705SXin Li SourceLocation Loc = FD->getLocation();
9857*67e74705SXin Li HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9858*67e74705SXin Li Args, FD->getBody(), Info, Scratch, nullptr);
9859*67e74705SXin Li }
9860*67e74705SXin Li
9861*67e74705SXin Li return Diags.empty();
9862*67e74705SXin Li }
9863*67e74705SXin Li
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9864*67e74705SXin Li bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9865*67e74705SXin Li const FunctionDecl *FD,
9866*67e74705SXin Li SmallVectorImpl<
9867*67e74705SXin Li PartialDiagnosticAt> &Diags) {
9868*67e74705SXin Li Expr::EvalStatus Status;
9869*67e74705SXin Li Status.Diag = &Diags;
9870*67e74705SXin Li
9871*67e74705SXin Li EvalInfo Info(FD->getASTContext(), Status,
9872*67e74705SXin Li EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9873*67e74705SXin Li
9874*67e74705SXin Li // Fabricate a call stack frame to give the arguments a plausible cover story.
9875*67e74705SXin Li ArrayRef<const Expr*> Args;
9876*67e74705SXin Li ArgVector ArgValues(0);
9877*67e74705SXin Li bool Success = EvaluateArgs(Args, ArgValues, Info);
9878*67e74705SXin Li (void)Success;
9879*67e74705SXin Li assert(Success &&
9880*67e74705SXin Li "Failed to set up arguments for potential constant evaluation");
9881*67e74705SXin Li CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9882*67e74705SXin Li
9883*67e74705SXin Li APValue ResultScratch;
9884*67e74705SXin Li Evaluate(ResultScratch, Info, E);
9885*67e74705SXin Li return Diags.empty();
9886*67e74705SXin Li }
9887*67e74705SXin Li
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const9888*67e74705SXin Li bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
9889*67e74705SXin Li unsigned Type) const {
9890*67e74705SXin Li if (!getType()->isPointerType())
9891*67e74705SXin Li return false;
9892*67e74705SXin Li
9893*67e74705SXin Li Expr::EvalStatus Status;
9894*67e74705SXin Li EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
9895*67e74705SXin Li return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
9896*67e74705SXin Li }
9897