xref: /aosp_15_r20/external/clang/lib/CodeGen/CGExprScalar.cpp (revision 67e74705e28f6214e480b399dd47ea732279e315)
1*67e74705SXin Li //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2*67e74705SXin Li //
3*67e74705SXin Li //                     The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11*67e74705SXin Li //
12*67e74705SXin Li //===----------------------------------------------------------------------===//
13*67e74705SXin Li 
14*67e74705SXin Li #include "CodeGenFunction.h"
15*67e74705SXin Li #include "CGCXXABI.h"
16*67e74705SXin Li #include "CGDebugInfo.h"
17*67e74705SXin Li #include "CGObjCRuntime.h"
18*67e74705SXin Li #include "CodeGenModule.h"
19*67e74705SXin Li #include "TargetInfo.h"
20*67e74705SXin Li #include "clang/AST/ASTContext.h"
21*67e74705SXin Li #include "clang/AST/DeclObjC.h"
22*67e74705SXin Li #include "clang/AST/RecordLayout.h"
23*67e74705SXin Li #include "clang/AST/StmtVisitor.h"
24*67e74705SXin Li #include "clang/Basic/TargetInfo.h"
25*67e74705SXin Li #include "clang/Frontend/CodeGenOptions.h"
26*67e74705SXin Li #include "llvm/IR/CFG.h"
27*67e74705SXin Li #include "llvm/IR/Constants.h"
28*67e74705SXin Li #include "llvm/IR/DataLayout.h"
29*67e74705SXin Li #include "llvm/IR/Function.h"
30*67e74705SXin Li #include "llvm/IR/GlobalVariable.h"
31*67e74705SXin Li #include "llvm/IR/Intrinsics.h"
32*67e74705SXin Li #include "llvm/IR/Module.h"
33*67e74705SXin Li #include <cstdarg>
34*67e74705SXin Li 
35*67e74705SXin Li using namespace clang;
36*67e74705SXin Li using namespace CodeGen;
37*67e74705SXin Li using llvm::Value;
38*67e74705SXin Li 
39*67e74705SXin Li //===----------------------------------------------------------------------===//
40*67e74705SXin Li //                         Scalar Expression Emitter
41*67e74705SXin Li //===----------------------------------------------------------------------===//
42*67e74705SXin Li 
43*67e74705SXin Li namespace {
44*67e74705SXin Li struct BinOpInfo {
45*67e74705SXin Li   Value *LHS;
46*67e74705SXin Li   Value *RHS;
47*67e74705SXin Li   QualType Ty;  // Computation Type.
48*67e74705SXin Li   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49*67e74705SXin Li   bool FPContractable;
50*67e74705SXin Li   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
51*67e74705SXin Li };
52*67e74705SXin Li 
MustVisitNullValue(const Expr * E)53*67e74705SXin Li static bool MustVisitNullValue(const Expr *E) {
54*67e74705SXin Li   // If a null pointer expression's type is the C++0x nullptr_t, then
55*67e74705SXin Li   // it's not necessarily a simple constant and it must be evaluated
56*67e74705SXin Li   // for its potential side effects.
57*67e74705SXin Li   return E->getType()->isNullPtrType();
58*67e74705SXin Li }
59*67e74705SXin Li 
60*67e74705SXin Li class ScalarExprEmitter
61*67e74705SXin Li   : public StmtVisitor<ScalarExprEmitter, Value*> {
62*67e74705SXin Li   CodeGenFunction &CGF;
63*67e74705SXin Li   CGBuilderTy &Builder;
64*67e74705SXin Li   bool IgnoreResultAssign;
65*67e74705SXin Li   llvm::LLVMContext &VMContext;
66*67e74705SXin Li public:
67*67e74705SXin Li 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)68*67e74705SXin Li   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69*67e74705SXin Li     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70*67e74705SXin Li       VMContext(cgf.getLLVMContext()) {
71*67e74705SXin Li   }
72*67e74705SXin Li 
73*67e74705SXin Li   //===--------------------------------------------------------------------===//
74*67e74705SXin Li   //                               Utilities
75*67e74705SXin Li   //===--------------------------------------------------------------------===//
76*67e74705SXin Li 
TestAndClearIgnoreResultAssign()77*67e74705SXin Li   bool TestAndClearIgnoreResultAssign() {
78*67e74705SXin Li     bool I = IgnoreResultAssign;
79*67e74705SXin Li     IgnoreResultAssign = false;
80*67e74705SXin Li     return I;
81*67e74705SXin Li   }
82*67e74705SXin Li 
ConvertType(QualType T)83*67e74705SXin Li   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)84*67e74705SXin Li   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)85*67e74705SXin Li   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86*67e74705SXin Li     return CGF.EmitCheckedLValue(E, TCK);
87*67e74705SXin Li   }
88*67e74705SXin Li 
89*67e74705SXin Li   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90*67e74705SXin Li                       const BinOpInfo &Info);
91*67e74705SXin Li 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)92*67e74705SXin Li   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93*67e74705SXin Li     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94*67e74705SXin Li   }
95*67e74705SXin Li 
EmitLValueAlignmentAssumption(const Expr * E,Value * V)96*67e74705SXin Li   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97*67e74705SXin Li     const AlignValueAttr *AVAttr = nullptr;
98*67e74705SXin Li     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99*67e74705SXin Li       const ValueDecl *VD = DRE->getDecl();
100*67e74705SXin Li 
101*67e74705SXin Li       if (VD->getType()->isReferenceType()) {
102*67e74705SXin Li         if (const auto *TTy =
103*67e74705SXin Li             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104*67e74705SXin Li           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105*67e74705SXin Li       } else {
106*67e74705SXin Li         // Assumptions for function parameters are emitted at the start of the
107*67e74705SXin Li         // function, so there is no need to repeat that here.
108*67e74705SXin Li         if (isa<ParmVarDecl>(VD))
109*67e74705SXin Li           return;
110*67e74705SXin Li 
111*67e74705SXin Li         AVAttr = VD->getAttr<AlignValueAttr>();
112*67e74705SXin Li       }
113*67e74705SXin Li     }
114*67e74705SXin Li 
115*67e74705SXin Li     if (!AVAttr)
116*67e74705SXin Li       if (const auto *TTy =
117*67e74705SXin Li           dyn_cast<TypedefType>(E->getType()))
118*67e74705SXin Li         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119*67e74705SXin Li 
120*67e74705SXin Li     if (!AVAttr)
121*67e74705SXin Li       return;
122*67e74705SXin Li 
123*67e74705SXin Li     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124*67e74705SXin Li     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125*67e74705SXin Li     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126*67e74705SXin Li   }
127*67e74705SXin Li 
128*67e74705SXin Li   /// EmitLoadOfLValue - Given an expression with complex type that represents a
129*67e74705SXin Li   /// value l-value, this method emits the address of the l-value, then loads
130*67e74705SXin Li   /// and returns the result.
EmitLoadOfLValue(const Expr * E)131*67e74705SXin Li   Value *EmitLoadOfLValue(const Expr *E) {
132*67e74705SXin Li     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133*67e74705SXin Li                                 E->getExprLoc());
134*67e74705SXin Li 
135*67e74705SXin Li     EmitLValueAlignmentAssumption(E, V);
136*67e74705SXin Li     return V;
137*67e74705SXin Li   }
138*67e74705SXin Li 
139*67e74705SXin Li   /// EmitConversionToBool - Convert the specified expression value to a
140*67e74705SXin Li   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
141*67e74705SXin Li   Value *EmitConversionToBool(Value *Src, QualType DstTy);
142*67e74705SXin Li 
143*67e74705SXin Li   /// Emit a check that a conversion to or from a floating-point type does not
144*67e74705SXin Li   /// overflow.
145*67e74705SXin Li   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146*67e74705SXin Li                                 Value *Src, QualType SrcType, QualType DstType,
147*67e74705SXin Li                                 llvm::Type *DstTy, SourceLocation Loc);
148*67e74705SXin Li 
149*67e74705SXin Li   /// Emit a conversion from the specified type to the specified destination
150*67e74705SXin Li   /// type, both of which are LLVM scalar types.
151*67e74705SXin Li   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152*67e74705SXin Li                               SourceLocation Loc);
153*67e74705SXin Li 
154*67e74705SXin Li   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155*67e74705SXin Li                               SourceLocation Loc, bool TreatBooleanAsSigned);
156*67e74705SXin Li 
157*67e74705SXin Li   /// Emit a conversion from the specified complex type to the specified
158*67e74705SXin Li   /// destination type, where the destination type is an LLVM scalar type.
159*67e74705SXin Li   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160*67e74705SXin Li                                        QualType SrcTy, QualType DstTy,
161*67e74705SXin Li                                        SourceLocation Loc);
162*67e74705SXin Li 
163*67e74705SXin Li   /// EmitNullValue - Emit a value that corresponds to null for the given type.
164*67e74705SXin Li   Value *EmitNullValue(QualType Ty);
165*67e74705SXin Li 
166*67e74705SXin Li   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)167*67e74705SXin Li   Value *EmitFloatToBoolConversion(Value *V) {
168*67e74705SXin Li     // Compare against 0.0 for fp scalars.
169*67e74705SXin Li     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170*67e74705SXin Li     return Builder.CreateFCmpUNE(V, Zero, "tobool");
171*67e74705SXin Li   }
172*67e74705SXin Li 
173*67e74705SXin Li   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)174*67e74705SXin Li   Value *EmitPointerToBoolConversion(Value *V) {
175*67e74705SXin Li     Value *Zero = llvm::ConstantPointerNull::get(
176*67e74705SXin Li                                       cast<llvm::PointerType>(V->getType()));
177*67e74705SXin Li     return Builder.CreateICmpNE(V, Zero, "tobool");
178*67e74705SXin Li   }
179*67e74705SXin Li 
EmitIntToBoolConversion(Value * V)180*67e74705SXin Li   Value *EmitIntToBoolConversion(Value *V) {
181*67e74705SXin Li     // Because of the type rules of C, we often end up computing a
182*67e74705SXin Li     // logical value, then zero extending it to int, then wanting it
183*67e74705SXin Li     // as a logical value again.  Optimize this common case.
184*67e74705SXin Li     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185*67e74705SXin Li       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186*67e74705SXin Li         Value *Result = ZI->getOperand(0);
187*67e74705SXin Li         // If there aren't any more uses, zap the instruction to save space.
188*67e74705SXin Li         // Note that there can be more uses, for example if this
189*67e74705SXin Li         // is the result of an assignment.
190*67e74705SXin Li         if (ZI->use_empty())
191*67e74705SXin Li           ZI->eraseFromParent();
192*67e74705SXin Li         return Result;
193*67e74705SXin Li       }
194*67e74705SXin Li     }
195*67e74705SXin Li 
196*67e74705SXin Li     return Builder.CreateIsNotNull(V, "tobool");
197*67e74705SXin Li   }
198*67e74705SXin Li 
199*67e74705SXin Li   //===--------------------------------------------------------------------===//
200*67e74705SXin Li   //                            Visitor Methods
201*67e74705SXin Li   //===--------------------------------------------------------------------===//
202*67e74705SXin Li 
Visit(Expr * E)203*67e74705SXin Li   Value *Visit(Expr *E) {
204*67e74705SXin Li     ApplyDebugLocation DL(CGF, E);
205*67e74705SXin Li     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206*67e74705SXin Li   }
207*67e74705SXin Li 
VisitStmt(Stmt * S)208*67e74705SXin Li   Value *VisitStmt(Stmt *S) {
209*67e74705SXin Li     S->dump(CGF.getContext().getSourceManager());
210*67e74705SXin Li     llvm_unreachable("Stmt can't have complex result type!");
211*67e74705SXin Li   }
212*67e74705SXin Li   Value *VisitExpr(Expr *S);
213*67e74705SXin Li 
VisitParenExpr(ParenExpr * PE)214*67e74705SXin Li   Value *VisitParenExpr(ParenExpr *PE) {
215*67e74705SXin Li     return Visit(PE->getSubExpr());
216*67e74705SXin Li   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)217*67e74705SXin Li   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218*67e74705SXin Li     return Visit(E->getReplacement());
219*67e74705SXin Li   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)220*67e74705SXin Li   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221*67e74705SXin Li     return Visit(GE->getResultExpr());
222*67e74705SXin Li   }
223*67e74705SXin Li 
224*67e74705SXin Li   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)225*67e74705SXin Li   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226*67e74705SXin Li     return Builder.getInt(E->getValue());
227*67e74705SXin Li   }
VisitFloatingLiteral(const FloatingLiteral * E)228*67e74705SXin Li   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229*67e74705SXin Li     return llvm::ConstantFP::get(VMContext, E->getValue());
230*67e74705SXin Li   }
VisitCharacterLiteral(const CharacterLiteral * E)231*67e74705SXin Li   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232*67e74705SXin Li     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233*67e74705SXin Li   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)234*67e74705SXin Li   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235*67e74705SXin Li     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236*67e74705SXin Li   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)237*67e74705SXin Li   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238*67e74705SXin Li     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239*67e74705SXin Li   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)240*67e74705SXin Li   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241*67e74705SXin Li     return EmitNullValue(E->getType());
242*67e74705SXin Li   }
VisitGNUNullExpr(const GNUNullExpr * E)243*67e74705SXin Li   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244*67e74705SXin Li     return EmitNullValue(E->getType());
245*67e74705SXin Li   }
246*67e74705SXin Li   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247*67e74705SXin Li   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)248*67e74705SXin Li   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249*67e74705SXin Li     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250*67e74705SXin Li     return Builder.CreateBitCast(V, ConvertType(E->getType()));
251*67e74705SXin Li   }
252*67e74705SXin Li 
VisitSizeOfPackExpr(SizeOfPackExpr * E)253*67e74705SXin Li   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254*67e74705SXin Li     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255*67e74705SXin Li   }
256*67e74705SXin Li 
VisitPseudoObjectExpr(PseudoObjectExpr * E)257*67e74705SXin Li   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258*67e74705SXin Li     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259*67e74705SXin Li   }
260*67e74705SXin Li 
VisitOpaqueValueExpr(OpaqueValueExpr * E)261*67e74705SXin Li   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262*67e74705SXin Li     if (E->isGLValue())
263*67e74705SXin Li       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264*67e74705SXin Li 
265*67e74705SXin Li     // Otherwise, assume the mapping is the scalar directly.
266*67e74705SXin Li     return CGF.getOpaqueRValueMapping(E).getScalarVal();
267*67e74705SXin Li   }
268*67e74705SXin Li 
269*67e74705SXin Li   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)270*67e74705SXin Li   Value *VisitDeclRefExpr(DeclRefExpr *E) {
271*67e74705SXin Li     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272*67e74705SXin Li       if (result.isReference())
273*67e74705SXin Li         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274*67e74705SXin Li                                 E->getExprLoc());
275*67e74705SXin Li       return result.getValue();
276*67e74705SXin Li     }
277*67e74705SXin Li     return EmitLoadOfLValue(E);
278*67e74705SXin Li   }
279*67e74705SXin Li 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)280*67e74705SXin Li   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281*67e74705SXin Li     return CGF.EmitObjCSelectorExpr(E);
282*67e74705SXin Li   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)283*67e74705SXin Li   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284*67e74705SXin Li     return CGF.EmitObjCProtocolExpr(E);
285*67e74705SXin Li   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)286*67e74705SXin Li   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287*67e74705SXin Li     return EmitLoadOfLValue(E);
288*67e74705SXin Li   }
VisitObjCMessageExpr(ObjCMessageExpr * E)289*67e74705SXin Li   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290*67e74705SXin Li     if (E->getMethodDecl() &&
291*67e74705SXin Li         E->getMethodDecl()->getReturnType()->isReferenceType())
292*67e74705SXin Li       return EmitLoadOfLValue(E);
293*67e74705SXin Li     return CGF.EmitObjCMessageExpr(E).getScalarVal();
294*67e74705SXin Li   }
295*67e74705SXin Li 
VisitObjCIsaExpr(ObjCIsaExpr * E)296*67e74705SXin Li   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297*67e74705SXin Li     LValue LV = CGF.EmitObjCIsaExpr(E);
298*67e74705SXin Li     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299*67e74705SXin Li     return V;
300*67e74705SXin Li   }
301*67e74705SXin Li 
302*67e74705SXin Li   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303*67e74705SXin Li   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304*67e74705SXin Li   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305*67e74705SXin Li   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)306*67e74705SXin Li   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)307*67e74705SXin Li   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308*67e74705SXin Li     return EmitLoadOfLValue(E);
309*67e74705SXin Li   }
310*67e74705SXin Li 
311*67e74705SXin Li   Value *VisitInitListExpr(InitListExpr *E);
312*67e74705SXin Li 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)313*67e74705SXin Li   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314*67e74705SXin Li     return EmitNullValue(E->getType());
315*67e74705SXin Li   }
VisitExplicitCastExpr(ExplicitCastExpr * E)316*67e74705SXin Li   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317*67e74705SXin Li     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318*67e74705SXin Li     return VisitCastExpr(E);
319*67e74705SXin Li   }
320*67e74705SXin Li   Value *VisitCastExpr(CastExpr *E);
321*67e74705SXin Li 
VisitCallExpr(const CallExpr * E)322*67e74705SXin Li   Value *VisitCallExpr(const CallExpr *E) {
323*67e74705SXin Li     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324*67e74705SXin Li       return EmitLoadOfLValue(E);
325*67e74705SXin Li 
326*67e74705SXin Li     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327*67e74705SXin Li 
328*67e74705SXin Li     EmitLValueAlignmentAssumption(E, V);
329*67e74705SXin Li     return V;
330*67e74705SXin Li   }
331*67e74705SXin Li 
332*67e74705SXin Li   Value *VisitStmtExpr(const StmtExpr *E);
333*67e74705SXin Li 
334*67e74705SXin Li   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)335*67e74705SXin Li   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336*67e74705SXin Li     LValue LV = EmitLValue(E->getSubExpr());
337*67e74705SXin Li     return EmitScalarPrePostIncDec(E, LV, false, false);
338*67e74705SXin Li   }
VisitUnaryPostInc(const UnaryOperator * E)339*67e74705SXin Li   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340*67e74705SXin Li     LValue LV = EmitLValue(E->getSubExpr());
341*67e74705SXin Li     return EmitScalarPrePostIncDec(E, LV, true, false);
342*67e74705SXin Li   }
VisitUnaryPreDec(const UnaryOperator * E)343*67e74705SXin Li   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344*67e74705SXin Li     LValue LV = EmitLValue(E->getSubExpr());
345*67e74705SXin Li     return EmitScalarPrePostIncDec(E, LV, false, true);
346*67e74705SXin Li   }
VisitUnaryPreInc(const UnaryOperator * E)347*67e74705SXin Li   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348*67e74705SXin Li     LValue LV = EmitLValue(E->getSubExpr());
349*67e74705SXin Li     return EmitScalarPrePostIncDec(E, LV, true, true);
350*67e74705SXin Li   }
351*67e74705SXin Li 
352*67e74705SXin Li   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353*67e74705SXin Li                                                   llvm::Value *InVal,
354*67e74705SXin Li                                                   bool IsInc);
355*67e74705SXin Li 
356*67e74705SXin Li   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357*67e74705SXin Li                                        bool isInc, bool isPre);
358*67e74705SXin Li 
359*67e74705SXin Li 
VisitUnaryAddrOf(const UnaryOperator * E)360*67e74705SXin Li   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361*67e74705SXin Li     if (isa<MemberPointerType>(E->getType())) // never sugared
362*67e74705SXin Li       return CGF.CGM.getMemberPointerConstant(E);
363*67e74705SXin Li 
364*67e74705SXin Li     return EmitLValue(E->getSubExpr()).getPointer();
365*67e74705SXin Li   }
VisitUnaryDeref(const UnaryOperator * E)366*67e74705SXin Li   Value *VisitUnaryDeref(const UnaryOperator *E) {
367*67e74705SXin Li     if (E->getType()->isVoidType())
368*67e74705SXin Li       return Visit(E->getSubExpr()); // the actual value should be unused
369*67e74705SXin Li     return EmitLoadOfLValue(E);
370*67e74705SXin Li   }
VisitUnaryPlus(const UnaryOperator * E)371*67e74705SXin Li   Value *VisitUnaryPlus(const UnaryOperator *E) {
372*67e74705SXin Li     // This differs from gcc, though, most likely due to a bug in gcc.
373*67e74705SXin Li     TestAndClearIgnoreResultAssign();
374*67e74705SXin Li     return Visit(E->getSubExpr());
375*67e74705SXin Li   }
376*67e74705SXin Li   Value *VisitUnaryMinus    (const UnaryOperator *E);
377*67e74705SXin Li   Value *VisitUnaryNot      (const UnaryOperator *E);
378*67e74705SXin Li   Value *VisitUnaryLNot     (const UnaryOperator *E);
379*67e74705SXin Li   Value *VisitUnaryReal     (const UnaryOperator *E);
380*67e74705SXin Li   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)381*67e74705SXin Li   Value *VisitUnaryExtension(const UnaryOperator *E) {
382*67e74705SXin Li     return Visit(E->getSubExpr());
383*67e74705SXin Li   }
384*67e74705SXin Li 
385*67e74705SXin Li   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)386*67e74705SXin Li   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387*67e74705SXin Li     return EmitLoadOfLValue(E);
388*67e74705SXin Li   }
389*67e74705SXin Li 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)390*67e74705SXin Li   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391*67e74705SXin Li     return Visit(DAE->getExpr());
392*67e74705SXin Li   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)393*67e74705SXin Li   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394*67e74705SXin Li     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395*67e74705SXin Li     return Visit(DIE->getExpr());
396*67e74705SXin Li   }
VisitCXXThisExpr(CXXThisExpr * TE)397*67e74705SXin Li   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398*67e74705SXin Li     return CGF.LoadCXXThis();
399*67e74705SXin Li   }
400*67e74705SXin Li 
VisitExprWithCleanups(ExprWithCleanups * E)401*67e74705SXin Li   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402*67e74705SXin Li     CGF.enterFullExpression(E);
403*67e74705SXin Li     CodeGenFunction::RunCleanupsScope Scope(CGF);
404*67e74705SXin Li     return Visit(E->getSubExpr());
405*67e74705SXin Li   }
VisitCXXNewExpr(const CXXNewExpr * E)406*67e74705SXin Li   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407*67e74705SXin Li     return CGF.EmitCXXNewExpr(E);
408*67e74705SXin Li   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)409*67e74705SXin Li   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410*67e74705SXin Li     CGF.EmitCXXDeleteExpr(E);
411*67e74705SXin Li     return nullptr;
412*67e74705SXin Li   }
413*67e74705SXin Li 
VisitTypeTraitExpr(const TypeTraitExpr * E)414*67e74705SXin Li   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415*67e74705SXin Li     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416*67e74705SXin Li   }
417*67e74705SXin Li 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)418*67e74705SXin Li   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419*67e74705SXin Li     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420*67e74705SXin Li   }
421*67e74705SXin Li 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)422*67e74705SXin Li   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423*67e74705SXin Li     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424*67e74705SXin Li   }
425*67e74705SXin Li 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)426*67e74705SXin Li   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427*67e74705SXin Li     // C++ [expr.pseudo]p1:
428*67e74705SXin Li     //   The result shall only be used as the operand for the function call
429*67e74705SXin Li     //   operator (), and the result of such a call has type void. The only
430*67e74705SXin Li     //   effect is the evaluation of the postfix-expression before the dot or
431*67e74705SXin Li     //   arrow.
432*67e74705SXin Li     CGF.EmitScalarExpr(E->getBase());
433*67e74705SXin Li     return nullptr;
434*67e74705SXin Li   }
435*67e74705SXin Li 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)436*67e74705SXin Li   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437*67e74705SXin Li     return EmitNullValue(E->getType());
438*67e74705SXin Li   }
439*67e74705SXin Li 
VisitCXXThrowExpr(const CXXThrowExpr * E)440*67e74705SXin Li   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441*67e74705SXin Li     CGF.EmitCXXThrowExpr(E);
442*67e74705SXin Li     return nullptr;
443*67e74705SXin Li   }
444*67e74705SXin Li 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)445*67e74705SXin Li   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446*67e74705SXin Li     return Builder.getInt1(E->getValue());
447*67e74705SXin Li   }
448*67e74705SXin Li 
449*67e74705SXin Li   // Binary Operators.
EmitMul(const BinOpInfo & Ops)450*67e74705SXin Li   Value *EmitMul(const BinOpInfo &Ops) {
451*67e74705SXin Li     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452*67e74705SXin Li       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453*67e74705SXin Li       case LangOptions::SOB_Defined:
454*67e74705SXin Li         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455*67e74705SXin Li       case LangOptions::SOB_Undefined:
456*67e74705SXin Li         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457*67e74705SXin Li           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458*67e74705SXin Li         // Fall through.
459*67e74705SXin Li       case LangOptions::SOB_Trapping:
460*67e74705SXin Li         return EmitOverflowCheckedBinOp(Ops);
461*67e74705SXin Li       }
462*67e74705SXin Li     }
463*67e74705SXin Li 
464*67e74705SXin Li     if (Ops.Ty->isUnsignedIntegerType() &&
465*67e74705SXin Li         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466*67e74705SXin Li       return EmitOverflowCheckedBinOp(Ops);
467*67e74705SXin Li 
468*67e74705SXin Li     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469*67e74705SXin Li       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470*67e74705SXin Li     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471*67e74705SXin Li   }
472*67e74705SXin Li   /// Create a binary op that checks for overflow.
473*67e74705SXin Li   /// Currently only supports +, - and *.
474*67e74705SXin Li   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475*67e74705SXin Li 
476*67e74705SXin Li   // Check for undefined division and modulus behaviors.
477*67e74705SXin Li   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478*67e74705SXin Li                                                   llvm::Value *Zero,bool isDiv);
479*67e74705SXin Li   // Common helper for getting how wide LHS of shift is.
480*67e74705SXin Li   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481*67e74705SXin Li   Value *EmitDiv(const BinOpInfo &Ops);
482*67e74705SXin Li   Value *EmitRem(const BinOpInfo &Ops);
483*67e74705SXin Li   Value *EmitAdd(const BinOpInfo &Ops);
484*67e74705SXin Li   Value *EmitSub(const BinOpInfo &Ops);
485*67e74705SXin Li   Value *EmitShl(const BinOpInfo &Ops);
486*67e74705SXin Li   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)487*67e74705SXin Li   Value *EmitAnd(const BinOpInfo &Ops) {
488*67e74705SXin Li     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489*67e74705SXin Li   }
EmitXor(const BinOpInfo & Ops)490*67e74705SXin Li   Value *EmitXor(const BinOpInfo &Ops) {
491*67e74705SXin Li     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492*67e74705SXin Li   }
EmitOr(const BinOpInfo & Ops)493*67e74705SXin Li   Value *EmitOr (const BinOpInfo &Ops) {
494*67e74705SXin Li     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495*67e74705SXin Li   }
496*67e74705SXin Li 
497*67e74705SXin Li   BinOpInfo EmitBinOps(const BinaryOperator *E);
498*67e74705SXin Li   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499*67e74705SXin Li                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500*67e74705SXin Li                                   Value *&Result);
501*67e74705SXin Li 
502*67e74705SXin Li   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503*67e74705SXin Li                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504*67e74705SXin Li 
505*67e74705SXin Li   // Binary operators and binary compound assignment operators.
506*67e74705SXin Li #define HANDLEBINOP(OP) \
507*67e74705SXin Li   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508*67e74705SXin Li     return Emit ## OP(EmitBinOps(E));                                      \
509*67e74705SXin Li   }                                                                        \
510*67e74705SXin Li   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511*67e74705SXin Li     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512*67e74705SXin Li   }
513*67e74705SXin Li   HANDLEBINOP(Mul)
514*67e74705SXin Li   HANDLEBINOP(Div)
515*67e74705SXin Li   HANDLEBINOP(Rem)
516*67e74705SXin Li   HANDLEBINOP(Add)
517*67e74705SXin Li   HANDLEBINOP(Sub)
518*67e74705SXin Li   HANDLEBINOP(Shl)
519*67e74705SXin Li   HANDLEBINOP(Shr)
520*67e74705SXin Li   HANDLEBINOP(And)
521*67e74705SXin Li   HANDLEBINOP(Xor)
522*67e74705SXin Li   HANDLEBINOP(Or)
523*67e74705SXin Li #undef HANDLEBINOP
524*67e74705SXin Li 
525*67e74705SXin Li   // Comparisons.
526*67e74705SXin Li   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527*67e74705SXin Li                      llvm::CmpInst::Predicate SICmpOpc,
528*67e74705SXin Li                      llvm::CmpInst::Predicate FCmpOpc);
529*67e74705SXin Li #define VISITCOMP(CODE, UI, SI, FP) \
530*67e74705SXin Li     Value *VisitBin##CODE(const BinaryOperator *E) { \
531*67e74705SXin Li       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532*67e74705SXin Li                          llvm::FCmpInst::FP); }
533*67e74705SXin Li   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534*67e74705SXin Li   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535*67e74705SXin Li   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536*67e74705SXin Li   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537*67e74705SXin Li   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538*67e74705SXin Li   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539*67e74705SXin Li #undef VISITCOMP
540*67e74705SXin Li 
541*67e74705SXin Li   Value *VisitBinAssign     (const BinaryOperator *E);
542*67e74705SXin Li 
543*67e74705SXin Li   Value *VisitBinLAnd       (const BinaryOperator *E);
544*67e74705SXin Li   Value *VisitBinLOr        (const BinaryOperator *E);
545*67e74705SXin Li   Value *VisitBinComma      (const BinaryOperator *E);
546*67e74705SXin Li 
VisitBinPtrMemD(const Expr * E)547*67e74705SXin Li   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)548*67e74705SXin Li   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549*67e74705SXin Li 
550*67e74705SXin Li   // Other Operators.
551*67e74705SXin Li   Value *VisitBlockExpr(const BlockExpr *BE);
552*67e74705SXin Li   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553*67e74705SXin Li   Value *VisitChooseExpr(ChooseExpr *CE);
554*67e74705SXin Li   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)555*67e74705SXin Li   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556*67e74705SXin Li     return CGF.EmitObjCStringLiteral(E);
557*67e74705SXin Li   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)558*67e74705SXin Li   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559*67e74705SXin Li     return CGF.EmitObjCBoxedExpr(E);
560*67e74705SXin Li   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)561*67e74705SXin Li   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562*67e74705SXin Li     return CGF.EmitObjCArrayLiteral(E);
563*67e74705SXin Li   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)564*67e74705SXin Li   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565*67e74705SXin Li     return CGF.EmitObjCDictionaryLiteral(E);
566*67e74705SXin Li   }
567*67e74705SXin Li   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568*67e74705SXin Li   Value *VisitAtomicExpr(AtomicExpr *AE);
569*67e74705SXin Li };
570*67e74705SXin Li }  // end anonymous namespace.
571*67e74705SXin Li 
572*67e74705SXin Li //===----------------------------------------------------------------------===//
573*67e74705SXin Li //                                Utilities
574*67e74705SXin Li //===----------------------------------------------------------------------===//
575*67e74705SXin Li 
576*67e74705SXin Li /// EmitConversionToBool - Convert the specified expression value to a
577*67e74705SXin Li /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)578*67e74705SXin Li Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579*67e74705SXin Li   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580*67e74705SXin Li 
581*67e74705SXin Li   if (SrcType->isRealFloatingType())
582*67e74705SXin Li     return EmitFloatToBoolConversion(Src);
583*67e74705SXin Li 
584*67e74705SXin Li   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585*67e74705SXin Li     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586*67e74705SXin Li 
587*67e74705SXin Li   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588*67e74705SXin Li          "Unknown scalar type to convert");
589*67e74705SXin Li 
590*67e74705SXin Li   if (isa<llvm::IntegerType>(Src->getType()))
591*67e74705SXin Li     return EmitIntToBoolConversion(Src);
592*67e74705SXin Li 
593*67e74705SXin Li   assert(isa<llvm::PointerType>(Src->getType()));
594*67e74705SXin Li   return EmitPointerToBoolConversion(Src);
595*67e74705SXin Li }
596*67e74705SXin Li 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)597*67e74705SXin Li void ScalarExprEmitter::EmitFloatConversionCheck(
598*67e74705SXin Li     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599*67e74705SXin Li     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600*67e74705SXin Li   CodeGenFunction::SanitizerScope SanScope(&CGF);
601*67e74705SXin Li   using llvm::APFloat;
602*67e74705SXin Li   using llvm::APSInt;
603*67e74705SXin Li 
604*67e74705SXin Li   llvm::Type *SrcTy = Src->getType();
605*67e74705SXin Li 
606*67e74705SXin Li   llvm::Value *Check = nullptr;
607*67e74705SXin Li   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608*67e74705SXin Li     // Integer to floating-point. This can fail for unsigned short -> __half
609*67e74705SXin Li     // or unsigned __int128 -> float.
610*67e74705SXin Li     assert(DstType->isFloatingType());
611*67e74705SXin Li     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612*67e74705SXin Li 
613*67e74705SXin Li     APFloat LargestFloat =
614*67e74705SXin Li       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615*67e74705SXin Li     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616*67e74705SXin Li 
617*67e74705SXin Li     bool IsExact;
618*67e74705SXin Li     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619*67e74705SXin Li                                       &IsExact) != APFloat::opOK)
620*67e74705SXin Li       // The range of representable values of this floating point type includes
621*67e74705SXin Li       // all values of this integer type. Don't need an overflow check.
622*67e74705SXin Li       return;
623*67e74705SXin Li 
624*67e74705SXin Li     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625*67e74705SXin Li     if (SrcIsUnsigned)
626*67e74705SXin Li       Check = Builder.CreateICmpULE(Src, Max);
627*67e74705SXin Li     else {
628*67e74705SXin Li       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629*67e74705SXin Li       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630*67e74705SXin Li       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631*67e74705SXin Li       Check = Builder.CreateAnd(GE, LE);
632*67e74705SXin Li     }
633*67e74705SXin Li   } else {
634*67e74705SXin Li     const llvm::fltSemantics &SrcSema =
635*67e74705SXin Li       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636*67e74705SXin Li     if (isa<llvm::IntegerType>(DstTy)) {
637*67e74705SXin Li       // Floating-point to integer. This has undefined behavior if the source is
638*67e74705SXin Li       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639*67e74705SXin Li       // to an integer).
640*67e74705SXin Li       unsigned Width = CGF.getContext().getIntWidth(DstType);
641*67e74705SXin Li       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642*67e74705SXin Li 
643*67e74705SXin Li       APSInt Min = APSInt::getMinValue(Width, Unsigned);
644*67e74705SXin Li       APFloat MinSrc(SrcSema, APFloat::uninitialized);
645*67e74705SXin Li       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646*67e74705SXin Li           APFloat::opOverflow)
647*67e74705SXin Li         // Don't need an overflow check for lower bound. Just check for
648*67e74705SXin Li         // -Inf/NaN.
649*67e74705SXin Li         MinSrc = APFloat::getInf(SrcSema, true);
650*67e74705SXin Li       else
651*67e74705SXin Li         // Find the largest value which is too small to represent (before
652*67e74705SXin Li         // truncation toward zero).
653*67e74705SXin Li         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654*67e74705SXin Li 
655*67e74705SXin Li       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656*67e74705SXin Li       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657*67e74705SXin Li       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658*67e74705SXin Li           APFloat::opOverflow)
659*67e74705SXin Li         // Don't need an overflow check for upper bound. Just check for
660*67e74705SXin Li         // +Inf/NaN.
661*67e74705SXin Li         MaxSrc = APFloat::getInf(SrcSema, false);
662*67e74705SXin Li       else
663*67e74705SXin Li         // Find the smallest value which is too large to represent (before
664*67e74705SXin Li         // truncation toward zero).
665*67e74705SXin Li         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666*67e74705SXin Li 
667*67e74705SXin Li       // If we're converting from __half, convert the range to float to match
668*67e74705SXin Li       // the type of src.
669*67e74705SXin Li       if (OrigSrcType->isHalfType()) {
670*67e74705SXin Li         const llvm::fltSemantics &Sema =
671*67e74705SXin Li           CGF.getContext().getFloatTypeSemantics(SrcType);
672*67e74705SXin Li         bool IsInexact;
673*67e74705SXin Li         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674*67e74705SXin Li         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675*67e74705SXin Li       }
676*67e74705SXin Li 
677*67e74705SXin Li       llvm::Value *GE =
678*67e74705SXin Li         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679*67e74705SXin Li       llvm::Value *LE =
680*67e74705SXin Li         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681*67e74705SXin Li       Check = Builder.CreateAnd(GE, LE);
682*67e74705SXin Li     } else {
683*67e74705SXin Li       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684*67e74705SXin Li       //
685*67e74705SXin Li       // Floating-point to floating-point. This has undefined behavior if the
686*67e74705SXin Li       // source is not in the range of representable values of the destination
687*67e74705SXin Li       // type. The C and C++ standards are spectacularly unclear here. We
688*67e74705SXin Li       // diagnose finite out-of-range conversions, but allow infinities and NaNs
689*67e74705SXin Li       // to convert to the corresponding value in the smaller type.
690*67e74705SXin Li       //
691*67e74705SXin Li       // C11 Annex F gives all such conversions defined behavior for IEC 60559
692*67e74705SXin Li       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693*67e74705SXin Li       // does not.
694*67e74705SXin Li 
695*67e74705SXin Li       // Converting from a lower rank to a higher rank can never have
696*67e74705SXin Li       // undefined behavior, since higher-rank types must have a superset
697*67e74705SXin Li       // of values of lower-rank types.
698*67e74705SXin Li       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699*67e74705SXin Li         return;
700*67e74705SXin Li 
701*67e74705SXin Li       assert(!OrigSrcType->isHalfType() &&
702*67e74705SXin Li              "should not check conversion from __half, it has the lowest rank");
703*67e74705SXin Li 
704*67e74705SXin Li       const llvm::fltSemantics &DstSema =
705*67e74705SXin Li         CGF.getContext().getFloatTypeSemantics(DstType);
706*67e74705SXin Li       APFloat MinBad = APFloat::getLargest(DstSema, false);
707*67e74705SXin Li       APFloat MaxBad = APFloat::getInf(DstSema, false);
708*67e74705SXin Li 
709*67e74705SXin Li       bool IsInexact;
710*67e74705SXin Li       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711*67e74705SXin Li       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712*67e74705SXin Li 
713*67e74705SXin Li       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714*67e74705SXin Li         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715*67e74705SXin Li       llvm::Value *GE =
716*67e74705SXin Li         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717*67e74705SXin Li       llvm::Value *LE =
718*67e74705SXin Li         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719*67e74705SXin Li       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720*67e74705SXin Li     }
721*67e74705SXin Li   }
722*67e74705SXin Li 
723*67e74705SXin Li   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724*67e74705SXin Li                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
725*67e74705SXin Li                                   CGF.EmitCheckTypeDescriptor(DstType)};
726*67e74705SXin Li   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727*67e74705SXin Li                 "float_cast_overflow", StaticArgs, OrigSrc);
728*67e74705SXin Li }
729*67e74705SXin Li 
730*67e74705SXin Li /// Emit a conversion from the specified type to the specified destination type,
731*67e74705SXin Li /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc)732*67e74705SXin Li Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733*67e74705SXin Li                                                QualType DstType,
734*67e74705SXin Li                                                SourceLocation Loc) {
735*67e74705SXin Li   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736*67e74705SXin Li }
737*67e74705SXin Li 
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,bool TreatBooleanAsSigned)738*67e74705SXin Li Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739*67e74705SXin Li                                                QualType DstType,
740*67e74705SXin Li                                                SourceLocation Loc,
741*67e74705SXin Li                                                bool TreatBooleanAsSigned) {
742*67e74705SXin Li   SrcType = CGF.getContext().getCanonicalType(SrcType);
743*67e74705SXin Li   DstType = CGF.getContext().getCanonicalType(DstType);
744*67e74705SXin Li   if (SrcType == DstType) return Src;
745*67e74705SXin Li 
746*67e74705SXin Li   if (DstType->isVoidType()) return nullptr;
747*67e74705SXin Li 
748*67e74705SXin Li   llvm::Value *OrigSrc = Src;
749*67e74705SXin Li   QualType OrigSrcType = SrcType;
750*67e74705SXin Li   llvm::Type *SrcTy = Src->getType();
751*67e74705SXin Li 
752*67e74705SXin Li   // Handle conversions to bool first, they are special: comparisons against 0.
753*67e74705SXin Li   if (DstType->isBooleanType())
754*67e74705SXin Li     return EmitConversionToBool(Src, SrcType);
755*67e74705SXin Li 
756*67e74705SXin Li   llvm::Type *DstTy = ConvertType(DstType);
757*67e74705SXin Li 
758*67e74705SXin Li   // Cast from half through float if half isn't a native type.
759*67e74705SXin Li   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760*67e74705SXin Li     // Cast to FP using the intrinsic if the half type itself isn't supported.
761*67e74705SXin Li     if (DstTy->isFloatingPointTy()) {
762*67e74705SXin Li       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763*67e74705SXin Li         return Builder.CreateCall(
764*67e74705SXin Li             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765*67e74705SXin Li             Src);
766*67e74705SXin Li     } else {
767*67e74705SXin Li       // Cast to other types through float, using either the intrinsic or FPExt,
768*67e74705SXin Li       // depending on whether the half type itself is supported
769*67e74705SXin Li       // (as opposed to operations on half, available with NativeHalfType).
770*67e74705SXin Li       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771*67e74705SXin Li         Src = Builder.CreateCall(
772*67e74705SXin Li             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773*67e74705SXin Li                                  CGF.CGM.FloatTy),
774*67e74705SXin Li             Src);
775*67e74705SXin Li       } else {
776*67e74705SXin Li         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777*67e74705SXin Li       }
778*67e74705SXin Li       SrcType = CGF.getContext().FloatTy;
779*67e74705SXin Li       SrcTy = CGF.FloatTy;
780*67e74705SXin Li     }
781*67e74705SXin Li   }
782*67e74705SXin Li 
783*67e74705SXin Li   // Ignore conversions like int -> uint.
784*67e74705SXin Li   if (SrcTy == DstTy)
785*67e74705SXin Li     return Src;
786*67e74705SXin Li 
787*67e74705SXin Li   // Handle pointer conversions next: pointers can only be converted to/from
788*67e74705SXin Li   // other pointers and integers. Check for pointer types in terms of LLVM, as
789*67e74705SXin Li   // some native types (like Obj-C id) may map to a pointer type.
790*67e74705SXin Li   if (isa<llvm::PointerType>(DstTy)) {
791*67e74705SXin Li     // The source value may be an integer, or a pointer.
792*67e74705SXin Li     if (isa<llvm::PointerType>(SrcTy))
793*67e74705SXin Li       return Builder.CreateBitCast(Src, DstTy, "conv");
794*67e74705SXin Li 
795*67e74705SXin Li     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796*67e74705SXin Li     // First, convert to the correct width so that we control the kind of
797*67e74705SXin Li     // extension.
798*67e74705SXin Li     llvm::Type *MiddleTy = CGF.IntPtrTy;
799*67e74705SXin Li     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800*67e74705SXin Li     llvm::Value* IntResult =
801*67e74705SXin Li         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802*67e74705SXin Li     // Then, cast to pointer.
803*67e74705SXin Li     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804*67e74705SXin Li   }
805*67e74705SXin Li 
806*67e74705SXin Li   if (isa<llvm::PointerType>(SrcTy)) {
807*67e74705SXin Li     // Must be an ptr to int cast.
808*67e74705SXin Li     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809*67e74705SXin Li     return Builder.CreatePtrToInt(Src, DstTy, "conv");
810*67e74705SXin Li   }
811*67e74705SXin Li 
812*67e74705SXin Li   // A scalar can be splatted to an extended vector of the same element type
813*67e74705SXin Li   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814*67e74705SXin Li     // Sema should add casts to make sure that the source expression's type is
815*67e74705SXin Li     // the same as the vector's element type (sans qualifiers)
816*67e74705SXin Li     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
817*67e74705SXin Li                SrcType.getTypePtr() &&
818*67e74705SXin Li            "Splatted expr doesn't match with vector element type?");
819*67e74705SXin Li 
820*67e74705SXin Li     // Splat the element across to all elements
821*67e74705SXin Li     unsigned NumElements = DstTy->getVectorNumElements();
822*67e74705SXin Li     return Builder.CreateVectorSplat(NumElements, Src, "splat");
823*67e74705SXin Li   }
824*67e74705SXin Li 
825*67e74705SXin Li   // Allow bitcast from vector to integer/fp of the same size.
826*67e74705SXin Li   if (isa<llvm::VectorType>(SrcTy) ||
827*67e74705SXin Li       isa<llvm::VectorType>(DstTy))
828*67e74705SXin Li     return Builder.CreateBitCast(Src, DstTy, "conv");
829*67e74705SXin Li 
830*67e74705SXin Li   // Finally, we have the arithmetic types: real int/float.
831*67e74705SXin Li   Value *Res = nullptr;
832*67e74705SXin Li   llvm::Type *ResTy = DstTy;
833*67e74705SXin Li 
834*67e74705SXin Li   // An overflowing conversion has undefined behavior if either the source type
835*67e74705SXin Li   // or the destination type is a floating-point type.
836*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
837*67e74705SXin Li       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
838*67e74705SXin Li     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
839*67e74705SXin Li                              Loc);
840*67e74705SXin Li 
841*67e74705SXin Li   // Cast to half through float if half isn't a native type.
842*67e74705SXin Li   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
843*67e74705SXin Li     // Make sure we cast in a single step if from another FP type.
844*67e74705SXin Li     if (SrcTy->isFloatingPointTy()) {
845*67e74705SXin Li       // Use the intrinsic if the half type itself isn't supported
846*67e74705SXin Li       // (as opposed to operations on half, available with NativeHalfType).
847*67e74705SXin Li       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
848*67e74705SXin Li         return Builder.CreateCall(
849*67e74705SXin Li             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
850*67e74705SXin Li       // If the half type is supported, just use an fptrunc.
851*67e74705SXin Li       return Builder.CreateFPTrunc(Src, DstTy);
852*67e74705SXin Li     }
853*67e74705SXin Li     DstTy = CGF.FloatTy;
854*67e74705SXin Li   }
855*67e74705SXin Li 
856*67e74705SXin Li   if (isa<llvm::IntegerType>(SrcTy)) {
857*67e74705SXin Li     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
858*67e74705SXin Li     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
859*67e74705SXin Li       InputSigned = true;
860*67e74705SXin Li     }
861*67e74705SXin Li     if (isa<llvm::IntegerType>(DstTy))
862*67e74705SXin Li       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
863*67e74705SXin Li     else if (InputSigned)
864*67e74705SXin Li       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
865*67e74705SXin Li     else
866*67e74705SXin Li       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
867*67e74705SXin Li   } else if (isa<llvm::IntegerType>(DstTy)) {
868*67e74705SXin Li     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
869*67e74705SXin Li     if (DstType->isSignedIntegerOrEnumerationType())
870*67e74705SXin Li       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
871*67e74705SXin Li     else
872*67e74705SXin Li       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
873*67e74705SXin Li   } else {
874*67e74705SXin Li     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
875*67e74705SXin Li            "Unknown real conversion");
876*67e74705SXin Li     if (DstTy->getTypeID() < SrcTy->getTypeID())
877*67e74705SXin Li       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
878*67e74705SXin Li     else
879*67e74705SXin Li       Res = Builder.CreateFPExt(Src, DstTy, "conv");
880*67e74705SXin Li   }
881*67e74705SXin Li 
882*67e74705SXin Li   if (DstTy != ResTy) {
883*67e74705SXin Li     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
884*67e74705SXin Li       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
885*67e74705SXin Li       Res = Builder.CreateCall(
886*67e74705SXin Li         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
887*67e74705SXin Li         Res);
888*67e74705SXin Li     } else {
889*67e74705SXin Li       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
890*67e74705SXin Li     }
891*67e74705SXin Li   }
892*67e74705SXin Li 
893*67e74705SXin Li   return Res;
894*67e74705SXin Li }
895*67e74705SXin Li 
896*67e74705SXin Li /// Emit a conversion from the specified complex type to the specified
897*67e74705SXin Li /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)898*67e74705SXin Li Value *ScalarExprEmitter::EmitComplexToScalarConversion(
899*67e74705SXin Li     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
900*67e74705SXin Li     SourceLocation Loc) {
901*67e74705SXin Li   // Get the source element type.
902*67e74705SXin Li   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
903*67e74705SXin Li 
904*67e74705SXin Li   // Handle conversions to bool first, they are special: comparisons against 0.
905*67e74705SXin Li   if (DstTy->isBooleanType()) {
906*67e74705SXin Li     //  Complex != 0  -> (Real != 0) | (Imag != 0)
907*67e74705SXin Li     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
908*67e74705SXin Li     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
909*67e74705SXin Li     return Builder.CreateOr(Src.first, Src.second, "tobool");
910*67e74705SXin Li   }
911*67e74705SXin Li 
912*67e74705SXin Li   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
913*67e74705SXin Li   // the imaginary part of the complex value is discarded and the value of the
914*67e74705SXin Li   // real part is converted according to the conversion rules for the
915*67e74705SXin Li   // corresponding real type.
916*67e74705SXin Li   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
917*67e74705SXin Li }
918*67e74705SXin Li 
EmitNullValue(QualType Ty)919*67e74705SXin Li Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
920*67e74705SXin Li   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
921*67e74705SXin Li }
922*67e74705SXin Li 
923*67e74705SXin Li /// \brief Emit a sanitization check for the given "binary" operation (which
924*67e74705SXin Li /// might actually be a unary increment which has been lowered to a binary
925*67e74705SXin Li /// operation). The check passes if all values in \p Checks (which are \c i1),
926*67e74705SXin Li /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)927*67e74705SXin Li void ScalarExprEmitter::EmitBinOpCheck(
928*67e74705SXin Li     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
929*67e74705SXin Li   assert(CGF.IsSanitizerScope);
930*67e74705SXin Li   StringRef CheckName;
931*67e74705SXin Li   SmallVector<llvm::Constant *, 4> StaticData;
932*67e74705SXin Li   SmallVector<llvm::Value *, 2> DynamicData;
933*67e74705SXin Li 
934*67e74705SXin Li   BinaryOperatorKind Opcode = Info.Opcode;
935*67e74705SXin Li   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
936*67e74705SXin Li     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
937*67e74705SXin Li 
938*67e74705SXin Li   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
939*67e74705SXin Li   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
940*67e74705SXin Li   if (UO && UO->getOpcode() == UO_Minus) {
941*67e74705SXin Li     CheckName = "negate_overflow";
942*67e74705SXin Li     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
943*67e74705SXin Li     DynamicData.push_back(Info.RHS);
944*67e74705SXin Li   } else {
945*67e74705SXin Li     if (BinaryOperator::isShiftOp(Opcode)) {
946*67e74705SXin Li       // Shift LHS negative or too large, or RHS out of bounds.
947*67e74705SXin Li       CheckName = "shift_out_of_bounds";
948*67e74705SXin Li       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
949*67e74705SXin Li       StaticData.push_back(
950*67e74705SXin Li         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
951*67e74705SXin Li       StaticData.push_back(
952*67e74705SXin Li         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
953*67e74705SXin Li     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
954*67e74705SXin Li       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
955*67e74705SXin Li       CheckName = "divrem_overflow";
956*67e74705SXin Li       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957*67e74705SXin Li     } else {
958*67e74705SXin Li       // Arithmetic overflow (+, -, *).
959*67e74705SXin Li       switch (Opcode) {
960*67e74705SXin Li       case BO_Add: CheckName = "add_overflow"; break;
961*67e74705SXin Li       case BO_Sub: CheckName = "sub_overflow"; break;
962*67e74705SXin Li       case BO_Mul: CheckName = "mul_overflow"; break;
963*67e74705SXin Li       default: llvm_unreachable("unexpected opcode for bin op check");
964*67e74705SXin Li       }
965*67e74705SXin Li       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
966*67e74705SXin Li     }
967*67e74705SXin Li     DynamicData.push_back(Info.LHS);
968*67e74705SXin Li     DynamicData.push_back(Info.RHS);
969*67e74705SXin Li   }
970*67e74705SXin Li 
971*67e74705SXin Li   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
972*67e74705SXin Li }
973*67e74705SXin Li 
974*67e74705SXin Li //===----------------------------------------------------------------------===//
975*67e74705SXin Li //                            Visitor Methods
976*67e74705SXin Li //===----------------------------------------------------------------------===//
977*67e74705SXin Li 
VisitExpr(Expr * E)978*67e74705SXin Li Value *ScalarExprEmitter::VisitExpr(Expr *E) {
979*67e74705SXin Li   CGF.ErrorUnsupported(E, "scalar expression");
980*67e74705SXin Li   if (E->getType()->isVoidType())
981*67e74705SXin Li     return nullptr;
982*67e74705SXin Li   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
983*67e74705SXin Li }
984*67e74705SXin Li 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)985*67e74705SXin Li Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
986*67e74705SXin Li   // Vector Mask Case
987*67e74705SXin Li   if (E->getNumSubExprs() == 2) {
988*67e74705SXin Li     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989*67e74705SXin Li     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990*67e74705SXin Li     Value *Mask;
991*67e74705SXin Li 
992*67e74705SXin Li     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993*67e74705SXin Li     unsigned LHSElts = LTy->getNumElements();
994*67e74705SXin Li 
995*67e74705SXin Li     Mask = RHS;
996*67e74705SXin Li 
997*67e74705SXin Li     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
998*67e74705SXin Li 
999*67e74705SXin Li     // Mask off the high bits of each shuffle index.
1000*67e74705SXin Li     Value *MaskBits =
1001*67e74705SXin Li         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1002*67e74705SXin Li     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1003*67e74705SXin Li 
1004*67e74705SXin Li     // newv = undef
1005*67e74705SXin Li     // mask = mask & maskbits
1006*67e74705SXin Li     // for each elt
1007*67e74705SXin Li     //   n = extract mask i
1008*67e74705SXin Li     //   x = extract val n
1009*67e74705SXin Li     //   newv = insert newv, x, i
1010*67e74705SXin Li     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1011*67e74705SXin Li                                                   MTy->getNumElements());
1012*67e74705SXin Li     Value* NewV = llvm::UndefValue::get(RTy);
1013*67e74705SXin Li     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1014*67e74705SXin Li       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1015*67e74705SXin Li       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1016*67e74705SXin Li 
1017*67e74705SXin Li       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1018*67e74705SXin Li       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1019*67e74705SXin Li     }
1020*67e74705SXin Li     return NewV;
1021*67e74705SXin Li   }
1022*67e74705SXin Li 
1023*67e74705SXin Li   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1024*67e74705SXin Li   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1025*67e74705SXin Li 
1026*67e74705SXin Li   SmallVector<llvm::Constant*, 32> indices;
1027*67e74705SXin Li   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1028*67e74705SXin Li     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1029*67e74705SXin Li     // Check for -1 and output it as undef in the IR.
1030*67e74705SXin Li     if (Idx.isSigned() && Idx.isAllOnesValue())
1031*67e74705SXin Li       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1032*67e74705SXin Li     else
1033*67e74705SXin Li       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1034*67e74705SXin Li   }
1035*67e74705SXin Li 
1036*67e74705SXin Li   Value *SV = llvm::ConstantVector::get(indices);
1037*67e74705SXin Li   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1038*67e74705SXin Li }
1039*67e74705SXin Li 
VisitConvertVectorExpr(ConvertVectorExpr * E)1040*67e74705SXin Li Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1041*67e74705SXin Li   QualType SrcType = E->getSrcExpr()->getType(),
1042*67e74705SXin Li            DstType = E->getType();
1043*67e74705SXin Li 
1044*67e74705SXin Li   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1045*67e74705SXin Li 
1046*67e74705SXin Li   SrcType = CGF.getContext().getCanonicalType(SrcType);
1047*67e74705SXin Li   DstType = CGF.getContext().getCanonicalType(DstType);
1048*67e74705SXin Li   if (SrcType == DstType) return Src;
1049*67e74705SXin Li 
1050*67e74705SXin Li   assert(SrcType->isVectorType() &&
1051*67e74705SXin Li          "ConvertVector source type must be a vector");
1052*67e74705SXin Li   assert(DstType->isVectorType() &&
1053*67e74705SXin Li          "ConvertVector destination type must be a vector");
1054*67e74705SXin Li 
1055*67e74705SXin Li   llvm::Type *SrcTy = Src->getType();
1056*67e74705SXin Li   llvm::Type *DstTy = ConvertType(DstType);
1057*67e74705SXin Li 
1058*67e74705SXin Li   // Ignore conversions like int -> uint.
1059*67e74705SXin Li   if (SrcTy == DstTy)
1060*67e74705SXin Li     return Src;
1061*67e74705SXin Li 
1062*67e74705SXin Li   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1063*67e74705SXin Li            DstEltType = DstType->getAs<VectorType>()->getElementType();
1064*67e74705SXin Li 
1065*67e74705SXin Li   assert(SrcTy->isVectorTy() &&
1066*67e74705SXin Li          "ConvertVector source IR type must be a vector");
1067*67e74705SXin Li   assert(DstTy->isVectorTy() &&
1068*67e74705SXin Li          "ConvertVector destination IR type must be a vector");
1069*67e74705SXin Li 
1070*67e74705SXin Li   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1071*67e74705SXin Li              *DstEltTy = DstTy->getVectorElementType();
1072*67e74705SXin Li 
1073*67e74705SXin Li   if (DstEltType->isBooleanType()) {
1074*67e74705SXin Li     assert((SrcEltTy->isFloatingPointTy() ||
1075*67e74705SXin Li             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1076*67e74705SXin Li 
1077*67e74705SXin Li     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1078*67e74705SXin Li     if (SrcEltTy->isFloatingPointTy()) {
1079*67e74705SXin Li       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1080*67e74705SXin Li     } else {
1081*67e74705SXin Li       return Builder.CreateICmpNE(Src, Zero, "tobool");
1082*67e74705SXin Li     }
1083*67e74705SXin Li   }
1084*67e74705SXin Li 
1085*67e74705SXin Li   // We have the arithmetic types: real int/float.
1086*67e74705SXin Li   Value *Res = nullptr;
1087*67e74705SXin Li 
1088*67e74705SXin Li   if (isa<llvm::IntegerType>(SrcEltTy)) {
1089*67e74705SXin Li     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1090*67e74705SXin Li     if (isa<llvm::IntegerType>(DstEltTy))
1091*67e74705SXin Li       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1092*67e74705SXin Li     else if (InputSigned)
1093*67e74705SXin Li       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1094*67e74705SXin Li     else
1095*67e74705SXin Li       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1096*67e74705SXin Li   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1097*67e74705SXin Li     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1098*67e74705SXin Li     if (DstEltType->isSignedIntegerOrEnumerationType())
1099*67e74705SXin Li       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1100*67e74705SXin Li     else
1101*67e74705SXin Li       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1102*67e74705SXin Li   } else {
1103*67e74705SXin Li     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1104*67e74705SXin Li            "Unknown real conversion");
1105*67e74705SXin Li     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1106*67e74705SXin Li       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1107*67e74705SXin Li     else
1108*67e74705SXin Li       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1109*67e74705SXin Li   }
1110*67e74705SXin Li 
1111*67e74705SXin Li   return Res;
1112*67e74705SXin Li }
1113*67e74705SXin Li 
VisitMemberExpr(MemberExpr * E)1114*67e74705SXin Li Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1115*67e74705SXin Li   llvm::APSInt Value;
1116*67e74705SXin Li   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1117*67e74705SXin Li     if (E->isArrow())
1118*67e74705SXin Li       CGF.EmitScalarExpr(E->getBase());
1119*67e74705SXin Li     else
1120*67e74705SXin Li       EmitLValue(E->getBase());
1121*67e74705SXin Li     return Builder.getInt(Value);
1122*67e74705SXin Li   }
1123*67e74705SXin Li 
1124*67e74705SXin Li   return EmitLoadOfLValue(E);
1125*67e74705SXin Li }
1126*67e74705SXin Li 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1127*67e74705SXin Li Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1128*67e74705SXin Li   TestAndClearIgnoreResultAssign();
1129*67e74705SXin Li 
1130*67e74705SXin Li   // Emit subscript expressions in rvalue context's.  For most cases, this just
1131*67e74705SXin Li   // loads the lvalue formed by the subscript expr.  However, we have to be
1132*67e74705SXin Li   // careful, because the base of a vector subscript is occasionally an rvalue,
1133*67e74705SXin Li   // so we can't get it as an lvalue.
1134*67e74705SXin Li   if (!E->getBase()->getType()->isVectorType())
1135*67e74705SXin Li     return EmitLoadOfLValue(E);
1136*67e74705SXin Li 
1137*67e74705SXin Li   // Handle the vector case.  The base must be a vector, the index must be an
1138*67e74705SXin Li   // integer value.
1139*67e74705SXin Li   Value *Base = Visit(E->getBase());
1140*67e74705SXin Li   Value *Idx  = Visit(E->getIdx());
1141*67e74705SXin Li   QualType IdxTy = E->getIdx()->getType();
1142*67e74705SXin Li 
1143*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1144*67e74705SXin Li     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1145*67e74705SXin Li 
1146*67e74705SXin Li   return Builder.CreateExtractElement(Base, Idx, "vecext");
1147*67e74705SXin Li }
1148*67e74705SXin Li 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1149*67e74705SXin Li static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1150*67e74705SXin Li                                   unsigned Off, llvm::Type *I32Ty) {
1151*67e74705SXin Li   int MV = SVI->getMaskValue(Idx);
1152*67e74705SXin Li   if (MV == -1)
1153*67e74705SXin Li     return llvm::UndefValue::get(I32Ty);
1154*67e74705SXin Li   return llvm::ConstantInt::get(I32Ty, Off+MV);
1155*67e74705SXin Li }
1156*67e74705SXin Li 
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1157*67e74705SXin Li static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1158*67e74705SXin Li   if (C->getBitWidth() != 32) {
1159*67e74705SXin Li       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1160*67e74705SXin Li                                                     C->getZExtValue()) &&
1161*67e74705SXin Li              "Index operand too large for shufflevector mask!");
1162*67e74705SXin Li       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1163*67e74705SXin Li   }
1164*67e74705SXin Li   return C;
1165*67e74705SXin Li }
1166*67e74705SXin Li 
VisitInitListExpr(InitListExpr * E)1167*67e74705SXin Li Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1168*67e74705SXin Li   bool Ignore = TestAndClearIgnoreResultAssign();
1169*67e74705SXin Li   (void)Ignore;
1170*67e74705SXin Li   assert (Ignore == false && "init list ignored");
1171*67e74705SXin Li   unsigned NumInitElements = E->getNumInits();
1172*67e74705SXin Li 
1173*67e74705SXin Li   if (E->hadArrayRangeDesignator())
1174*67e74705SXin Li     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1175*67e74705SXin Li 
1176*67e74705SXin Li   llvm::VectorType *VType =
1177*67e74705SXin Li     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1178*67e74705SXin Li 
1179*67e74705SXin Li   if (!VType) {
1180*67e74705SXin Li     if (NumInitElements == 0) {
1181*67e74705SXin Li       // C++11 value-initialization for the scalar.
1182*67e74705SXin Li       return EmitNullValue(E->getType());
1183*67e74705SXin Li     }
1184*67e74705SXin Li     // We have a scalar in braces. Just use the first element.
1185*67e74705SXin Li     return Visit(E->getInit(0));
1186*67e74705SXin Li   }
1187*67e74705SXin Li 
1188*67e74705SXin Li   unsigned ResElts = VType->getNumElements();
1189*67e74705SXin Li 
1190*67e74705SXin Li   // Loop over initializers collecting the Value for each, and remembering
1191*67e74705SXin Li   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1192*67e74705SXin Li   // us to fold the shuffle for the swizzle into the shuffle for the vector
1193*67e74705SXin Li   // initializer, since LLVM optimizers generally do not want to touch
1194*67e74705SXin Li   // shuffles.
1195*67e74705SXin Li   unsigned CurIdx = 0;
1196*67e74705SXin Li   bool VIsUndefShuffle = false;
1197*67e74705SXin Li   llvm::Value *V = llvm::UndefValue::get(VType);
1198*67e74705SXin Li   for (unsigned i = 0; i != NumInitElements; ++i) {
1199*67e74705SXin Li     Expr *IE = E->getInit(i);
1200*67e74705SXin Li     Value *Init = Visit(IE);
1201*67e74705SXin Li     SmallVector<llvm::Constant*, 16> Args;
1202*67e74705SXin Li 
1203*67e74705SXin Li     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1204*67e74705SXin Li 
1205*67e74705SXin Li     // Handle scalar elements.  If the scalar initializer is actually one
1206*67e74705SXin Li     // element of a different vector of the same width, use shuffle instead of
1207*67e74705SXin Li     // extract+insert.
1208*67e74705SXin Li     if (!VVT) {
1209*67e74705SXin Li       if (isa<ExtVectorElementExpr>(IE)) {
1210*67e74705SXin Li         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1211*67e74705SXin Li 
1212*67e74705SXin Li         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1213*67e74705SXin Li           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1214*67e74705SXin Li           Value *LHS = nullptr, *RHS = nullptr;
1215*67e74705SXin Li           if (CurIdx == 0) {
1216*67e74705SXin Li             // insert into undef -> shuffle (src, undef)
1217*67e74705SXin Li             // shufflemask must use an i32
1218*67e74705SXin Li             Args.push_back(getAsInt32(C, CGF.Int32Ty));
1219*67e74705SXin Li             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1220*67e74705SXin Li 
1221*67e74705SXin Li             LHS = EI->getVectorOperand();
1222*67e74705SXin Li             RHS = V;
1223*67e74705SXin Li             VIsUndefShuffle = true;
1224*67e74705SXin Li           } else if (VIsUndefShuffle) {
1225*67e74705SXin Li             // insert into undefshuffle && size match -> shuffle (v, src)
1226*67e74705SXin Li             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1227*67e74705SXin Li             for (unsigned j = 0; j != CurIdx; ++j)
1228*67e74705SXin Li               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1229*67e74705SXin Li             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1230*67e74705SXin Li             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1231*67e74705SXin Li 
1232*67e74705SXin Li             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1233*67e74705SXin Li             RHS = EI->getVectorOperand();
1234*67e74705SXin Li             VIsUndefShuffle = false;
1235*67e74705SXin Li           }
1236*67e74705SXin Li           if (!Args.empty()) {
1237*67e74705SXin Li             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1238*67e74705SXin Li             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1239*67e74705SXin Li             ++CurIdx;
1240*67e74705SXin Li             continue;
1241*67e74705SXin Li           }
1242*67e74705SXin Li         }
1243*67e74705SXin Li       }
1244*67e74705SXin Li       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1245*67e74705SXin Li                                       "vecinit");
1246*67e74705SXin Li       VIsUndefShuffle = false;
1247*67e74705SXin Li       ++CurIdx;
1248*67e74705SXin Li       continue;
1249*67e74705SXin Li     }
1250*67e74705SXin Li 
1251*67e74705SXin Li     unsigned InitElts = VVT->getNumElements();
1252*67e74705SXin Li 
1253*67e74705SXin Li     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1254*67e74705SXin Li     // input is the same width as the vector being constructed, generate an
1255*67e74705SXin Li     // optimized shuffle of the swizzle input into the result.
1256*67e74705SXin Li     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1257*67e74705SXin Li     if (isa<ExtVectorElementExpr>(IE)) {
1258*67e74705SXin Li       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1259*67e74705SXin Li       Value *SVOp = SVI->getOperand(0);
1260*67e74705SXin Li       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1261*67e74705SXin Li 
1262*67e74705SXin Li       if (OpTy->getNumElements() == ResElts) {
1263*67e74705SXin Li         for (unsigned j = 0; j != CurIdx; ++j) {
1264*67e74705SXin Li           // If the current vector initializer is a shuffle with undef, merge
1265*67e74705SXin Li           // this shuffle directly into it.
1266*67e74705SXin Li           if (VIsUndefShuffle) {
1267*67e74705SXin Li             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1268*67e74705SXin Li                                       CGF.Int32Ty));
1269*67e74705SXin Li           } else {
1270*67e74705SXin Li             Args.push_back(Builder.getInt32(j));
1271*67e74705SXin Li           }
1272*67e74705SXin Li         }
1273*67e74705SXin Li         for (unsigned j = 0, je = InitElts; j != je; ++j)
1274*67e74705SXin Li           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1275*67e74705SXin Li         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1276*67e74705SXin Li 
1277*67e74705SXin Li         if (VIsUndefShuffle)
1278*67e74705SXin Li           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1279*67e74705SXin Li 
1280*67e74705SXin Li         Init = SVOp;
1281*67e74705SXin Li       }
1282*67e74705SXin Li     }
1283*67e74705SXin Li 
1284*67e74705SXin Li     // Extend init to result vector length, and then shuffle its contribution
1285*67e74705SXin Li     // to the vector initializer into V.
1286*67e74705SXin Li     if (Args.empty()) {
1287*67e74705SXin Li       for (unsigned j = 0; j != InitElts; ++j)
1288*67e74705SXin Li         Args.push_back(Builder.getInt32(j));
1289*67e74705SXin Li       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290*67e74705SXin Li       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1291*67e74705SXin Li       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1292*67e74705SXin Li                                          Mask, "vext");
1293*67e74705SXin Li 
1294*67e74705SXin Li       Args.clear();
1295*67e74705SXin Li       for (unsigned j = 0; j != CurIdx; ++j)
1296*67e74705SXin Li         Args.push_back(Builder.getInt32(j));
1297*67e74705SXin Li       for (unsigned j = 0; j != InitElts; ++j)
1298*67e74705SXin Li         Args.push_back(Builder.getInt32(j+Offset));
1299*67e74705SXin Li       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1300*67e74705SXin Li     }
1301*67e74705SXin Li 
1302*67e74705SXin Li     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1303*67e74705SXin Li     // merging subsequent shuffles into this one.
1304*67e74705SXin Li     if (CurIdx == 0)
1305*67e74705SXin Li       std::swap(V, Init);
1306*67e74705SXin Li     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307*67e74705SXin Li     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1308*67e74705SXin Li     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1309*67e74705SXin Li     CurIdx += InitElts;
1310*67e74705SXin Li   }
1311*67e74705SXin Li 
1312*67e74705SXin Li   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1313*67e74705SXin Li   // Emit remaining default initializers.
1314*67e74705SXin Li   llvm::Type *EltTy = VType->getElementType();
1315*67e74705SXin Li 
1316*67e74705SXin Li   // Emit remaining default initializers
1317*67e74705SXin Li   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1318*67e74705SXin Li     Value *Idx = Builder.getInt32(CurIdx);
1319*67e74705SXin Li     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1320*67e74705SXin Li     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1321*67e74705SXin Li   }
1322*67e74705SXin Li   return V;
1323*67e74705SXin Li }
1324*67e74705SXin Li 
ShouldNullCheckClassCastValue(const CastExpr * CE)1325*67e74705SXin Li bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1326*67e74705SXin Li   const Expr *E = CE->getSubExpr();
1327*67e74705SXin Li 
1328*67e74705SXin Li   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1329*67e74705SXin Li     return false;
1330*67e74705SXin Li 
1331*67e74705SXin Li   if (isa<CXXThisExpr>(E->IgnoreParens())) {
1332*67e74705SXin Li     // We always assume that 'this' is never null.
1333*67e74705SXin Li     return false;
1334*67e74705SXin Li   }
1335*67e74705SXin Li 
1336*67e74705SXin Li   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1337*67e74705SXin Li     // And that glvalue casts are never null.
1338*67e74705SXin Li     if (ICE->getValueKind() != VK_RValue)
1339*67e74705SXin Li       return false;
1340*67e74705SXin Li   }
1341*67e74705SXin Li 
1342*67e74705SXin Li   return true;
1343*67e74705SXin Li }
1344*67e74705SXin Li 
1345*67e74705SXin Li // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1346*67e74705SXin Li // have to handle a more broad range of conversions than explicit casts, as they
1347*67e74705SXin Li // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1348*67e74705SXin Li Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1349*67e74705SXin Li   Expr *E = CE->getSubExpr();
1350*67e74705SXin Li   QualType DestTy = CE->getType();
1351*67e74705SXin Li   CastKind Kind = CE->getCastKind();
1352*67e74705SXin Li 
1353*67e74705SXin Li   // These cases are generally not written to ignore the result of
1354*67e74705SXin Li   // evaluating their sub-expressions, so we clear this now.
1355*67e74705SXin Li   bool Ignored = TestAndClearIgnoreResultAssign();
1356*67e74705SXin Li 
1357*67e74705SXin Li   // Since almost all cast kinds apply to scalars, this switch doesn't have
1358*67e74705SXin Li   // a default case, so the compiler will warn on a missing case.  The cases
1359*67e74705SXin Li   // are in the same order as in the CastKind enum.
1360*67e74705SXin Li   switch (Kind) {
1361*67e74705SXin Li   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362*67e74705SXin Li   case CK_BuiltinFnToFnPtr:
1363*67e74705SXin Li     llvm_unreachable("builtin functions are handled elsewhere");
1364*67e74705SXin Li 
1365*67e74705SXin Li   case CK_LValueBitCast:
1366*67e74705SXin Li   case CK_ObjCObjectLValueCast: {
1367*67e74705SXin Li     Address Addr = EmitLValue(E).getAddress();
1368*67e74705SXin Li     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1369*67e74705SXin Li     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1370*67e74705SXin Li     return EmitLoadOfLValue(LV, CE->getExprLoc());
1371*67e74705SXin Li   }
1372*67e74705SXin Li 
1373*67e74705SXin Li   case CK_CPointerToObjCPointerCast:
1374*67e74705SXin Li   case CK_BlockPointerToObjCPointerCast:
1375*67e74705SXin Li   case CK_AnyPointerToBlockPointerCast:
1376*67e74705SXin Li   case CK_BitCast: {
1377*67e74705SXin Li     Value *Src = Visit(const_cast<Expr*>(E));
1378*67e74705SXin Li     llvm::Type *SrcTy = Src->getType();
1379*67e74705SXin Li     llvm::Type *DstTy = ConvertType(DestTy);
1380*67e74705SXin Li     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1381*67e74705SXin Li         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1382*67e74705SXin Li       llvm_unreachable("wrong cast for pointers in different address spaces"
1383*67e74705SXin Li                        "(must be an address space cast)!");
1384*67e74705SXin Li     }
1385*67e74705SXin Li 
1386*67e74705SXin Li     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1387*67e74705SXin Li       if (auto PT = DestTy->getAs<PointerType>())
1388*67e74705SXin Li         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1389*67e74705SXin Li                                       /*MayBeNull=*/true,
1390*67e74705SXin Li                                       CodeGenFunction::CFITCK_UnrelatedCast,
1391*67e74705SXin Li                                       CE->getLocStart());
1392*67e74705SXin Li     }
1393*67e74705SXin Li 
1394*67e74705SXin Li     return Builder.CreateBitCast(Src, DstTy);
1395*67e74705SXin Li   }
1396*67e74705SXin Li   case CK_AddressSpaceConversion: {
1397*67e74705SXin Li     Value *Src = Visit(const_cast<Expr*>(E));
1398*67e74705SXin Li     // Since target may map different address spaces in AST to the same address
1399*67e74705SXin Li     // space, an address space conversion may end up as a bitcast.
1400*67e74705SXin Li     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src,
1401*67e74705SXin Li                                                        ConvertType(DestTy));
1402*67e74705SXin Li   }
1403*67e74705SXin Li   case CK_AtomicToNonAtomic:
1404*67e74705SXin Li   case CK_NonAtomicToAtomic:
1405*67e74705SXin Li   case CK_NoOp:
1406*67e74705SXin Li   case CK_UserDefinedConversion:
1407*67e74705SXin Li     return Visit(const_cast<Expr*>(E));
1408*67e74705SXin Li 
1409*67e74705SXin Li   case CK_BaseToDerived: {
1410*67e74705SXin Li     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1411*67e74705SXin Li     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1412*67e74705SXin Li 
1413*67e74705SXin Li     Address Base = CGF.EmitPointerWithAlignment(E);
1414*67e74705SXin Li     Address Derived =
1415*67e74705SXin Li       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1416*67e74705SXin Li                                    CE->path_begin(), CE->path_end(),
1417*67e74705SXin Li                                    CGF.ShouldNullCheckClassCastValue(CE));
1418*67e74705SXin Li 
1419*67e74705SXin Li     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1420*67e74705SXin Li     // performed and the object is not of the derived type.
1421*67e74705SXin Li     if (CGF.sanitizePerformTypeCheck())
1422*67e74705SXin Li       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1423*67e74705SXin Li                         Derived.getPointer(), DestTy->getPointeeType());
1424*67e74705SXin Li 
1425*67e74705SXin Li     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1426*67e74705SXin Li       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1427*67e74705SXin Li                                     Derived.getPointer(),
1428*67e74705SXin Li                                     /*MayBeNull=*/true,
1429*67e74705SXin Li                                     CodeGenFunction::CFITCK_DerivedCast,
1430*67e74705SXin Li                                     CE->getLocStart());
1431*67e74705SXin Li 
1432*67e74705SXin Li     return Derived.getPointer();
1433*67e74705SXin Li   }
1434*67e74705SXin Li   case CK_UncheckedDerivedToBase:
1435*67e74705SXin Li   case CK_DerivedToBase: {
1436*67e74705SXin Li     // The EmitPointerWithAlignment path does this fine; just discard
1437*67e74705SXin Li     // the alignment.
1438*67e74705SXin Li     return CGF.EmitPointerWithAlignment(CE).getPointer();
1439*67e74705SXin Li   }
1440*67e74705SXin Li 
1441*67e74705SXin Li   case CK_Dynamic: {
1442*67e74705SXin Li     Address V = CGF.EmitPointerWithAlignment(E);
1443*67e74705SXin Li     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1444*67e74705SXin Li     return CGF.EmitDynamicCast(V, DCE);
1445*67e74705SXin Li   }
1446*67e74705SXin Li 
1447*67e74705SXin Li   case CK_ArrayToPointerDecay:
1448*67e74705SXin Li     return CGF.EmitArrayToPointerDecay(E).getPointer();
1449*67e74705SXin Li   case CK_FunctionToPointerDecay:
1450*67e74705SXin Li     return EmitLValue(E).getPointer();
1451*67e74705SXin Li 
1452*67e74705SXin Li   case CK_NullToPointer:
1453*67e74705SXin Li     if (MustVisitNullValue(E))
1454*67e74705SXin Li       (void) Visit(E);
1455*67e74705SXin Li 
1456*67e74705SXin Li     return llvm::ConstantPointerNull::get(
1457*67e74705SXin Li                                cast<llvm::PointerType>(ConvertType(DestTy)));
1458*67e74705SXin Li 
1459*67e74705SXin Li   case CK_NullToMemberPointer: {
1460*67e74705SXin Li     if (MustVisitNullValue(E))
1461*67e74705SXin Li       (void) Visit(E);
1462*67e74705SXin Li 
1463*67e74705SXin Li     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1464*67e74705SXin Li     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1465*67e74705SXin Li   }
1466*67e74705SXin Li 
1467*67e74705SXin Li   case CK_ReinterpretMemberPointer:
1468*67e74705SXin Li   case CK_BaseToDerivedMemberPointer:
1469*67e74705SXin Li   case CK_DerivedToBaseMemberPointer: {
1470*67e74705SXin Li     Value *Src = Visit(E);
1471*67e74705SXin Li 
1472*67e74705SXin Li     // Note that the AST doesn't distinguish between checked and
1473*67e74705SXin Li     // unchecked member pointer conversions, so we always have to
1474*67e74705SXin Li     // implement checked conversions here.  This is inefficient when
1475*67e74705SXin Li     // actual control flow may be required in order to perform the
1476*67e74705SXin Li     // check, which it is for data member pointers (but not member
1477*67e74705SXin Li     // function pointers on Itanium and ARM).
1478*67e74705SXin Li     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1479*67e74705SXin Li   }
1480*67e74705SXin Li 
1481*67e74705SXin Li   case CK_ARCProduceObject:
1482*67e74705SXin Li     return CGF.EmitARCRetainScalarExpr(E);
1483*67e74705SXin Li   case CK_ARCConsumeObject:
1484*67e74705SXin Li     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1485*67e74705SXin Li   case CK_ARCReclaimReturnedObject:
1486*67e74705SXin Li     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1487*67e74705SXin Li   case CK_ARCExtendBlockObject:
1488*67e74705SXin Li     return CGF.EmitARCExtendBlockObject(E);
1489*67e74705SXin Li 
1490*67e74705SXin Li   case CK_CopyAndAutoreleaseBlockObject:
1491*67e74705SXin Li     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1492*67e74705SXin Li 
1493*67e74705SXin Li   case CK_FloatingRealToComplex:
1494*67e74705SXin Li   case CK_FloatingComplexCast:
1495*67e74705SXin Li   case CK_IntegralRealToComplex:
1496*67e74705SXin Li   case CK_IntegralComplexCast:
1497*67e74705SXin Li   case CK_IntegralComplexToFloatingComplex:
1498*67e74705SXin Li   case CK_FloatingComplexToIntegralComplex:
1499*67e74705SXin Li   case CK_ConstructorConversion:
1500*67e74705SXin Li   case CK_ToUnion:
1501*67e74705SXin Li     llvm_unreachable("scalar cast to non-scalar value");
1502*67e74705SXin Li 
1503*67e74705SXin Li   case CK_LValueToRValue:
1504*67e74705SXin Li     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1505*67e74705SXin Li     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1506*67e74705SXin Li     return Visit(const_cast<Expr*>(E));
1507*67e74705SXin Li 
1508*67e74705SXin Li   case CK_IntegralToPointer: {
1509*67e74705SXin Li     Value *Src = Visit(const_cast<Expr*>(E));
1510*67e74705SXin Li 
1511*67e74705SXin Li     // First, convert to the correct width so that we control the kind of
1512*67e74705SXin Li     // extension.
1513*67e74705SXin Li     llvm::Type *MiddleTy = CGF.IntPtrTy;
1514*67e74705SXin Li     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1515*67e74705SXin Li     llvm::Value* IntResult =
1516*67e74705SXin Li       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1517*67e74705SXin Li 
1518*67e74705SXin Li     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1519*67e74705SXin Li   }
1520*67e74705SXin Li   case CK_PointerToIntegral:
1521*67e74705SXin Li     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1522*67e74705SXin Li     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1523*67e74705SXin Li 
1524*67e74705SXin Li   case CK_ToVoid: {
1525*67e74705SXin Li     CGF.EmitIgnoredExpr(E);
1526*67e74705SXin Li     return nullptr;
1527*67e74705SXin Li   }
1528*67e74705SXin Li   case CK_VectorSplat: {
1529*67e74705SXin Li     llvm::Type *DstTy = ConvertType(DestTy);
1530*67e74705SXin Li     Value *Elt = Visit(const_cast<Expr*>(E));
1531*67e74705SXin Li     // Splat the element across to all elements
1532*67e74705SXin Li     unsigned NumElements = DstTy->getVectorNumElements();
1533*67e74705SXin Li     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1534*67e74705SXin Li   }
1535*67e74705SXin Li 
1536*67e74705SXin Li   case CK_IntegralCast:
1537*67e74705SXin Li   case CK_IntegralToFloating:
1538*67e74705SXin Li   case CK_FloatingToIntegral:
1539*67e74705SXin Li   case CK_FloatingCast:
1540*67e74705SXin Li     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1541*67e74705SXin Li                                 CE->getExprLoc());
1542*67e74705SXin Li   case CK_BooleanToSignedIntegral:
1543*67e74705SXin Li     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1544*67e74705SXin Li                                 CE->getExprLoc(),
1545*67e74705SXin Li                                 /*TreatBooleanAsSigned=*/true);
1546*67e74705SXin Li   case CK_IntegralToBoolean:
1547*67e74705SXin Li     return EmitIntToBoolConversion(Visit(E));
1548*67e74705SXin Li   case CK_PointerToBoolean:
1549*67e74705SXin Li     return EmitPointerToBoolConversion(Visit(E));
1550*67e74705SXin Li   case CK_FloatingToBoolean:
1551*67e74705SXin Li     return EmitFloatToBoolConversion(Visit(E));
1552*67e74705SXin Li   case CK_MemberPointerToBoolean: {
1553*67e74705SXin Li     llvm::Value *MemPtr = Visit(E);
1554*67e74705SXin Li     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1555*67e74705SXin Li     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1556*67e74705SXin Li   }
1557*67e74705SXin Li 
1558*67e74705SXin Li   case CK_FloatingComplexToReal:
1559*67e74705SXin Li   case CK_IntegralComplexToReal:
1560*67e74705SXin Li     return CGF.EmitComplexExpr(E, false, true).first;
1561*67e74705SXin Li 
1562*67e74705SXin Li   case CK_FloatingComplexToBoolean:
1563*67e74705SXin Li   case CK_IntegralComplexToBoolean: {
1564*67e74705SXin Li     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1565*67e74705SXin Li 
1566*67e74705SXin Li     // TODO: kill this function off, inline appropriate case here
1567*67e74705SXin Li     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1568*67e74705SXin Li                                          CE->getExprLoc());
1569*67e74705SXin Li   }
1570*67e74705SXin Li 
1571*67e74705SXin Li   case CK_ZeroToOCLEvent: {
1572*67e74705SXin Li     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1573*67e74705SXin Li     return llvm::Constant::getNullValue(ConvertType(DestTy));
1574*67e74705SXin Li   }
1575*67e74705SXin Li 
1576*67e74705SXin Li   }
1577*67e74705SXin Li 
1578*67e74705SXin Li   llvm_unreachable("unknown scalar cast");
1579*67e74705SXin Li }
1580*67e74705SXin Li 
VisitStmtExpr(const StmtExpr * E)1581*67e74705SXin Li Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1582*67e74705SXin Li   CodeGenFunction::StmtExprEvaluation eval(CGF);
1583*67e74705SXin Li   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1584*67e74705SXin Li                                            !E->getType()->isVoidType());
1585*67e74705SXin Li   if (!RetAlloca.isValid())
1586*67e74705SXin Li     return nullptr;
1587*67e74705SXin Li   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1588*67e74705SXin Li                               E->getExprLoc());
1589*67e74705SXin Li }
1590*67e74705SXin Li 
1591*67e74705SXin Li //===----------------------------------------------------------------------===//
1592*67e74705SXin Li //                             Unary Operators
1593*67e74705SXin Li //===----------------------------------------------------------------------===//
1594*67e74705SXin Li 
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1595*67e74705SXin Li static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1596*67e74705SXin Li                                            llvm::Value *InVal, bool IsInc) {
1597*67e74705SXin Li   BinOpInfo BinOp;
1598*67e74705SXin Li   BinOp.LHS = InVal;
1599*67e74705SXin Li   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1600*67e74705SXin Li   BinOp.Ty = E->getType();
1601*67e74705SXin Li   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1602*67e74705SXin Li   BinOp.FPContractable = false;
1603*67e74705SXin Li   BinOp.E = E;
1604*67e74705SXin Li   return BinOp;
1605*67e74705SXin Li }
1606*67e74705SXin Li 
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1607*67e74705SXin Li llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1608*67e74705SXin Li     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1609*67e74705SXin Li   llvm::Value *Amount =
1610*67e74705SXin Li       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1611*67e74705SXin Li   StringRef Name = IsInc ? "inc" : "dec";
1612*67e74705SXin Li   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1613*67e74705SXin Li   case LangOptions::SOB_Defined:
1614*67e74705SXin Li     return Builder.CreateAdd(InVal, Amount, Name);
1615*67e74705SXin Li   case LangOptions::SOB_Undefined:
1616*67e74705SXin Li     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1617*67e74705SXin Li       return Builder.CreateNSWAdd(InVal, Amount, Name);
1618*67e74705SXin Li     // Fall through.
1619*67e74705SXin Li   case LangOptions::SOB_Trapping:
1620*67e74705SXin Li     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1621*67e74705SXin Li   }
1622*67e74705SXin Li   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1623*67e74705SXin Li }
1624*67e74705SXin Li 
1625*67e74705SXin Li llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1626*67e74705SXin Li ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1627*67e74705SXin Li                                            bool isInc, bool isPre) {
1628*67e74705SXin Li 
1629*67e74705SXin Li   QualType type = E->getSubExpr()->getType();
1630*67e74705SXin Li   llvm::PHINode *atomicPHI = nullptr;
1631*67e74705SXin Li   llvm::Value *value;
1632*67e74705SXin Li   llvm::Value *input;
1633*67e74705SXin Li 
1634*67e74705SXin Li   int amount = (isInc ? 1 : -1);
1635*67e74705SXin Li 
1636*67e74705SXin Li   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1637*67e74705SXin Li     type = atomicTy->getValueType();
1638*67e74705SXin Li     if (isInc && type->isBooleanType()) {
1639*67e74705SXin Li       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1640*67e74705SXin Li       if (isPre) {
1641*67e74705SXin Li         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1642*67e74705SXin Li           ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1643*67e74705SXin Li         return Builder.getTrue();
1644*67e74705SXin Li       }
1645*67e74705SXin Li       // For atomic bool increment, we just store true and return it for
1646*67e74705SXin Li       // preincrement, do an atomic swap with true for postincrement
1647*67e74705SXin Li       return Builder.CreateAtomicRMW(
1648*67e74705SXin Li           llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1649*67e74705SXin Li           llvm::AtomicOrdering::SequentiallyConsistent);
1650*67e74705SXin Li     }
1651*67e74705SXin Li     // Special case for atomic increment / decrement on integers, emit
1652*67e74705SXin Li     // atomicrmw instructions.  We skip this if we want to be doing overflow
1653*67e74705SXin Li     // checking, and fall into the slow path with the atomic cmpxchg loop.
1654*67e74705SXin Li     if (!type->isBooleanType() && type->isIntegerType() &&
1655*67e74705SXin Li         !(type->isUnsignedIntegerType() &&
1656*67e74705SXin Li           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1657*67e74705SXin Li         CGF.getLangOpts().getSignedOverflowBehavior() !=
1658*67e74705SXin Li             LangOptions::SOB_Trapping) {
1659*67e74705SXin Li       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1660*67e74705SXin Li         llvm::AtomicRMWInst::Sub;
1661*67e74705SXin Li       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1662*67e74705SXin Li         llvm::Instruction::Sub;
1663*67e74705SXin Li       llvm::Value *amt = CGF.EmitToMemory(
1664*67e74705SXin Li           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1665*67e74705SXin Li       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1666*67e74705SXin Li           LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1667*67e74705SXin Li       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1668*67e74705SXin Li     }
1669*67e74705SXin Li     value = EmitLoadOfLValue(LV, E->getExprLoc());
1670*67e74705SXin Li     input = value;
1671*67e74705SXin Li     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1672*67e74705SXin Li     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1673*67e74705SXin Li     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1674*67e74705SXin Li     value = CGF.EmitToMemory(value, type);
1675*67e74705SXin Li     Builder.CreateBr(opBB);
1676*67e74705SXin Li     Builder.SetInsertPoint(opBB);
1677*67e74705SXin Li     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1678*67e74705SXin Li     atomicPHI->addIncoming(value, startBB);
1679*67e74705SXin Li     value = atomicPHI;
1680*67e74705SXin Li   } else {
1681*67e74705SXin Li     value = EmitLoadOfLValue(LV, E->getExprLoc());
1682*67e74705SXin Li     input = value;
1683*67e74705SXin Li   }
1684*67e74705SXin Li 
1685*67e74705SXin Li   // Special case of integer increment that we have to check first: bool++.
1686*67e74705SXin Li   // Due to promotion rules, we get:
1687*67e74705SXin Li   //   bool++ -> bool = bool + 1
1688*67e74705SXin Li   //          -> bool = (int)bool + 1
1689*67e74705SXin Li   //          -> bool = ((int)bool + 1 != 0)
1690*67e74705SXin Li   // An interesting aspect of this is that increment is always true.
1691*67e74705SXin Li   // Decrement does not have this property.
1692*67e74705SXin Li   if (isInc && type->isBooleanType()) {
1693*67e74705SXin Li     value = Builder.getTrue();
1694*67e74705SXin Li 
1695*67e74705SXin Li   // Most common case by far: integer increment.
1696*67e74705SXin Li   } else if (type->isIntegerType()) {
1697*67e74705SXin Li     // Note that signed integer inc/dec with width less than int can't
1698*67e74705SXin Li     // overflow because of promotion rules; we're just eliding a few steps here.
1699*67e74705SXin Li     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1700*67e74705SXin Li                        CGF.IntTy->getIntegerBitWidth();
1701*67e74705SXin Li     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1702*67e74705SXin Li       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1703*67e74705SXin Li     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1704*67e74705SXin Li                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1705*67e74705SXin Li       value =
1706*67e74705SXin Li           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1707*67e74705SXin Li     } else {
1708*67e74705SXin Li       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1709*67e74705SXin Li       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1710*67e74705SXin Li     }
1711*67e74705SXin Li 
1712*67e74705SXin Li   // Next most common: pointer increment.
1713*67e74705SXin Li   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1714*67e74705SXin Li     QualType type = ptr->getPointeeType();
1715*67e74705SXin Li 
1716*67e74705SXin Li     // VLA types don't have constant size.
1717*67e74705SXin Li     if (const VariableArrayType *vla
1718*67e74705SXin Li           = CGF.getContext().getAsVariableArrayType(type)) {
1719*67e74705SXin Li       llvm::Value *numElts = CGF.getVLASize(vla).first;
1720*67e74705SXin Li       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1721*67e74705SXin Li       if (CGF.getLangOpts().isSignedOverflowDefined())
1722*67e74705SXin Li         value = Builder.CreateGEP(value, numElts, "vla.inc");
1723*67e74705SXin Li       else
1724*67e74705SXin Li         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1725*67e74705SXin Li 
1726*67e74705SXin Li     // Arithmetic on function pointers (!) is just +-1.
1727*67e74705SXin Li     } else if (type->isFunctionType()) {
1728*67e74705SXin Li       llvm::Value *amt = Builder.getInt32(amount);
1729*67e74705SXin Li 
1730*67e74705SXin Li       value = CGF.EmitCastToVoidPtr(value);
1731*67e74705SXin Li       if (CGF.getLangOpts().isSignedOverflowDefined())
1732*67e74705SXin Li         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1733*67e74705SXin Li       else
1734*67e74705SXin Li         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1735*67e74705SXin Li       value = Builder.CreateBitCast(value, input->getType());
1736*67e74705SXin Li 
1737*67e74705SXin Li     // For everything else, we can just do a simple increment.
1738*67e74705SXin Li     } else {
1739*67e74705SXin Li       llvm::Value *amt = Builder.getInt32(amount);
1740*67e74705SXin Li       if (CGF.getLangOpts().isSignedOverflowDefined())
1741*67e74705SXin Li         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1742*67e74705SXin Li       else
1743*67e74705SXin Li         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1744*67e74705SXin Li     }
1745*67e74705SXin Li 
1746*67e74705SXin Li   // Vector increment/decrement.
1747*67e74705SXin Li   } else if (type->isVectorType()) {
1748*67e74705SXin Li     if (type->hasIntegerRepresentation()) {
1749*67e74705SXin Li       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1750*67e74705SXin Li 
1751*67e74705SXin Li       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1752*67e74705SXin Li     } else {
1753*67e74705SXin Li       value = Builder.CreateFAdd(
1754*67e74705SXin Li                   value,
1755*67e74705SXin Li                   llvm::ConstantFP::get(value->getType(), amount),
1756*67e74705SXin Li                   isInc ? "inc" : "dec");
1757*67e74705SXin Li     }
1758*67e74705SXin Li 
1759*67e74705SXin Li   // Floating point.
1760*67e74705SXin Li   } else if (type->isRealFloatingType()) {
1761*67e74705SXin Li     // Add the inc/dec to the real part.
1762*67e74705SXin Li     llvm::Value *amt;
1763*67e74705SXin Li 
1764*67e74705SXin Li     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1765*67e74705SXin Li       // Another special case: half FP increment should be done via float
1766*67e74705SXin Li       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1767*67e74705SXin Li         value = Builder.CreateCall(
1768*67e74705SXin Li             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1769*67e74705SXin Li                                  CGF.CGM.FloatTy),
1770*67e74705SXin Li             input, "incdec.conv");
1771*67e74705SXin Li       } else {
1772*67e74705SXin Li         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1773*67e74705SXin Li       }
1774*67e74705SXin Li     }
1775*67e74705SXin Li 
1776*67e74705SXin Li     if (value->getType()->isFloatTy())
1777*67e74705SXin Li       amt = llvm::ConstantFP::get(VMContext,
1778*67e74705SXin Li                                   llvm::APFloat(static_cast<float>(amount)));
1779*67e74705SXin Li     else if (value->getType()->isDoubleTy())
1780*67e74705SXin Li       amt = llvm::ConstantFP::get(VMContext,
1781*67e74705SXin Li                                   llvm::APFloat(static_cast<double>(amount)));
1782*67e74705SXin Li     else {
1783*67e74705SXin Li       // Remaining types are Half, LongDouble or __float128. Convert from float.
1784*67e74705SXin Li       llvm::APFloat F(static_cast<float>(amount));
1785*67e74705SXin Li       bool ignored;
1786*67e74705SXin Li       const llvm::fltSemantics *FS;
1787*67e74705SXin Li       // Don't use getFloatTypeSemantics because Half isn't
1788*67e74705SXin Li       // necessarily represented using the "half" LLVM type.
1789*67e74705SXin Li       if (value->getType()->isFP128Ty())
1790*67e74705SXin Li         FS = &CGF.getTarget().getFloat128Format();
1791*67e74705SXin Li       else if (value->getType()->isHalfTy())
1792*67e74705SXin Li         FS = &CGF.getTarget().getHalfFormat();
1793*67e74705SXin Li       else
1794*67e74705SXin Li         FS = &CGF.getTarget().getLongDoubleFormat();
1795*67e74705SXin Li       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
1796*67e74705SXin Li       amt = llvm::ConstantFP::get(VMContext, F);
1797*67e74705SXin Li     }
1798*67e74705SXin Li     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1799*67e74705SXin Li 
1800*67e74705SXin Li     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1801*67e74705SXin Li       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1802*67e74705SXin Li         value = Builder.CreateCall(
1803*67e74705SXin Li             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1804*67e74705SXin Li                                  CGF.CGM.FloatTy),
1805*67e74705SXin Li             value, "incdec.conv");
1806*67e74705SXin Li       } else {
1807*67e74705SXin Li         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1808*67e74705SXin Li       }
1809*67e74705SXin Li     }
1810*67e74705SXin Li 
1811*67e74705SXin Li   // Objective-C pointer types.
1812*67e74705SXin Li   } else {
1813*67e74705SXin Li     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1814*67e74705SXin Li     value = CGF.EmitCastToVoidPtr(value);
1815*67e74705SXin Li 
1816*67e74705SXin Li     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1817*67e74705SXin Li     if (!isInc) size = -size;
1818*67e74705SXin Li     llvm::Value *sizeValue =
1819*67e74705SXin Li       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1820*67e74705SXin Li 
1821*67e74705SXin Li     if (CGF.getLangOpts().isSignedOverflowDefined())
1822*67e74705SXin Li       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1823*67e74705SXin Li     else
1824*67e74705SXin Li       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1825*67e74705SXin Li     value = Builder.CreateBitCast(value, input->getType());
1826*67e74705SXin Li   }
1827*67e74705SXin Li 
1828*67e74705SXin Li   if (atomicPHI) {
1829*67e74705SXin Li     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1830*67e74705SXin Li     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1831*67e74705SXin Li     auto Pair = CGF.EmitAtomicCompareExchange(
1832*67e74705SXin Li         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1833*67e74705SXin Li     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1834*67e74705SXin Li     llvm::Value *success = Pair.second;
1835*67e74705SXin Li     atomicPHI->addIncoming(old, opBB);
1836*67e74705SXin Li     Builder.CreateCondBr(success, contBB, opBB);
1837*67e74705SXin Li     Builder.SetInsertPoint(contBB);
1838*67e74705SXin Li     return isPre ? value : input;
1839*67e74705SXin Li   }
1840*67e74705SXin Li 
1841*67e74705SXin Li   // Store the updated result through the lvalue.
1842*67e74705SXin Li   if (LV.isBitField())
1843*67e74705SXin Li     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1844*67e74705SXin Li   else
1845*67e74705SXin Li     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1846*67e74705SXin Li 
1847*67e74705SXin Li   // If this is a postinc, return the value read from memory, otherwise use the
1848*67e74705SXin Li   // updated value.
1849*67e74705SXin Li   return isPre ? value : input;
1850*67e74705SXin Li }
1851*67e74705SXin Li 
1852*67e74705SXin Li 
1853*67e74705SXin Li 
VisitUnaryMinus(const UnaryOperator * E)1854*67e74705SXin Li Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1855*67e74705SXin Li   TestAndClearIgnoreResultAssign();
1856*67e74705SXin Li   // Emit unary minus with EmitSub so we handle overflow cases etc.
1857*67e74705SXin Li   BinOpInfo BinOp;
1858*67e74705SXin Li   BinOp.RHS = Visit(E->getSubExpr());
1859*67e74705SXin Li 
1860*67e74705SXin Li   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1861*67e74705SXin Li     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1862*67e74705SXin Li   else
1863*67e74705SXin Li     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1864*67e74705SXin Li   BinOp.Ty = E->getType();
1865*67e74705SXin Li   BinOp.Opcode = BO_Sub;
1866*67e74705SXin Li   BinOp.FPContractable = false;
1867*67e74705SXin Li   BinOp.E = E;
1868*67e74705SXin Li   return EmitSub(BinOp);
1869*67e74705SXin Li }
1870*67e74705SXin Li 
VisitUnaryNot(const UnaryOperator * E)1871*67e74705SXin Li Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1872*67e74705SXin Li   TestAndClearIgnoreResultAssign();
1873*67e74705SXin Li   Value *Op = Visit(E->getSubExpr());
1874*67e74705SXin Li   return Builder.CreateNot(Op, "neg");
1875*67e74705SXin Li }
1876*67e74705SXin Li 
VisitUnaryLNot(const UnaryOperator * E)1877*67e74705SXin Li Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1878*67e74705SXin Li   // Perform vector logical not on comparison with zero vector.
1879*67e74705SXin Li   if (E->getType()->isExtVectorType()) {
1880*67e74705SXin Li     Value *Oper = Visit(E->getSubExpr());
1881*67e74705SXin Li     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1882*67e74705SXin Li     Value *Result;
1883*67e74705SXin Li     if (Oper->getType()->isFPOrFPVectorTy())
1884*67e74705SXin Li       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1885*67e74705SXin Li     else
1886*67e74705SXin Li       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1887*67e74705SXin Li     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1888*67e74705SXin Li   }
1889*67e74705SXin Li 
1890*67e74705SXin Li   // Compare operand to zero.
1891*67e74705SXin Li   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1892*67e74705SXin Li 
1893*67e74705SXin Li   // Invert value.
1894*67e74705SXin Li   // TODO: Could dynamically modify easy computations here.  For example, if
1895*67e74705SXin Li   // the operand is an icmp ne, turn into icmp eq.
1896*67e74705SXin Li   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1897*67e74705SXin Li 
1898*67e74705SXin Li   // ZExt result to the expr type.
1899*67e74705SXin Li   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1900*67e74705SXin Li }
1901*67e74705SXin Li 
VisitOffsetOfExpr(OffsetOfExpr * E)1902*67e74705SXin Li Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1903*67e74705SXin Li   // Try folding the offsetof to a constant.
1904*67e74705SXin Li   llvm::APSInt Value;
1905*67e74705SXin Li   if (E->EvaluateAsInt(Value, CGF.getContext()))
1906*67e74705SXin Li     return Builder.getInt(Value);
1907*67e74705SXin Li 
1908*67e74705SXin Li   // Loop over the components of the offsetof to compute the value.
1909*67e74705SXin Li   unsigned n = E->getNumComponents();
1910*67e74705SXin Li   llvm::Type* ResultType = ConvertType(E->getType());
1911*67e74705SXin Li   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1912*67e74705SXin Li   QualType CurrentType = E->getTypeSourceInfo()->getType();
1913*67e74705SXin Li   for (unsigned i = 0; i != n; ++i) {
1914*67e74705SXin Li     OffsetOfNode ON = E->getComponent(i);
1915*67e74705SXin Li     llvm::Value *Offset = nullptr;
1916*67e74705SXin Li     switch (ON.getKind()) {
1917*67e74705SXin Li     case OffsetOfNode::Array: {
1918*67e74705SXin Li       // Compute the index
1919*67e74705SXin Li       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1920*67e74705SXin Li       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1921*67e74705SXin Li       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1922*67e74705SXin Li       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1923*67e74705SXin Li 
1924*67e74705SXin Li       // Save the element type
1925*67e74705SXin Li       CurrentType =
1926*67e74705SXin Li           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1927*67e74705SXin Li 
1928*67e74705SXin Li       // Compute the element size
1929*67e74705SXin Li       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1930*67e74705SXin Li           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1931*67e74705SXin Li 
1932*67e74705SXin Li       // Multiply out to compute the result
1933*67e74705SXin Li       Offset = Builder.CreateMul(Idx, ElemSize);
1934*67e74705SXin Li       break;
1935*67e74705SXin Li     }
1936*67e74705SXin Li 
1937*67e74705SXin Li     case OffsetOfNode::Field: {
1938*67e74705SXin Li       FieldDecl *MemberDecl = ON.getField();
1939*67e74705SXin Li       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1940*67e74705SXin Li       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1941*67e74705SXin Li 
1942*67e74705SXin Li       // Compute the index of the field in its parent.
1943*67e74705SXin Li       unsigned i = 0;
1944*67e74705SXin Li       // FIXME: It would be nice if we didn't have to loop here!
1945*67e74705SXin Li       for (RecordDecl::field_iterator Field = RD->field_begin(),
1946*67e74705SXin Li                                       FieldEnd = RD->field_end();
1947*67e74705SXin Li            Field != FieldEnd; ++Field, ++i) {
1948*67e74705SXin Li         if (*Field == MemberDecl)
1949*67e74705SXin Li           break;
1950*67e74705SXin Li       }
1951*67e74705SXin Li       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1952*67e74705SXin Li 
1953*67e74705SXin Li       // Compute the offset to the field
1954*67e74705SXin Li       int64_t OffsetInt = RL.getFieldOffset(i) /
1955*67e74705SXin Li                           CGF.getContext().getCharWidth();
1956*67e74705SXin Li       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1957*67e74705SXin Li 
1958*67e74705SXin Li       // Save the element type.
1959*67e74705SXin Li       CurrentType = MemberDecl->getType();
1960*67e74705SXin Li       break;
1961*67e74705SXin Li     }
1962*67e74705SXin Li 
1963*67e74705SXin Li     case OffsetOfNode::Identifier:
1964*67e74705SXin Li       llvm_unreachable("dependent __builtin_offsetof");
1965*67e74705SXin Li 
1966*67e74705SXin Li     case OffsetOfNode::Base: {
1967*67e74705SXin Li       if (ON.getBase()->isVirtual()) {
1968*67e74705SXin Li         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1969*67e74705SXin Li         continue;
1970*67e74705SXin Li       }
1971*67e74705SXin Li 
1972*67e74705SXin Li       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1973*67e74705SXin Li       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1974*67e74705SXin Li 
1975*67e74705SXin Li       // Save the element type.
1976*67e74705SXin Li       CurrentType = ON.getBase()->getType();
1977*67e74705SXin Li 
1978*67e74705SXin Li       // Compute the offset to the base.
1979*67e74705SXin Li       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1980*67e74705SXin Li       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1981*67e74705SXin Li       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1982*67e74705SXin Li       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1983*67e74705SXin Li       break;
1984*67e74705SXin Li     }
1985*67e74705SXin Li     }
1986*67e74705SXin Li     Result = Builder.CreateAdd(Result, Offset);
1987*67e74705SXin Li   }
1988*67e74705SXin Li   return Result;
1989*67e74705SXin Li }
1990*67e74705SXin Li 
1991*67e74705SXin Li /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1992*67e74705SXin Li /// argument of the sizeof expression as an integer.
1993*67e74705SXin Li Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1994*67e74705SXin Li ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1995*67e74705SXin Li                               const UnaryExprOrTypeTraitExpr *E) {
1996*67e74705SXin Li   QualType TypeToSize = E->getTypeOfArgument();
1997*67e74705SXin Li   if (E->getKind() == UETT_SizeOf) {
1998*67e74705SXin Li     if (const VariableArrayType *VAT =
1999*67e74705SXin Li           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2000*67e74705SXin Li       if (E->isArgumentType()) {
2001*67e74705SXin Li         // sizeof(type) - make sure to emit the VLA size.
2002*67e74705SXin Li         CGF.EmitVariablyModifiedType(TypeToSize);
2003*67e74705SXin Li       } else {
2004*67e74705SXin Li         // C99 6.5.3.4p2: If the argument is an expression of type
2005*67e74705SXin Li         // VLA, it is evaluated.
2006*67e74705SXin Li         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2007*67e74705SXin Li       }
2008*67e74705SXin Li 
2009*67e74705SXin Li       QualType eltType;
2010*67e74705SXin Li       llvm::Value *numElts;
2011*67e74705SXin Li       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2012*67e74705SXin Li 
2013*67e74705SXin Li       llvm::Value *size = numElts;
2014*67e74705SXin Li 
2015*67e74705SXin Li       // Scale the number of non-VLA elements by the non-VLA element size.
2016*67e74705SXin Li       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2017*67e74705SXin Li       if (!eltSize.isOne())
2018*67e74705SXin Li         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2019*67e74705SXin Li 
2020*67e74705SXin Li       return size;
2021*67e74705SXin Li     }
2022*67e74705SXin Li   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2023*67e74705SXin Li     auto Alignment =
2024*67e74705SXin Li         CGF.getContext()
2025*67e74705SXin Li             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2026*67e74705SXin Li                 E->getTypeOfArgument()->getPointeeType()))
2027*67e74705SXin Li             .getQuantity();
2028*67e74705SXin Li     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2029*67e74705SXin Li   }
2030*67e74705SXin Li 
2031*67e74705SXin Li   // If this isn't sizeof(vla), the result must be constant; use the constant
2032*67e74705SXin Li   // folding logic so we don't have to duplicate it here.
2033*67e74705SXin Li   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2034*67e74705SXin Li }
2035*67e74705SXin Li 
VisitUnaryReal(const UnaryOperator * E)2036*67e74705SXin Li Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2037*67e74705SXin Li   Expr *Op = E->getSubExpr();
2038*67e74705SXin Li   if (Op->getType()->isAnyComplexType()) {
2039*67e74705SXin Li     // If it's an l-value, load through the appropriate subobject l-value.
2040*67e74705SXin Li     // Note that we have to ask E because Op might be an l-value that
2041*67e74705SXin Li     // this won't work for, e.g. an Obj-C property.
2042*67e74705SXin Li     if (E->isGLValue())
2043*67e74705SXin Li       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2044*67e74705SXin Li                                   E->getExprLoc()).getScalarVal();
2045*67e74705SXin Li 
2046*67e74705SXin Li     // Otherwise, calculate and project.
2047*67e74705SXin Li     return CGF.EmitComplexExpr(Op, false, true).first;
2048*67e74705SXin Li   }
2049*67e74705SXin Li 
2050*67e74705SXin Li   return Visit(Op);
2051*67e74705SXin Li }
2052*67e74705SXin Li 
VisitUnaryImag(const UnaryOperator * E)2053*67e74705SXin Li Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2054*67e74705SXin Li   Expr *Op = E->getSubExpr();
2055*67e74705SXin Li   if (Op->getType()->isAnyComplexType()) {
2056*67e74705SXin Li     // If it's an l-value, load through the appropriate subobject l-value.
2057*67e74705SXin Li     // Note that we have to ask E because Op might be an l-value that
2058*67e74705SXin Li     // this won't work for, e.g. an Obj-C property.
2059*67e74705SXin Li     if (Op->isGLValue())
2060*67e74705SXin Li       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2061*67e74705SXin Li                                   E->getExprLoc()).getScalarVal();
2062*67e74705SXin Li 
2063*67e74705SXin Li     // Otherwise, calculate and project.
2064*67e74705SXin Li     return CGF.EmitComplexExpr(Op, true, false).second;
2065*67e74705SXin Li   }
2066*67e74705SXin Li 
2067*67e74705SXin Li   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2068*67e74705SXin Li   // effects are evaluated, but not the actual value.
2069*67e74705SXin Li   if (Op->isGLValue())
2070*67e74705SXin Li     CGF.EmitLValue(Op);
2071*67e74705SXin Li   else
2072*67e74705SXin Li     CGF.EmitScalarExpr(Op, true);
2073*67e74705SXin Li   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2074*67e74705SXin Li }
2075*67e74705SXin Li 
2076*67e74705SXin Li //===----------------------------------------------------------------------===//
2077*67e74705SXin Li //                           Binary Operators
2078*67e74705SXin Li //===----------------------------------------------------------------------===//
2079*67e74705SXin Li 
EmitBinOps(const BinaryOperator * E)2080*67e74705SXin Li BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2081*67e74705SXin Li   TestAndClearIgnoreResultAssign();
2082*67e74705SXin Li   BinOpInfo Result;
2083*67e74705SXin Li   Result.LHS = Visit(E->getLHS());
2084*67e74705SXin Li   Result.RHS = Visit(E->getRHS());
2085*67e74705SXin Li   Result.Ty  = E->getType();
2086*67e74705SXin Li   Result.Opcode = E->getOpcode();
2087*67e74705SXin Li   Result.FPContractable = E->isFPContractable();
2088*67e74705SXin Li   Result.E = E;
2089*67e74705SXin Li   return Result;
2090*67e74705SXin Li }
2091*67e74705SXin Li 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2092*67e74705SXin Li LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2093*67e74705SXin Li                                               const CompoundAssignOperator *E,
2094*67e74705SXin Li                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2095*67e74705SXin Li                                                    Value *&Result) {
2096*67e74705SXin Li   QualType LHSTy = E->getLHS()->getType();
2097*67e74705SXin Li   BinOpInfo OpInfo;
2098*67e74705SXin Li 
2099*67e74705SXin Li   if (E->getComputationResultType()->isAnyComplexType())
2100*67e74705SXin Li     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2101*67e74705SXin Li 
2102*67e74705SXin Li   // Emit the RHS first.  __block variables need to have the rhs evaluated
2103*67e74705SXin Li   // first, plus this should improve codegen a little.
2104*67e74705SXin Li   OpInfo.RHS = Visit(E->getRHS());
2105*67e74705SXin Li   OpInfo.Ty = E->getComputationResultType();
2106*67e74705SXin Li   OpInfo.Opcode = E->getOpcode();
2107*67e74705SXin Li   OpInfo.FPContractable = E->isFPContractable();
2108*67e74705SXin Li   OpInfo.E = E;
2109*67e74705SXin Li   // Load/convert the LHS.
2110*67e74705SXin Li   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2111*67e74705SXin Li 
2112*67e74705SXin Li   llvm::PHINode *atomicPHI = nullptr;
2113*67e74705SXin Li   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2114*67e74705SXin Li     QualType type = atomicTy->getValueType();
2115*67e74705SXin Li     if (!type->isBooleanType() && type->isIntegerType() &&
2116*67e74705SXin Li         !(type->isUnsignedIntegerType() &&
2117*67e74705SXin Li           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2118*67e74705SXin Li         CGF.getLangOpts().getSignedOverflowBehavior() !=
2119*67e74705SXin Li             LangOptions::SOB_Trapping) {
2120*67e74705SXin Li       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2121*67e74705SXin Li       switch (OpInfo.Opcode) {
2122*67e74705SXin Li         // We don't have atomicrmw operands for *, %, /, <<, >>
2123*67e74705SXin Li         case BO_MulAssign: case BO_DivAssign:
2124*67e74705SXin Li         case BO_RemAssign:
2125*67e74705SXin Li         case BO_ShlAssign:
2126*67e74705SXin Li         case BO_ShrAssign:
2127*67e74705SXin Li           break;
2128*67e74705SXin Li         case BO_AddAssign:
2129*67e74705SXin Li           aop = llvm::AtomicRMWInst::Add;
2130*67e74705SXin Li           break;
2131*67e74705SXin Li         case BO_SubAssign:
2132*67e74705SXin Li           aop = llvm::AtomicRMWInst::Sub;
2133*67e74705SXin Li           break;
2134*67e74705SXin Li         case BO_AndAssign:
2135*67e74705SXin Li           aop = llvm::AtomicRMWInst::And;
2136*67e74705SXin Li           break;
2137*67e74705SXin Li         case BO_XorAssign:
2138*67e74705SXin Li           aop = llvm::AtomicRMWInst::Xor;
2139*67e74705SXin Li           break;
2140*67e74705SXin Li         case BO_OrAssign:
2141*67e74705SXin Li           aop = llvm::AtomicRMWInst::Or;
2142*67e74705SXin Li           break;
2143*67e74705SXin Li         default:
2144*67e74705SXin Li           llvm_unreachable("Invalid compound assignment type");
2145*67e74705SXin Li       }
2146*67e74705SXin Li       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2147*67e74705SXin Li         llvm::Value *amt = CGF.EmitToMemory(
2148*67e74705SXin Li             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2149*67e74705SXin Li                                  E->getExprLoc()),
2150*67e74705SXin Li             LHSTy);
2151*67e74705SXin Li         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2152*67e74705SXin Li             llvm::AtomicOrdering::SequentiallyConsistent);
2153*67e74705SXin Li         return LHSLV;
2154*67e74705SXin Li       }
2155*67e74705SXin Li     }
2156*67e74705SXin Li     // FIXME: For floating point types, we should be saving and restoring the
2157*67e74705SXin Li     // floating point environment in the loop.
2158*67e74705SXin Li     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2159*67e74705SXin Li     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2160*67e74705SXin Li     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2161*67e74705SXin Li     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2162*67e74705SXin Li     Builder.CreateBr(opBB);
2163*67e74705SXin Li     Builder.SetInsertPoint(opBB);
2164*67e74705SXin Li     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2165*67e74705SXin Li     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2166*67e74705SXin Li     OpInfo.LHS = atomicPHI;
2167*67e74705SXin Li   }
2168*67e74705SXin Li   else
2169*67e74705SXin Li     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2170*67e74705SXin Li 
2171*67e74705SXin Li   SourceLocation Loc = E->getExprLoc();
2172*67e74705SXin Li   OpInfo.LHS =
2173*67e74705SXin Li       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2174*67e74705SXin Li 
2175*67e74705SXin Li   // Expand the binary operator.
2176*67e74705SXin Li   Result = (this->*Func)(OpInfo);
2177*67e74705SXin Li 
2178*67e74705SXin Li   // Convert the result back to the LHS type.
2179*67e74705SXin Li   Result =
2180*67e74705SXin Li       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2181*67e74705SXin Li 
2182*67e74705SXin Li   if (atomicPHI) {
2183*67e74705SXin Li     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2184*67e74705SXin Li     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2185*67e74705SXin Li     auto Pair = CGF.EmitAtomicCompareExchange(
2186*67e74705SXin Li         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2187*67e74705SXin Li     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2188*67e74705SXin Li     llvm::Value *success = Pair.second;
2189*67e74705SXin Li     atomicPHI->addIncoming(old, opBB);
2190*67e74705SXin Li     Builder.CreateCondBr(success, contBB, opBB);
2191*67e74705SXin Li     Builder.SetInsertPoint(contBB);
2192*67e74705SXin Li     return LHSLV;
2193*67e74705SXin Li   }
2194*67e74705SXin Li 
2195*67e74705SXin Li   // Store the result value into the LHS lvalue. Bit-fields are handled
2196*67e74705SXin Li   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2197*67e74705SXin Li   // 'An assignment expression has the value of the left operand after the
2198*67e74705SXin Li   // assignment...'.
2199*67e74705SXin Li   if (LHSLV.isBitField())
2200*67e74705SXin Li     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2201*67e74705SXin Li   else
2202*67e74705SXin Li     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2203*67e74705SXin Li 
2204*67e74705SXin Li   return LHSLV;
2205*67e74705SXin Li }
2206*67e74705SXin Li 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2207*67e74705SXin Li Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2208*67e74705SXin Li                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2209*67e74705SXin Li   bool Ignore = TestAndClearIgnoreResultAssign();
2210*67e74705SXin Li   Value *RHS;
2211*67e74705SXin Li   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2212*67e74705SXin Li 
2213*67e74705SXin Li   // If the result is clearly ignored, return now.
2214*67e74705SXin Li   if (Ignore)
2215*67e74705SXin Li     return nullptr;
2216*67e74705SXin Li 
2217*67e74705SXin Li   // The result of an assignment in C is the assigned r-value.
2218*67e74705SXin Li   if (!CGF.getLangOpts().CPlusPlus)
2219*67e74705SXin Li     return RHS;
2220*67e74705SXin Li 
2221*67e74705SXin Li   // If the lvalue is non-volatile, return the computed value of the assignment.
2222*67e74705SXin Li   if (!LHS.isVolatileQualified())
2223*67e74705SXin Li     return RHS;
2224*67e74705SXin Li 
2225*67e74705SXin Li   // Otherwise, reload the value.
2226*67e74705SXin Li   return EmitLoadOfLValue(LHS, E->getExprLoc());
2227*67e74705SXin Li }
2228*67e74705SXin Li 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2229*67e74705SXin Li void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2230*67e74705SXin Li     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2231*67e74705SXin Li   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2232*67e74705SXin Li 
2233*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2234*67e74705SXin Li     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2235*67e74705SXin Li                                     SanitizerKind::IntegerDivideByZero));
2236*67e74705SXin Li   }
2237*67e74705SXin Li 
2238*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2239*67e74705SXin Li       Ops.Ty->hasSignedIntegerRepresentation()) {
2240*67e74705SXin Li     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2241*67e74705SXin Li 
2242*67e74705SXin Li     llvm::Value *IntMin =
2243*67e74705SXin Li       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2244*67e74705SXin Li     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2245*67e74705SXin Li 
2246*67e74705SXin Li     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2247*67e74705SXin Li     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2248*67e74705SXin Li     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2249*67e74705SXin Li     Checks.push_back(
2250*67e74705SXin Li         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2251*67e74705SXin Li   }
2252*67e74705SXin Li 
2253*67e74705SXin Li   if (Checks.size() > 0)
2254*67e74705SXin Li     EmitBinOpCheck(Checks, Ops);
2255*67e74705SXin Li }
2256*67e74705SXin Li 
EmitDiv(const BinOpInfo & Ops)2257*67e74705SXin Li Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2258*67e74705SXin Li   {
2259*67e74705SXin Li     CodeGenFunction::SanitizerScope SanScope(&CGF);
2260*67e74705SXin Li     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2261*67e74705SXin Li          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2262*67e74705SXin Li         Ops.Ty->isIntegerType()) {
2263*67e74705SXin Li       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2264*67e74705SXin Li       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2265*67e74705SXin Li     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2266*67e74705SXin Li                Ops.Ty->isRealFloatingType()) {
2267*67e74705SXin Li       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2268*67e74705SXin Li       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2269*67e74705SXin Li       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2270*67e74705SXin Li                      Ops);
2271*67e74705SXin Li     }
2272*67e74705SXin Li   }
2273*67e74705SXin Li 
2274*67e74705SXin Li   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2275*67e74705SXin Li     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2276*67e74705SXin Li     if (CGF.getLangOpts().OpenCL) {
2277*67e74705SXin Li       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2278*67e74705SXin Li       llvm::Type *ValTy = Val->getType();
2279*67e74705SXin Li       if (ValTy->isFloatTy() ||
2280*67e74705SXin Li           (isa<llvm::VectorType>(ValTy) &&
2281*67e74705SXin Li            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2282*67e74705SXin Li         CGF.SetFPAccuracy(Val, 2.5);
2283*67e74705SXin Li     }
2284*67e74705SXin Li     return Val;
2285*67e74705SXin Li   }
2286*67e74705SXin Li   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2287*67e74705SXin Li     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2288*67e74705SXin Li   else
2289*67e74705SXin Li     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2290*67e74705SXin Li }
2291*67e74705SXin Li 
EmitRem(const BinOpInfo & Ops)2292*67e74705SXin Li Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2293*67e74705SXin Li   // Rem in C can't be a floating point type: C99 6.5.5p2.
2294*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2295*67e74705SXin Li     CodeGenFunction::SanitizerScope SanScope(&CGF);
2296*67e74705SXin Li     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2297*67e74705SXin Li 
2298*67e74705SXin Li     if (Ops.Ty->isIntegerType())
2299*67e74705SXin Li       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2300*67e74705SXin Li   }
2301*67e74705SXin Li 
2302*67e74705SXin Li   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2303*67e74705SXin Li     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2304*67e74705SXin Li   else
2305*67e74705SXin Li     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2306*67e74705SXin Li }
2307*67e74705SXin Li 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2308*67e74705SXin Li Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2309*67e74705SXin Li   unsigned IID;
2310*67e74705SXin Li   unsigned OpID = 0;
2311*67e74705SXin Li 
2312*67e74705SXin Li   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2313*67e74705SXin Li   switch (Ops.Opcode) {
2314*67e74705SXin Li   case BO_Add:
2315*67e74705SXin Li   case BO_AddAssign:
2316*67e74705SXin Li     OpID = 1;
2317*67e74705SXin Li     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2318*67e74705SXin Li                      llvm::Intrinsic::uadd_with_overflow;
2319*67e74705SXin Li     break;
2320*67e74705SXin Li   case BO_Sub:
2321*67e74705SXin Li   case BO_SubAssign:
2322*67e74705SXin Li     OpID = 2;
2323*67e74705SXin Li     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2324*67e74705SXin Li                      llvm::Intrinsic::usub_with_overflow;
2325*67e74705SXin Li     break;
2326*67e74705SXin Li   case BO_Mul:
2327*67e74705SXin Li   case BO_MulAssign:
2328*67e74705SXin Li     OpID = 3;
2329*67e74705SXin Li     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2330*67e74705SXin Li                      llvm::Intrinsic::umul_with_overflow;
2331*67e74705SXin Li     break;
2332*67e74705SXin Li   default:
2333*67e74705SXin Li     llvm_unreachable("Unsupported operation for overflow detection");
2334*67e74705SXin Li   }
2335*67e74705SXin Li   OpID <<= 1;
2336*67e74705SXin Li   if (isSigned)
2337*67e74705SXin Li     OpID |= 1;
2338*67e74705SXin Li 
2339*67e74705SXin Li   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2340*67e74705SXin Li 
2341*67e74705SXin Li   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2342*67e74705SXin Li 
2343*67e74705SXin Li   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2344*67e74705SXin Li   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2345*67e74705SXin Li   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2346*67e74705SXin Li 
2347*67e74705SXin Li   // Handle overflow with llvm.trap if no custom handler has been specified.
2348*67e74705SXin Li   const std::string *handlerName =
2349*67e74705SXin Li     &CGF.getLangOpts().OverflowHandler;
2350*67e74705SXin Li   if (handlerName->empty()) {
2351*67e74705SXin Li     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2352*67e74705SXin Li     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2353*67e74705SXin Li     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2354*67e74705SXin Li       CodeGenFunction::SanitizerScope SanScope(&CGF);
2355*67e74705SXin Li       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2356*67e74705SXin Li       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2357*67e74705SXin Li                               : SanitizerKind::UnsignedIntegerOverflow;
2358*67e74705SXin Li       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2359*67e74705SXin Li     } else
2360*67e74705SXin Li       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2361*67e74705SXin Li     return result;
2362*67e74705SXin Li   }
2363*67e74705SXin Li 
2364*67e74705SXin Li   // Branch in case of overflow.
2365*67e74705SXin Li   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2366*67e74705SXin Li   llvm::Function::iterator insertPt = initialBB->getIterator();
2367*67e74705SXin Li   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2368*67e74705SXin Li                                                       &*std::next(insertPt));
2369*67e74705SXin Li   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2370*67e74705SXin Li 
2371*67e74705SXin Li   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2372*67e74705SXin Li 
2373*67e74705SXin Li   // If an overflow handler is set, then we want to call it and then use its
2374*67e74705SXin Li   // result, if it returns.
2375*67e74705SXin Li   Builder.SetInsertPoint(overflowBB);
2376*67e74705SXin Li 
2377*67e74705SXin Li   // Get the overflow handler.
2378*67e74705SXin Li   llvm::Type *Int8Ty = CGF.Int8Ty;
2379*67e74705SXin Li   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2380*67e74705SXin Li   llvm::FunctionType *handlerTy =
2381*67e74705SXin Li       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2382*67e74705SXin Li   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2383*67e74705SXin Li 
2384*67e74705SXin Li   // Sign extend the args to 64-bit, so that we can use the same handler for
2385*67e74705SXin Li   // all types of overflow.
2386*67e74705SXin Li   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2387*67e74705SXin Li   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2388*67e74705SXin Li 
2389*67e74705SXin Li   // Call the handler with the two arguments, the operation, and the size of
2390*67e74705SXin Li   // the result.
2391*67e74705SXin Li   llvm::Value *handlerArgs[] = {
2392*67e74705SXin Li     lhs,
2393*67e74705SXin Li     rhs,
2394*67e74705SXin Li     Builder.getInt8(OpID),
2395*67e74705SXin Li     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2396*67e74705SXin Li   };
2397*67e74705SXin Li   llvm::Value *handlerResult =
2398*67e74705SXin Li     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2399*67e74705SXin Li 
2400*67e74705SXin Li   // Truncate the result back to the desired size.
2401*67e74705SXin Li   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2402*67e74705SXin Li   Builder.CreateBr(continueBB);
2403*67e74705SXin Li 
2404*67e74705SXin Li   Builder.SetInsertPoint(continueBB);
2405*67e74705SXin Li   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2406*67e74705SXin Li   phi->addIncoming(result, initialBB);
2407*67e74705SXin Li   phi->addIncoming(handlerResult, overflowBB);
2408*67e74705SXin Li 
2409*67e74705SXin Li   return phi;
2410*67e74705SXin Li }
2411*67e74705SXin Li 
2412*67e74705SXin Li /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2413*67e74705SXin Li static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2414*67e74705SXin Li                                     const BinOpInfo &op,
2415*67e74705SXin Li                                     bool isSubtraction) {
2416*67e74705SXin Li   // Must have binary (not unary) expr here.  Unary pointer
2417*67e74705SXin Li   // increment/decrement doesn't use this path.
2418*67e74705SXin Li   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2419*67e74705SXin Li 
2420*67e74705SXin Li   Value *pointer = op.LHS;
2421*67e74705SXin Li   Expr *pointerOperand = expr->getLHS();
2422*67e74705SXin Li   Value *index = op.RHS;
2423*67e74705SXin Li   Expr *indexOperand = expr->getRHS();
2424*67e74705SXin Li 
2425*67e74705SXin Li   // In a subtraction, the LHS is always the pointer.
2426*67e74705SXin Li   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2427*67e74705SXin Li     std::swap(pointer, index);
2428*67e74705SXin Li     std::swap(pointerOperand, indexOperand);
2429*67e74705SXin Li   }
2430*67e74705SXin Li 
2431*67e74705SXin Li   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2432*67e74705SXin Li   if (width != CGF.PointerWidthInBits) {
2433*67e74705SXin Li     // Zero-extend or sign-extend the pointer value according to
2434*67e74705SXin Li     // whether the index is signed or not.
2435*67e74705SXin Li     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2436*67e74705SXin Li     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2437*67e74705SXin Li                                       "idx.ext");
2438*67e74705SXin Li   }
2439*67e74705SXin Li 
2440*67e74705SXin Li   // If this is subtraction, negate the index.
2441*67e74705SXin Li   if (isSubtraction)
2442*67e74705SXin Li     index = CGF.Builder.CreateNeg(index, "idx.neg");
2443*67e74705SXin Li 
2444*67e74705SXin Li   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2445*67e74705SXin Li     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2446*67e74705SXin Li                         /*Accessed*/ false);
2447*67e74705SXin Li 
2448*67e74705SXin Li   const PointerType *pointerType
2449*67e74705SXin Li     = pointerOperand->getType()->getAs<PointerType>();
2450*67e74705SXin Li   if (!pointerType) {
2451*67e74705SXin Li     QualType objectType = pointerOperand->getType()
2452*67e74705SXin Li                                         ->castAs<ObjCObjectPointerType>()
2453*67e74705SXin Li                                         ->getPointeeType();
2454*67e74705SXin Li     llvm::Value *objectSize
2455*67e74705SXin Li       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2456*67e74705SXin Li 
2457*67e74705SXin Li     index = CGF.Builder.CreateMul(index, objectSize);
2458*67e74705SXin Li 
2459*67e74705SXin Li     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2460*67e74705SXin Li     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2461*67e74705SXin Li     return CGF.Builder.CreateBitCast(result, pointer->getType());
2462*67e74705SXin Li   }
2463*67e74705SXin Li 
2464*67e74705SXin Li   QualType elementType = pointerType->getPointeeType();
2465*67e74705SXin Li   if (const VariableArrayType *vla
2466*67e74705SXin Li         = CGF.getContext().getAsVariableArrayType(elementType)) {
2467*67e74705SXin Li     // The element count here is the total number of non-VLA elements.
2468*67e74705SXin Li     llvm::Value *numElements = CGF.getVLASize(vla).first;
2469*67e74705SXin Li 
2470*67e74705SXin Li     // Effectively, the multiply by the VLA size is part of the GEP.
2471*67e74705SXin Li     // GEP indexes are signed, and scaling an index isn't permitted to
2472*67e74705SXin Li     // signed-overflow, so we use the same semantics for our explicit
2473*67e74705SXin Li     // multiply.  We suppress this if overflow is not undefined behavior.
2474*67e74705SXin Li     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2475*67e74705SXin Li       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2476*67e74705SXin Li       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2477*67e74705SXin Li     } else {
2478*67e74705SXin Li       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2479*67e74705SXin Li       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2480*67e74705SXin Li     }
2481*67e74705SXin Li     return pointer;
2482*67e74705SXin Li   }
2483*67e74705SXin Li 
2484*67e74705SXin Li   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2485*67e74705SXin Li   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2486*67e74705SXin Li   // future proof.
2487*67e74705SXin Li   if (elementType->isVoidType() || elementType->isFunctionType()) {
2488*67e74705SXin Li     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2489*67e74705SXin Li     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2490*67e74705SXin Li     return CGF.Builder.CreateBitCast(result, pointer->getType());
2491*67e74705SXin Li   }
2492*67e74705SXin Li 
2493*67e74705SXin Li   if (CGF.getLangOpts().isSignedOverflowDefined())
2494*67e74705SXin Li     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2495*67e74705SXin Li 
2496*67e74705SXin Li   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2497*67e74705SXin Li }
2498*67e74705SXin Li 
2499*67e74705SXin Li // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2500*67e74705SXin Li // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2501*67e74705SXin Li // the add operand respectively. This allows fmuladd to represent a*b-c, or
2502*67e74705SXin Li // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2503*67e74705SXin Li // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2504*67e74705SXin Li static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2505*67e74705SXin Li                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2506*67e74705SXin Li                            bool negMul, bool negAdd) {
2507*67e74705SXin Li   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2508*67e74705SXin Li 
2509*67e74705SXin Li   Value *MulOp0 = MulOp->getOperand(0);
2510*67e74705SXin Li   Value *MulOp1 = MulOp->getOperand(1);
2511*67e74705SXin Li   if (negMul) {
2512*67e74705SXin Li     MulOp0 =
2513*67e74705SXin Li       Builder.CreateFSub(
2514*67e74705SXin Li         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2515*67e74705SXin Li         "neg");
2516*67e74705SXin Li   } else if (negAdd) {
2517*67e74705SXin Li     Addend =
2518*67e74705SXin Li       Builder.CreateFSub(
2519*67e74705SXin Li         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2520*67e74705SXin Li         "neg");
2521*67e74705SXin Li   }
2522*67e74705SXin Li 
2523*67e74705SXin Li   Value *FMulAdd = Builder.CreateCall(
2524*67e74705SXin Li       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2525*67e74705SXin Li       {MulOp0, MulOp1, Addend});
2526*67e74705SXin Li    MulOp->eraseFromParent();
2527*67e74705SXin Li 
2528*67e74705SXin Li    return FMulAdd;
2529*67e74705SXin Li }
2530*67e74705SXin Li 
2531*67e74705SXin Li // Check whether it would be legal to emit an fmuladd intrinsic call to
2532*67e74705SXin Li // represent op and if so, build the fmuladd.
2533*67e74705SXin Li //
2534*67e74705SXin Li // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2535*67e74705SXin Li // Does NOT check the type of the operation - it's assumed that this function
2536*67e74705SXin Li // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2537*67e74705SXin Li static Value* tryEmitFMulAdd(const BinOpInfo &op,
2538*67e74705SXin Li                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2539*67e74705SXin Li                          bool isSub=false) {
2540*67e74705SXin Li 
2541*67e74705SXin Li   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2542*67e74705SXin Li           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2543*67e74705SXin Li          "Only fadd/fsub can be the root of an fmuladd.");
2544*67e74705SXin Li 
2545*67e74705SXin Li   // Check whether this op is marked as fusable.
2546*67e74705SXin Li   if (!op.FPContractable)
2547*67e74705SXin Li     return nullptr;
2548*67e74705SXin Li 
2549*67e74705SXin Li   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2550*67e74705SXin Li   // either disabled, or handled entirely by the LLVM backend).
2551*67e74705SXin Li   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2552*67e74705SXin Li     return nullptr;
2553*67e74705SXin Li 
2554*67e74705SXin Li   // We have a potentially fusable op. Look for a mul on one of the operands.
2555*67e74705SXin Li   // Also, make sure that the mul result isn't used directly. In that case,
2556*67e74705SXin Li   // there's no point creating a muladd operation.
2557*67e74705SXin Li   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2558*67e74705SXin Li     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2559*67e74705SXin Li         LHSBinOp->use_empty())
2560*67e74705SXin Li       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2561*67e74705SXin Li   }
2562*67e74705SXin Li   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2563*67e74705SXin Li     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2564*67e74705SXin Li         RHSBinOp->use_empty())
2565*67e74705SXin Li       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2566*67e74705SXin Li   }
2567*67e74705SXin Li 
2568*67e74705SXin Li   return nullptr;
2569*67e74705SXin Li }
2570*67e74705SXin Li 
EmitAdd(const BinOpInfo & op)2571*67e74705SXin Li Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2572*67e74705SXin Li   if (op.LHS->getType()->isPointerTy() ||
2573*67e74705SXin Li       op.RHS->getType()->isPointerTy())
2574*67e74705SXin Li     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2575*67e74705SXin Li 
2576*67e74705SXin Li   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2577*67e74705SXin Li     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2578*67e74705SXin Li     case LangOptions::SOB_Defined:
2579*67e74705SXin Li       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2580*67e74705SXin Li     case LangOptions::SOB_Undefined:
2581*67e74705SXin Li       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2582*67e74705SXin Li         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2583*67e74705SXin Li       // Fall through.
2584*67e74705SXin Li     case LangOptions::SOB_Trapping:
2585*67e74705SXin Li       return EmitOverflowCheckedBinOp(op);
2586*67e74705SXin Li     }
2587*67e74705SXin Li   }
2588*67e74705SXin Li 
2589*67e74705SXin Li   if (op.Ty->isUnsignedIntegerType() &&
2590*67e74705SXin Li       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2591*67e74705SXin Li     return EmitOverflowCheckedBinOp(op);
2592*67e74705SXin Li 
2593*67e74705SXin Li   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2594*67e74705SXin Li     // Try to form an fmuladd.
2595*67e74705SXin Li     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2596*67e74705SXin Li       return FMulAdd;
2597*67e74705SXin Li 
2598*67e74705SXin Li     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2599*67e74705SXin Li   }
2600*67e74705SXin Li 
2601*67e74705SXin Li   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2602*67e74705SXin Li }
2603*67e74705SXin Li 
EmitSub(const BinOpInfo & op)2604*67e74705SXin Li Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2605*67e74705SXin Li   // The LHS is always a pointer if either side is.
2606*67e74705SXin Li   if (!op.LHS->getType()->isPointerTy()) {
2607*67e74705SXin Li     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2608*67e74705SXin Li       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2609*67e74705SXin Li       case LangOptions::SOB_Defined:
2610*67e74705SXin Li         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2611*67e74705SXin Li       case LangOptions::SOB_Undefined:
2612*67e74705SXin Li         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2613*67e74705SXin Li           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2614*67e74705SXin Li         // Fall through.
2615*67e74705SXin Li       case LangOptions::SOB_Trapping:
2616*67e74705SXin Li         return EmitOverflowCheckedBinOp(op);
2617*67e74705SXin Li       }
2618*67e74705SXin Li     }
2619*67e74705SXin Li 
2620*67e74705SXin Li     if (op.Ty->isUnsignedIntegerType() &&
2621*67e74705SXin Li         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2622*67e74705SXin Li       return EmitOverflowCheckedBinOp(op);
2623*67e74705SXin Li 
2624*67e74705SXin Li     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2625*67e74705SXin Li       // Try to form an fmuladd.
2626*67e74705SXin Li       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2627*67e74705SXin Li         return FMulAdd;
2628*67e74705SXin Li       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2629*67e74705SXin Li     }
2630*67e74705SXin Li 
2631*67e74705SXin Li     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2632*67e74705SXin Li   }
2633*67e74705SXin Li 
2634*67e74705SXin Li   // If the RHS is not a pointer, then we have normal pointer
2635*67e74705SXin Li   // arithmetic.
2636*67e74705SXin Li   if (!op.RHS->getType()->isPointerTy())
2637*67e74705SXin Li     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2638*67e74705SXin Li 
2639*67e74705SXin Li   // Otherwise, this is a pointer subtraction.
2640*67e74705SXin Li 
2641*67e74705SXin Li   // Do the raw subtraction part.
2642*67e74705SXin Li   llvm::Value *LHS
2643*67e74705SXin Li     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2644*67e74705SXin Li   llvm::Value *RHS
2645*67e74705SXin Li     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2646*67e74705SXin Li   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2647*67e74705SXin Li 
2648*67e74705SXin Li   // Okay, figure out the element size.
2649*67e74705SXin Li   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2650*67e74705SXin Li   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2651*67e74705SXin Li 
2652*67e74705SXin Li   llvm::Value *divisor = nullptr;
2653*67e74705SXin Li 
2654*67e74705SXin Li   // For a variable-length array, this is going to be non-constant.
2655*67e74705SXin Li   if (const VariableArrayType *vla
2656*67e74705SXin Li         = CGF.getContext().getAsVariableArrayType(elementType)) {
2657*67e74705SXin Li     llvm::Value *numElements;
2658*67e74705SXin Li     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2659*67e74705SXin Li 
2660*67e74705SXin Li     divisor = numElements;
2661*67e74705SXin Li 
2662*67e74705SXin Li     // Scale the number of non-VLA elements by the non-VLA element size.
2663*67e74705SXin Li     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2664*67e74705SXin Li     if (!eltSize.isOne())
2665*67e74705SXin Li       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2666*67e74705SXin Li 
2667*67e74705SXin Li   // For everything elese, we can just compute it, safe in the
2668*67e74705SXin Li   // assumption that Sema won't let anything through that we can't
2669*67e74705SXin Li   // safely compute the size of.
2670*67e74705SXin Li   } else {
2671*67e74705SXin Li     CharUnits elementSize;
2672*67e74705SXin Li     // Handle GCC extension for pointer arithmetic on void* and
2673*67e74705SXin Li     // function pointer types.
2674*67e74705SXin Li     if (elementType->isVoidType() || elementType->isFunctionType())
2675*67e74705SXin Li       elementSize = CharUnits::One();
2676*67e74705SXin Li     else
2677*67e74705SXin Li       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2678*67e74705SXin Li 
2679*67e74705SXin Li     // Don't even emit the divide for element size of 1.
2680*67e74705SXin Li     if (elementSize.isOne())
2681*67e74705SXin Li       return diffInChars;
2682*67e74705SXin Li 
2683*67e74705SXin Li     divisor = CGF.CGM.getSize(elementSize);
2684*67e74705SXin Li   }
2685*67e74705SXin Li 
2686*67e74705SXin Li   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2687*67e74705SXin Li   // pointer difference in C is only defined in the case where both operands
2688*67e74705SXin Li   // are pointing to elements of an array.
2689*67e74705SXin Li   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2690*67e74705SXin Li }
2691*67e74705SXin Li 
GetWidthMinusOneValue(Value * LHS,Value * RHS)2692*67e74705SXin Li Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2693*67e74705SXin Li   llvm::IntegerType *Ty;
2694*67e74705SXin Li   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2695*67e74705SXin Li     Ty = cast<llvm::IntegerType>(VT->getElementType());
2696*67e74705SXin Li   else
2697*67e74705SXin Li     Ty = cast<llvm::IntegerType>(LHS->getType());
2698*67e74705SXin Li   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2699*67e74705SXin Li }
2700*67e74705SXin Li 
EmitShl(const BinOpInfo & Ops)2701*67e74705SXin Li Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2702*67e74705SXin Li   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2703*67e74705SXin Li   // RHS to the same size as the LHS.
2704*67e74705SXin Li   Value *RHS = Ops.RHS;
2705*67e74705SXin Li   if (Ops.LHS->getType() != RHS->getType())
2706*67e74705SXin Li     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2707*67e74705SXin Li 
2708*67e74705SXin Li   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2709*67e74705SXin Li                       Ops.Ty->hasSignedIntegerRepresentation();
2710*67e74705SXin Li   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2711*67e74705SXin Li   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2712*67e74705SXin Li   if (CGF.getLangOpts().OpenCL)
2713*67e74705SXin Li     RHS =
2714*67e74705SXin Li         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2715*67e74705SXin Li   else if ((SanitizeBase || SanitizeExponent) &&
2716*67e74705SXin Li            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2717*67e74705SXin Li     CodeGenFunction::SanitizerScope SanScope(&CGF);
2718*67e74705SXin Li     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2719*67e74705SXin Li     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2720*67e74705SXin Li     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2721*67e74705SXin Li 
2722*67e74705SXin Li     if (SanitizeExponent) {
2723*67e74705SXin Li       Checks.push_back(
2724*67e74705SXin Li           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2725*67e74705SXin Li     }
2726*67e74705SXin Li 
2727*67e74705SXin Li     if (SanitizeBase) {
2728*67e74705SXin Li       // Check whether we are shifting any non-zero bits off the top of the
2729*67e74705SXin Li       // integer. We only emit this check if exponent is valid - otherwise
2730*67e74705SXin Li       // instructions below will have undefined behavior themselves.
2731*67e74705SXin Li       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2732*67e74705SXin Li       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2733*67e74705SXin Li       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2734*67e74705SXin Li       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2735*67e74705SXin Li       CGF.EmitBlock(CheckShiftBase);
2736*67e74705SXin Li       llvm::Value *BitsShiftedOff =
2737*67e74705SXin Li         Builder.CreateLShr(Ops.LHS,
2738*67e74705SXin Li                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2739*67e74705SXin Li                                              /*NUW*/true, /*NSW*/true),
2740*67e74705SXin Li                            "shl.check");
2741*67e74705SXin Li       if (CGF.getLangOpts().CPlusPlus) {
2742*67e74705SXin Li         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2743*67e74705SXin Li         // Under C++11's rules, shifting a 1 bit into the sign bit is
2744*67e74705SXin Li         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2745*67e74705SXin Li         // define signed left shifts, so we use the C99 and C++11 rules there).
2746*67e74705SXin Li         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2747*67e74705SXin Li         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2748*67e74705SXin Li       }
2749*67e74705SXin Li       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2750*67e74705SXin Li       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2751*67e74705SXin Li       CGF.EmitBlock(Cont);
2752*67e74705SXin Li       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2753*67e74705SXin Li       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2754*67e74705SXin Li       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2755*67e74705SXin Li       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2756*67e74705SXin Li     }
2757*67e74705SXin Li 
2758*67e74705SXin Li     assert(!Checks.empty());
2759*67e74705SXin Li     EmitBinOpCheck(Checks, Ops);
2760*67e74705SXin Li   }
2761*67e74705SXin Li 
2762*67e74705SXin Li   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2763*67e74705SXin Li }
2764*67e74705SXin Li 
EmitShr(const BinOpInfo & Ops)2765*67e74705SXin Li Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2766*67e74705SXin Li   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2767*67e74705SXin Li   // RHS to the same size as the LHS.
2768*67e74705SXin Li   Value *RHS = Ops.RHS;
2769*67e74705SXin Li   if (Ops.LHS->getType() != RHS->getType())
2770*67e74705SXin Li     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2771*67e74705SXin Li 
2772*67e74705SXin Li   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2773*67e74705SXin Li   if (CGF.getLangOpts().OpenCL)
2774*67e74705SXin Li     RHS =
2775*67e74705SXin Li         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2776*67e74705SXin Li   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2777*67e74705SXin Li            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2778*67e74705SXin Li     CodeGenFunction::SanitizerScope SanScope(&CGF);
2779*67e74705SXin Li     llvm::Value *Valid =
2780*67e74705SXin Li         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2781*67e74705SXin Li     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2782*67e74705SXin Li   }
2783*67e74705SXin Li 
2784*67e74705SXin Li   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2785*67e74705SXin Li     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2786*67e74705SXin Li   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2787*67e74705SXin Li }
2788*67e74705SXin Li 
2789*67e74705SXin Li enum IntrinsicType { VCMPEQ, VCMPGT };
2790*67e74705SXin Li // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2791*67e74705SXin Li static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2792*67e74705SXin Li                                         BuiltinType::Kind ElemKind) {
2793*67e74705SXin Li   switch (ElemKind) {
2794*67e74705SXin Li   default: llvm_unreachable("unexpected element type");
2795*67e74705SXin Li   case BuiltinType::Char_U:
2796*67e74705SXin Li   case BuiltinType::UChar:
2797*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2798*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2799*67e74705SXin Li   case BuiltinType::Char_S:
2800*67e74705SXin Li   case BuiltinType::SChar:
2801*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2802*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2803*67e74705SXin Li   case BuiltinType::UShort:
2804*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2805*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2806*67e74705SXin Li   case BuiltinType::Short:
2807*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2808*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2809*67e74705SXin Li   case BuiltinType::UInt:
2810*67e74705SXin Li   case BuiltinType::ULong:
2811*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2812*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2813*67e74705SXin Li   case BuiltinType::Int:
2814*67e74705SXin Li   case BuiltinType::Long:
2815*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2816*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2817*67e74705SXin Li   case BuiltinType::Float:
2818*67e74705SXin Li     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2819*67e74705SXin Li                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2820*67e74705SXin Li   }
2821*67e74705SXin Li }
2822*67e74705SXin Li 
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc)2823*67e74705SXin Li Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2824*67e74705SXin Li                                       llvm::CmpInst::Predicate UICmpOpc,
2825*67e74705SXin Li                                       llvm::CmpInst::Predicate SICmpOpc,
2826*67e74705SXin Li                                       llvm::CmpInst::Predicate FCmpOpc) {
2827*67e74705SXin Li   TestAndClearIgnoreResultAssign();
2828*67e74705SXin Li   Value *Result;
2829*67e74705SXin Li   QualType LHSTy = E->getLHS()->getType();
2830*67e74705SXin Li   QualType RHSTy = E->getRHS()->getType();
2831*67e74705SXin Li   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2832*67e74705SXin Li     assert(E->getOpcode() == BO_EQ ||
2833*67e74705SXin Li            E->getOpcode() == BO_NE);
2834*67e74705SXin Li     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2835*67e74705SXin Li     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2836*67e74705SXin Li     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2837*67e74705SXin Li                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2838*67e74705SXin Li   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2839*67e74705SXin Li     Value *LHS = Visit(E->getLHS());
2840*67e74705SXin Li     Value *RHS = Visit(E->getRHS());
2841*67e74705SXin Li 
2842*67e74705SXin Li     // If AltiVec, the comparison results in a numeric type, so we use
2843*67e74705SXin Li     // intrinsics comparing vectors and giving 0 or 1 as a result
2844*67e74705SXin Li     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2845*67e74705SXin Li       // constants for mapping CR6 register bits to predicate result
2846*67e74705SXin Li       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2847*67e74705SXin Li 
2848*67e74705SXin Li       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2849*67e74705SXin Li 
2850*67e74705SXin Li       // in several cases vector arguments order will be reversed
2851*67e74705SXin Li       Value *FirstVecArg = LHS,
2852*67e74705SXin Li             *SecondVecArg = RHS;
2853*67e74705SXin Li 
2854*67e74705SXin Li       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2855*67e74705SXin Li       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2856*67e74705SXin Li       BuiltinType::Kind ElementKind = BTy->getKind();
2857*67e74705SXin Li 
2858*67e74705SXin Li       switch(E->getOpcode()) {
2859*67e74705SXin Li       default: llvm_unreachable("is not a comparison operation");
2860*67e74705SXin Li       case BO_EQ:
2861*67e74705SXin Li         CR6 = CR6_LT;
2862*67e74705SXin Li         ID = GetIntrinsic(VCMPEQ, ElementKind);
2863*67e74705SXin Li         break;
2864*67e74705SXin Li       case BO_NE:
2865*67e74705SXin Li         CR6 = CR6_EQ;
2866*67e74705SXin Li         ID = GetIntrinsic(VCMPEQ, ElementKind);
2867*67e74705SXin Li         break;
2868*67e74705SXin Li       case BO_LT:
2869*67e74705SXin Li         CR6 = CR6_LT;
2870*67e74705SXin Li         ID = GetIntrinsic(VCMPGT, ElementKind);
2871*67e74705SXin Li         std::swap(FirstVecArg, SecondVecArg);
2872*67e74705SXin Li         break;
2873*67e74705SXin Li       case BO_GT:
2874*67e74705SXin Li         CR6 = CR6_LT;
2875*67e74705SXin Li         ID = GetIntrinsic(VCMPGT, ElementKind);
2876*67e74705SXin Li         break;
2877*67e74705SXin Li       case BO_LE:
2878*67e74705SXin Li         if (ElementKind == BuiltinType::Float) {
2879*67e74705SXin Li           CR6 = CR6_LT;
2880*67e74705SXin Li           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2881*67e74705SXin Li           std::swap(FirstVecArg, SecondVecArg);
2882*67e74705SXin Li         }
2883*67e74705SXin Li         else {
2884*67e74705SXin Li           CR6 = CR6_EQ;
2885*67e74705SXin Li           ID = GetIntrinsic(VCMPGT, ElementKind);
2886*67e74705SXin Li         }
2887*67e74705SXin Li         break;
2888*67e74705SXin Li       case BO_GE:
2889*67e74705SXin Li         if (ElementKind == BuiltinType::Float) {
2890*67e74705SXin Li           CR6 = CR6_LT;
2891*67e74705SXin Li           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2892*67e74705SXin Li         }
2893*67e74705SXin Li         else {
2894*67e74705SXin Li           CR6 = CR6_EQ;
2895*67e74705SXin Li           ID = GetIntrinsic(VCMPGT, ElementKind);
2896*67e74705SXin Li           std::swap(FirstVecArg, SecondVecArg);
2897*67e74705SXin Li         }
2898*67e74705SXin Li         break;
2899*67e74705SXin Li       }
2900*67e74705SXin Li 
2901*67e74705SXin Li       Value *CR6Param = Builder.getInt32(CR6);
2902*67e74705SXin Li       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2903*67e74705SXin Li       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2904*67e74705SXin Li       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2905*67e74705SXin Li                                   E->getExprLoc());
2906*67e74705SXin Li     }
2907*67e74705SXin Li 
2908*67e74705SXin Li     if (LHS->getType()->isFPOrFPVectorTy()) {
2909*67e74705SXin Li       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2910*67e74705SXin Li     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2911*67e74705SXin Li       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2912*67e74705SXin Li     } else {
2913*67e74705SXin Li       // Unsigned integers and pointers.
2914*67e74705SXin Li       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2915*67e74705SXin Li     }
2916*67e74705SXin Li 
2917*67e74705SXin Li     // If this is a vector comparison, sign extend the result to the appropriate
2918*67e74705SXin Li     // vector integer type and return it (don't convert to bool).
2919*67e74705SXin Li     if (LHSTy->isVectorType())
2920*67e74705SXin Li       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2921*67e74705SXin Li 
2922*67e74705SXin Li   } else {
2923*67e74705SXin Li     // Complex Comparison: can only be an equality comparison.
2924*67e74705SXin Li     CodeGenFunction::ComplexPairTy LHS, RHS;
2925*67e74705SXin Li     QualType CETy;
2926*67e74705SXin Li     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2927*67e74705SXin Li       LHS = CGF.EmitComplexExpr(E->getLHS());
2928*67e74705SXin Li       CETy = CTy->getElementType();
2929*67e74705SXin Li     } else {
2930*67e74705SXin Li       LHS.first = Visit(E->getLHS());
2931*67e74705SXin Li       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2932*67e74705SXin Li       CETy = LHSTy;
2933*67e74705SXin Li     }
2934*67e74705SXin Li     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2935*67e74705SXin Li       RHS = CGF.EmitComplexExpr(E->getRHS());
2936*67e74705SXin Li       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2937*67e74705SXin Li                                                      CTy->getElementType()) &&
2938*67e74705SXin Li              "The element types must always match.");
2939*67e74705SXin Li       (void)CTy;
2940*67e74705SXin Li     } else {
2941*67e74705SXin Li       RHS.first = Visit(E->getRHS());
2942*67e74705SXin Li       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2943*67e74705SXin Li       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2944*67e74705SXin Li              "The element types must always match.");
2945*67e74705SXin Li     }
2946*67e74705SXin Li 
2947*67e74705SXin Li     Value *ResultR, *ResultI;
2948*67e74705SXin Li     if (CETy->isRealFloatingType()) {
2949*67e74705SXin Li       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2950*67e74705SXin Li       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2951*67e74705SXin Li     } else {
2952*67e74705SXin Li       // Complex comparisons can only be equality comparisons.  As such, signed
2953*67e74705SXin Li       // and unsigned opcodes are the same.
2954*67e74705SXin Li       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2955*67e74705SXin Li       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2956*67e74705SXin Li     }
2957*67e74705SXin Li 
2958*67e74705SXin Li     if (E->getOpcode() == BO_EQ) {
2959*67e74705SXin Li       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2960*67e74705SXin Li     } else {
2961*67e74705SXin Li       assert(E->getOpcode() == BO_NE &&
2962*67e74705SXin Li              "Complex comparison other than == or != ?");
2963*67e74705SXin Li       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2964*67e74705SXin Li     }
2965*67e74705SXin Li   }
2966*67e74705SXin Li 
2967*67e74705SXin Li   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2968*67e74705SXin Li                               E->getExprLoc());
2969*67e74705SXin Li }
2970*67e74705SXin Li 
VisitBinAssign(const BinaryOperator * E)2971*67e74705SXin Li Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2972*67e74705SXin Li   bool Ignore = TestAndClearIgnoreResultAssign();
2973*67e74705SXin Li 
2974*67e74705SXin Li   Value *RHS;
2975*67e74705SXin Li   LValue LHS;
2976*67e74705SXin Li 
2977*67e74705SXin Li   switch (E->getLHS()->getType().getObjCLifetime()) {
2978*67e74705SXin Li   case Qualifiers::OCL_Strong:
2979*67e74705SXin Li     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2980*67e74705SXin Li     break;
2981*67e74705SXin Li 
2982*67e74705SXin Li   case Qualifiers::OCL_Autoreleasing:
2983*67e74705SXin Li     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2984*67e74705SXin Li     break;
2985*67e74705SXin Li 
2986*67e74705SXin Li   case Qualifiers::OCL_ExplicitNone:
2987*67e74705SXin Li     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
2988*67e74705SXin Li     break;
2989*67e74705SXin Li 
2990*67e74705SXin Li   case Qualifiers::OCL_Weak:
2991*67e74705SXin Li     RHS = Visit(E->getRHS());
2992*67e74705SXin Li     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2993*67e74705SXin Li     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2994*67e74705SXin Li     break;
2995*67e74705SXin Li 
2996*67e74705SXin Li   case Qualifiers::OCL_None:
2997*67e74705SXin Li     // __block variables need to have the rhs evaluated first, plus
2998*67e74705SXin Li     // this should improve codegen just a little.
2999*67e74705SXin Li     RHS = Visit(E->getRHS());
3000*67e74705SXin Li     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3001*67e74705SXin Li 
3002*67e74705SXin Li     // Store the value into the LHS.  Bit-fields are handled specially
3003*67e74705SXin Li     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3004*67e74705SXin Li     // 'An assignment expression has the value of the left operand after
3005*67e74705SXin Li     // the assignment...'.
3006*67e74705SXin Li     if (LHS.isBitField())
3007*67e74705SXin Li       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3008*67e74705SXin Li     else
3009*67e74705SXin Li       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3010*67e74705SXin Li   }
3011*67e74705SXin Li 
3012*67e74705SXin Li   // If the result is clearly ignored, return now.
3013*67e74705SXin Li   if (Ignore)
3014*67e74705SXin Li     return nullptr;
3015*67e74705SXin Li 
3016*67e74705SXin Li   // The result of an assignment in C is the assigned r-value.
3017*67e74705SXin Li   if (!CGF.getLangOpts().CPlusPlus)
3018*67e74705SXin Li     return RHS;
3019*67e74705SXin Li 
3020*67e74705SXin Li   // If the lvalue is non-volatile, return the computed value of the assignment.
3021*67e74705SXin Li   if (!LHS.isVolatileQualified())
3022*67e74705SXin Li     return RHS;
3023*67e74705SXin Li 
3024*67e74705SXin Li   // Otherwise, reload the value.
3025*67e74705SXin Li   return EmitLoadOfLValue(LHS, E->getExprLoc());
3026*67e74705SXin Li }
3027*67e74705SXin Li 
VisitBinLAnd(const BinaryOperator * E)3028*67e74705SXin Li Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3029*67e74705SXin Li   // Perform vector logical and on comparisons with zero vectors.
3030*67e74705SXin Li   if (E->getType()->isVectorType()) {
3031*67e74705SXin Li     CGF.incrementProfileCounter(E);
3032*67e74705SXin Li 
3033*67e74705SXin Li     Value *LHS = Visit(E->getLHS());
3034*67e74705SXin Li     Value *RHS = Visit(E->getRHS());
3035*67e74705SXin Li     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3036*67e74705SXin Li     if (LHS->getType()->isFPOrFPVectorTy()) {
3037*67e74705SXin Li       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3038*67e74705SXin Li       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3039*67e74705SXin Li     } else {
3040*67e74705SXin Li       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3041*67e74705SXin Li       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3042*67e74705SXin Li     }
3043*67e74705SXin Li     Value *And = Builder.CreateAnd(LHS, RHS);
3044*67e74705SXin Li     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3045*67e74705SXin Li   }
3046*67e74705SXin Li 
3047*67e74705SXin Li   llvm::Type *ResTy = ConvertType(E->getType());
3048*67e74705SXin Li 
3049*67e74705SXin Li   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3050*67e74705SXin Li   // If we have 1 && X, just emit X without inserting the control flow.
3051*67e74705SXin Li   bool LHSCondVal;
3052*67e74705SXin Li   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3053*67e74705SXin Li     if (LHSCondVal) { // If we have 1 && X, just emit X.
3054*67e74705SXin Li       CGF.incrementProfileCounter(E);
3055*67e74705SXin Li 
3056*67e74705SXin Li       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3057*67e74705SXin Li       // ZExt result to int or bool.
3058*67e74705SXin Li       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3059*67e74705SXin Li     }
3060*67e74705SXin Li 
3061*67e74705SXin Li     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3062*67e74705SXin Li     if (!CGF.ContainsLabel(E->getRHS()))
3063*67e74705SXin Li       return llvm::Constant::getNullValue(ResTy);
3064*67e74705SXin Li   }
3065*67e74705SXin Li 
3066*67e74705SXin Li   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3067*67e74705SXin Li   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3068*67e74705SXin Li 
3069*67e74705SXin Li   CodeGenFunction::ConditionalEvaluation eval(CGF);
3070*67e74705SXin Li 
3071*67e74705SXin Li   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3072*67e74705SXin Li   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3073*67e74705SXin Li                            CGF.getProfileCount(E->getRHS()));
3074*67e74705SXin Li 
3075*67e74705SXin Li   // Any edges into the ContBlock are now from an (indeterminate number of)
3076*67e74705SXin Li   // edges from this first condition.  All of these values will be false.  Start
3077*67e74705SXin Li   // setting up the PHI node in the Cont Block for this.
3078*67e74705SXin Li   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3079*67e74705SXin Li                                             "", ContBlock);
3080*67e74705SXin Li   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3081*67e74705SXin Li        PI != PE; ++PI)
3082*67e74705SXin Li     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3083*67e74705SXin Li 
3084*67e74705SXin Li   eval.begin(CGF);
3085*67e74705SXin Li   CGF.EmitBlock(RHSBlock);
3086*67e74705SXin Li   CGF.incrementProfileCounter(E);
3087*67e74705SXin Li   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3088*67e74705SXin Li   eval.end(CGF);
3089*67e74705SXin Li 
3090*67e74705SXin Li   // Reaquire the RHS block, as there may be subblocks inserted.
3091*67e74705SXin Li   RHSBlock = Builder.GetInsertBlock();
3092*67e74705SXin Li 
3093*67e74705SXin Li   // Emit an unconditional branch from this block to ContBlock.
3094*67e74705SXin Li   {
3095*67e74705SXin Li     // There is no need to emit line number for unconditional branch.
3096*67e74705SXin Li     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3097*67e74705SXin Li     CGF.EmitBlock(ContBlock);
3098*67e74705SXin Li   }
3099*67e74705SXin Li   // Insert an entry into the phi node for the edge with the value of RHSCond.
3100*67e74705SXin Li   PN->addIncoming(RHSCond, RHSBlock);
3101*67e74705SXin Li 
3102*67e74705SXin Li   // ZExt result to int.
3103*67e74705SXin Li   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3104*67e74705SXin Li }
3105*67e74705SXin Li 
VisitBinLOr(const BinaryOperator * E)3106*67e74705SXin Li Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3107*67e74705SXin Li   // Perform vector logical or on comparisons with zero vectors.
3108*67e74705SXin Li   if (E->getType()->isVectorType()) {
3109*67e74705SXin Li     CGF.incrementProfileCounter(E);
3110*67e74705SXin Li 
3111*67e74705SXin Li     Value *LHS = Visit(E->getLHS());
3112*67e74705SXin Li     Value *RHS = Visit(E->getRHS());
3113*67e74705SXin Li     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3114*67e74705SXin Li     if (LHS->getType()->isFPOrFPVectorTy()) {
3115*67e74705SXin Li       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3116*67e74705SXin Li       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3117*67e74705SXin Li     } else {
3118*67e74705SXin Li       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3119*67e74705SXin Li       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3120*67e74705SXin Li     }
3121*67e74705SXin Li     Value *Or = Builder.CreateOr(LHS, RHS);
3122*67e74705SXin Li     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3123*67e74705SXin Li   }
3124*67e74705SXin Li 
3125*67e74705SXin Li   llvm::Type *ResTy = ConvertType(E->getType());
3126*67e74705SXin Li 
3127*67e74705SXin Li   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3128*67e74705SXin Li   // If we have 0 || X, just emit X without inserting the control flow.
3129*67e74705SXin Li   bool LHSCondVal;
3130*67e74705SXin Li   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3131*67e74705SXin Li     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3132*67e74705SXin Li       CGF.incrementProfileCounter(E);
3133*67e74705SXin Li 
3134*67e74705SXin Li       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3135*67e74705SXin Li       // ZExt result to int or bool.
3136*67e74705SXin Li       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3137*67e74705SXin Li     }
3138*67e74705SXin Li 
3139*67e74705SXin Li     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3140*67e74705SXin Li     if (!CGF.ContainsLabel(E->getRHS()))
3141*67e74705SXin Li       return llvm::ConstantInt::get(ResTy, 1);
3142*67e74705SXin Li   }
3143*67e74705SXin Li 
3144*67e74705SXin Li   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3145*67e74705SXin Li   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3146*67e74705SXin Li 
3147*67e74705SXin Li   CodeGenFunction::ConditionalEvaluation eval(CGF);
3148*67e74705SXin Li 
3149*67e74705SXin Li   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3150*67e74705SXin Li   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3151*67e74705SXin Li                            CGF.getCurrentProfileCount() -
3152*67e74705SXin Li                                CGF.getProfileCount(E->getRHS()));
3153*67e74705SXin Li 
3154*67e74705SXin Li   // Any edges into the ContBlock are now from an (indeterminate number of)
3155*67e74705SXin Li   // edges from this first condition.  All of these values will be true.  Start
3156*67e74705SXin Li   // setting up the PHI node in the Cont Block for this.
3157*67e74705SXin Li   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3158*67e74705SXin Li                                             "", ContBlock);
3159*67e74705SXin Li   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3160*67e74705SXin Li        PI != PE; ++PI)
3161*67e74705SXin Li     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3162*67e74705SXin Li 
3163*67e74705SXin Li   eval.begin(CGF);
3164*67e74705SXin Li 
3165*67e74705SXin Li   // Emit the RHS condition as a bool value.
3166*67e74705SXin Li   CGF.EmitBlock(RHSBlock);
3167*67e74705SXin Li   CGF.incrementProfileCounter(E);
3168*67e74705SXin Li   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3169*67e74705SXin Li 
3170*67e74705SXin Li   eval.end(CGF);
3171*67e74705SXin Li 
3172*67e74705SXin Li   // Reaquire the RHS block, as there may be subblocks inserted.
3173*67e74705SXin Li   RHSBlock = Builder.GetInsertBlock();
3174*67e74705SXin Li 
3175*67e74705SXin Li   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3176*67e74705SXin Li   // into the phi node for the edge with the value of RHSCond.
3177*67e74705SXin Li   CGF.EmitBlock(ContBlock);
3178*67e74705SXin Li   PN->addIncoming(RHSCond, RHSBlock);
3179*67e74705SXin Li 
3180*67e74705SXin Li   // ZExt result to int.
3181*67e74705SXin Li   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3182*67e74705SXin Li }
3183*67e74705SXin Li 
VisitBinComma(const BinaryOperator * E)3184*67e74705SXin Li Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3185*67e74705SXin Li   CGF.EmitIgnoredExpr(E->getLHS());
3186*67e74705SXin Li   CGF.EnsureInsertPoint();
3187*67e74705SXin Li   return Visit(E->getRHS());
3188*67e74705SXin Li }
3189*67e74705SXin Li 
3190*67e74705SXin Li //===----------------------------------------------------------------------===//
3191*67e74705SXin Li //                             Other Operators
3192*67e74705SXin Li //===----------------------------------------------------------------------===//
3193*67e74705SXin Li 
3194*67e74705SXin Li /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3195*67e74705SXin Li /// expression is cheap enough and side-effect-free enough to evaluate
3196*67e74705SXin Li /// unconditionally instead of conditionally.  This is used to convert control
3197*67e74705SXin Li /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3198*67e74705SXin Li static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3199*67e74705SXin Li                                                    CodeGenFunction &CGF) {
3200*67e74705SXin Li   // Anything that is an integer or floating point constant is fine.
3201*67e74705SXin Li   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3202*67e74705SXin Li 
3203*67e74705SXin Li   // Even non-volatile automatic variables can't be evaluated unconditionally.
3204*67e74705SXin Li   // Referencing a thread_local may cause non-trivial initialization work to
3205*67e74705SXin Li   // occur. If we're inside a lambda and one of the variables is from the scope
3206*67e74705SXin Li   // outside the lambda, that function may have returned already. Reading its
3207*67e74705SXin Li   // locals is a bad idea. Also, these reads may introduce races there didn't
3208*67e74705SXin Li   // exist in the source-level program.
3209*67e74705SXin Li }
3210*67e74705SXin Li 
3211*67e74705SXin Li 
3212*67e74705SXin Li Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3213*67e74705SXin Li VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3214*67e74705SXin Li   TestAndClearIgnoreResultAssign();
3215*67e74705SXin Li 
3216*67e74705SXin Li   // Bind the common expression if necessary.
3217*67e74705SXin Li   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3218*67e74705SXin Li 
3219*67e74705SXin Li   Expr *condExpr = E->getCond();
3220*67e74705SXin Li   Expr *lhsExpr = E->getTrueExpr();
3221*67e74705SXin Li   Expr *rhsExpr = E->getFalseExpr();
3222*67e74705SXin Li 
3223*67e74705SXin Li   // If the condition constant folds and can be elided, try to avoid emitting
3224*67e74705SXin Li   // the condition and the dead arm.
3225*67e74705SXin Li   bool CondExprBool;
3226*67e74705SXin Li   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3227*67e74705SXin Li     Expr *live = lhsExpr, *dead = rhsExpr;
3228*67e74705SXin Li     if (!CondExprBool) std::swap(live, dead);
3229*67e74705SXin Li 
3230*67e74705SXin Li     // If the dead side doesn't have labels we need, just emit the Live part.
3231*67e74705SXin Li     if (!CGF.ContainsLabel(dead)) {
3232*67e74705SXin Li       if (CondExprBool)
3233*67e74705SXin Li         CGF.incrementProfileCounter(E);
3234*67e74705SXin Li       Value *Result = Visit(live);
3235*67e74705SXin Li 
3236*67e74705SXin Li       // If the live part is a throw expression, it acts like it has a void
3237*67e74705SXin Li       // type, so evaluating it returns a null Value*.  However, a conditional
3238*67e74705SXin Li       // with non-void type must return a non-null Value*.
3239*67e74705SXin Li       if (!Result && !E->getType()->isVoidType())
3240*67e74705SXin Li         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3241*67e74705SXin Li 
3242*67e74705SXin Li       return Result;
3243*67e74705SXin Li     }
3244*67e74705SXin Li   }
3245*67e74705SXin Li 
3246*67e74705SXin Li   // OpenCL: If the condition is a vector, we can treat this condition like
3247*67e74705SXin Li   // the select function.
3248*67e74705SXin Li   if (CGF.getLangOpts().OpenCL
3249*67e74705SXin Li       && condExpr->getType()->isVectorType()) {
3250*67e74705SXin Li     CGF.incrementProfileCounter(E);
3251*67e74705SXin Li 
3252*67e74705SXin Li     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3253*67e74705SXin Li     llvm::Value *LHS = Visit(lhsExpr);
3254*67e74705SXin Li     llvm::Value *RHS = Visit(rhsExpr);
3255*67e74705SXin Li 
3256*67e74705SXin Li     llvm::Type *condType = ConvertType(condExpr->getType());
3257*67e74705SXin Li     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3258*67e74705SXin Li 
3259*67e74705SXin Li     unsigned numElem = vecTy->getNumElements();
3260*67e74705SXin Li     llvm::Type *elemType = vecTy->getElementType();
3261*67e74705SXin Li 
3262*67e74705SXin Li     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3263*67e74705SXin Li     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3264*67e74705SXin Li     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3265*67e74705SXin Li                                           llvm::VectorType::get(elemType,
3266*67e74705SXin Li                                                                 numElem),
3267*67e74705SXin Li                                           "sext");
3268*67e74705SXin Li     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3269*67e74705SXin Li 
3270*67e74705SXin Li     // Cast float to int to perform ANDs if necessary.
3271*67e74705SXin Li     llvm::Value *RHSTmp = RHS;
3272*67e74705SXin Li     llvm::Value *LHSTmp = LHS;
3273*67e74705SXin Li     bool wasCast = false;
3274*67e74705SXin Li     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3275*67e74705SXin Li     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3276*67e74705SXin Li       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3277*67e74705SXin Li       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3278*67e74705SXin Li       wasCast = true;
3279*67e74705SXin Li     }
3280*67e74705SXin Li 
3281*67e74705SXin Li     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3282*67e74705SXin Li     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3283*67e74705SXin Li     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3284*67e74705SXin Li     if (wasCast)
3285*67e74705SXin Li       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3286*67e74705SXin Li 
3287*67e74705SXin Li     return tmp5;
3288*67e74705SXin Li   }
3289*67e74705SXin Li 
3290*67e74705SXin Li   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3291*67e74705SXin Li   // select instead of as control flow.  We can only do this if it is cheap and
3292*67e74705SXin Li   // safe to evaluate the LHS and RHS unconditionally.
3293*67e74705SXin Li   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3294*67e74705SXin Li       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3295*67e74705SXin Li     CGF.incrementProfileCounter(E);
3296*67e74705SXin Li 
3297*67e74705SXin Li     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3298*67e74705SXin Li     llvm::Value *LHS = Visit(lhsExpr);
3299*67e74705SXin Li     llvm::Value *RHS = Visit(rhsExpr);
3300*67e74705SXin Li     if (!LHS) {
3301*67e74705SXin Li       // If the conditional has void type, make sure we return a null Value*.
3302*67e74705SXin Li       assert(!RHS && "LHS and RHS types must match");
3303*67e74705SXin Li       return nullptr;
3304*67e74705SXin Li     }
3305*67e74705SXin Li     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3306*67e74705SXin Li   }
3307*67e74705SXin Li 
3308*67e74705SXin Li   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3309*67e74705SXin Li   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3310*67e74705SXin Li   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3311*67e74705SXin Li 
3312*67e74705SXin Li   CodeGenFunction::ConditionalEvaluation eval(CGF);
3313*67e74705SXin Li   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3314*67e74705SXin Li                            CGF.getProfileCount(lhsExpr));
3315*67e74705SXin Li 
3316*67e74705SXin Li   CGF.EmitBlock(LHSBlock);
3317*67e74705SXin Li   CGF.incrementProfileCounter(E);
3318*67e74705SXin Li   eval.begin(CGF);
3319*67e74705SXin Li   Value *LHS = Visit(lhsExpr);
3320*67e74705SXin Li   eval.end(CGF);
3321*67e74705SXin Li 
3322*67e74705SXin Li   LHSBlock = Builder.GetInsertBlock();
3323*67e74705SXin Li   Builder.CreateBr(ContBlock);
3324*67e74705SXin Li 
3325*67e74705SXin Li   CGF.EmitBlock(RHSBlock);
3326*67e74705SXin Li   eval.begin(CGF);
3327*67e74705SXin Li   Value *RHS = Visit(rhsExpr);
3328*67e74705SXin Li   eval.end(CGF);
3329*67e74705SXin Li 
3330*67e74705SXin Li   RHSBlock = Builder.GetInsertBlock();
3331*67e74705SXin Li   CGF.EmitBlock(ContBlock);
3332*67e74705SXin Li 
3333*67e74705SXin Li   // If the LHS or RHS is a throw expression, it will be legitimately null.
3334*67e74705SXin Li   if (!LHS)
3335*67e74705SXin Li     return RHS;
3336*67e74705SXin Li   if (!RHS)
3337*67e74705SXin Li     return LHS;
3338*67e74705SXin Li 
3339*67e74705SXin Li   // Create a PHI node for the real part.
3340*67e74705SXin Li   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3341*67e74705SXin Li   PN->addIncoming(LHS, LHSBlock);
3342*67e74705SXin Li   PN->addIncoming(RHS, RHSBlock);
3343*67e74705SXin Li   return PN;
3344*67e74705SXin Li }
3345*67e74705SXin Li 
VisitChooseExpr(ChooseExpr * E)3346*67e74705SXin Li Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3347*67e74705SXin Li   return Visit(E->getChosenSubExpr());
3348*67e74705SXin Li }
3349*67e74705SXin Li 
VisitVAArgExpr(VAArgExpr * VE)3350*67e74705SXin Li Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3351*67e74705SXin Li   QualType Ty = VE->getType();
3352*67e74705SXin Li 
3353*67e74705SXin Li   if (Ty->isVariablyModifiedType())
3354*67e74705SXin Li     CGF.EmitVariablyModifiedType(Ty);
3355*67e74705SXin Li 
3356*67e74705SXin Li   Address ArgValue = Address::invalid();
3357*67e74705SXin Li   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3358*67e74705SXin Li 
3359*67e74705SXin Li   llvm::Type *ArgTy = ConvertType(VE->getType());
3360*67e74705SXin Li 
3361*67e74705SXin Li   // If EmitVAArg fails, emit an error.
3362*67e74705SXin Li   if (!ArgPtr.isValid()) {
3363*67e74705SXin Li     CGF.ErrorUnsupported(VE, "va_arg expression");
3364*67e74705SXin Li     return llvm::UndefValue::get(ArgTy);
3365*67e74705SXin Li   }
3366*67e74705SXin Li 
3367*67e74705SXin Li   // FIXME Volatility.
3368*67e74705SXin Li   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3369*67e74705SXin Li 
3370*67e74705SXin Li   // If EmitVAArg promoted the type, we must truncate it.
3371*67e74705SXin Li   if (ArgTy != Val->getType()) {
3372*67e74705SXin Li     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3373*67e74705SXin Li       Val = Builder.CreateIntToPtr(Val, ArgTy);
3374*67e74705SXin Li     else
3375*67e74705SXin Li       Val = Builder.CreateTrunc(Val, ArgTy);
3376*67e74705SXin Li   }
3377*67e74705SXin Li 
3378*67e74705SXin Li   return Val;
3379*67e74705SXin Li }
3380*67e74705SXin Li 
VisitBlockExpr(const BlockExpr * block)3381*67e74705SXin Li Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3382*67e74705SXin Li   return CGF.EmitBlockLiteral(block);
3383*67e74705SXin Li }
3384*67e74705SXin Li 
3385*67e74705SXin Li // Convert a vec3 to vec4, or vice versa.
ConvertVec3AndVec4(CGBuilderTy & Builder,CodeGenFunction & CGF,Value * Src,unsigned NumElementsDst)3386*67e74705SXin Li static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3387*67e74705SXin Li                                  Value *Src, unsigned NumElementsDst) {
3388*67e74705SXin Li   llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3389*67e74705SXin Li   SmallVector<llvm::Constant*, 4> Args;
3390*67e74705SXin Li   Args.push_back(Builder.getInt32(0));
3391*67e74705SXin Li   Args.push_back(Builder.getInt32(1));
3392*67e74705SXin Li   Args.push_back(Builder.getInt32(2));
3393*67e74705SXin Li   if (NumElementsDst == 4)
3394*67e74705SXin Li     Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3395*67e74705SXin Li   llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3396*67e74705SXin Li   return Builder.CreateShuffleVector(Src, UnV, Mask);
3397*67e74705SXin Li }
3398*67e74705SXin Li 
VisitAsTypeExpr(AsTypeExpr * E)3399*67e74705SXin Li Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3400*67e74705SXin Li   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3401*67e74705SXin Li   llvm::Type *DstTy = ConvertType(E->getType());
3402*67e74705SXin Li 
3403*67e74705SXin Li   llvm::Type *SrcTy = Src->getType();
3404*67e74705SXin Li   unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3405*67e74705SXin Li     cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3406*67e74705SXin Li   unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3407*67e74705SXin Li     cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3408*67e74705SXin Li 
3409*67e74705SXin Li   // Going from vec3 to non-vec3 is a special case and requires a shuffle
3410*67e74705SXin Li   // vector to get a vec4, then a bitcast if the target type is different.
3411*67e74705SXin Li   if (NumElementsSrc == 3 && NumElementsDst != 3) {
3412*67e74705SXin Li     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3413*67e74705SXin Li     Src = Builder.CreateBitCast(Src, DstTy);
3414*67e74705SXin Li     Src->setName("astype");
3415*67e74705SXin Li     return Src;
3416*67e74705SXin Li   }
3417*67e74705SXin Li 
3418*67e74705SXin Li   // Going from non-vec3 to vec3 is a special case and requires a bitcast
3419*67e74705SXin Li   // to vec4 if the original type is not vec4, then a shuffle vector to
3420*67e74705SXin Li   // get a vec3.
3421*67e74705SXin Li   if (NumElementsSrc != 3 && NumElementsDst == 3) {
3422*67e74705SXin Li     auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3423*67e74705SXin Li     Src = Builder.CreateBitCast(Src, Vec4Ty);
3424*67e74705SXin Li     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3425*67e74705SXin Li     Src->setName("astype");
3426*67e74705SXin Li     return Src;
3427*67e74705SXin Li   }
3428*67e74705SXin Li 
3429*67e74705SXin Li   return Builder.CreateBitCast(Src, DstTy, "astype");
3430*67e74705SXin Li }
3431*67e74705SXin Li 
VisitAtomicExpr(AtomicExpr * E)3432*67e74705SXin Li Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3433*67e74705SXin Li   return CGF.EmitAtomicExpr(E).getScalarVal();
3434*67e74705SXin Li }
3435*67e74705SXin Li 
3436*67e74705SXin Li //===----------------------------------------------------------------------===//
3437*67e74705SXin Li //                         Entry Point into this File
3438*67e74705SXin Li //===----------------------------------------------------------------------===//
3439*67e74705SXin Li 
3440*67e74705SXin Li /// Emit the computation of the specified expression of scalar type, ignoring
3441*67e74705SXin Li /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3442*67e74705SXin Li Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3443*67e74705SXin Li   assert(E && hasScalarEvaluationKind(E->getType()) &&
3444*67e74705SXin Li          "Invalid scalar expression to emit");
3445*67e74705SXin Li 
3446*67e74705SXin Li   return ScalarExprEmitter(*this, IgnoreResultAssign)
3447*67e74705SXin Li       .Visit(const_cast<Expr *>(E));
3448*67e74705SXin Li }
3449*67e74705SXin Li 
3450*67e74705SXin Li /// Emit a conversion from the specified type to the specified destination type,
3451*67e74705SXin Li /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3452*67e74705SXin Li Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3453*67e74705SXin Li                                              QualType DstTy,
3454*67e74705SXin Li                                              SourceLocation Loc) {
3455*67e74705SXin Li   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3456*67e74705SXin Li          "Invalid scalar expression to emit");
3457*67e74705SXin Li   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3458*67e74705SXin Li }
3459*67e74705SXin Li 
3460*67e74705SXin Li /// Emit a conversion from the specified complex type to the specified
3461*67e74705SXin Li /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3462*67e74705SXin Li Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3463*67e74705SXin Li                                                       QualType SrcTy,
3464*67e74705SXin Li                                                       QualType DstTy,
3465*67e74705SXin Li                                                       SourceLocation Loc) {
3466*67e74705SXin Li   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3467*67e74705SXin Li          "Invalid complex -> scalar conversion");
3468*67e74705SXin Li   return ScalarExprEmitter(*this)
3469*67e74705SXin Li       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3470*67e74705SXin Li }
3471*67e74705SXin Li 
3472*67e74705SXin Li 
3473*67e74705SXin Li llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3474*67e74705SXin Li EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3475*67e74705SXin Li                         bool isInc, bool isPre) {
3476*67e74705SXin Li   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3477*67e74705SXin Li }
3478*67e74705SXin Li 
EmitObjCIsaExpr(const ObjCIsaExpr * E)3479*67e74705SXin Li LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3480*67e74705SXin Li   // object->isa or (*object).isa
3481*67e74705SXin Li   // Generate code as for: *(Class*)object
3482*67e74705SXin Li 
3483*67e74705SXin Li   Expr *BaseExpr = E->getBase();
3484*67e74705SXin Li   Address Addr = Address::invalid();
3485*67e74705SXin Li   if (BaseExpr->isRValue()) {
3486*67e74705SXin Li     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3487*67e74705SXin Li   } else {
3488*67e74705SXin Li     Addr = EmitLValue(BaseExpr).getAddress();
3489*67e74705SXin Li   }
3490*67e74705SXin Li 
3491*67e74705SXin Li   // Cast the address to Class*.
3492*67e74705SXin Li   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3493*67e74705SXin Li   return MakeAddrLValue(Addr, E->getType());
3494*67e74705SXin Li }
3495*67e74705SXin Li 
3496*67e74705SXin Li 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3497*67e74705SXin Li LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3498*67e74705SXin Li                                             const CompoundAssignOperator *E) {
3499*67e74705SXin Li   ScalarExprEmitter Scalar(*this);
3500*67e74705SXin Li   Value *Result = nullptr;
3501*67e74705SXin Li   switch (E->getOpcode()) {
3502*67e74705SXin Li #define COMPOUND_OP(Op)                                                       \
3503*67e74705SXin Li     case BO_##Op##Assign:                                                     \
3504*67e74705SXin Li       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3505*67e74705SXin Li                                              Result)
3506*67e74705SXin Li   COMPOUND_OP(Mul);
3507*67e74705SXin Li   COMPOUND_OP(Div);
3508*67e74705SXin Li   COMPOUND_OP(Rem);
3509*67e74705SXin Li   COMPOUND_OP(Add);
3510*67e74705SXin Li   COMPOUND_OP(Sub);
3511*67e74705SXin Li   COMPOUND_OP(Shl);
3512*67e74705SXin Li   COMPOUND_OP(Shr);
3513*67e74705SXin Li   COMPOUND_OP(And);
3514*67e74705SXin Li   COMPOUND_OP(Xor);
3515*67e74705SXin Li   COMPOUND_OP(Or);
3516*67e74705SXin Li #undef COMPOUND_OP
3517*67e74705SXin Li 
3518*67e74705SXin Li   case BO_PtrMemD:
3519*67e74705SXin Li   case BO_PtrMemI:
3520*67e74705SXin Li   case BO_Mul:
3521*67e74705SXin Li   case BO_Div:
3522*67e74705SXin Li   case BO_Rem:
3523*67e74705SXin Li   case BO_Add:
3524*67e74705SXin Li   case BO_Sub:
3525*67e74705SXin Li   case BO_Shl:
3526*67e74705SXin Li   case BO_Shr:
3527*67e74705SXin Li   case BO_LT:
3528*67e74705SXin Li   case BO_GT:
3529*67e74705SXin Li   case BO_LE:
3530*67e74705SXin Li   case BO_GE:
3531*67e74705SXin Li   case BO_EQ:
3532*67e74705SXin Li   case BO_NE:
3533*67e74705SXin Li   case BO_And:
3534*67e74705SXin Li   case BO_Xor:
3535*67e74705SXin Li   case BO_Or:
3536*67e74705SXin Li   case BO_LAnd:
3537*67e74705SXin Li   case BO_LOr:
3538*67e74705SXin Li   case BO_Assign:
3539*67e74705SXin Li   case BO_Comma:
3540*67e74705SXin Li     llvm_unreachable("Not valid compound assignment operators");
3541*67e74705SXin Li   }
3542*67e74705SXin Li 
3543*67e74705SXin Li   llvm_unreachable("Unhandled compound assignment operator");
3544*67e74705SXin Li }
3545