xref: /aosp_15_r20/external/clang/lib/Sema/SemaChecking.cpp (revision 67e74705e28f6214e480b399dd47ea732279e315)
1*67e74705SXin Li //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2*67e74705SXin Li //
3*67e74705SXin Li //                     The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li //  This file implements extra semantic analysis beyond what is enforced
11*67e74705SXin Li //  by the C type system.
12*67e74705SXin Li //
13*67e74705SXin Li //===----------------------------------------------------------------------===//
14*67e74705SXin Li 
15*67e74705SXin Li #include "clang/Sema/SemaInternal.h"
16*67e74705SXin Li #include "clang/AST/ASTContext.h"
17*67e74705SXin Li #include "clang/AST/CharUnits.h"
18*67e74705SXin Li #include "clang/AST/DeclCXX.h"
19*67e74705SXin Li #include "clang/AST/DeclObjC.h"
20*67e74705SXin Li #include "clang/AST/EvaluatedExprVisitor.h"
21*67e74705SXin Li #include "clang/AST/Expr.h"
22*67e74705SXin Li #include "clang/AST/ExprCXX.h"
23*67e74705SXin Li #include "clang/AST/ExprObjC.h"
24*67e74705SXin Li #include "clang/AST/ExprOpenMP.h"
25*67e74705SXin Li #include "clang/AST/StmtCXX.h"
26*67e74705SXin Li #include "clang/AST/StmtObjC.h"
27*67e74705SXin Li #include "clang/Analysis/Analyses/FormatString.h"
28*67e74705SXin Li #include "clang/Basic/CharInfo.h"
29*67e74705SXin Li #include "clang/Basic/TargetBuiltins.h"
30*67e74705SXin Li #include "clang/Basic/TargetInfo.h"
31*67e74705SXin Li #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32*67e74705SXin Li #include "clang/Sema/Initialization.h"
33*67e74705SXin Li #include "clang/Sema/Lookup.h"
34*67e74705SXin Li #include "clang/Sema/ScopeInfo.h"
35*67e74705SXin Li #include "clang/Sema/Sema.h"
36*67e74705SXin Li #include "llvm/ADT/STLExtras.h"
37*67e74705SXin Li #include "llvm/ADT/SmallBitVector.h"
38*67e74705SXin Li #include "llvm/ADT/SmallString.h"
39*67e74705SXin Li #include "llvm/Support/Format.h"
40*67e74705SXin Li #include "llvm/Support/Locale.h"
41*67e74705SXin Li #include "llvm/Support/ConvertUTF.h"
42*67e74705SXin Li #include "llvm/Support/raw_ostream.h"
43*67e74705SXin Li #include <limits>
44*67e74705SXin Li 
45*67e74705SXin Li using namespace clang;
46*67e74705SXin Li using namespace sema;
47*67e74705SXin Li 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const48*67e74705SXin Li SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
49*67e74705SXin Li                                                     unsigned ByteNo) const {
50*67e74705SXin Li   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
51*67e74705SXin Li                                Context.getTargetInfo());
52*67e74705SXin Li }
53*67e74705SXin Li 
54*67e74705SXin Li /// Checks that a call expression's argument count is the desired number.
55*67e74705SXin Li /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)56*67e74705SXin Li static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
57*67e74705SXin Li   unsigned argCount = call->getNumArgs();
58*67e74705SXin Li   if (argCount == desiredArgCount) return false;
59*67e74705SXin Li 
60*67e74705SXin Li   if (argCount < desiredArgCount)
61*67e74705SXin Li     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
62*67e74705SXin Li         << 0 /*function call*/ << desiredArgCount << argCount
63*67e74705SXin Li         << call->getSourceRange();
64*67e74705SXin Li 
65*67e74705SXin Li   // Highlight all the excess arguments.
66*67e74705SXin Li   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
67*67e74705SXin Li                     call->getArg(argCount - 1)->getLocEnd());
68*67e74705SXin Li 
69*67e74705SXin Li   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
70*67e74705SXin Li     << 0 /*function call*/ << desiredArgCount << argCount
71*67e74705SXin Li     << call->getArg(1)->getSourceRange();
72*67e74705SXin Li }
73*67e74705SXin Li 
74*67e74705SXin Li /// Check that the first argument to __builtin_annotation is an integer
75*67e74705SXin Li /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)76*67e74705SXin Li static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
77*67e74705SXin Li   if (checkArgCount(S, TheCall, 2))
78*67e74705SXin Li     return true;
79*67e74705SXin Li 
80*67e74705SXin Li   // First argument should be an integer.
81*67e74705SXin Li   Expr *ValArg = TheCall->getArg(0);
82*67e74705SXin Li   QualType Ty = ValArg->getType();
83*67e74705SXin Li   if (!Ty->isIntegerType()) {
84*67e74705SXin Li     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
85*67e74705SXin Li       << ValArg->getSourceRange();
86*67e74705SXin Li     return true;
87*67e74705SXin Li   }
88*67e74705SXin Li 
89*67e74705SXin Li   // Second argument should be a constant string.
90*67e74705SXin Li   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
91*67e74705SXin Li   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
92*67e74705SXin Li   if (!Literal || !Literal->isAscii()) {
93*67e74705SXin Li     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
94*67e74705SXin Li       << StrArg->getSourceRange();
95*67e74705SXin Li     return true;
96*67e74705SXin Li   }
97*67e74705SXin Li 
98*67e74705SXin Li   TheCall->setType(Ty);
99*67e74705SXin Li   return false;
100*67e74705SXin Li }
101*67e74705SXin Li 
102*67e74705SXin Li /// Check that the argument to __builtin_addressof is a glvalue, and set the
103*67e74705SXin Li /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)104*67e74705SXin Li static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
105*67e74705SXin Li   if (checkArgCount(S, TheCall, 1))
106*67e74705SXin Li     return true;
107*67e74705SXin Li 
108*67e74705SXin Li   ExprResult Arg(TheCall->getArg(0));
109*67e74705SXin Li   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
110*67e74705SXin Li   if (ResultType.isNull())
111*67e74705SXin Li     return true;
112*67e74705SXin Li 
113*67e74705SXin Li   TheCall->setArg(0, Arg.get());
114*67e74705SXin Li   TheCall->setType(ResultType);
115*67e74705SXin Li   return false;
116*67e74705SXin Li }
117*67e74705SXin Li 
SemaBuiltinOverflow(Sema & S,CallExpr * TheCall)118*67e74705SXin Li static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
119*67e74705SXin Li   if (checkArgCount(S, TheCall, 3))
120*67e74705SXin Li     return true;
121*67e74705SXin Li 
122*67e74705SXin Li   // First two arguments should be integers.
123*67e74705SXin Li   for (unsigned I = 0; I < 2; ++I) {
124*67e74705SXin Li     Expr *Arg = TheCall->getArg(I);
125*67e74705SXin Li     QualType Ty = Arg->getType();
126*67e74705SXin Li     if (!Ty->isIntegerType()) {
127*67e74705SXin Li       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_int)
128*67e74705SXin Li           << Ty << Arg->getSourceRange();
129*67e74705SXin Li       return true;
130*67e74705SXin Li     }
131*67e74705SXin Li   }
132*67e74705SXin Li 
133*67e74705SXin Li   // Third argument should be a pointer to a non-const integer.
134*67e74705SXin Li   // IRGen correctly handles volatile, restrict, and address spaces, and
135*67e74705SXin Li   // the other qualifiers aren't possible.
136*67e74705SXin Li   {
137*67e74705SXin Li     Expr *Arg = TheCall->getArg(2);
138*67e74705SXin Li     QualType Ty = Arg->getType();
139*67e74705SXin Li     const auto *PtrTy = Ty->getAs<PointerType>();
140*67e74705SXin Li     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
141*67e74705SXin Li           !PtrTy->getPointeeType().isConstQualified())) {
142*67e74705SXin Li       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_ptr_int)
143*67e74705SXin Li           << Ty << Arg->getSourceRange();
144*67e74705SXin Li       return true;
145*67e74705SXin Li     }
146*67e74705SXin Li   }
147*67e74705SXin Li 
148*67e74705SXin Li   return false;
149*67e74705SXin Li }
150*67e74705SXin Li 
SemaBuiltinMemChkCall(Sema & S,FunctionDecl * FDecl,CallExpr * TheCall,unsigned SizeIdx,unsigned DstSizeIdx)151*67e74705SXin Li static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
152*67e74705SXin Li 		                  CallExpr *TheCall, unsigned SizeIdx,
153*67e74705SXin Li                                   unsigned DstSizeIdx) {
154*67e74705SXin Li   if (TheCall->getNumArgs() <= SizeIdx ||
155*67e74705SXin Li       TheCall->getNumArgs() <= DstSizeIdx)
156*67e74705SXin Li     return;
157*67e74705SXin Li 
158*67e74705SXin Li   const Expr *SizeArg = TheCall->getArg(SizeIdx);
159*67e74705SXin Li   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
160*67e74705SXin Li 
161*67e74705SXin Li   llvm::APSInt Size, DstSize;
162*67e74705SXin Li 
163*67e74705SXin Li   // find out if both sizes are known at compile time
164*67e74705SXin Li   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
165*67e74705SXin Li       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
166*67e74705SXin Li     return;
167*67e74705SXin Li 
168*67e74705SXin Li   if (Size.ule(DstSize))
169*67e74705SXin Li     return;
170*67e74705SXin Li 
171*67e74705SXin Li   // confirmed overflow so generate the diagnostic.
172*67e74705SXin Li   IdentifierInfo *FnName = FDecl->getIdentifier();
173*67e74705SXin Li   SourceLocation SL = TheCall->getLocStart();
174*67e74705SXin Li   SourceRange SR = TheCall->getSourceRange();
175*67e74705SXin Li 
176*67e74705SXin Li   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
177*67e74705SXin Li }
178*67e74705SXin Li 
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)179*67e74705SXin Li static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
180*67e74705SXin Li   if (checkArgCount(S, BuiltinCall, 2))
181*67e74705SXin Li     return true;
182*67e74705SXin Li 
183*67e74705SXin Li   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
184*67e74705SXin Li   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
185*67e74705SXin Li   Expr *Call = BuiltinCall->getArg(0);
186*67e74705SXin Li   Expr *Chain = BuiltinCall->getArg(1);
187*67e74705SXin Li 
188*67e74705SXin Li   if (Call->getStmtClass() != Stmt::CallExprClass) {
189*67e74705SXin Li     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
190*67e74705SXin Li         << Call->getSourceRange();
191*67e74705SXin Li     return true;
192*67e74705SXin Li   }
193*67e74705SXin Li 
194*67e74705SXin Li   auto CE = cast<CallExpr>(Call);
195*67e74705SXin Li   if (CE->getCallee()->getType()->isBlockPointerType()) {
196*67e74705SXin Li     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
197*67e74705SXin Li         << Call->getSourceRange();
198*67e74705SXin Li     return true;
199*67e74705SXin Li   }
200*67e74705SXin Li 
201*67e74705SXin Li   const Decl *TargetDecl = CE->getCalleeDecl();
202*67e74705SXin Li   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
203*67e74705SXin Li     if (FD->getBuiltinID()) {
204*67e74705SXin Li       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
205*67e74705SXin Li           << Call->getSourceRange();
206*67e74705SXin Li       return true;
207*67e74705SXin Li     }
208*67e74705SXin Li 
209*67e74705SXin Li   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
210*67e74705SXin Li     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
211*67e74705SXin Li         << Call->getSourceRange();
212*67e74705SXin Li     return true;
213*67e74705SXin Li   }
214*67e74705SXin Li 
215*67e74705SXin Li   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
216*67e74705SXin Li   if (ChainResult.isInvalid())
217*67e74705SXin Li     return true;
218*67e74705SXin Li   if (!ChainResult.get()->getType()->isPointerType()) {
219*67e74705SXin Li     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
220*67e74705SXin Li         << Chain->getSourceRange();
221*67e74705SXin Li     return true;
222*67e74705SXin Li   }
223*67e74705SXin Li 
224*67e74705SXin Li   QualType ReturnTy = CE->getCallReturnType(S.Context);
225*67e74705SXin Li   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
226*67e74705SXin Li   QualType BuiltinTy = S.Context.getFunctionType(
227*67e74705SXin Li       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
228*67e74705SXin Li   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
229*67e74705SXin Li 
230*67e74705SXin Li   Builtin =
231*67e74705SXin Li       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
232*67e74705SXin Li 
233*67e74705SXin Li   BuiltinCall->setType(CE->getType());
234*67e74705SXin Li   BuiltinCall->setValueKind(CE->getValueKind());
235*67e74705SXin Li   BuiltinCall->setObjectKind(CE->getObjectKind());
236*67e74705SXin Li   BuiltinCall->setCallee(Builtin);
237*67e74705SXin Li   BuiltinCall->setArg(1, ChainResult.get());
238*67e74705SXin Li 
239*67e74705SXin Li   return false;
240*67e74705SXin Li }
241*67e74705SXin Li 
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)242*67e74705SXin Li static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
243*67e74705SXin Li                                      Scope::ScopeFlags NeededScopeFlags,
244*67e74705SXin Li                                      unsigned DiagID) {
245*67e74705SXin Li   // Scopes aren't available during instantiation. Fortunately, builtin
246*67e74705SXin Li   // functions cannot be template args so they cannot be formed through template
247*67e74705SXin Li   // instantiation. Therefore checking once during the parse is sufficient.
248*67e74705SXin Li   if (!SemaRef.ActiveTemplateInstantiations.empty())
249*67e74705SXin Li     return false;
250*67e74705SXin Li 
251*67e74705SXin Li   Scope *S = SemaRef.getCurScope();
252*67e74705SXin Li   while (S && !S->isSEHExceptScope())
253*67e74705SXin Li     S = S->getParent();
254*67e74705SXin Li   if (!S || !(S->getFlags() & NeededScopeFlags)) {
255*67e74705SXin Li     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
256*67e74705SXin Li     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
257*67e74705SXin Li         << DRE->getDecl()->getIdentifier();
258*67e74705SXin Li     return true;
259*67e74705SXin Li   }
260*67e74705SXin Li 
261*67e74705SXin Li   return false;
262*67e74705SXin Li }
263*67e74705SXin Li 
isBlockPointer(Expr * Arg)264*67e74705SXin Li static inline bool isBlockPointer(Expr *Arg) {
265*67e74705SXin Li   return Arg->getType()->isBlockPointerType();
266*67e74705SXin Li }
267*67e74705SXin Li 
268*67e74705SXin Li /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
269*67e74705SXin Li /// void*, which is a requirement of device side enqueue.
checkOpenCLBlockArgs(Sema & S,Expr * BlockArg)270*67e74705SXin Li static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
271*67e74705SXin Li   const BlockPointerType *BPT =
272*67e74705SXin Li       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
273*67e74705SXin Li   ArrayRef<QualType> Params =
274*67e74705SXin Li       BPT->getPointeeType()->getAs<FunctionProtoType>()->getParamTypes();
275*67e74705SXin Li   unsigned ArgCounter = 0;
276*67e74705SXin Li   bool IllegalParams = false;
277*67e74705SXin Li   // Iterate through the block parameters until either one is found that is not
278*67e74705SXin Li   // a local void*, or the block is valid.
279*67e74705SXin Li   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
280*67e74705SXin Li        I != E; ++I, ++ArgCounter) {
281*67e74705SXin Li     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
282*67e74705SXin Li         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
283*67e74705SXin Li             LangAS::opencl_local) {
284*67e74705SXin Li       // Get the location of the error. If a block literal has been passed
285*67e74705SXin Li       // (BlockExpr) then we can point straight to the offending argument,
286*67e74705SXin Li       // else we just point to the variable reference.
287*67e74705SXin Li       SourceLocation ErrorLoc;
288*67e74705SXin Li       if (isa<BlockExpr>(BlockArg)) {
289*67e74705SXin Li         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
290*67e74705SXin Li         ErrorLoc = BD->getParamDecl(ArgCounter)->getLocStart();
291*67e74705SXin Li       } else if (isa<DeclRefExpr>(BlockArg)) {
292*67e74705SXin Li         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getLocStart();
293*67e74705SXin Li       }
294*67e74705SXin Li       S.Diag(ErrorLoc,
295*67e74705SXin Li              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
296*67e74705SXin Li       IllegalParams = true;
297*67e74705SXin Li     }
298*67e74705SXin Li   }
299*67e74705SXin Li 
300*67e74705SXin Li   return IllegalParams;
301*67e74705SXin Li }
302*67e74705SXin Li 
303*67e74705SXin Li /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
304*67e74705SXin Li /// get_kernel_work_group_size
305*67e74705SXin Li /// and get_kernel_preferred_work_group_size_multiple builtin functions.
SemaOpenCLBuiltinKernelWorkGroupSize(Sema & S,CallExpr * TheCall)306*67e74705SXin Li static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
307*67e74705SXin Li   if (checkArgCount(S, TheCall, 1))
308*67e74705SXin Li     return true;
309*67e74705SXin Li 
310*67e74705SXin Li   Expr *BlockArg = TheCall->getArg(0);
311*67e74705SXin Li   if (!isBlockPointer(BlockArg)) {
312*67e74705SXin Li     S.Diag(BlockArg->getLocStart(),
313*67e74705SXin Li            diag::err_opencl_enqueue_kernel_expected_type) << "block";
314*67e74705SXin Li     return true;
315*67e74705SXin Li   }
316*67e74705SXin Li   return checkOpenCLBlockArgs(S, BlockArg);
317*67e74705SXin Li }
318*67e74705SXin Li 
319*67e74705SXin Li static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
320*67e74705SXin Li                                             unsigned Start, unsigned End);
321*67e74705SXin Li 
322*67e74705SXin Li /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
323*67e74705SXin Li /// 'local void*' parameter of passed block.
checkOpenCLEnqueueVariadicArgs(Sema & S,CallExpr * TheCall,Expr * BlockArg,unsigned NumNonVarArgs)324*67e74705SXin Li static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
325*67e74705SXin Li                                            Expr *BlockArg,
326*67e74705SXin Li                                            unsigned NumNonVarArgs) {
327*67e74705SXin Li   const BlockPointerType *BPT =
328*67e74705SXin Li       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
329*67e74705SXin Li   unsigned NumBlockParams =
330*67e74705SXin Li       BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams();
331*67e74705SXin Li   unsigned TotalNumArgs = TheCall->getNumArgs();
332*67e74705SXin Li 
333*67e74705SXin Li   // For each argument passed to the block, a corresponding uint needs to
334*67e74705SXin Li   // be passed to describe the size of the local memory.
335*67e74705SXin Li   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
336*67e74705SXin Li     S.Diag(TheCall->getLocStart(),
337*67e74705SXin Li            diag::err_opencl_enqueue_kernel_local_size_args);
338*67e74705SXin Li     return true;
339*67e74705SXin Li   }
340*67e74705SXin Li 
341*67e74705SXin Li   // Check that the sizes of the local memory are specified by integers.
342*67e74705SXin Li   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
343*67e74705SXin Li                                          TotalNumArgs - 1);
344*67e74705SXin Li }
345*67e74705SXin Li 
346*67e74705SXin Li /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
347*67e74705SXin Li /// overload formats specified in Table 6.13.17.1.
348*67e74705SXin Li /// int enqueue_kernel(queue_t queue,
349*67e74705SXin Li ///                    kernel_enqueue_flags_t flags,
350*67e74705SXin Li ///                    const ndrange_t ndrange,
351*67e74705SXin Li ///                    void (^block)(void))
352*67e74705SXin Li /// int enqueue_kernel(queue_t queue,
353*67e74705SXin Li ///                    kernel_enqueue_flags_t flags,
354*67e74705SXin Li ///                    const ndrange_t ndrange,
355*67e74705SXin Li ///                    uint num_events_in_wait_list,
356*67e74705SXin Li ///                    clk_event_t *event_wait_list,
357*67e74705SXin Li ///                    clk_event_t *event_ret,
358*67e74705SXin Li ///                    void (^block)(void))
359*67e74705SXin Li /// int enqueue_kernel(queue_t queue,
360*67e74705SXin Li ///                    kernel_enqueue_flags_t flags,
361*67e74705SXin Li ///                    const ndrange_t ndrange,
362*67e74705SXin Li ///                    void (^block)(local void*, ...),
363*67e74705SXin Li ///                    uint size0, ...)
364*67e74705SXin Li /// int enqueue_kernel(queue_t queue,
365*67e74705SXin Li ///                    kernel_enqueue_flags_t flags,
366*67e74705SXin Li ///                    const ndrange_t ndrange,
367*67e74705SXin Li ///                    uint num_events_in_wait_list,
368*67e74705SXin Li ///                    clk_event_t *event_wait_list,
369*67e74705SXin Li ///                    clk_event_t *event_ret,
370*67e74705SXin Li ///                    void (^block)(local void*, ...),
371*67e74705SXin Li ///                    uint size0, ...)
SemaOpenCLBuiltinEnqueueKernel(Sema & S,CallExpr * TheCall)372*67e74705SXin Li static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
373*67e74705SXin Li   unsigned NumArgs = TheCall->getNumArgs();
374*67e74705SXin Li 
375*67e74705SXin Li   if (NumArgs < 4) {
376*67e74705SXin Li     S.Diag(TheCall->getLocStart(), diag::err_typecheck_call_too_few_args);
377*67e74705SXin Li     return true;
378*67e74705SXin Li   }
379*67e74705SXin Li 
380*67e74705SXin Li   Expr *Arg0 = TheCall->getArg(0);
381*67e74705SXin Li   Expr *Arg1 = TheCall->getArg(1);
382*67e74705SXin Li   Expr *Arg2 = TheCall->getArg(2);
383*67e74705SXin Li   Expr *Arg3 = TheCall->getArg(3);
384*67e74705SXin Li 
385*67e74705SXin Li   // First argument always needs to be a queue_t type.
386*67e74705SXin Li   if (!Arg0->getType()->isQueueT()) {
387*67e74705SXin Li     S.Diag(TheCall->getArg(0)->getLocStart(),
388*67e74705SXin Li            diag::err_opencl_enqueue_kernel_expected_type)
389*67e74705SXin Li         << S.Context.OCLQueueTy;
390*67e74705SXin Li     return true;
391*67e74705SXin Li   }
392*67e74705SXin Li 
393*67e74705SXin Li   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
394*67e74705SXin Li   if (!Arg1->getType()->isIntegerType()) {
395*67e74705SXin Li     S.Diag(TheCall->getArg(1)->getLocStart(),
396*67e74705SXin Li            diag::err_opencl_enqueue_kernel_expected_type)
397*67e74705SXin Li         << "'kernel_enqueue_flags_t' (i.e. uint)";
398*67e74705SXin Li     return true;
399*67e74705SXin Li   }
400*67e74705SXin Li 
401*67e74705SXin Li   // Third argument is always an ndrange_t type.
402*67e74705SXin Li   if (!Arg2->getType()->isNDRangeT()) {
403*67e74705SXin Li     S.Diag(TheCall->getArg(2)->getLocStart(),
404*67e74705SXin Li            diag::err_opencl_enqueue_kernel_expected_type)
405*67e74705SXin Li         << S.Context.OCLNDRangeTy;
406*67e74705SXin Li     return true;
407*67e74705SXin Li   }
408*67e74705SXin Li 
409*67e74705SXin Li   // With four arguments, there is only one form that the function could be
410*67e74705SXin Li   // called in: no events and no variable arguments.
411*67e74705SXin Li   if (NumArgs == 4) {
412*67e74705SXin Li     // check that the last argument is the right block type.
413*67e74705SXin Li     if (!isBlockPointer(Arg3)) {
414*67e74705SXin Li       S.Diag(Arg3->getLocStart(), diag::err_opencl_enqueue_kernel_expected_type)
415*67e74705SXin Li           << "block";
416*67e74705SXin Li       return true;
417*67e74705SXin Li     }
418*67e74705SXin Li     // we have a block type, check the prototype
419*67e74705SXin Li     const BlockPointerType *BPT =
420*67e74705SXin Li         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
421*67e74705SXin Li     if (BPT->getPointeeType()->getAs<FunctionProtoType>()->getNumParams() > 0) {
422*67e74705SXin Li       S.Diag(Arg3->getLocStart(),
423*67e74705SXin Li              diag::err_opencl_enqueue_kernel_blocks_no_args);
424*67e74705SXin Li       return true;
425*67e74705SXin Li     }
426*67e74705SXin Li     return false;
427*67e74705SXin Li   }
428*67e74705SXin Li   // we can have block + varargs.
429*67e74705SXin Li   if (isBlockPointer(Arg3))
430*67e74705SXin Li     return (checkOpenCLBlockArgs(S, Arg3) ||
431*67e74705SXin Li             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
432*67e74705SXin Li   // last two cases with either exactly 7 args or 7 args and varargs.
433*67e74705SXin Li   if (NumArgs >= 7) {
434*67e74705SXin Li     // check common block argument.
435*67e74705SXin Li     Expr *Arg6 = TheCall->getArg(6);
436*67e74705SXin Li     if (!isBlockPointer(Arg6)) {
437*67e74705SXin Li       S.Diag(Arg6->getLocStart(), diag::err_opencl_enqueue_kernel_expected_type)
438*67e74705SXin Li           << "block";
439*67e74705SXin Li       return true;
440*67e74705SXin Li     }
441*67e74705SXin Li     if (checkOpenCLBlockArgs(S, Arg6))
442*67e74705SXin Li       return true;
443*67e74705SXin Li 
444*67e74705SXin Li     // Forth argument has to be any integer type.
445*67e74705SXin Li     if (!Arg3->getType()->isIntegerType()) {
446*67e74705SXin Li       S.Diag(TheCall->getArg(3)->getLocStart(),
447*67e74705SXin Li              diag::err_opencl_enqueue_kernel_expected_type)
448*67e74705SXin Li           << "integer";
449*67e74705SXin Li       return true;
450*67e74705SXin Li     }
451*67e74705SXin Li     // check remaining common arguments.
452*67e74705SXin Li     Expr *Arg4 = TheCall->getArg(4);
453*67e74705SXin Li     Expr *Arg5 = TheCall->getArg(5);
454*67e74705SXin Li 
455*67e74705SXin Li     // Fith argument is always passed as pointers to clk_event_t.
456*67e74705SXin Li     if (!Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
457*67e74705SXin Li       S.Diag(TheCall->getArg(4)->getLocStart(),
458*67e74705SXin Li              diag::err_opencl_enqueue_kernel_expected_type)
459*67e74705SXin Li           << S.Context.getPointerType(S.Context.OCLClkEventTy);
460*67e74705SXin Li       return true;
461*67e74705SXin Li     }
462*67e74705SXin Li 
463*67e74705SXin Li     // Sixth argument is always passed as pointers to clk_event_t.
464*67e74705SXin Li     if (!(Arg5->getType()->isPointerType() &&
465*67e74705SXin Li           Arg5->getType()->getPointeeType()->isClkEventT())) {
466*67e74705SXin Li       S.Diag(TheCall->getArg(5)->getLocStart(),
467*67e74705SXin Li              diag::err_opencl_enqueue_kernel_expected_type)
468*67e74705SXin Li           << S.Context.getPointerType(S.Context.OCLClkEventTy);
469*67e74705SXin Li       return true;
470*67e74705SXin Li     }
471*67e74705SXin Li 
472*67e74705SXin Li     if (NumArgs == 7)
473*67e74705SXin Li       return false;
474*67e74705SXin Li 
475*67e74705SXin Li     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
476*67e74705SXin Li   }
477*67e74705SXin Li 
478*67e74705SXin Li   // None of the specific case has been detected, give generic error
479*67e74705SXin Li   S.Diag(TheCall->getLocStart(),
480*67e74705SXin Li          diag::err_opencl_enqueue_kernel_incorrect_args);
481*67e74705SXin Li   return true;
482*67e74705SXin Li }
483*67e74705SXin Li 
484*67e74705SXin Li /// Returns OpenCL access qual.
getOpenCLArgAccess(const Decl * D)485*67e74705SXin Li static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
486*67e74705SXin Li     return D->getAttr<OpenCLAccessAttr>();
487*67e74705SXin Li }
488*67e74705SXin Li 
489*67e74705SXin Li /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipeArg(Sema & S,CallExpr * Call)490*67e74705SXin Li static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
491*67e74705SXin Li   const Expr *Arg0 = Call->getArg(0);
492*67e74705SXin Li   // First argument type should always be pipe.
493*67e74705SXin Li   if (!Arg0->getType()->isPipeType()) {
494*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
495*67e74705SXin Li         << Call->getDirectCallee() << Arg0->getSourceRange();
496*67e74705SXin Li     return true;
497*67e74705SXin Li   }
498*67e74705SXin Li   OpenCLAccessAttr *AccessQual =
499*67e74705SXin Li       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
500*67e74705SXin Li   // Validates the access qualifier is compatible with the call.
501*67e74705SXin Li   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
502*67e74705SXin Li   // read_only and write_only, and assumed to be read_only if no qualifier is
503*67e74705SXin Li   // specified.
504*67e74705SXin Li   switch (Call->getDirectCallee()->getBuiltinID()) {
505*67e74705SXin Li   case Builtin::BIread_pipe:
506*67e74705SXin Li   case Builtin::BIreserve_read_pipe:
507*67e74705SXin Li   case Builtin::BIcommit_read_pipe:
508*67e74705SXin Li   case Builtin::BIwork_group_reserve_read_pipe:
509*67e74705SXin Li   case Builtin::BIsub_group_reserve_read_pipe:
510*67e74705SXin Li   case Builtin::BIwork_group_commit_read_pipe:
511*67e74705SXin Li   case Builtin::BIsub_group_commit_read_pipe:
512*67e74705SXin Li     if (!(!AccessQual || AccessQual->isReadOnly())) {
513*67e74705SXin Li       S.Diag(Arg0->getLocStart(),
514*67e74705SXin Li              diag::err_opencl_builtin_pipe_invalid_access_modifier)
515*67e74705SXin Li           << "read_only" << Arg0->getSourceRange();
516*67e74705SXin Li       return true;
517*67e74705SXin Li     }
518*67e74705SXin Li     break;
519*67e74705SXin Li   case Builtin::BIwrite_pipe:
520*67e74705SXin Li   case Builtin::BIreserve_write_pipe:
521*67e74705SXin Li   case Builtin::BIcommit_write_pipe:
522*67e74705SXin Li   case Builtin::BIwork_group_reserve_write_pipe:
523*67e74705SXin Li   case Builtin::BIsub_group_reserve_write_pipe:
524*67e74705SXin Li   case Builtin::BIwork_group_commit_write_pipe:
525*67e74705SXin Li   case Builtin::BIsub_group_commit_write_pipe:
526*67e74705SXin Li     if (!(AccessQual && AccessQual->isWriteOnly())) {
527*67e74705SXin Li       S.Diag(Arg0->getLocStart(),
528*67e74705SXin Li              diag::err_opencl_builtin_pipe_invalid_access_modifier)
529*67e74705SXin Li           << "write_only" << Arg0->getSourceRange();
530*67e74705SXin Li       return true;
531*67e74705SXin Li     }
532*67e74705SXin Li     break;
533*67e74705SXin Li   default:
534*67e74705SXin Li     break;
535*67e74705SXin Li   }
536*67e74705SXin Li   return false;
537*67e74705SXin Li }
538*67e74705SXin Li 
539*67e74705SXin Li /// Returns true if pipe element type is different from the pointer.
checkOpenCLPipePacketType(Sema & S,CallExpr * Call,unsigned Idx)540*67e74705SXin Li static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
541*67e74705SXin Li   const Expr *Arg0 = Call->getArg(0);
542*67e74705SXin Li   const Expr *ArgIdx = Call->getArg(Idx);
543*67e74705SXin Li   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
544*67e74705SXin Li   const QualType EltTy = PipeTy->getElementType();
545*67e74705SXin Li   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
546*67e74705SXin Li   // The Idx argument should be a pointer and the type of the pointer and
547*67e74705SXin Li   // the type of pipe element should also be the same.
548*67e74705SXin Li   if (!ArgTy ||
549*67e74705SXin Li       !S.Context.hasSameType(
550*67e74705SXin Li           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
551*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
552*67e74705SXin Li         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
553*67e74705SXin Li         << ArgIdx->getType() << ArgIdx->getSourceRange();
554*67e74705SXin Li     return true;
555*67e74705SXin Li   }
556*67e74705SXin Li   return false;
557*67e74705SXin Li }
558*67e74705SXin Li 
559*67e74705SXin Li // \brief Performs semantic analysis for the read/write_pipe call.
560*67e74705SXin Li // \param S Reference to the semantic analyzer.
561*67e74705SXin Li // \param Call A pointer to the builtin call.
562*67e74705SXin Li // \return True if a semantic error has been found, false otherwise.
SemaBuiltinRWPipe(Sema & S,CallExpr * Call)563*67e74705SXin Li static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
564*67e74705SXin Li   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
565*67e74705SXin Li   // functions have two forms.
566*67e74705SXin Li   switch (Call->getNumArgs()) {
567*67e74705SXin Li   case 2: {
568*67e74705SXin Li     if (checkOpenCLPipeArg(S, Call))
569*67e74705SXin Li       return true;
570*67e74705SXin Li     // The call with 2 arguments should be
571*67e74705SXin Li     // read/write_pipe(pipe T, T*).
572*67e74705SXin Li     // Check packet type T.
573*67e74705SXin Li     if (checkOpenCLPipePacketType(S, Call, 1))
574*67e74705SXin Li       return true;
575*67e74705SXin Li   } break;
576*67e74705SXin Li 
577*67e74705SXin Li   case 4: {
578*67e74705SXin Li     if (checkOpenCLPipeArg(S, Call))
579*67e74705SXin Li       return true;
580*67e74705SXin Li     // The call with 4 arguments should be
581*67e74705SXin Li     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
582*67e74705SXin Li     // Check reserve_id_t.
583*67e74705SXin Li     if (!Call->getArg(1)->getType()->isReserveIDT()) {
584*67e74705SXin Li       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
585*67e74705SXin Li           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
586*67e74705SXin Li           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
587*67e74705SXin Li       return true;
588*67e74705SXin Li     }
589*67e74705SXin Li 
590*67e74705SXin Li     // Check the index.
591*67e74705SXin Li     const Expr *Arg2 = Call->getArg(2);
592*67e74705SXin Li     if (!Arg2->getType()->isIntegerType() &&
593*67e74705SXin Li         !Arg2->getType()->isUnsignedIntegerType()) {
594*67e74705SXin Li       S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
595*67e74705SXin Li           << Call->getDirectCallee() << S.Context.UnsignedIntTy
596*67e74705SXin Li           << Arg2->getType() << Arg2->getSourceRange();
597*67e74705SXin Li       return true;
598*67e74705SXin Li     }
599*67e74705SXin Li 
600*67e74705SXin Li     // Check packet type T.
601*67e74705SXin Li     if (checkOpenCLPipePacketType(S, Call, 3))
602*67e74705SXin Li       return true;
603*67e74705SXin Li   } break;
604*67e74705SXin Li   default:
605*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_arg_num)
606*67e74705SXin Li         << Call->getDirectCallee() << Call->getSourceRange();
607*67e74705SXin Li     return true;
608*67e74705SXin Li   }
609*67e74705SXin Li 
610*67e74705SXin Li   return false;
611*67e74705SXin Li }
612*67e74705SXin Li 
613*67e74705SXin Li // \brief Performs a semantic analysis on the {work_group_/sub_group_
614*67e74705SXin Li //        /_}reserve_{read/write}_pipe
615*67e74705SXin Li // \param S Reference to the semantic analyzer.
616*67e74705SXin Li // \param Call The call to the builtin function to be analyzed.
617*67e74705SXin Li // \return True if a semantic error was found, false otherwise.
SemaBuiltinReserveRWPipe(Sema & S,CallExpr * Call)618*67e74705SXin Li static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
619*67e74705SXin Li   if (checkArgCount(S, Call, 2))
620*67e74705SXin Li     return true;
621*67e74705SXin Li 
622*67e74705SXin Li   if (checkOpenCLPipeArg(S, Call))
623*67e74705SXin Li     return true;
624*67e74705SXin Li 
625*67e74705SXin Li   // Check the reserve size.
626*67e74705SXin Li   if (!Call->getArg(1)->getType()->isIntegerType() &&
627*67e74705SXin Li       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
628*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
629*67e74705SXin Li         << Call->getDirectCallee() << S.Context.UnsignedIntTy
630*67e74705SXin Li         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
631*67e74705SXin Li     return true;
632*67e74705SXin Li   }
633*67e74705SXin Li 
634*67e74705SXin Li   return false;
635*67e74705SXin Li }
636*67e74705SXin Li 
637*67e74705SXin Li // \brief Performs a semantic analysis on {work_group_/sub_group_
638*67e74705SXin Li //        /_}commit_{read/write}_pipe
639*67e74705SXin Li // \param S Reference to the semantic analyzer.
640*67e74705SXin Li // \param Call The call to the builtin function to be analyzed.
641*67e74705SXin Li // \return True if a semantic error was found, false otherwise.
SemaBuiltinCommitRWPipe(Sema & S,CallExpr * Call)642*67e74705SXin Li static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
643*67e74705SXin Li   if (checkArgCount(S, Call, 2))
644*67e74705SXin Li     return true;
645*67e74705SXin Li 
646*67e74705SXin Li   if (checkOpenCLPipeArg(S, Call))
647*67e74705SXin Li     return true;
648*67e74705SXin Li 
649*67e74705SXin Li   // Check reserve_id_t.
650*67e74705SXin Li   if (!Call->getArg(1)->getType()->isReserveIDT()) {
651*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_invalid_arg)
652*67e74705SXin Li         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
653*67e74705SXin Li         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
654*67e74705SXin Li     return true;
655*67e74705SXin Li   }
656*67e74705SXin Li 
657*67e74705SXin Li   return false;
658*67e74705SXin Li }
659*67e74705SXin Li 
660*67e74705SXin Li // \brief Performs a semantic analysis on the call to built-in Pipe
661*67e74705SXin Li //        Query Functions.
662*67e74705SXin Li // \param S Reference to the semantic analyzer.
663*67e74705SXin Li // \param Call The call to the builtin function to be analyzed.
664*67e74705SXin Li // \return True if a semantic error was found, false otherwise.
SemaBuiltinPipePackets(Sema & S,CallExpr * Call)665*67e74705SXin Li static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
666*67e74705SXin Li   if (checkArgCount(S, Call, 1))
667*67e74705SXin Li     return true;
668*67e74705SXin Li 
669*67e74705SXin Li   if (!Call->getArg(0)->getType()->isPipeType()) {
670*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_pipe_first_arg)
671*67e74705SXin Li         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
672*67e74705SXin Li     return true;
673*67e74705SXin Li   }
674*67e74705SXin Li 
675*67e74705SXin Li   return false;
676*67e74705SXin Li }
677*67e74705SXin Li // \brief OpenCL v2.0 s6.13.9 - Address space qualifier functions.
678*67e74705SXin Li // \brief Performs semantic analysis for the to_global/local/private call.
679*67e74705SXin Li // \param S Reference to the semantic analyzer.
680*67e74705SXin Li // \param BuiltinID ID of the builtin function.
681*67e74705SXin Li // \param Call A pointer to the builtin call.
682*67e74705SXin Li // \return True if a semantic error has been found, false otherwise.
SemaOpenCLBuiltinToAddr(Sema & S,unsigned BuiltinID,CallExpr * Call)683*67e74705SXin Li static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
684*67e74705SXin Li                                     CallExpr *Call) {
685*67e74705SXin Li   if (Call->getNumArgs() != 1) {
686*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_arg_num)
687*67e74705SXin Li         << Call->getDirectCallee() << Call->getSourceRange();
688*67e74705SXin Li     return true;
689*67e74705SXin Li   }
690*67e74705SXin Li 
691*67e74705SXin Li   auto RT = Call->getArg(0)->getType();
692*67e74705SXin Li   if (!RT->isPointerType() || RT->getPointeeType()
693*67e74705SXin Li       .getAddressSpace() == LangAS::opencl_constant) {
694*67e74705SXin Li     S.Diag(Call->getLocStart(), diag::err_opencl_builtin_to_addr_invalid_arg)
695*67e74705SXin Li         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
696*67e74705SXin Li     return true;
697*67e74705SXin Li   }
698*67e74705SXin Li 
699*67e74705SXin Li   RT = RT->getPointeeType();
700*67e74705SXin Li   auto Qual = RT.getQualifiers();
701*67e74705SXin Li   switch (BuiltinID) {
702*67e74705SXin Li   case Builtin::BIto_global:
703*67e74705SXin Li     Qual.setAddressSpace(LangAS::opencl_global);
704*67e74705SXin Li     break;
705*67e74705SXin Li   case Builtin::BIto_local:
706*67e74705SXin Li     Qual.setAddressSpace(LangAS::opencl_local);
707*67e74705SXin Li     break;
708*67e74705SXin Li   default:
709*67e74705SXin Li     Qual.removeAddressSpace();
710*67e74705SXin Li   }
711*67e74705SXin Li   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
712*67e74705SXin Li       RT.getUnqualifiedType(), Qual)));
713*67e74705SXin Li 
714*67e74705SXin Li   return false;
715*67e74705SXin Li }
716*67e74705SXin Li 
717*67e74705SXin Li ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)718*67e74705SXin Li Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
719*67e74705SXin Li                                CallExpr *TheCall) {
720*67e74705SXin Li   ExprResult TheCallResult(TheCall);
721*67e74705SXin Li 
722*67e74705SXin Li   // Find out if any arguments are required to be integer constant expressions.
723*67e74705SXin Li   unsigned ICEArguments = 0;
724*67e74705SXin Li   ASTContext::GetBuiltinTypeError Error;
725*67e74705SXin Li   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
726*67e74705SXin Li   if (Error != ASTContext::GE_None)
727*67e74705SXin Li     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
728*67e74705SXin Li 
729*67e74705SXin Li   // If any arguments are required to be ICE's, check and diagnose.
730*67e74705SXin Li   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
731*67e74705SXin Li     // Skip arguments not required to be ICE's.
732*67e74705SXin Li     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
733*67e74705SXin Li 
734*67e74705SXin Li     llvm::APSInt Result;
735*67e74705SXin Li     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
736*67e74705SXin Li       return true;
737*67e74705SXin Li     ICEArguments &= ~(1 << ArgNo);
738*67e74705SXin Li   }
739*67e74705SXin Li 
740*67e74705SXin Li   switch (BuiltinID) {
741*67e74705SXin Li   case Builtin::BI__builtin___CFStringMakeConstantString:
742*67e74705SXin Li     assert(TheCall->getNumArgs() == 1 &&
743*67e74705SXin Li            "Wrong # arguments to builtin CFStringMakeConstantString");
744*67e74705SXin Li     if (CheckObjCString(TheCall->getArg(0)))
745*67e74705SXin Li       return ExprError();
746*67e74705SXin Li     break;
747*67e74705SXin Li   case Builtin::BI__builtin_stdarg_start:
748*67e74705SXin Li   case Builtin::BI__builtin_va_start:
749*67e74705SXin Li     if (SemaBuiltinVAStart(TheCall))
750*67e74705SXin Li       return ExprError();
751*67e74705SXin Li     break;
752*67e74705SXin Li   case Builtin::BI__va_start: {
753*67e74705SXin Li     switch (Context.getTargetInfo().getTriple().getArch()) {
754*67e74705SXin Li     case llvm::Triple::arm:
755*67e74705SXin Li     case llvm::Triple::thumb:
756*67e74705SXin Li       if (SemaBuiltinVAStartARM(TheCall))
757*67e74705SXin Li         return ExprError();
758*67e74705SXin Li       break;
759*67e74705SXin Li     default:
760*67e74705SXin Li       if (SemaBuiltinVAStart(TheCall))
761*67e74705SXin Li         return ExprError();
762*67e74705SXin Li       break;
763*67e74705SXin Li     }
764*67e74705SXin Li     break;
765*67e74705SXin Li   }
766*67e74705SXin Li   case Builtin::BI__builtin_isgreater:
767*67e74705SXin Li   case Builtin::BI__builtin_isgreaterequal:
768*67e74705SXin Li   case Builtin::BI__builtin_isless:
769*67e74705SXin Li   case Builtin::BI__builtin_islessequal:
770*67e74705SXin Li   case Builtin::BI__builtin_islessgreater:
771*67e74705SXin Li   case Builtin::BI__builtin_isunordered:
772*67e74705SXin Li     if (SemaBuiltinUnorderedCompare(TheCall))
773*67e74705SXin Li       return ExprError();
774*67e74705SXin Li     break;
775*67e74705SXin Li   case Builtin::BI__builtin_fpclassify:
776*67e74705SXin Li     if (SemaBuiltinFPClassification(TheCall, 6))
777*67e74705SXin Li       return ExprError();
778*67e74705SXin Li     break;
779*67e74705SXin Li   case Builtin::BI__builtin_isfinite:
780*67e74705SXin Li   case Builtin::BI__builtin_isinf:
781*67e74705SXin Li   case Builtin::BI__builtin_isinf_sign:
782*67e74705SXin Li   case Builtin::BI__builtin_isnan:
783*67e74705SXin Li   case Builtin::BI__builtin_isnormal:
784*67e74705SXin Li     if (SemaBuiltinFPClassification(TheCall, 1))
785*67e74705SXin Li       return ExprError();
786*67e74705SXin Li     break;
787*67e74705SXin Li   case Builtin::BI__builtin_shufflevector:
788*67e74705SXin Li     return SemaBuiltinShuffleVector(TheCall);
789*67e74705SXin Li     // TheCall will be freed by the smart pointer here, but that's fine, since
790*67e74705SXin Li     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
791*67e74705SXin Li   case Builtin::BI__builtin_prefetch:
792*67e74705SXin Li     if (SemaBuiltinPrefetch(TheCall))
793*67e74705SXin Li       return ExprError();
794*67e74705SXin Li     break;
795*67e74705SXin Li   case Builtin::BI__assume:
796*67e74705SXin Li   case Builtin::BI__builtin_assume:
797*67e74705SXin Li     if (SemaBuiltinAssume(TheCall))
798*67e74705SXin Li       return ExprError();
799*67e74705SXin Li     break;
800*67e74705SXin Li   case Builtin::BI__builtin_assume_aligned:
801*67e74705SXin Li     if (SemaBuiltinAssumeAligned(TheCall))
802*67e74705SXin Li       return ExprError();
803*67e74705SXin Li     break;
804*67e74705SXin Li   case Builtin::BI__builtin_object_size:
805*67e74705SXin Li     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
806*67e74705SXin Li       return ExprError();
807*67e74705SXin Li     break;
808*67e74705SXin Li   case Builtin::BI__builtin_longjmp:
809*67e74705SXin Li     if (SemaBuiltinLongjmp(TheCall))
810*67e74705SXin Li       return ExprError();
811*67e74705SXin Li     break;
812*67e74705SXin Li   case Builtin::BI__builtin_setjmp:
813*67e74705SXin Li     if (SemaBuiltinSetjmp(TheCall))
814*67e74705SXin Li       return ExprError();
815*67e74705SXin Li     break;
816*67e74705SXin Li   case Builtin::BI_setjmp:
817*67e74705SXin Li   case Builtin::BI_setjmpex:
818*67e74705SXin Li     if (checkArgCount(*this, TheCall, 1))
819*67e74705SXin Li       return true;
820*67e74705SXin Li     break;
821*67e74705SXin Li 
822*67e74705SXin Li   case Builtin::BI__builtin_classify_type:
823*67e74705SXin Li     if (checkArgCount(*this, TheCall, 1)) return true;
824*67e74705SXin Li     TheCall->setType(Context.IntTy);
825*67e74705SXin Li     break;
826*67e74705SXin Li   case Builtin::BI__builtin_constant_p:
827*67e74705SXin Li     if (checkArgCount(*this, TheCall, 1)) return true;
828*67e74705SXin Li     TheCall->setType(Context.IntTy);
829*67e74705SXin Li     break;
830*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add:
831*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_1:
832*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_2:
833*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_4:
834*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_8:
835*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_16:
836*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub:
837*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_1:
838*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_2:
839*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_4:
840*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_8:
841*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_16:
842*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or:
843*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_1:
844*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_2:
845*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_4:
846*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_8:
847*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_16:
848*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and:
849*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_1:
850*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_2:
851*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_4:
852*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_8:
853*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_16:
854*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor:
855*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_1:
856*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_2:
857*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_4:
858*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_8:
859*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_16:
860*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand:
861*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_1:
862*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_2:
863*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_4:
864*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_8:
865*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_16:
866*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch:
867*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_1:
868*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_2:
869*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_4:
870*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_8:
871*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_16:
872*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch:
873*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_1:
874*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_2:
875*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_4:
876*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_8:
877*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_16:
878*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch:
879*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_1:
880*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_2:
881*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_4:
882*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_8:
883*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_16:
884*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch:
885*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_1:
886*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_2:
887*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_4:
888*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_8:
889*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_16:
890*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch:
891*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_1:
892*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_2:
893*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_4:
894*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_8:
895*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_16:
896*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch:
897*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_1:
898*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_2:
899*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_4:
900*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_8:
901*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_16:
902*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap:
903*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_1:
904*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_2:
905*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_4:
906*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_8:
907*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_16:
908*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap:
909*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_1:
910*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_2:
911*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_4:
912*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_8:
913*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_16:
914*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set:
915*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_1:
916*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_2:
917*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_4:
918*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_8:
919*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_16:
920*67e74705SXin Li   case Builtin::BI__sync_lock_release:
921*67e74705SXin Li   case Builtin::BI__sync_lock_release_1:
922*67e74705SXin Li   case Builtin::BI__sync_lock_release_2:
923*67e74705SXin Li   case Builtin::BI__sync_lock_release_4:
924*67e74705SXin Li   case Builtin::BI__sync_lock_release_8:
925*67e74705SXin Li   case Builtin::BI__sync_lock_release_16:
926*67e74705SXin Li   case Builtin::BI__sync_swap:
927*67e74705SXin Li   case Builtin::BI__sync_swap_1:
928*67e74705SXin Li   case Builtin::BI__sync_swap_2:
929*67e74705SXin Li   case Builtin::BI__sync_swap_4:
930*67e74705SXin Li   case Builtin::BI__sync_swap_8:
931*67e74705SXin Li   case Builtin::BI__sync_swap_16:
932*67e74705SXin Li     return SemaBuiltinAtomicOverloaded(TheCallResult);
933*67e74705SXin Li   case Builtin::BI__builtin_nontemporal_load:
934*67e74705SXin Li   case Builtin::BI__builtin_nontemporal_store:
935*67e74705SXin Li     return SemaBuiltinNontemporalOverloaded(TheCallResult);
936*67e74705SXin Li #define BUILTIN(ID, TYPE, ATTRS)
937*67e74705SXin Li #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
938*67e74705SXin Li   case Builtin::BI##ID: \
939*67e74705SXin Li     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
940*67e74705SXin Li #include "clang/Basic/Builtins.def"
941*67e74705SXin Li   case Builtin::BI__builtin_annotation:
942*67e74705SXin Li     if (SemaBuiltinAnnotation(*this, TheCall))
943*67e74705SXin Li       return ExprError();
944*67e74705SXin Li     break;
945*67e74705SXin Li   case Builtin::BI__builtin_addressof:
946*67e74705SXin Li     if (SemaBuiltinAddressof(*this, TheCall))
947*67e74705SXin Li       return ExprError();
948*67e74705SXin Li     break;
949*67e74705SXin Li   case Builtin::BI__builtin_add_overflow:
950*67e74705SXin Li   case Builtin::BI__builtin_sub_overflow:
951*67e74705SXin Li   case Builtin::BI__builtin_mul_overflow:
952*67e74705SXin Li     if (SemaBuiltinOverflow(*this, TheCall))
953*67e74705SXin Li       return ExprError();
954*67e74705SXin Li     break;
955*67e74705SXin Li   case Builtin::BI__builtin_operator_new:
956*67e74705SXin Li   case Builtin::BI__builtin_operator_delete:
957*67e74705SXin Li     if (!getLangOpts().CPlusPlus) {
958*67e74705SXin Li       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
959*67e74705SXin Li         << (BuiltinID == Builtin::BI__builtin_operator_new
960*67e74705SXin Li                 ? "__builtin_operator_new"
961*67e74705SXin Li                 : "__builtin_operator_delete")
962*67e74705SXin Li         << "C++";
963*67e74705SXin Li       return ExprError();
964*67e74705SXin Li     }
965*67e74705SXin Li     // CodeGen assumes it can find the global new and delete to call,
966*67e74705SXin Li     // so ensure that they are declared.
967*67e74705SXin Li     DeclareGlobalNewDelete();
968*67e74705SXin Li     break;
969*67e74705SXin Li 
970*67e74705SXin Li   // check secure string manipulation functions where overflows
971*67e74705SXin Li   // are detectable at compile time
972*67e74705SXin Li   case Builtin::BI__builtin___memcpy_chk:
973*67e74705SXin Li   case Builtin::BI__builtin___memmove_chk:
974*67e74705SXin Li   case Builtin::BI__builtin___memset_chk:
975*67e74705SXin Li   case Builtin::BI__builtin___strlcat_chk:
976*67e74705SXin Li   case Builtin::BI__builtin___strlcpy_chk:
977*67e74705SXin Li   case Builtin::BI__builtin___strncat_chk:
978*67e74705SXin Li   case Builtin::BI__builtin___strncpy_chk:
979*67e74705SXin Li   case Builtin::BI__builtin___stpncpy_chk:
980*67e74705SXin Li     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
981*67e74705SXin Li     break;
982*67e74705SXin Li   case Builtin::BI__builtin___memccpy_chk:
983*67e74705SXin Li     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
984*67e74705SXin Li     break;
985*67e74705SXin Li   case Builtin::BI__builtin___snprintf_chk:
986*67e74705SXin Li   case Builtin::BI__builtin___vsnprintf_chk:
987*67e74705SXin Li     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
988*67e74705SXin Li     break;
989*67e74705SXin Li   case Builtin::BI__builtin_call_with_static_chain:
990*67e74705SXin Li     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
991*67e74705SXin Li       return ExprError();
992*67e74705SXin Li     break;
993*67e74705SXin Li   case Builtin::BI__exception_code:
994*67e74705SXin Li   case Builtin::BI_exception_code:
995*67e74705SXin Li     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
996*67e74705SXin Li                                  diag::err_seh___except_block))
997*67e74705SXin Li       return ExprError();
998*67e74705SXin Li     break;
999*67e74705SXin Li   case Builtin::BI__exception_info:
1000*67e74705SXin Li   case Builtin::BI_exception_info:
1001*67e74705SXin Li     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1002*67e74705SXin Li                                  diag::err_seh___except_filter))
1003*67e74705SXin Li       return ExprError();
1004*67e74705SXin Li     break;
1005*67e74705SXin Li   case Builtin::BI__GetExceptionInfo:
1006*67e74705SXin Li     if (checkArgCount(*this, TheCall, 1))
1007*67e74705SXin Li       return ExprError();
1008*67e74705SXin Li 
1009*67e74705SXin Li     if (CheckCXXThrowOperand(
1010*67e74705SXin Li             TheCall->getLocStart(),
1011*67e74705SXin Li             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1012*67e74705SXin Li             TheCall))
1013*67e74705SXin Li       return ExprError();
1014*67e74705SXin Li 
1015*67e74705SXin Li     TheCall->setType(Context.VoidPtrTy);
1016*67e74705SXin Li     break;
1017*67e74705SXin Li   // OpenCL v2.0, s6.13.16 - Pipe functions
1018*67e74705SXin Li   case Builtin::BIread_pipe:
1019*67e74705SXin Li   case Builtin::BIwrite_pipe:
1020*67e74705SXin Li     // Since those two functions are declared with var args, we need a semantic
1021*67e74705SXin Li     // check for the argument.
1022*67e74705SXin Li     if (SemaBuiltinRWPipe(*this, TheCall))
1023*67e74705SXin Li       return ExprError();
1024*67e74705SXin Li     break;
1025*67e74705SXin Li   case Builtin::BIreserve_read_pipe:
1026*67e74705SXin Li   case Builtin::BIreserve_write_pipe:
1027*67e74705SXin Li   case Builtin::BIwork_group_reserve_read_pipe:
1028*67e74705SXin Li   case Builtin::BIwork_group_reserve_write_pipe:
1029*67e74705SXin Li   case Builtin::BIsub_group_reserve_read_pipe:
1030*67e74705SXin Li   case Builtin::BIsub_group_reserve_write_pipe:
1031*67e74705SXin Li     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1032*67e74705SXin Li       return ExprError();
1033*67e74705SXin Li     // Since return type of reserve_read/write_pipe built-in function is
1034*67e74705SXin Li     // reserve_id_t, which is not defined in the builtin def file , we used int
1035*67e74705SXin Li     // as return type and need to override the return type of these functions.
1036*67e74705SXin Li     TheCall->setType(Context.OCLReserveIDTy);
1037*67e74705SXin Li     break;
1038*67e74705SXin Li   case Builtin::BIcommit_read_pipe:
1039*67e74705SXin Li   case Builtin::BIcommit_write_pipe:
1040*67e74705SXin Li   case Builtin::BIwork_group_commit_read_pipe:
1041*67e74705SXin Li   case Builtin::BIwork_group_commit_write_pipe:
1042*67e74705SXin Li   case Builtin::BIsub_group_commit_read_pipe:
1043*67e74705SXin Li   case Builtin::BIsub_group_commit_write_pipe:
1044*67e74705SXin Li     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1045*67e74705SXin Li       return ExprError();
1046*67e74705SXin Li     break;
1047*67e74705SXin Li   case Builtin::BIget_pipe_num_packets:
1048*67e74705SXin Li   case Builtin::BIget_pipe_max_packets:
1049*67e74705SXin Li     if (SemaBuiltinPipePackets(*this, TheCall))
1050*67e74705SXin Li       return ExprError();
1051*67e74705SXin Li     break;
1052*67e74705SXin Li   case Builtin::BIto_global:
1053*67e74705SXin Li   case Builtin::BIto_local:
1054*67e74705SXin Li   case Builtin::BIto_private:
1055*67e74705SXin Li     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1056*67e74705SXin Li       return ExprError();
1057*67e74705SXin Li     break;
1058*67e74705SXin Li   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1059*67e74705SXin Li   case Builtin::BIenqueue_kernel:
1060*67e74705SXin Li     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1061*67e74705SXin Li       return ExprError();
1062*67e74705SXin Li     break;
1063*67e74705SXin Li   case Builtin::BIget_kernel_work_group_size:
1064*67e74705SXin Li   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1065*67e74705SXin Li     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1066*67e74705SXin Li       return ExprError();
1067*67e74705SXin Li   }
1068*67e74705SXin Li 
1069*67e74705SXin Li   // Since the target specific builtins for each arch overlap, only check those
1070*67e74705SXin Li   // of the arch we are compiling for.
1071*67e74705SXin Li   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1072*67e74705SXin Li     switch (Context.getTargetInfo().getTriple().getArch()) {
1073*67e74705SXin Li       case llvm::Triple::arm:
1074*67e74705SXin Li       case llvm::Triple::armeb:
1075*67e74705SXin Li       case llvm::Triple::thumb:
1076*67e74705SXin Li       case llvm::Triple::thumbeb:
1077*67e74705SXin Li         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
1078*67e74705SXin Li           return ExprError();
1079*67e74705SXin Li         break;
1080*67e74705SXin Li       case llvm::Triple::aarch64:
1081*67e74705SXin Li       case llvm::Triple::aarch64_be:
1082*67e74705SXin Li         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
1083*67e74705SXin Li           return ExprError();
1084*67e74705SXin Li         break;
1085*67e74705SXin Li       case llvm::Triple::mips:
1086*67e74705SXin Li       case llvm::Triple::mipsel:
1087*67e74705SXin Li       case llvm::Triple::mips64:
1088*67e74705SXin Li       case llvm::Triple::mips64el:
1089*67e74705SXin Li         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
1090*67e74705SXin Li           return ExprError();
1091*67e74705SXin Li         break;
1092*67e74705SXin Li       case llvm::Triple::systemz:
1093*67e74705SXin Li         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
1094*67e74705SXin Li           return ExprError();
1095*67e74705SXin Li         break;
1096*67e74705SXin Li       case llvm::Triple::x86:
1097*67e74705SXin Li       case llvm::Triple::x86_64:
1098*67e74705SXin Li         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
1099*67e74705SXin Li           return ExprError();
1100*67e74705SXin Li         break;
1101*67e74705SXin Li       case llvm::Triple::ppc:
1102*67e74705SXin Li       case llvm::Triple::ppc64:
1103*67e74705SXin Li       case llvm::Triple::ppc64le:
1104*67e74705SXin Li         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
1105*67e74705SXin Li           return ExprError();
1106*67e74705SXin Li         break;
1107*67e74705SXin Li       default:
1108*67e74705SXin Li         break;
1109*67e74705SXin Li     }
1110*67e74705SXin Li   }
1111*67e74705SXin Li 
1112*67e74705SXin Li   return TheCallResult;
1113*67e74705SXin Li }
1114*67e74705SXin Li 
1115*67e74705SXin Li // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)1116*67e74705SXin Li static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1117*67e74705SXin Li   NeonTypeFlags Type(t);
1118*67e74705SXin Li   int IsQuad = ForceQuad ? true : Type.isQuad();
1119*67e74705SXin Li   switch (Type.getEltType()) {
1120*67e74705SXin Li   case NeonTypeFlags::Int8:
1121*67e74705SXin Li   case NeonTypeFlags::Poly8:
1122*67e74705SXin Li     return shift ? 7 : (8 << IsQuad) - 1;
1123*67e74705SXin Li   case NeonTypeFlags::Int16:
1124*67e74705SXin Li   case NeonTypeFlags::Poly16:
1125*67e74705SXin Li     return shift ? 15 : (4 << IsQuad) - 1;
1126*67e74705SXin Li   case NeonTypeFlags::Int32:
1127*67e74705SXin Li     return shift ? 31 : (2 << IsQuad) - 1;
1128*67e74705SXin Li   case NeonTypeFlags::Int64:
1129*67e74705SXin Li   case NeonTypeFlags::Poly64:
1130*67e74705SXin Li     return shift ? 63 : (1 << IsQuad) - 1;
1131*67e74705SXin Li   case NeonTypeFlags::Poly128:
1132*67e74705SXin Li     return shift ? 127 : (1 << IsQuad) - 1;
1133*67e74705SXin Li   case NeonTypeFlags::Float16:
1134*67e74705SXin Li     assert(!shift && "cannot shift float types!");
1135*67e74705SXin Li     return (4 << IsQuad) - 1;
1136*67e74705SXin Li   case NeonTypeFlags::Float32:
1137*67e74705SXin Li     assert(!shift && "cannot shift float types!");
1138*67e74705SXin Li     return (2 << IsQuad) - 1;
1139*67e74705SXin Li   case NeonTypeFlags::Float64:
1140*67e74705SXin Li     assert(!shift && "cannot shift float types!");
1141*67e74705SXin Li     return (1 << IsQuad) - 1;
1142*67e74705SXin Li   }
1143*67e74705SXin Li   llvm_unreachable("Invalid NeonTypeFlag!");
1144*67e74705SXin Li }
1145*67e74705SXin Li 
1146*67e74705SXin Li /// getNeonEltType - Return the QualType corresponding to the elements of
1147*67e74705SXin Li /// the vector type specified by the NeonTypeFlags.  This is used to check
1148*67e74705SXin Li /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)1149*67e74705SXin Li static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
1150*67e74705SXin Li                                bool IsPolyUnsigned, bool IsInt64Long) {
1151*67e74705SXin Li   switch (Flags.getEltType()) {
1152*67e74705SXin Li   case NeonTypeFlags::Int8:
1153*67e74705SXin Li     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
1154*67e74705SXin Li   case NeonTypeFlags::Int16:
1155*67e74705SXin Li     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
1156*67e74705SXin Li   case NeonTypeFlags::Int32:
1157*67e74705SXin Li     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
1158*67e74705SXin Li   case NeonTypeFlags::Int64:
1159*67e74705SXin Li     if (IsInt64Long)
1160*67e74705SXin Li       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
1161*67e74705SXin Li     else
1162*67e74705SXin Li       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
1163*67e74705SXin Li                                 : Context.LongLongTy;
1164*67e74705SXin Li   case NeonTypeFlags::Poly8:
1165*67e74705SXin Li     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
1166*67e74705SXin Li   case NeonTypeFlags::Poly16:
1167*67e74705SXin Li     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
1168*67e74705SXin Li   case NeonTypeFlags::Poly64:
1169*67e74705SXin Li     if (IsInt64Long)
1170*67e74705SXin Li       return Context.UnsignedLongTy;
1171*67e74705SXin Li     else
1172*67e74705SXin Li       return Context.UnsignedLongLongTy;
1173*67e74705SXin Li   case NeonTypeFlags::Poly128:
1174*67e74705SXin Li     break;
1175*67e74705SXin Li   case NeonTypeFlags::Float16:
1176*67e74705SXin Li     return Context.HalfTy;
1177*67e74705SXin Li   case NeonTypeFlags::Float32:
1178*67e74705SXin Li     return Context.FloatTy;
1179*67e74705SXin Li   case NeonTypeFlags::Float64:
1180*67e74705SXin Li     return Context.DoubleTy;
1181*67e74705SXin Li   }
1182*67e74705SXin Li   llvm_unreachable("Invalid NeonTypeFlag!");
1183*67e74705SXin Li }
1184*67e74705SXin Li 
CheckNeonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1185*67e74705SXin Li bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1186*67e74705SXin Li   llvm::APSInt Result;
1187*67e74705SXin Li   uint64_t mask = 0;
1188*67e74705SXin Li   unsigned TV = 0;
1189*67e74705SXin Li   int PtrArgNum = -1;
1190*67e74705SXin Li   bool HasConstPtr = false;
1191*67e74705SXin Li   switch (BuiltinID) {
1192*67e74705SXin Li #define GET_NEON_OVERLOAD_CHECK
1193*67e74705SXin Li #include "clang/Basic/arm_neon.inc"
1194*67e74705SXin Li #undef GET_NEON_OVERLOAD_CHECK
1195*67e74705SXin Li   }
1196*67e74705SXin Li 
1197*67e74705SXin Li   // For NEON intrinsics which are overloaded on vector element type, validate
1198*67e74705SXin Li   // the immediate which specifies which variant to emit.
1199*67e74705SXin Li   unsigned ImmArg = TheCall->getNumArgs()-1;
1200*67e74705SXin Li   if (mask) {
1201*67e74705SXin Li     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
1202*67e74705SXin Li       return true;
1203*67e74705SXin Li 
1204*67e74705SXin Li     TV = Result.getLimitedValue(64);
1205*67e74705SXin Li     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
1206*67e74705SXin Li       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
1207*67e74705SXin Li         << TheCall->getArg(ImmArg)->getSourceRange();
1208*67e74705SXin Li   }
1209*67e74705SXin Li 
1210*67e74705SXin Li   if (PtrArgNum >= 0) {
1211*67e74705SXin Li     // Check that pointer arguments have the specified type.
1212*67e74705SXin Li     Expr *Arg = TheCall->getArg(PtrArgNum);
1213*67e74705SXin Li     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
1214*67e74705SXin Li       Arg = ICE->getSubExpr();
1215*67e74705SXin Li     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
1216*67e74705SXin Li     QualType RHSTy = RHS.get()->getType();
1217*67e74705SXin Li 
1218*67e74705SXin Li     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1219*67e74705SXin Li     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
1220*67e74705SXin Li     bool IsInt64Long =
1221*67e74705SXin Li         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
1222*67e74705SXin Li     QualType EltTy =
1223*67e74705SXin Li         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
1224*67e74705SXin Li     if (HasConstPtr)
1225*67e74705SXin Li       EltTy = EltTy.withConst();
1226*67e74705SXin Li     QualType LHSTy = Context.getPointerType(EltTy);
1227*67e74705SXin Li     AssignConvertType ConvTy;
1228*67e74705SXin Li     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
1229*67e74705SXin Li     if (RHS.isInvalid())
1230*67e74705SXin Li       return true;
1231*67e74705SXin Li     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
1232*67e74705SXin Li                                  RHS.get(), AA_Assigning))
1233*67e74705SXin Li       return true;
1234*67e74705SXin Li   }
1235*67e74705SXin Li 
1236*67e74705SXin Li   // For NEON intrinsics which take an immediate value as part of the
1237*67e74705SXin Li   // instruction, range check them here.
1238*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1239*67e74705SXin Li   switch (BuiltinID) {
1240*67e74705SXin Li   default:
1241*67e74705SXin Li     return false;
1242*67e74705SXin Li #define GET_NEON_IMMEDIATE_CHECK
1243*67e74705SXin Li #include "clang/Basic/arm_neon.inc"
1244*67e74705SXin Li #undef GET_NEON_IMMEDIATE_CHECK
1245*67e74705SXin Li   }
1246*67e74705SXin Li 
1247*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1248*67e74705SXin Li }
1249*67e74705SXin Li 
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)1250*67e74705SXin Li bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
1251*67e74705SXin Li                                         unsigned MaxWidth) {
1252*67e74705SXin Li   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
1253*67e74705SXin Li           BuiltinID == ARM::BI__builtin_arm_ldaex ||
1254*67e74705SXin Li           BuiltinID == ARM::BI__builtin_arm_strex ||
1255*67e74705SXin Li           BuiltinID == ARM::BI__builtin_arm_stlex ||
1256*67e74705SXin Li           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1257*67e74705SXin Li           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1258*67e74705SXin Li           BuiltinID == AArch64::BI__builtin_arm_strex ||
1259*67e74705SXin Li           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
1260*67e74705SXin Li          "unexpected ARM builtin");
1261*67e74705SXin Li   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
1262*67e74705SXin Li                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
1263*67e74705SXin Li                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1264*67e74705SXin Li                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
1265*67e74705SXin Li 
1266*67e74705SXin Li   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1267*67e74705SXin Li 
1268*67e74705SXin Li   // Ensure that we have the proper number of arguments.
1269*67e74705SXin Li   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
1270*67e74705SXin Li     return true;
1271*67e74705SXin Li 
1272*67e74705SXin Li   // Inspect the pointer argument of the atomic builtin.  This should always be
1273*67e74705SXin Li   // a pointer type, whose element is an integral scalar or pointer type.
1274*67e74705SXin Li   // Because it is a pointer type, we don't have to worry about any implicit
1275*67e74705SXin Li   // casts here.
1276*67e74705SXin Li   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
1277*67e74705SXin Li   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
1278*67e74705SXin Li   if (PointerArgRes.isInvalid())
1279*67e74705SXin Li     return true;
1280*67e74705SXin Li   PointerArg = PointerArgRes.get();
1281*67e74705SXin Li 
1282*67e74705SXin Li   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
1283*67e74705SXin Li   if (!pointerType) {
1284*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1285*67e74705SXin Li       << PointerArg->getType() << PointerArg->getSourceRange();
1286*67e74705SXin Li     return true;
1287*67e74705SXin Li   }
1288*67e74705SXin Li 
1289*67e74705SXin Li   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
1290*67e74705SXin Li   // task is to insert the appropriate casts into the AST. First work out just
1291*67e74705SXin Li   // what the appropriate type is.
1292*67e74705SXin Li   QualType ValType = pointerType->getPointeeType();
1293*67e74705SXin Li   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
1294*67e74705SXin Li   if (IsLdrex)
1295*67e74705SXin Li     AddrType.addConst();
1296*67e74705SXin Li 
1297*67e74705SXin Li   // Issue a warning if the cast is dodgy.
1298*67e74705SXin Li   CastKind CastNeeded = CK_NoOp;
1299*67e74705SXin Li   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
1300*67e74705SXin Li     CastNeeded = CK_BitCast;
1301*67e74705SXin Li     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
1302*67e74705SXin Li       << PointerArg->getType()
1303*67e74705SXin Li       << Context.getPointerType(AddrType)
1304*67e74705SXin Li       << AA_Passing << PointerArg->getSourceRange();
1305*67e74705SXin Li   }
1306*67e74705SXin Li 
1307*67e74705SXin Li   // Finally, do the cast and replace the argument with the corrected version.
1308*67e74705SXin Li   AddrType = Context.getPointerType(AddrType);
1309*67e74705SXin Li   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
1310*67e74705SXin Li   if (PointerArgRes.isInvalid())
1311*67e74705SXin Li     return true;
1312*67e74705SXin Li   PointerArg = PointerArgRes.get();
1313*67e74705SXin Li 
1314*67e74705SXin Li   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
1315*67e74705SXin Li 
1316*67e74705SXin Li   // In general, we allow ints, floats and pointers to be loaded and stored.
1317*67e74705SXin Li   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1318*67e74705SXin Li       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
1319*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
1320*67e74705SXin Li       << PointerArg->getType() << PointerArg->getSourceRange();
1321*67e74705SXin Li     return true;
1322*67e74705SXin Li   }
1323*67e74705SXin Li 
1324*67e74705SXin Li   // But ARM doesn't have instructions to deal with 128-bit versions.
1325*67e74705SXin Li   if (Context.getTypeSize(ValType) > MaxWidth) {
1326*67e74705SXin Li     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
1327*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
1328*67e74705SXin Li       << PointerArg->getType() << PointerArg->getSourceRange();
1329*67e74705SXin Li     return true;
1330*67e74705SXin Li   }
1331*67e74705SXin Li 
1332*67e74705SXin Li   switch (ValType.getObjCLifetime()) {
1333*67e74705SXin Li   case Qualifiers::OCL_None:
1334*67e74705SXin Li   case Qualifiers::OCL_ExplicitNone:
1335*67e74705SXin Li     // okay
1336*67e74705SXin Li     break;
1337*67e74705SXin Li 
1338*67e74705SXin Li   case Qualifiers::OCL_Weak:
1339*67e74705SXin Li   case Qualifiers::OCL_Strong:
1340*67e74705SXin Li   case Qualifiers::OCL_Autoreleasing:
1341*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1342*67e74705SXin Li       << ValType << PointerArg->getSourceRange();
1343*67e74705SXin Li     return true;
1344*67e74705SXin Li   }
1345*67e74705SXin Li 
1346*67e74705SXin Li   if (IsLdrex) {
1347*67e74705SXin Li     TheCall->setType(ValType);
1348*67e74705SXin Li     return false;
1349*67e74705SXin Li   }
1350*67e74705SXin Li 
1351*67e74705SXin Li   // Initialize the argument to be stored.
1352*67e74705SXin Li   ExprResult ValArg = TheCall->getArg(0);
1353*67e74705SXin Li   InitializedEntity Entity = InitializedEntity::InitializeParameter(
1354*67e74705SXin Li       Context, ValType, /*consume*/ false);
1355*67e74705SXin Li   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
1356*67e74705SXin Li   if (ValArg.isInvalid())
1357*67e74705SXin Li     return true;
1358*67e74705SXin Li   TheCall->setArg(0, ValArg.get());
1359*67e74705SXin Li 
1360*67e74705SXin Li   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
1361*67e74705SXin Li   // but the custom checker bypasses all default analysis.
1362*67e74705SXin Li   TheCall->setType(Context.IntTy);
1363*67e74705SXin Li   return false;
1364*67e74705SXin Li }
1365*67e74705SXin Li 
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1366*67e74705SXin Li bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1367*67e74705SXin Li   llvm::APSInt Result;
1368*67e74705SXin Li 
1369*67e74705SXin Li   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
1370*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_ldaex ||
1371*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_strex ||
1372*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_stlex) {
1373*67e74705SXin Li     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
1374*67e74705SXin Li   }
1375*67e74705SXin Li 
1376*67e74705SXin Li   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
1377*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1378*67e74705SXin Li       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
1379*67e74705SXin Li   }
1380*67e74705SXin Li 
1381*67e74705SXin Li   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
1382*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_wsr64)
1383*67e74705SXin Li     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
1384*67e74705SXin Li 
1385*67e74705SXin Li   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
1386*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_rsrp ||
1387*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_wsr ||
1388*67e74705SXin Li       BuiltinID == ARM::BI__builtin_arm_wsrp)
1389*67e74705SXin Li     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1390*67e74705SXin Li 
1391*67e74705SXin Li   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1392*67e74705SXin Li     return true;
1393*67e74705SXin Li 
1394*67e74705SXin Li   // For intrinsics which take an immediate value as part of the instruction,
1395*67e74705SXin Li   // range check them here.
1396*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1397*67e74705SXin Li   switch (BuiltinID) {
1398*67e74705SXin Li   default: return false;
1399*67e74705SXin Li   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
1400*67e74705SXin Li   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
1401*67e74705SXin Li   case ARM::BI__builtin_arm_vcvtr_f:
1402*67e74705SXin Li   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
1403*67e74705SXin Li   case ARM::BI__builtin_arm_dmb:
1404*67e74705SXin Li   case ARM::BI__builtin_arm_dsb:
1405*67e74705SXin Li   case ARM::BI__builtin_arm_isb:
1406*67e74705SXin Li   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
1407*67e74705SXin Li   }
1408*67e74705SXin Li 
1409*67e74705SXin Li   // FIXME: VFP Intrinsics should error if VFP not present.
1410*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1411*67e74705SXin Li }
1412*67e74705SXin Li 
CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1413*67e74705SXin Li bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
1414*67e74705SXin Li                                          CallExpr *TheCall) {
1415*67e74705SXin Li   llvm::APSInt Result;
1416*67e74705SXin Li 
1417*67e74705SXin Li   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
1418*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
1419*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_strex ||
1420*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_stlex) {
1421*67e74705SXin Li     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
1422*67e74705SXin Li   }
1423*67e74705SXin Li 
1424*67e74705SXin Li   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
1425*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1426*67e74705SXin Li       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
1427*67e74705SXin Li       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
1428*67e74705SXin Li       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
1429*67e74705SXin Li   }
1430*67e74705SXin Li 
1431*67e74705SXin Li   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
1432*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_wsr64)
1433*67e74705SXin Li     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1434*67e74705SXin Li 
1435*67e74705SXin Li   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
1436*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
1437*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_wsr ||
1438*67e74705SXin Li       BuiltinID == AArch64::BI__builtin_arm_wsrp)
1439*67e74705SXin Li     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
1440*67e74705SXin Li 
1441*67e74705SXin Li   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
1442*67e74705SXin Li     return true;
1443*67e74705SXin Li 
1444*67e74705SXin Li   // For intrinsics which take an immediate value as part of the instruction,
1445*67e74705SXin Li   // range check them here.
1446*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1447*67e74705SXin Li   switch (BuiltinID) {
1448*67e74705SXin Li   default: return false;
1449*67e74705SXin Li   case AArch64::BI__builtin_arm_dmb:
1450*67e74705SXin Li   case AArch64::BI__builtin_arm_dsb:
1451*67e74705SXin Li   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
1452*67e74705SXin Li   }
1453*67e74705SXin Li 
1454*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
1455*67e74705SXin Li }
1456*67e74705SXin Li 
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1457*67e74705SXin Li bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1458*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1459*67e74705SXin Li   switch (BuiltinID) {
1460*67e74705SXin Li   default: return false;
1461*67e74705SXin Li   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
1462*67e74705SXin Li   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
1463*67e74705SXin Li   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
1464*67e74705SXin Li   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
1465*67e74705SXin Li   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
1466*67e74705SXin Li   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
1467*67e74705SXin Li   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
1468*67e74705SXin Li   }
1469*67e74705SXin Li 
1470*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1471*67e74705SXin Li }
1472*67e74705SXin Li 
CheckPPCBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1473*67e74705SXin Li bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1474*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1475*67e74705SXin Li   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
1476*67e74705SXin Li                       BuiltinID == PPC::BI__builtin_divdeu ||
1477*67e74705SXin Li                       BuiltinID == PPC::BI__builtin_bpermd;
1478*67e74705SXin Li   bool IsTarget64Bit = Context.getTargetInfo()
1479*67e74705SXin Li                               .getTypeWidth(Context
1480*67e74705SXin Li                                             .getTargetInfo()
1481*67e74705SXin Li                                             .getIntPtrType()) == 64;
1482*67e74705SXin Li   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
1483*67e74705SXin Li                        BuiltinID == PPC::BI__builtin_divweu ||
1484*67e74705SXin Li                        BuiltinID == PPC::BI__builtin_divde ||
1485*67e74705SXin Li                        BuiltinID == PPC::BI__builtin_divdeu;
1486*67e74705SXin Li 
1487*67e74705SXin Li   if (Is64BitBltin && !IsTarget64Bit)
1488*67e74705SXin Li       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
1489*67e74705SXin Li              << TheCall->getSourceRange();
1490*67e74705SXin Li 
1491*67e74705SXin Li   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
1492*67e74705SXin Li       (BuiltinID == PPC::BI__builtin_bpermd &&
1493*67e74705SXin Li        !Context.getTargetInfo().hasFeature("bpermd")))
1494*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
1495*67e74705SXin Li            << TheCall->getSourceRange();
1496*67e74705SXin Li 
1497*67e74705SXin Li   switch (BuiltinID) {
1498*67e74705SXin Li   default: return false;
1499*67e74705SXin Li   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
1500*67e74705SXin Li   case PPC::BI__builtin_altivec_crypto_vshasigmad:
1501*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
1502*67e74705SXin Li            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1503*67e74705SXin Li   case PPC::BI__builtin_tbegin:
1504*67e74705SXin Li   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
1505*67e74705SXin Li   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
1506*67e74705SXin Li   case PPC::BI__builtin_tabortwc:
1507*67e74705SXin Li   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
1508*67e74705SXin Li   case PPC::BI__builtin_tabortwci:
1509*67e74705SXin Li   case PPC::BI__builtin_tabortdci:
1510*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
1511*67e74705SXin Li            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
1512*67e74705SXin Li   }
1513*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1514*67e74705SXin Li }
1515*67e74705SXin Li 
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1516*67e74705SXin Li bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
1517*67e74705SXin Li                                            CallExpr *TheCall) {
1518*67e74705SXin Li   if (BuiltinID == SystemZ::BI__builtin_tabort) {
1519*67e74705SXin Li     Expr *Arg = TheCall->getArg(0);
1520*67e74705SXin Li     llvm::APSInt AbortCode(32);
1521*67e74705SXin Li     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
1522*67e74705SXin Li         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
1523*67e74705SXin Li       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
1524*67e74705SXin Li              << Arg->getSourceRange();
1525*67e74705SXin Li   }
1526*67e74705SXin Li 
1527*67e74705SXin Li   // For intrinsics which take an immediate value as part of the instruction,
1528*67e74705SXin Li   // range check them here.
1529*67e74705SXin Li   unsigned i = 0, l = 0, u = 0;
1530*67e74705SXin Li   switch (BuiltinID) {
1531*67e74705SXin Li   default: return false;
1532*67e74705SXin Li   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
1533*67e74705SXin Li   case SystemZ::BI__builtin_s390_verimb:
1534*67e74705SXin Li   case SystemZ::BI__builtin_s390_verimh:
1535*67e74705SXin Li   case SystemZ::BI__builtin_s390_verimf:
1536*67e74705SXin Li   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
1537*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaeb:
1538*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaeh:
1539*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaef:
1540*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaebs:
1541*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaehs:
1542*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaefs:
1543*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezb:
1544*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezh:
1545*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezf:
1546*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezbs:
1547*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezhs:
1548*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
1549*67e74705SXin Li   case SystemZ::BI__builtin_s390_vfidb:
1550*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
1551*67e74705SXin Li            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
1552*67e74705SXin Li   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
1553*67e74705SXin Li   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
1554*67e74705SXin Li   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
1555*67e74705SXin Li   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
1556*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrcb:
1557*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrch:
1558*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrcf:
1559*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczb:
1560*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczh:
1561*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczf:
1562*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrcbs:
1563*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrchs:
1564*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrcfs:
1565*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczbs:
1566*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczhs:
1567*67e74705SXin Li   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
1568*67e74705SXin Li   }
1569*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1570*67e74705SXin Li }
1571*67e74705SXin Li 
1572*67e74705SXin Li /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
1573*67e74705SXin Li /// This checks that the target supports __builtin_cpu_supports and
1574*67e74705SXin Li /// that the string argument is constant and valid.
SemaBuiltinCpuSupports(Sema & S,CallExpr * TheCall)1575*67e74705SXin Li static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
1576*67e74705SXin Li   Expr *Arg = TheCall->getArg(0);
1577*67e74705SXin Li 
1578*67e74705SXin Li   // Check if the argument is a string literal.
1579*67e74705SXin Li   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
1580*67e74705SXin Li     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
1581*67e74705SXin Li            << Arg->getSourceRange();
1582*67e74705SXin Li 
1583*67e74705SXin Li   // Check the contents of the string.
1584*67e74705SXin Li   StringRef Feature =
1585*67e74705SXin Li       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
1586*67e74705SXin Li   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
1587*67e74705SXin Li     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
1588*67e74705SXin Li            << Arg->getSourceRange();
1589*67e74705SXin Li   return false;
1590*67e74705SXin Li }
1591*67e74705SXin Li 
CheckX86BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)1592*67e74705SXin Li bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
1593*67e74705SXin Li   int i = 0, l = 0, u = 0;
1594*67e74705SXin Li   switch (BuiltinID) {
1595*67e74705SXin Li   default:
1596*67e74705SXin Li     return false;
1597*67e74705SXin Li   case X86::BI__builtin_cpu_supports:
1598*67e74705SXin Li     return SemaBuiltinCpuSupports(*this, TheCall);
1599*67e74705SXin Li   case X86::BI__builtin_ms_va_start:
1600*67e74705SXin Li     return SemaBuiltinMSVAStart(TheCall);
1601*67e74705SXin Li   case X86::BI__builtin_ia32_extractf64x4_mask:
1602*67e74705SXin Li   case X86::BI__builtin_ia32_extracti64x4_mask:
1603*67e74705SXin Li   case X86::BI__builtin_ia32_extractf32x8_mask:
1604*67e74705SXin Li   case X86::BI__builtin_ia32_extracti32x8_mask:
1605*67e74705SXin Li   case X86::BI__builtin_ia32_extractf64x2_256_mask:
1606*67e74705SXin Li   case X86::BI__builtin_ia32_extracti64x2_256_mask:
1607*67e74705SXin Li   case X86::BI__builtin_ia32_extractf32x4_256_mask:
1608*67e74705SXin Li   case X86::BI__builtin_ia32_extracti32x4_256_mask:
1609*67e74705SXin Li     i = 1; l = 0; u = 1;
1610*67e74705SXin Li     break;
1611*67e74705SXin Li   case X86::BI_mm_prefetch:
1612*67e74705SXin Li   case X86::BI__builtin_ia32_extractf32x4_mask:
1613*67e74705SXin Li   case X86::BI__builtin_ia32_extracti32x4_mask:
1614*67e74705SXin Li   case X86::BI__builtin_ia32_extractf64x2_512_mask:
1615*67e74705SXin Li   case X86::BI__builtin_ia32_extracti64x2_512_mask:
1616*67e74705SXin Li     i = 1; l = 0; u = 3;
1617*67e74705SXin Li     break;
1618*67e74705SXin Li   case X86::BI__builtin_ia32_insertf32x8_mask:
1619*67e74705SXin Li   case X86::BI__builtin_ia32_inserti32x8_mask:
1620*67e74705SXin Li   case X86::BI__builtin_ia32_insertf64x4_mask:
1621*67e74705SXin Li   case X86::BI__builtin_ia32_inserti64x4_mask:
1622*67e74705SXin Li   case X86::BI__builtin_ia32_insertf64x2_256_mask:
1623*67e74705SXin Li   case X86::BI__builtin_ia32_inserti64x2_256_mask:
1624*67e74705SXin Li   case X86::BI__builtin_ia32_insertf32x4_256_mask:
1625*67e74705SXin Li   case X86::BI__builtin_ia32_inserti32x4_256_mask:
1626*67e74705SXin Li     i = 2; l = 0; u = 1;
1627*67e74705SXin Li     break;
1628*67e74705SXin Li   case X86::BI__builtin_ia32_sha1rnds4:
1629*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_f32x4_256_mask:
1630*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_f64x2_256_mask:
1631*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_i32x4_256_mask:
1632*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_i64x2_256_mask:
1633*67e74705SXin Li   case X86::BI__builtin_ia32_insertf64x2_512_mask:
1634*67e74705SXin Li   case X86::BI__builtin_ia32_inserti64x2_512_mask:
1635*67e74705SXin Li   case X86::BI__builtin_ia32_insertf32x4_mask:
1636*67e74705SXin Li   case X86::BI__builtin_ia32_inserti32x4_mask:
1637*67e74705SXin Li     i = 2; l = 0; u = 3;
1638*67e74705SXin Li     break;
1639*67e74705SXin Li   case X86::BI__builtin_ia32_vpermil2pd:
1640*67e74705SXin Li   case X86::BI__builtin_ia32_vpermil2pd256:
1641*67e74705SXin Li   case X86::BI__builtin_ia32_vpermil2ps:
1642*67e74705SXin Li   case X86::BI__builtin_ia32_vpermil2ps256:
1643*67e74705SXin Li     i = 3; l = 0; u = 3;
1644*67e74705SXin Li     break;
1645*67e74705SXin Li   case X86::BI__builtin_ia32_cmpb128_mask:
1646*67e74705SXin Li   case X86::BI__builtin_ia32_cmpw128_mask:
1647*67e74705SXin Li   case X86::BI__builtin_ia32_cmpd128_mask:
1648*67e74705SXin Li   case X86::BI__builtin_ia32_cmpq128_mask:
1649*67e74705SXin Li   case X86::BI__builtin_ia32_cmpb256_mask:
1650*67e74705SXin Li   case X86::BI__builtin_ia32_cmpw256_mask:
1651*67e74705SXin Li   case X86::BI__builtin_ia32_cmpd256_mask:
1652*67e74705SXin Li   case X86::BI__builtin_ia32_cmpq256_mask:
1653*67e74705SXin Li   case X86::BI__builtin_ia32_cmpb512_mask:
1654*67e74705SXin Li   case X86::BI__builtin_ia32_cmpw512_mask:
1655*67e74705SXin Li   case X86::BI__builtin_ia32_cmpd512_mask:
1656*67e74705SXin Li   case X86::BI__builtin_ia32_cmpq512_mask:
1657*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpb128_mask:
1658*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpw128_mask:
1659*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpd128_mask:
1660*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpq128_mask:
1661*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpb256_mask:
1662*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpw256_mask:
1663*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpd256_mask:
1664*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpq256_mask:
1665*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpb512_mask:
1666*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpw512_mask:
1667*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpd512_mask:
1668*67e74705SXin Li   case X86::BI__builtin_ia32_ucmpq512_mask:
1669*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomub:
1670*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomuw:
1671*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomud:
1672*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomuq:
1673*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomb:
1674*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomw:
1675*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomd:
1676*67e74705SXin Li   case X86::BI__builtin_ia32_vpcomq:
1677*67e74705SXin Li     i = 2; l = 0; u = 7;
1678*67e74705SXin Li     break;
1679*67e74705SXin Li   case X86::BI__builtin_ia32_roundps:
1680*67e74705SXin Li   case X86::BI__builtin_ia32_roundpd:
1681*67e74705SXin Li   case X86::BI__builtin_ia32_roundps256:
1682*67e74705SXin Li   case X86::BI__builtin_ia32_roundpd256:
1683*67e74705SXin Li     i = 1; l = 0; u = 15;
1684*67e74705SXin Li     break;
1685*67e74705SXin Li   case X86::BI__builtin_ia32_roundss:
1686*67e74705SXin Li   case X86::BI__builtin_ia32_roundsd:
1687*67e74705SXin Li   case X86::BI__builtin_ia32_rangepd128_mask:
1688*67e74705SXin Li   case X86::BI__builtin_ia32_rangepd256_mask:
1689*67e74705SXin Li   case X86::BI__builtin_ia32_rangepd512_mask:
1690*67e74705SXin Li   case X86::BI__builtin_ia32_rangeps128_mask:
1691*67e74705SXin Li   case X86::BI__builtin_ia32_rangeps256_mask:
1692*67e74705SXin Li   case X86::BI__builtin_ia32_rangeps512_mask:
1693*67e74705SXin Li   case X86::BI__builtin_ia32_getmantsd_round_mask:
1694*67e74705SXin Li   case X86::BI__builtin_ia32_getmantss_round_mask:
1695*67e74705SXin Li     i = 2; l = 0; u = 15;
1696*67e74705SXin Li     break;
1697*67e74705SXin Li   case X86::BI__builtin_ia32_cmpps:
1698*67e74705SXin Li   case X86::BI__builtin_ia32_cmpss:
1699*67e74705SXin Li   case X86::BI__builtin_ia32_cmppd:
1700*67e74705SXin Li   case X86::BI__builtin_ia32_cmpsd:
1701*67e74705SXin Li   case X86::BI__builtin_ia32_cmpps256:
1702*67e74705SXin Li   case X86::BI__builtin_ia32_cmppd256:
1703*67e74705SXin Li   case X86::BI__builtin_ia32_cmpps128_mask:
1704*67e74705SXin Li   case X86::BI__builtin_ia32_cmppd128_mask:
1705*67e74705SXin Li   case X86::BI__builtin_ia32_cmpps256_mask:
1706*67e74705SXin Li   case X86::BI__builtin_ia32_cmppd256_mask:
1707*67e74705SXin Li   case X86::BI__builtin_ia32_cmpps512_mask:
1708*67e74705SXin Li   case X86::BI__builtin_ia32_cmppd512_mask:
1709*67e74705SXin Li   case X86::BI__builtin_ia32_cmpsd_mask:
1710*67e74705SXin Li   case X86::BI__builtin_ia32_cmpss_mask:
1711*67e74705SXin Li     i = 2; l = 0; u = 31;
1712*67e74705SXin Li     break;
1713*67e74705SXin Li   case X86::BI__builtin_ia32_xabort:
1714*67e74705SXin Li     i = 0; l = -128; u = 255;
1715*67e74705SXin Li     break;
1716*67e74705SXin Li   case X86::BI__builtin_ia32_pshufw:
1717*67e74705SXin Li   case X86::BI__builtin_ia32_aeskeygenassist128:
1718*67e74705SXin Li     i = 1; l = -128; u = 255;
1719*67e74705SXin Li     break;
1720*67e74705SXin Li   case X86::BI__builtin_ia32_vcvtps2ph:
1721*67e74705SXin Li   case X86::BI__builtin_ia32_vcvtps2ph256:
1722*67e74705SXin Li   case X86::BI__builtin_ia32_rndscaleps_128_mask:
1723*67e74705SXin Li   case X86::BI__builtin_ia32_rndscalepd_128_mask:
1724*67e74705SXin Li   case X86::BI__builtin_ia32_rndscaleps_256_mask:
1725*67e74705SXin Li   case X86::BI__builtin_ia32_rndscalepd_256_mask:
1726*67e74705SXin Li   case X86::BI__builtin_ia32_rndscaleps_mask:
1727*67e74705SXin Li   case X86::BI__builtin_ia32_rndscalepd_mask:
1728*67e74705SXin Li   case X86::BI__builtin_ia32_reducepd128_mask:
1729*67e74705SXin Li   case X86::BI__builtin_ia32_reducepd256_mask:
1730*67e74705SXin Li   case X86::BI__builtin_ia32_reducepd512_mask:
1731*67e74705SXin Li   case X86::BI__builtin_ia32_reduceps128_mask:
1732*67e74705SXin Li   case X86::BI__builtin_ia32_reduceps256_mask:
1733*67e74705SXin Li   case X86::BI__builtin_ia32_reduceps512_mask:
1734*67e74705SXin Li   case X86::BI__builtin_ia32_prold512_mask:
1735*67e74705SXin Li   case X86::BI__builtin_ia32_prolq512_mask:
1736*67e74705SXin Li   case X86::BI__builtin_ia32_prold128_mask:
1737*67e74705SXin Li   case X86::BI__builtin_ia32_prold256_mask:
1738*67e74705SXin Li   case X86::BI__builtin_ia32_prolq128_mask:
1739*67e74705SXin Li   case X86::BI__builtin_ia32_prolq256_mask:
1740*67e74705SXin Li   case X86::BI__builtin_ia32_prord128_mask:
1741*67e74705SXin Li   case X86::BI__builtin_ia32_prord256_mask:
1742*67e74705SXin Li   case X86::BI__builtin_ia32_prorq128_mask:
1743*67e74705SXin Li   case X86::BI__builtin_ia32_prorq256_mask:
1744*67e74705SXin Li   case X86::BI__builtin_ia32_psllwi512_mask:
1745*67e74705SXin Li   case X86::BI__builtin_ia32_psllwi128_mask:
1746*67e74705SXin Li   case X86::BI__builtin_ia32_psllwi256_mask:
1747*67e74705SXin Li   case X86::BI__builtin_ia32_psrldi128_mask:
1748*67e74705SXin Li   case X86::BI__builtin_ia32_psrldi256_mask:
1749*67e74705SXin Li   case X86::BI__builtin_ia32_psrldi512_mask:
1750*67e74705SXin Li   case X86::BI__builtin_ia32_psrlqi128_mask:
1751*67e74705SXin Li   case X86::BI__builtin_ia32_psrlqi256_mask:
1752*67e74705SXin Li   case X86::BI__builtin_ia32_psrlqi512_mask:
1753*67e74705SXin Li   case X86::BI__builtin_ia32_psrawi512_mask:
1754*67e74705SXin Li   case X86::BI__builtin_ia32_psrawi128_mask:
1755*67e74705SXin Li   case X86::BI__builtin_ia32_psrawi256_mask:
1756*67e74705SXin Li   case X86::BI__builtin_ia32_psrlwi512_mask:
1757*67e74705SXin Li   case X86::BI__builtin_ia32_psrlwi128_mask:
1758*67e74705SXin Li   case X86::BI__builtin_ia32_psrlwi256_mask:
1759*67e74705SXin Li   case X86::BI__builtin_ia32_psradi128_mask:
1760*67e74705SXin Li   case X86::BI__builtin_ia32_psradi256_mask:
1761*67e74705SXin Li   case X86::BI__builtin_ia32_psradi512_mask:
1762*67e74705SXin Li   case X86::BI__builtin_ia32_psraqi128_mask:
1763*67e74705SXin Li   case X86::BI__builtin_ia32_psraqi256_mask:
1764*67e74705SXin Li   case X86::BI__builtin_ia32_psraqi512_mask:
1765*67e74705SXin Li   case X86::BI__builtin_ia32_pslldi128_mask:
1766*67e74705SXin Li   case X86::BI__builtin_ia32_pslldi256_mask:
1767*67e74705SXin Li   case X86::BI__builtin_ia32_pslldi512_mask:
1768*67e74705SXin Li   case X86::BI__builtin_ia32_psllqi128_mask:
1769*67e74705SXin Li   case X86::BI__builtin_ia32_psllqi256_mask:
1770*67e74705SXin Li   case X86::BI__builtin_ia32_psllqi512_mask:
1771*67e74705SXin Li   case X86::BI__builtin_ia32_fpclasspd128_mask:
1772*67e74705SXin Li   case X86::BI__builtin_ia32_fpclasspd256_mask:
1773*67e74705SXin Li   case X86::BI__builtin_ia32_fpclassps128_mask:
1774*67e74705SXin Li   case X86::BI__builtin_ia32_fpclassps256_mask:
1775*67e74705SXin Li   case X86::BI__builtin_ia32_fpclassps512_mask:
1776*67e74705SXin Li   case X86::BI__builtin_ia32_fpclasspd512_mask:
1777*67e74705SXin Li   case X86::BI__builtin_ia32_fpclasssd_mask:
1778*67e74705SXin Li   case X86::BI__builtin_ia32_fpclassss_mask:
1779*67e74705SXin Li     i = 1; l = 0; u = 255;
1780*67e74705SXin Li     break;
1781*67e74705SXin Li   case X86::BI__builtin_ia32_palignr:
1782*67e74705SXin Li   case X86::BI__builtin_ia32_insertps128:
1783*67e74705SXin Li   case X86::BI__builtin_ia32_dpps:
1784*67e74705SXin Li   case X86::BI__builtin_ia32_dppd:
1785*67e74705SXin Li   case X86::BI__builtin_ia32_dpps256:
1786*67e74705SXin Li   case X86::BI__builtin_ia32_mpsadbw128:
1787*67e74705SXin Li   case X86::BI__builtin_ia32_mpsadbw256:
1788*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistrm128:
1789*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistri128:
1790*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistria128:
1791*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistric128:
1792*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistrio128:
1793*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistris128:
1794*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpistriz128:
1795*67e74705SXin Li   case X86::BI__builtin_ia32_pclmulqdq128:
1796*67e74705SXin Li   case X86::BI__builtin_ia32_vperm2f128_pd256:
1797*67e74705SXin Li   case X86::BI__builtin_ia32_vperm2f128_ps256:
1798*67e74705SXin Li   case X86::BI__builtin_ia32_vperm2f128_si256:
1799*67e74705SXin Li   case X86::BI__builtin_ia32_permti256:
1800*67e74705SXin Li     i = 2; l = -128; u = 255;
1801*67e74705SXin Li     break;
1802*67e74705SXin Li   case X86::BI__builtin_ia32_palignr128:
1803*67e74705SXin Li   case X86::BI__builtin_ia32_palignr256:
1804*67e74705SXin Li   case X86::BI__builtin_ia32_palignr128_mask:
1805*67e74705SXin Li   case X86::BI__builtin_ia32_palignr256_mask:
1806*67e74705SXin Li   case X86::BI__builtin_ia32_palignr512_mask:
1807*67e74705SXin Li   case X86::BI__builtin_ia32_alignq512_mask:
1808*67e74705SXin Li   case X86::BI__builtin_ia32_alignd512_mask:
1809*67e74705SXin Li   case X86::BI__builtin_ia32_alignd128_mask:
1810*67e74705SXin Li   case X86::BI__builtin_ia32_alignd256_mask:
1811*67e74705SXin Li   case X86::BI__builtin_ia32_alignq128_mask:
1812*67e74705SXin Li   case X86::BI__builtin_ia32_alignq256_mask:
1813*67e74705SXin Li   case X86::BI__builtin_ia32_vcomisd:
1814*67e74705SXin Li   case X86::BI__builtin_ia32_vcomiss:
1815*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_f32x4_mask:
1816*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_f64x2_mask:
1817*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_i32x4_mask:
1818*67e74705SXin Li   case X86::BI__builtin_ia32_shuf_i64x2_mask:
1819*67e74705SXin Li   case X86::BI__builtin_ia32_dbpsadbw128_mask:
1820*67e74705SXin Li   case X86::BI__builtin_ia32_dbpsadbw256_mask:
1821*67e74705SXin Li   case X86::BI__builtin_ia32_dbpsadbw512_mask:
1822*67e74705SXin Li     i = 2; l = 0; u = 255;
1823*67e74705SXin Li     break;
1824*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd512_mask:
1825*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
1826*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps512_mask:
1827*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps512_maskz:
1828*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmsd_mask:
1829*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmsd_maskz:
1830*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmss_mask:
1831*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmss_maskz:
1832*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd128_mask:
1833*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
1834*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd256_mask:
1835*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
1836*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps128_mask:
1837*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps128_maskz:
1838*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps256_mask:
1839*67e74705SXin Li   case X86::BI__builtin_ia32_fixupimmps256_maskz:
1840*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd512_mask:
1841*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd512_maskz:
1842*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq512_mask:
1843*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq512_maskz:
1844*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd128_mask:
1845*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd128_maskz:
1846*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd256_mask:
1847*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogd256_maskz:
1848*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq128_mask:
1849*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq128_maskz:
1850*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq256_mask:
1851*67e74705SXin Li   case X86::BI__builtin_ia32_pternlogq256_maskz:
1852*67e74705SXin Li     i = 3; l = 0; u = 255;
1853*67e74705SXin Li     break;
1854*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestrm128:
1855*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestri128:
1856*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestria128:
1857*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestric128:
1858*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestrio128:
1859*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestris128:
1860*67e74705SXin Li   case X86::BI__builtin_ia32_pcmpestriz128:
1861*67e74705SXin Li     i = 4; l = -128; u = 255;
1862*67e74705SXin Li     break;
1863*67e74705SXin Li   case X86::BI__builtin_ia32_rndscalesd_round_mask:
1864*67e74705SXin Li   case X86::BI__builtin_ia32_rndscaless_round_mask:
1865*67e74705SXin Li     i = 4; l = 0; u = 255;
1866*67e74705SXin Li     break;
1867*67e74705SXin Li   }
1868*67e74705SXin Li   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1869*67e74705SXin Li }
1870*67e74705SXin Li 
1871*67e74705SXin Li /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
1872*67e74705SXin Li /// parameter with the FormatAttr's correct format_idx and firstDataArg.
1873*67e74705SXin Li /// Returns true when the format fits the function and the FormatStringInfo has
1874*67e74705SXin Li /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)1875*67e74705SXin Li bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
1876*67e74705SXin Li                                FormatStringInfo *FSI) {
1877*67e74705SXin Li   FSI->HasVAListArg = Format->getFirstArg() == 0;
1878*67e74705SXin Li   FSI->FormatIdx = Format->getFormatIdx() - 1;
1879*67e74705SXin Li   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
1880*67e74705SXin Li 
1881*67e74705SXin Li   // The way the format attribute works in GCC, the implicit this argument
1882*67e74705SXin Li   // of member functions is counted. However, it doesn't appear in our own
1883*67e74705SXin Li   // lists, so decrement format_idx in that case.
1884*67e74705SXin Li   if (IsCXXMember) {
1885*67e74705SXin Li     if(FSI->FormatIdx == 0)
1886*67e74705SXin Li       return false;
1887*67e74705SXin Li     --FSI->FormatIdx;
1888*67e74705SXin Li     if (FSI->FirstDataArg != 0)
1889*67e74705SXin Li       --FSI->FirstDataArg;
1890*67e74705SXin Li   }
1891*67e74705SXin Li   return true;
1892*67e74705SXin Li }
1893*67e74705SXin Li 
1894*67e74705SXin Li /// Checks if a the given expression evaluates to null.
1895*67e74705SXin Li ///
1896*67e74705SXin Li /// \brief Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)1897*67e74705SXin Li static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
1898*67e74705SXin Li   // If the expression has non-null type, it doesn't evaluate to null.
1899*67e74705SXin Li   if (auto nullability
1900*67e74705SXin Li         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
1901*67e74705SXin Li     if (*nullability == NullabilityKind::NonNull)
1902*67e74705SXin Li       return false;
1903*67e74705SXin Li   }
1904*67e74705SXin Li 
1905*67e74705SXin Li   // As a special case, transparent unions initialized with zero are
1906*67e74705SXin Li   // considered null for the purposes of the nonnull attribute.
1907*67e74705SXin Li   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
1908*67e74705SXin Li     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1909*67e74705SXin Li       if (const CompoundLiteralExpr *CLE =
1910*67e74705SXin Li           dyn_cast<CompoundLiteralExpr>(Expr))
1911*67e74705SXin Li         if (const InitListExpr *ILE =
1912*67e74705SXin Li             dyn_cast<InitListExpr>(CLE->getInitializer()))
1913*67e74705SXin Li           Expr = ILE->getInit(0);
1914*67e74705SXin Li   }
1915*67e74705SXin Li 
1916*67e74705SXin Li   bool Result;
1917*67e74705SXin Li   return (!Expr->isValueDependent() &&
1918*67e74705SXin Li           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
1919*67e74705SXin Li           !Result);
1920*67e74705SXin Li }
1921*67e74705SXin Li 
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)1922*67e74705SXin Li static void CheckNonNullArgument(Sema &S,
1923*67e74705SXin Li                                  const Expr *ArgExpr,
1924*67e74705SXin Li                                  SourceLocation CallSiteLoc) {
1925*67e74705SXin Li   if (CheckNonNullExpr(S, ArgExpr))
1926*67e74705SXin Li     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
1927*67e74705SXin Li            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
1928*67e74705SXin Li }
1929*67e74705SXin Li 
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)1930*67e74705SXin Li bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
1931*67e74705SXin Li   FormatStringInfo FSI;
1932*67e74705SXin Li   if ((GetFormatStringType(Format) == FST_NSString) &&
1933*67e74705SXin Li       getFormatStringInfo(Format, false, &FSI)) {
1934*67e74705SXin Li     Idx = FSI.FormatIdx;
1935*67e74705SXin Li     return true;
1936*67e74705SXin Li   }
1937*67e74705SXin Li   return false;
1938*67e74705SXin Li }
1939*67e74705SXin Li /// \brief Diagnose use of %s directive in an NSString which is being passed
1940*67e74705SXin Li /// as formatting string to formatting method.
1941*67e74705SXin Li static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)1942*67e74705SXin Li DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
1943*67e74705SXin Li                                         const NamedDecl *FDecl,
1944*67e74705SXin Li                                         Expr **Args,
1945*67e74705SXin Li                                         unsigned NumArgs) {
1946*67e74705SXin Li   unsigned Idx = 0;
1947*67e74705SXin Li   bool Format = false;
1948*67e74705SXin Li   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
1949*67e74705SXin Li   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
1950*67e74705SXin Li     Idx = 2;
1951*67e74705SXin Li     Format = true;
1952*67e74705SXin Li   }
1953*67e74705SXin Li   else
1954*67e74705SXin Li     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1955*67e74705SXin Li       if (S.GetFormatNSStringIdx(I, Idx)) {
1956*67e74705SXin Li         Format = true;
1957*67e74705SXin Li         break;
1958*67e74705SXin Li       }
1959*67e74705SXin Li     }
1960*67e74705SXin Li   if (!Format || NumArgs <= Idx)
1961*67e74705SXin Li     return;
1962*67e74705SXin Li   const Expr *FormatExpr = Args[Idx];
1963*67e74705SXin Li   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
1964*67e74705SXin Li     FormatExpr = CSCE->getSubExpr();
1965*67e74705SXin Li   const StringLiteral *FormatString;
1966*67e74705SXin Li   if (const ObjCStringLiteral *OSL =
1967*67e74705SXin Li       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
1968*67e74705SXin Li     FormatString = OSL->getString();
1969*67e74705SXin Li   else
1970*67e74705SXin Li     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
1971*67e74705SXin Li   if (!FormatString)
1972*67e74705SXin Li     return;
1973*67e74705SXin Li   if (S.FormatStringHasSArg(FormatString)) {
1974*67e74705SXin Li     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
1975*67e74705SXin Li       << "%s" << 1 << 1;
1976*67e74705SXin Li     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
1977*67e74705SXin Li       << FDecl->getDeclName();
1978*67e74705SXin Li   }
1979*67e74705SXin Li }
1980*67e74705SXin Li 
1981*67e74705SXin Li /// Determine whether the given type has a non-null nullability annotation.
isNonNullType(ASTContext & ctx,QualType type)1982*67e74705SXin Li static bool isNonNullType(ASTContext &ctx, QualType type) {
1983*67e74705SXin Li   if (auto nullability = type->getNullability(ctx))
1984*67e74705SXin Li     return *nullability == NullabilityKind::NonNull;
1985*67e74705SXin Li 
1986*67e74705SXin Li   return false;
1987*67e74705SXin Li }
1988*67e74705SXin Li 
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)1989*67e74705SXin Li static void CheckNonNullArguments(Sema &S,
1990*67e74705SXin Li                                   const NamedDecl *FDecl,
1991*67e74705SXin Li                                   const FunctionProtoType *Proto,
1992*67e74705SXin Li                                   ArrayRef<const Expr *> Args,
1993*67e74705SXin Li                                   SourceLocation CallSiteLoc) {
1994*67e74705SXin Li   assert((FDecl || Proto) && "Need a function declaration or prototype");
1995*67e74705SXin Li 
1996*67e74705SXin Li   // Check the attributes attached to the method/function itself.
1997*67e74705SXin Li   llvm::SmallBitVector NonNullArgs;
1998*67e74705SXin Li   if (FDecl) {
1999*67e74705SXin Li     // Handle the nonnull attribute on the function/method declaration itself.
2000*67e74705SXin Li     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
2001*67e74705SXin Li       if (!NonNull->args_size()) {
2002*67e74705SXin Li         // Easy case: all pointer arguments are nonnull.
2003*67e74705SXin Li         for (const auto *Arg : Args)
2004*67e74705SXin Li           if (S.isValidPointerAttrType(Arg->getType()))
2005*67e74705SXin Li             CheckNonNullArgument(S, Arg, CallSiteLoc);
2006*67e74705SXin Li         return;
2007*67e74705SXin Li       }
2008*67e74705SXin Li 
2009*67e74705SXin Li       for (unsigned Val : NonNull->args()) {
2010*67e74705SXin Li         if (Val >= Args.size())
2011*67e74705SXin Li           continue;
2012*67e74705SXin Li         if (NonNullArgs.empty())
2013*67e74705SXin Li           NonNullArgs.resize(Args.size());
2014*67e74705SXin Li         NonNullArgs.set(Val);
2015*67e74705SXin Li       }
2016*67e74705SXin Li     }
2017*67e74705SXin Li   }
2018*67e74705SXin Li 
2019*67e74705SXin Li   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
2020*67e74705SXin Li     // Handle the nonnull attribute on the parameters of the
2021*67e74705SXin Li     // function/method.
2022*67e74705SXin Li     ArrayRef<ParmVarDecl*> parms;
2023*67e74705SXin Li     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
2024*67e74705SXin Li       parms = FD->parameters();
2025*67e74705SXin Li     else
2026*67e74705SXin Li       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
2027*67e74705SXin Li 
2028*67e74705SXin Li     unsigned ParamIndex = 0;
2029*67e74705SXin Li     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
2030*67e74705SXin Li          I != E; ++I, ++ParamIndex) {
2031*67e74705SXin Li       const ParmVarDecl *PVD = *I;
2032*67e74705SXin Li       if (PVD->hasAttr<NonNullAttr>() ||
2033*67e74705SXin Li           isNonNullType(S.Context, PVD->getType())) {
2034*67e74705SXin Li         if (NonNullArgs.empty())
2035*67e74705SXin Li           NonNullArgs.resize(Args.size());
2036*67e74705SXin Li 
2037*67e74705SXin Li         NonNullArgs.set(ParamIndex);
2038*67e74705SXin Li       }
2039*67e74705SXin Li     }
2040*67e74705SXin Li   } else {
2041*67e74705SXin Li     // If we have a non-function, non-method declaration but no
2042*67e74705SXin Li     // function prototype, try to dig out the function prototype.
2043*67e74705SXin Li     if (!Proto) {
2044*67e74705SXin Li       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
2045*67e74705SXin Li         QualType type = VD->getType().getNonReferenceType();
2046*67e74705SXin Li         if (auto pointerType = type->getAs<PointerType>())
2047*67e74705SXin Li           type = pointerType->getPointeeType();
2048*67e74705SXin Li         else if (auto blockType = type->getAs<BlockPointerType>())
2049*67e74705SXin Li           type = blockType->getPointeeType();
2050*67e74705SXin Li         // FIXME: data member pointers?
2051*67e74705SXin Li 
2052*67e74705SXin Li         // Dig out the function prototype, if there is one.
2053*67e74705SXin Li         Proto = type->getAs<FunctionProtoType>();
2054*67e74705SXin Li       }
2055*67e74705SXin Li     }
2056*67e74705SXin Li 
2057*67e74705SXin Li     // Fill in non-null argument information from the nullability
2058*67e74705SXin Li     // information on the parameter types (if we have them).
2059*67e74705SXin Li     if (Proto) {
2060*67e74705SXin Li       unsigned Index = 0;
2061*67e74705SXin Li       for (auto paramType : Proto->getParamTypes()) {
2062*67e74705SXin Li         if (isNonNullType(S.Context, paramType)) {
2063*67e74705SXin Li           if (NonNullArgs.empty())
2064*67e74705SXin Li             NonNullArgs.resize(Args.size());
2065*67e74705SXin Li 
2066*67e74705SXin Li           NonNullArgs.set(Index);
2067*67e74705SXin Li         }
2068*67e74705SXin Li 
2069*67e74705SXin Li         ++Index;
2070*67e74705SXin Li       }
2071*67e74705SXin Li     }
2072*67e74705SXin Li   }
2073*67e74705SXin Li 
2074*67e74705SXin Li   // Check for non-null arguments.
2075*67e74705SXin Li   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
2076*67e74705SXin Li        ArgIndex != ArgIndexEnd; ++ArgIndex) {
2077*67e74705SXin Li     if (NonNullArgs[ArgIndex])
2078*67e74705SXin Li       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
2079*67e74705SXin Li   }
2080*67e74705SXin Li }
2081*67e74705SXin Li 
2082*67e74705SXin Li /// Handles the checks for format strings, non-POD arguments to vararg
2083*67e74705SXin Li /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,const FunctionProtoType * Proto,ArrayRef<const Expr * > Args,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)2084*67e74705SXin Li void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
2085*67e74705SXin Li                      ArrayRef<const Expr *> Args, bool IsMemberFunction,
2086*67e74705SXin Li                      SourceLocation Loc, SourceRange Range,
2087*67e74705SXin Li                      VariadicCallType CallType) {
2088*67e74705SXin Li   // FIXME: We should check as much as we can in the template definition.
2089*67e74705SXin Li   if (CurContext->isDependentContext())
2090*67e74705SXin Li     return;
2091*67e74705SXin Li 
2092*67e74705SXin Li   // Printf and scanf checking.
2093*67e74705SXin Li   llvm::SmallBitVector CheckedVarArgs;
2094*67e74705SXin Li   if (FDecl) {
2095*67e74705SXin Li     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
2096*67e74705SXin Li       // Only create vector if there are format attributes.
2097*67e74705SXin Li       CheckedVarArgs.resize(Args.size());
2098*67e74705SXin Li 
2099*67e74705SXin Li       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
2100*67e74705SXin Li                            CheckedVarArgs);
2101*67e74705SXin Li     }
2102*67e74705SXin Li   }
2103*67e74705SXin Li 
2104*67e74705SXin Li   // Refuse POD arguments that weren't caught by the format string
2105*67e74705SXin Li   // checks above.
2106*67e74705SXin Li   if (CallType != VariadicDoesNotApply) {
2107*67e74705SXin Li     unsigned NumParams = Proto ? Proto->getNumParams()
2108*67e74705SXin Li                        : FDecl && isa<FunctionDecl>(FDecl)
2109*67e74705SXin Li                            ? cast<FunctionDecl>(FDecl)->getNumParams()
2110*67e74705SXin Li                        : FDecl && isa<ObjCMethodDecl>(FDecl)
2111*67e74705SXin Li                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
2112*67e74705SXin Li                        : 0;
2113*67e74705SXin Li 
2114*67e74705SXin Li     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
2115*67e74705SXin Li       // Args[ArgIdx] can be null in malformed code.
2116*67e74705SXin Li       if (const Expr *Arg = Args[ArgIdx]) {
2117*67e74705SXin Li         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
2118*67e74705SXin Li           checkVariadicArgument(Arg, CallType);
2119*67e74705SXin Li       }
2120*67e74705SXin Li     }
2121*67e74705SXin Li   }
2122*67e74705SXin Li 
2123*67e74705SXin Li   if (FDecl || Proto) {
2124*67e74705SXin Li     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
2125*67e74705SXin Li 
2126*67e74705SXin Li     // Type safety checking.
2127*67e74705SXin Li     if (FDecl) {
2128*67e74705SXin Li       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
2129*67e74705SXin Li         CheckArgumentWithTypeTag(I, Args.data());
2130*67e74705SXin Li     }
2131*67e74705SXin Li   }
2132*67e74705SXin Li }
2133*67e74705SXin Li 
2134*67e74705SXin Li /// CheckConstructorCall - Check a constructor call for correctness and safety
2135*67e74705SXin Li /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)2136*67e74705SXin Li void Sema::CheckConstructorCall(FunctionDecl *FDecl,
2137*67e74705SXin Li                                 ArrayRef<const Expr *> Args,
2138*67e74705SXin Li                                 const FunctionProtoType *Proto,
2139*67e74705SXin Li                                 SourceLocation Loc) {
2140*67e74705SXin Li   VariadicCallType CallType =
2141*67e74705SXin Li     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
2142*67e74705SXin Li   checkCall(FDecl, Proto, Args, /*IsMemberFunction=*/true, Loc, SourceRange(),
2143*67e74705SXin Li             CallType);
2144*67e74705SXin Li }
2145*67e74705SXin Li 
2146*67e74705SXin Li /// CheckFunctionCall - Check a direct function call for various correctness
2147*67e74705SXin Li /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)2148*67e74705SXin Li bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
2149*67e74705SXin Li                              const FunctionProtoType *Proto) {
2150*67e74705SXin Li   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
2151*67e74705SXin Li                               isa<CXXMethodDecl>(FDecl);
2152*67e74705SXin Li   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2153*67e74705SXin Li                           IsMemberOperatorCall;
2154*67e74705SXin Li   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
2155*67e74705SXin Li                                                   TheCall->getCallee());
2156*67e74705SXin Li   Expr** Args = TheCall->getArgs();
2157*67e74705SXin Li   unsigned NumArgs = TheCall->getNumArgs();
2158*67e74705SXin Li   if (IsMemberOperatorCall) {
2159*67e74705SXin Li     // If this is a call to a member operator, hide the first argument
2160*67e74705SXin Li     // from checkCall.
2161*67e74705SXin Li     // FIXME: Our choice of AST representation here is less than ideal.
2162*67e74705SXin Li     ++Args;
2163*67e74705SXin Li     --NumArgs;
2164*67e74705SXin Li   }
2165*67e74705SXin Li   checkCall(FDecl, Proto, llvm::makeArrayRef(Args, NumArgs),
2166*67e74705SXin Li             IsMemberFunction, TheCall->getRParenLoc(),
2167*67e74705SXin Li             TheCall->getCallee()->getSourceRange(), CallType);
2168*67e74705SXin Li 
2169*67e74705SXin Li   IdentifierInfo *FnInfo = FDecl->getIdentifier();
2170*67e74705SXin Li   // None of the checks below are needed for functions that don't have
2171*67e74705SXin Li   // simple names (e.g., C++ conversion functions).
2172*67e74705SXin Li   if (!FnInfo)
2173*67e74705SXin Li     return false;
2174*67e74705SXin Li 
2175*67e74705SXin Li   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
2176*67e74705SXin Li   if (getLangOpts().ObjC1)
2177*67e74705SXin Li     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
2178*67e74705SXin Li 
2179*67e74705SXin Li   unsigned CMId = FDecl->getMemoryFunctionKind();
2180*67e74705SXin Li   if (CMId == 0)
2181*67e74705SXin Li     return false;
2182*67e74705SXin Li 
2183*67e74705SXin Li   // Handle memory setting and copying functions.
2184*67e74705SXin Li   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
2185*67e74705SXin Li     CheckStrlcpycatArguments(TheCall, FnInfo);
2186*67e74705SXin Li   else if (CMId == Builtin::BIstrncat)
2187*67e74705SXin Li     CheckStrncatArguments(TheCall, FnInfo);
2188*67e74705SXin Li   else
2189*67e74705SXin Li     CheckMemaccessArguments(TheCall, CMId, FnInfo);
2190*67e74705SXin Li 
2191*67e74705SXin Li   return false;
2192*67e74705SXin Li }
2193*67e74705SXin Li 
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)2194*67e74705SXin Li bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
2195*67e74705SXin Li                                ArrayRef<const Expr *> Args) {
2196*67e74705SXin Li   VariadicCallType CallType =
2197*67e74705SXin Li       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
2198*67e74705SXin Li 
2199*67e74705SXin Li   checkCall(Method, nullptr, Args,
2200*67e74705SXin Li             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
2201*67e74705SXin Li             CallType);
2202*67e74705SXin Li 
2203*67e74705SXin Li   return false;
2204*67e74705SXin Li }
2205*67e74705SXin Li 
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)2206*67e74705SXin Li bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
2207*67e74705SXin Li                             const FunctionProtoType *Proto) {
2208*67e74705SXin Li   QualType Ty;
2209*67e74705SXin Li   if (const auto *V = dyn_cast<VarDecl>(NDecl))
2210*67e74705SXin Li     Ty = V->getType().getNonReferenceType();
2211*67e74705SXin Li   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
2212*67e74705SXin Li     Ty = F->getType().getNonReferenceType();
2213*67e74705SXin Li   else
2214*67e74705SXin Li     return false;
2215*67e74705SXin Li 
2216*67e74705SXin Li   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
2217*67e74705SXin Li       !Ty->isFunctionProtoType())
2218*67e74705SXin Li     return false;
2219*67e74705SXin Li 
2220*67e74705SXin Li   VariadicCallType CallType;
2221*67e74705SXin Li   if (!Proto || !Proto->isVariadic()) {
2222*67e74705SXin Li     CallType = VariadicDoesNotApply;
2223*67e74705SXin Li   } else if (Ty->isBlockPointerType()) {
2224*67e74705SXin Li     CallType = VariadicBlock;
2225*67e74705SXin Li   } else { // Ty->isFunctionPointerType()
2226*67e74705SXin Li     CallType = VariadicFunction;
2227*67e74705SXin Li   }
2228*67e74705SXin Li 
2229*67e74705SXin Li   checkCall(NDecl, Proto,
2230*67e74705SXin Li             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2231*67e74705SXin Li             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2232*67e74705SXin Li             TheCall->getCallee()->getSourceRange(), CallType);
2233*67e74705SXin Li 
2234*67e74705SXin Li   return false;
2235*67e74705SXin Li }
2236*67e74705SXin Li 
2237*67e74705SXin Li /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
2238*67e74705SXin Li /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)2239*67e74705SXin Li bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
2240*67e74705SXin Li   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
2241*67e74705SXin Li                                                   TheCall->getCallee());
2242*67e74705SXin Li   checkCall(/*FDecl=*/nullptr, Proto,
2243*67e74705SXin Li             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
2244*67e74705SXin Li             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
2245*67e74705SXin Li             TheCall->getCallee()->getSourceRange(), CallType);
2246*67e74705SXin Li 
2247*67e74705SXin Li   return false;
2248*67e74705SXin Li }
2249*67e74705SXin Li 
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)2250*67e74705SXin Li static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
2251*67e74705SXin Li   if (!llvm::isValidAtomicOrderingCABI(Ordering))
2252*67e74705SXin Li     return false;
2253*67e74705SXin Li 
2254*67e74705SXin Li   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
2255*67e74705SXin Li   switch (Op) {
2256*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_init:
2257*67e74705SXin Li     llvm_unreachable("There is no ordering argument for an init");
2258*67e74705SXin Li 
2259*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_load:
2260*67e74705SXin Li   case AtomicExpr::AO__atomic_load_n:
2261*67e74705SXin Li   case AtomicExpr::AO__atomic_load:
2262*67e74705SXin Li     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
2263*67e74705SXin Li            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2264*67e74705SXin Li 
2265*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_store:
2266*67e74705SXin Li   case AtomicExpr::AO__atomic_store:
2267*67e74705SXin Li   case AtomicExpr::AO__atomic_store_n:
2268*67e74705SXin Li     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
2269*67e74705SXin Li            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
2270*67e74705SXin Li            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
2271*67e74705SXin Li 
2272*67e74705SXin Li   default:
2273*67e74705SXin Li     return true;
2274*67e74705SXin Li   }
2275*67e74705SXin Li }
2276*67e74705SXin Li 
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)2277*67e74705SXin Li ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
2278*67e74705SXin Li                                          AtomicExpr::AtomicOp Op) {
2279*67e74705SXin Li   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
2280*67e74705SXin Li   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2281*67e74705SXin Li 
2282*67e74705SXin Li   // All these operations take one of the following forms:
2283*67e74705SXin Li   enum {
2284*67e74705SXin Li     // C    __c11_atomic_init(A *, C)
2285*67e74705SXin Li     Init,
2286*67e74705SXin Li     // C    __c11_atomic_load(A *, int)
2287*67e74705SXin Li     Load,
2288*67e74705SXin Li     // void __atomic_load(A *, CP, int)
2289*67e74705SXin Li     LoadCopy,
2290*67e74705SXin Li     // void __atomic_store(A *, CP, int)
2291*67e74705SXin Li     Copy,
2292*67e74705SXin Li     // C    __c11_atomic_add(A *, M, int)
2293*67e74705SXin Li     Arithmetic,
2294*67e74705SXin Li     // C    __atomic_exchange_n(A *, CP, int)
2295*67e74705SXin Li     Xchg,
2296*67e74705SXin Li     // void __atomic_exchange(A *, C *, CP, int)
2297*67e74705SXin Li     GNUXchg,
2298*67e74705SXin Li     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
2299*67e74705SXin Li     C11CmpXchg,
2300*67e74705SXin Li     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
2301*67e74705SXin Li     GNUCmpXchg
2302*67e74705SXin Li   } Form = Init;
2303*67e74705SXin Li   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
2304*67e74705SXin Li   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
2305*67e74705SXin Li   // where:
2306*67e74705SXin Li   //   C is an appropriate type,
2307*67e74705SXin Li   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
2308*67e74705SXin Li   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
2309*67e74705SXin Li   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
2310*67e74705SXin Li   //   the int parameters are for orderings.
2311*67e74705SXin Li 
2312*67e74705SXin Li   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
2313*67e74705SXin Li                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
2314*67e74705SXin Li                         AtomicExpr::AO__atomic_load,
2315*67e74705SXin Li                 "need to update code for modified C11 atomics");
2316*67e74705SXin Li   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
2317*67e74705SXin Li                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
2318*67e74705SXin Li   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
2319*67e74705SXin Li              Op == AtomicExpr::AO__atomic_store_n ||
2320*67e74705SXin Li              Op == AtomicExpr::AO__atomic_exchange_n ||
2321*67e74705SXin Li              Op == AtomicExpr::AO__atomic_compare_exchange_n;
2322*67e74705SXin Li   bool IsAddSub = false;
2323*67e74705SXin Li 
2324*67e74705SXin Li   switch (Op) {
2325*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_init:
2326*67e74705SXin Li     Form = Init;
2327*67e74705SXin Li     break;
2328*67e74705SXin Li 
2329*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_load:
2330*67e74705SXin Li   case AtomicExpr::AO__atomic_load_n:
2331*67e74705SXin Li     Form = Load;
2332*67e74705SXin Li     break;
2333*67e74705SXin Li 
2334*67e74705SXin Li   case AtomicExpr::AO__atomic_load:
2335*67e74705SXin Li     Form = LoadCopy;
2336*67e74705SXin Li     break;
2337*67e74705SXin Li 
2338*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_store:
2339*67e74705SXin Li   case AtomicExpr::AO__atomic_store:
2340*67e74705SXin Li   case AtomicExpr::AO__atomic_store_n:
2341*67e74705SXin Li     Form = Copy;
2342*67e74705SXin Li     break;
2343*67e74705SXin Li 
2344*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_fetch_add:
2345*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_fetch_sub:
2346*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_add:
2347*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_sub:
2348*67e74705SXin Li   case AtomicExpr::AO__atomic_add_fetch:
2349*67e74705SXin Li   case AtomicExpr::AO__atomic_sub_fetch:
2350*67e74705SXin Li     IsAddSub = true;
2351*67e74705SXin Li     // Fall through.
2352*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_fetch_and:
2353*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_fetch_or:
2354*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_fetch_xor:
2355*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_and:
2356*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_or:
2357*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_xor:
2358*67e74705SXin Li   case AtomicExpr::AO__atomic_fetch_nand:
2359*67e74705SXin Li   case AtomicExpr::AO__atomic_and_fetch:
2360*67e74705SXin Li   case AtomicExpr::AO__atomic_or_fetch:
2361*67e74705SXin Li   case AtomicExpr::AO__atomic_xor_fetch:
2362*67e74705SXin Li   case AtomicExpr::AO__atomic_nand_fetch:
2363*67e74705SXin Li     Form = Arithmetic;
2364*67e74705SXin Li     break;
2365*67e74705SXin Li 
2366*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_exchange:
2367*67e74705SXin Li   case AtomicExpr::AO__atomic_exchange_n:
2368*67e74705SXin Li     Form = Xchg;
2369*67e74705SXin Li     break;
2370*67e74705SXin Li 
2371*67e74705SXin Li   case AtomicExpr::AO__atomic_exchange:
2372*67e74705SXin Li     Form = GNUXchg;
2373*67e74705SXin Li     break;
2374*67e74705SXin Li 
2375*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
2376*67e74705SXin Li   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
2377*67e74705SXin Li     Form = C11CmpXchg;
2378*67e74705SXin Li     break;
2379*67e74705SXin Li 
2380*67e74705SXin Li   case AtomicExpr::AO__atomic_compare_exchange:
2381*67e74705SXin Li   case AtomicExpr::AO__atomic_compare_exchange_n:
2382*67e74705SXin Li     Form = GNUCmpXchg;
2383*67e74705SXin Li     break;
2384*67e74705SXin Li   }
2385*67e74705SXin Li 
2386*67e74705SXin Li   // Check we have the right number of arguments.
2387*67e74705SXin Li   if (TheCall->getNumArgs() < NumArgs[Form]) {
2388*67e74705SXin Li     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2389*67e74705SXin Li       << 0 << NumArgs[Form] << TheCall->getNumArgs()
2390*67e74705SXin Li       << TheCall->getCallee()->getSourceRange();
2391*67e74705SXin Li     return ExprError();
2392*67e74705SXin Li   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
2393*67e74705SXin Li     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
2394*67e74705SXin Li          diag::err_typecheck_call_too_many_args)
2395*67e74705SXin Li       << 0 << NumArgs[Form] << TheCall->getNumArgs()
2396*67e74705SXin Li       << TheCall->getCallee()->getSourceRange();
2397*67e74705SXin Li     return ExprError();
2398*67e74705SXin Li   }
2399*67e74705SXin Li 
2400*67e74705SXin Li   // Inspect the first argument of the atomic operation.
2401*67e74705SXin Li   Expr *Ptr = TheCall->getArg(0);
2402*67e74705SXin Li   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
2403*67e74705SXin Li   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
2404*67e74705SXin Li   if (!pointerType) {
2405*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
2406*67e74705SXin Li       << Ptr->getType() << Ptr->getSourceRange();
2407*67e74705SXin Li     return ExprError();
2408*67e74705SXin Li   }
2409*67e74705SXin Li 
2410*67e74705SXin Li   // For a __c11 builtin, this should be a pointer to an _Atomic type.
2411*67e74705SXin Li   QualType AtomTy = pointerType->getPointeeType(); // 'A'
2412*67e74705SXin Li   QualType ValType = AtomTy; // 'C'
2413*67e74705SXin Li   if (IsC11) {
2414*67e74705SXin Li     if (!AtomTy->isAtomicType()) {
2415*67e74705SXin Li       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
2416*67e74705SXin Li         << Ptr->getType() << Ptr->getSourceRange();
2417*67e74705SXin Li       return ExprError();
2418*67e74705SXin Li     }
2419*67e74705SXin Li     if (AtomTy.isConstQualified()) {
2420*67e74705SXin Li       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
2421*67e74705SXin Li         << Ptr->getType() << Ptr->getSourceRange();
2422*67e74705SXin Li       return ExprError();
2423*67e74705SXin Li     }
2424*67e74705SXin Li     ValType = AtomTy->getAs<AtomicType>()->getValueType();
2425*67e74705SXin Li   } else if (Form != Load && Form != LoadCopy) {
2426*67e74705SXin Li     if (ValType.isConstQualified()) {
2427*67e74705SXin Li       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
2428*67e74705SXin Li         << Ptr->getType() << Ptr->getSourceRange();
2429*67e74705SXin Li       return ExprError();
2430*67e74705SXin Li     }
2431*67e74705SXin Li   }
2432*67e74705SXin Li 
2433*67e74705SXin Li   // For an arithmetic operation, the implied arithmetic must be well-formed.
2434*67e74705SXin Li   if (Form == Arithmetic) {
2435*67e74705SXin Li     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
2436*67e74705SXin Li     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
2437*67e74705SXin Li       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
2438*67e74705SXin Li         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2439*67e74705SXin Li       return ExprError();
2440*67e74705SXin Li     }
2441*67e74705SXin Li     if (!IsAddSub && !ValType->isIntegerType()) {
2442*67e74705SXin Li       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
2443*67e74705SXin Li         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2444*67e74705SXin Li       return ExprError();
2445*67e74705SXin Li     }
2446*67e74705SXin Li     if (IsC11 && ValType->isPointerType() &&
2447*67e74705SXin Li         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
2448*67e74705SXin Li                             diag::err_incomplete_type)) {
2449*67e74705SXin Li       return ExprError();
2450*67e74705SXin Li     }
2451*67e74705SXin Li   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
2452*67e74705SXin Li     // For __atomic_*_n operations, the value type must be a scalar integral or
2453*67e74705SXin Li     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
2454*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
2455*67e74705SXin Li       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
2456*67e74705SXin Li     return ExprError();
2457*67e74705SXin Li   }
2458*67e74705SXin Li 
2459*67e74705SXin Li   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
2460*67e74705SXin Li       !AtomTy->isScalarType()) {
2461*67e74705SXin Li     // For GNU atomics, require a trivially-copyable type. This is not part of
2462*67e74705SXin Li     // the GNU atomics specification, but we enforce it for sanity.
2463*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
2464*67e74705SXin Li       << Ptr->getType() << Ptr->getSourceRange();
2465*67e74705SXin Li     return ExprError();
2466*67e74705SXin Li   }
2467*67e74705SXin Li 
2468*67e74705SXin Li   switch (ValType.getObjCLifetime()) {
2469*67e74705SXin Li   case Qualifiers::OCL_None:
2470*67e74705SXin Li   case Qualifiers::OCL_ExplicitNone:
2471*67e74705SXin Li     // okay
2472*67e74705SXin Li     break;
2473*67e74705SXin Li 
2474*67e74705SXin Li   case Qualifiers::OCL_Weak:
2475*67e74705SXin Li   case Qualifiers::OCL_Strong:
2476*67e74705SXin Li   case Qualifiers::OCL_Autoreleasing:
2477*67e74705SXin Li     // FIXME: Can this happen? By this point, ValType should be known
2478*67e74705SXin Li     // to be trivially copyable.
2479*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
2480*67e74705SXin Li       << ValType << Ptr->getSourceRange();
2481*67e74705SXin Li     return ExprError();
2482*67e74705SXin Li   }
2483*67e74705SXin Li 
2484*67e74705SXin Li   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
2485*67e74705SXin Li   // volatile-ness of the pointee-type inject itself into the result or the
2486*67e74705SXin Li   // other operands. Similarly atomic_load can take a pointer to a const 'A'.
2487*67e74705SXin Li   ValType.removeLocalVolatile();
2488*67e74705SXin Li   ValType.removeLocalConst();
2489*67e74705SXin Li   QualType ResultType = ValType;
2490*67e74705SXin Li   if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init)
2491*67e74705SXin Li     ResultType = Context.VoidTy;
2492*67e74705SXin Li   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
2493*67e74705SXin Li     ResultType = Context.BoolTy;
2494*67e74705SXin Li 
2495*67e74705SXin Li   // The type of a parameter passed 'by value'. In the GNU atomics, such
2496*67e74705SXin Li   // arguments are actually passed as pointers.
2497*67e74705SXin Li   QualType ByValType = ValType; // 'CP'
2498*67e74705SXin Li   if (!IsC11 && !IsN)
2499*67e74705SXin Li     ByValType = Ptr->getType();
2500*67e74705SXin Li 
2501*67e74705SXin Li   // The first argument --- the pointer --- has a fixed type; we
2502*67e74705SXin Li   // deduce the types of the rest of the arguments accordingly.  Walk
2503*67e74705SXin Li   // the remaining arguments, converting them to the deduced value type.
2504*67e74705SXin Li   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
2505*67e74705SXin Li     QualType Ty;
2506*67e74705SXin Li     if (i < NumVals[Form] + 1) {
2507*67e74705SXin Li       switch (i) {
2508*67e74705SXin Li       case 1:
2509*67e74705SXin Li         // The second argument is the non-atomic operand. For arithmetic, this
2510*67e74705SXin Li         // is always passed by value, and for a compare_exchange it is always
2511*67e74705SXin Li         // passed by address. For the rest, GNU uses by-address and C11 uses
2512*67e74705SXin Li         // by-value.
2513*67e74705SXin Li         assert(Form != Load);
2514*67e74705SXin Li         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
2515*67e74705SXin Li           Ty = ValType;
2516*67e74705SXin Li         else if (Form == Copy || Form == Xchg)
2517*67e74705SXin Li           Ty = ByValType;
2518*67e74705SXin Li         else if (Form == Arithmetic)
2519*67e74705SXin Li           Ty = Context.getPointerDiffType();
2520*67e74705SXin Li         else {
2521*67e74705SXin Li           Expr *ValArg = TheCall->getArg(i);
2522*67e74705SXin Li           unsigned AS = 0;
2523*67e74705SXin Li           // Keep address space of non-atomic pointer type.
2524*67e74705SXin Li           if (const PointerType *PtrTy =
2525*67e74705SXin Li                   ValArg->getType()->getAs<PointerType>()) {
2526*67e74705SXin Li             AS = PtrTy->getPointeeType().getAddressSpace();
2527*67e74705SXin Li           }
2528*67e74705SXin Li           Ty = Context.getPointerType(
2529*67e74705SXin Li               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
2530*67e74705SXin Li         }
2531*67e74705SXin Li         break;
2532*67e74705SXin Li       case 2:
2533*67e74705SXin Li         // The third argument to compare_exchange / GNU exchange is a
2534*67e74705SXin Li         // (pointer to a) desired value.
2535*67e74705SXin Li         Ty = ByValType;
2536*67e74705SXin Li         break;
2537*67e74705SXin Li       case 3:
2538*67e74705SXin Li         // The fourth argument to GNU compare_exchange is a 'weak' flag.
2539*67e74705SXin Li         Ty = Context.BoolTy;
2540*67e74705SXin Li         break;
2541*67e74705SXin Li       }
2542*67e74705SXin Li     } else {
2543*67e74705SXin Li       // The order(s) are always converted to int.
2544*67e74705SXin Li       Ty = Context.IntTy;
2545*67e74705SXin Li     }
2546*67e74705SXin Li 
2547*67e74705SXin Li     InitializedEntity Entity =
2548*67e74705SXin Li         InitializedEntity::InitializeParameter(Context, Ty, false);
2549*67e74705SXin Li     ExprResult Arg = TheCall->getArg(i);
2550*67e74705SXin Li     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2551*67e74705SXin Li     if (Arg.isInvalid())
2552*67e74705SXin Li       return true;
2553*67e74705SXin Li     TheCall->setArg(i, Arg.get());
2554*67e74705SXin Li   }
2555*67e74705SXin Li 
2556*67e74705SXin Li   // Permute the arguments into a 'consistent' order.
2557*67e74705SXin Li   SmallVector<Expr*, 5> SubExprs;
2558*67e74705SXin Li   SubExprs.push_back(Ptr);
2559*67e74705SXin Li   switch (Form) {
2560*67e74705SXin Li   case Init:
2561*67e74705SXin Li     // Note, AtomicExpr::getVal1() has a special case for this atomic.
2562*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Val1
2563*67e74705SXin Li     break;
2564*67e74705SXin Li   case Load:
2565*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Order
2566*67e74705SXin Li     break;
2567*67e74705SXin Li   case LoadCopy:
2568*67e74705SXin Li   case Copy:
2569*67e74705SXin Li   case Arithmetic:
2570*67e74705SXin Li   case Xchg:
2571*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(2)); // Order
2572*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Val1
2573*67e74705SXin Li     break;
2574*67e74705SXin Li   case GNUXchg:
2575*67e74705SXin Li     // Note, AtomicExpr::getVal2() has a special case for this atomic.
2576*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(3)); // Order
2577*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Val1
2578*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(2)); // Val2
2579*67e74705SXin Li     break;
2580*67e74705SXin Li   case C11CmpXchg:
2581*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(3)); // Order
2582*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Val1
2583*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
2584*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(2)); // Val2
2585*67e74705SXin Li     break;
2586*67e74705SXin Li   case GNUCmpXchg:
2587*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(4)); // Order
2588*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(1)); // Val1
2589*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
2590*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(2)); // Val2
2591*67e74705SXin Li     SubExprs.push_back(TheCall->getArg(3)); // Weak
2592*67e74705SXin Li     break;
2593*67e74705SXin Li   }
2594*67e74705SXin Li 
2595*67e74705SXin Li   if (SubExprs.size() >= 2 && Form != Init) {
2596*67e74705SXin Li     llvm::APSInt Result(32);
2597*67e74705SXin Li     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
2598*67e74705SXin Li         !isValidOrderingForOp(Result.getSExtValue(), Op))
2599*67e74705SXin Li       Diag(SubExprs[1]->getLocStart(),
2600*67e74705SXin Li            diag::warn_atomic_op_has_invalid_memory_order)
2601*67e74705SXin Li           << SubExprs[1]->getSourceRange();
2602*67e74705SXin Li   }
2603*67e74705SXin Li 
2604*67e74705SXin Li   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
2605*67e74705SXin Li                                             SubExprs, ResultType, Op,
2606*67e74705SXin Li                                             TheCall->getRParenLoc());
2607*67e74705SXin Li 
2608*67e74705SXin Li   if ((Op == AtomicExpr::AO__c11_atomic_load ||
2609*67e74705SXin Li        (Op == AtomicExpr::AO__c11_atomic_store)) &&
2610*67e74705SXin Li       Context.AtomicUsesUnsupportedLibcall(AE))
2611*67e74705SXin Li     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
2612*67e74705SXin Li     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
2613*67e74705SXin Li 
2614*67e74705SXin Li   return AE;
2615*67e74705SXin Li }
2616*67e74705SXin Li 
2617*67e74705SXin Li /// checkBuiltinArgument - Given a call to a builtin function, perform
2618*67e74705SXin Li /// normal type-checking on the given argument, updating the call in
2619*67e74705SXin Li /// place.  This is useful when a builtin function requires custom
2620*67e74705SXin Li /// type-checking for some of its arguments but not necessarily all of
2621*67e74705SXin Li /// them.
2622*67e74705SXin Li ///
2623*67e74705SXin Li /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)2624*67e74705SXin Li static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
2625*67e74705SXin Li   FunctionDecl *Fn = E->getDirectCallee();
2626*67e74705SXin Li   assert(Fn && "builtin call without direct callee!");
2627*67e74705SXin Li 
2628*67e74705SXin Li   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
2629*67e74705SXin Li   InitializedEntity Entity =
2630*67e74705SXin Li     InitializedEntity::InitializeParameter(S.Context, Param);
2631*67e74705SXin Li 
2632*67e74705SXin Li   ExprResult Arg = E->getArg(0);
2633*67e74705SXin Li   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
2634*67e74705SXin Li   if (Arg.isInvalid())
2635*67e74705SXin Li     return true;
2636*67e74705SXin Li 
2637*67e74705SXin Li   E->setArg(ArgIndex, Arg.get());
2638*67e74705SXin Li   return false;
2639*67e74705SXin Li }
2640*67e74705SXin Li 
2641*67e74705SXin Li /// SemaBuiltinAtomicOverloaded - We have a call to a function like
2642*67e74705SXin Li /// __sync_fetch_and_add, which is an overloaded function based on the pointer
2643*67e74705SXin Li /// type of its first argument.  The main ActOnCallExpr routines have already
2644*67e74705SXin Li /// promoted the types of arguments because all of these calls are prototyped as
2645*67e74705SXin Li /// void(...).
2646*67e74705SXin Li ///
2647*67e74705SXin Li /// This function goes through and does final semantic checking for these
2648*67e74705SXin Li /// builtins,
2649*67e74705SXin Li ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)2650*67e74705SXin Li Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
2651*67e74705SXin Li   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
2652*67e74705SXin Li   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2653*67e74705SXin Li   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2654*67e74705SXin Li 
2655*67e74705SXin Li   // Ensure that we have at least one argument to do type inference from.
2656*67e74705SXin Li   if (TheCall->getNumArgs() < 1) {
2657*67e74705SXin Li     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
2658*67e74705SXin Li       << 0 << 1 << TheCall->getNumArgs()
2659*67e74705SXin Li       << TheCall->getCallee()->getSourceRange();
2660*67e74705SXin Li     return ExprError();
2661*67e74705SXin Li   }
2662*67e74705SXin Li 
2663*67e74705SXin Li   // Inspect the first argument of the atomic builtin.  This should always be
2664*67e74705SXin Li   // a pointer type, whose element is an integral scalar or pointer type.
2665*67e74705SXin Li   // Because it is a pointer type, we don't have to worry about any implicit
2666*67e74705SXin Li   // casts here.
2667*67e74705SXin Li   // FIXME: We don't allow floating point scalars as input.
2668*67e74705SXin Li   Expr *FirstArg = TheCall->getArg(0);
2669*67e74705SXin Li   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
2670*67e74705SXin Li   if (FirstArgResult.isInvalid())
2671*67e74705SXin Li     return ExprError();
2672*67e74705SXin Li   FirstArg = FirstArgResult.get();
2673*67e74705SXin Li   TheCall->setArg(0, FirstArg);
2674*67e74705SXin Li 
2675*67e74705SXin Li   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
2676*67e74705SXin Li   if (!pointerType) {
2677*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
2678*67e74705SXin Li       << FirstArg->getType() << FirstArg->getSourceRange();
2679*67e74705SXin Li     return ExprError();
2680*67e74705SXin Li   }
2681*67e74705SXin Li 
2682*67e74705SXin Li   QualType ValType = pointerType->getPointeeType();
2683*67e74705SXin Li   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2684*67e74705SXin Li       !ValType->isBlockPointerType()) {
2685*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
2686*67e74705SXin Li       << FirstArg->getType() << FirstArg->getSourceRange();
2687*67e74705SXin Li     return ExprError();
2688*67e74705SXin Li   }
2689*67e74705SXin Li 
2690*67e74705SXin Li   switch (ValType.getObjCLifetime()) {
2691*67e74705SXin Li   case Qualifiers::OCL_None:
2692*67e74705SXin Li   case Qualifiers::OCL_ExplicitNone:
2693*67e74705SXin Li     // okay
2694*67e74705SXin Li     break;
2695*67e74705SXin Li 
2696*67e74705SXin Li   case Qualifiers::OCL_Weak:
2697*67e74705SXin Li   case Qualifiers::OCL_Strong:
2698*67e74705SXin Li   case Qualifiers::OCL_Autoreleasing:
2699*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
2700*67e74705SXin Li       << ValType << FirstArg->getSourceRange();
2701*67e74705SXin Li     return ExprError();
2702*67e74705SXin Li   }
2703*67e74705SXin Li 
2704*67e74705SXin Li   // Strip any qualifiers off ValType.
2705*67e74705SXin Li   ValType = ValType.getUnqualifiedType();
2706*67e74705SXin Li 
2707*67e74705SXin Li   // The majority of builtins return a value, but a few have special return
2708*67e74705SXin Li   // types, so allow them to override appropriately below.
2709*67e74705SXin Li   QualType ResultType = ValType;
2710*67e74705SXin Li 
2711*67e74705SXin Li   // We need to figure out which concrete builtin this maps onto.  For example,
2712*67e74705SXin Li   // __sync_fetch_and_add with a 2 byte object turns into
2713*67e74705SXin Li   // __sync_fetch_and_add_2.
2714*67e74705SXin Li #define BUILTIN_ROW(x) \
2715*67e74705SXin Li   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
2716*67e74705SXin Li     Builtin::BI##x##_8, Builtin::BI##x##_16 }
2717*67e74705SXin Li 
2718*67e74705SXin Li   static const unsigned BuiltinIndices[][5] = {
2719*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_add),
2720*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_sub),
2721*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_or),
2722*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_and),
2723*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_xor),
2724*67e74705SXin Li     BUILTIN_ROW(__sync_fetch_and_nand),
2725*67e74705SXin Li 
2726*67e74705SXin Li     BUILTIN_ROW(__sync_add_and_fetch),
2727*67e74705SXin Li     BUILTIN_ROW(__sync_sub_and_fetch),
2728*67e74705SXin Li     BUILTIN_ROW(__sync_and_and_fetch),
2729*67e74705SXin Li     BUILTIN_ROW(__sync_or_and_fetch),
2730*67e74705SXin Li     BUILTIN_ROW(__sync_xor_and_fetch),
2731*67e74705SXin Li     BUILTIN_ROW(__sync_nand_and_fetch),
2732*67e74705SXin Li 
2733*67e74705SXin Li     BUILTIN_ROW(__sync_val_compare_and_swap),
2734*67e74705SXin Li     BUILTIN_ROW(__sync_bool_compare_and_swap),
2735*67e74705SXin Li     BUILTIN_ROW(__sync_lock_test_and_set),
2736*67e74705SXin Li     BUILTIN_ROW(__sync_lock_release),
2737*67e74705SXin Li     BUILTIN_ROW(__sync_swap)
2738*67e74705SXin Li   };
2739*67e74705SXin Li #undef BUILTIN_ROW
2740*67e74705SXin Li 
2741*67e74705SXin Li   // Determine the index of the size.
2742*67e74705SXin Li   unsigned SizeIndex;
2743*67e74705SXin Li   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
2744*67e74705SXin Li   case 1: SizeIndex = 0; break;
2745*67e74705SXin Li   case 2: SizeIndex = 1; break;
2746*67e74705SXin Li   case 4: SizeIndex = 2; break;
2747*67e74705SXin Li   case 8: SizeIndex = 3; break;
2748*67e74705SXin Li   case 16: SizeIndex = 4; break;
2749*67e74705SXin Li   default:
2750*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
2751*67e74705SXin Li       << FirstArg->getType() << FirstArg->getSourceRange();
2752*67e74705SXin Li     return ExprError();
2753*67e74705SXin Li   }
2754*67e74705SXin Li 
2755*67e74705SXin Li   // Each of these builtins has one pointer argument, followed by some number of
2756*67e74705SXin Li   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
2757*67e74705SXin Li   // that we ignore.  Find out which row of BuiltinIndices to read from as well
2758*67e74705SXin Li   // as the number of fixed args.
2759*67e74705SXin Li   unsigned BuiltinID = FDecl->getBuiltinID();
2760*67e74705SXin Li   unsigned BuiltinIndex, NumFixed = 1;
2761*67e74705SXin Li   bool WarnAboutSemanticsChange = false;
2762*67e74705SXin Li   switch (BuiltinID) {
2763*67e74705SXin Li   default: llvm_unreachable("Unknown overloaded atomic builtin!");
2764*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add:
2765*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_1:
2766*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_2:
2767*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_4:
2768*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_8:
2769*67e74705SXin Li   case Builtin::BI__sync_fetch_and_add_16:
2770*67e74705SXin Li     BuiltinIndex = 0;
2771*67e74705SXin Li     break;
2772*67e74705SXin Li 
2773*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub:
2774*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_1:
2775*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_2:
2776*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_4:
2777*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_8:
2778*67e74705SXin Li   case Builtin::BI__sync_fetch_and_sub_16:
2779*67e74705SXin Li     BuiltinIndex = 1;
2780*67e74705SXin Li     break;
2781*67e74705SXin Li 
2782*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or:
2783*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_1:
2784*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_2:
2785*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_4:
2786*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_8:
2787*67e74705SXin Li   case Builtin::BI__sync_fetch_and_or_16:
2788*67e74705SXin Li     BuiltinIndex = 2;
2789*67e74705SXin Li     break;
2790*67e74705SXin Li 
2791*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and:
2792*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_1:
2793*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_2:
2794*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_4:
2795*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_8:
2796*67e74705SXin Li   case Builtin::BI__sync_fetch_and_and_16:
2797*67e74705SXin Li     BuiltinIndex = 3;
2798*67e74705SXin Li     break;
2799*67e74705SXin Li 
2800*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor:
2801*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_1:
2802*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_2:
2803*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_4:
2804*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_8:
2805*67e74705SXin Li   case Builtin::BI__sync_fetch_and_xor_16:
2806*67e74705SXin Li     BuiltinIndex = 4;
2807*67e74705SXin Li     break;
2808*67e74705SXin Li 
2809*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand:
2810*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_1:
2811*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_2:
2812*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_4:
2813*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_8:
2814*67e74705SXin Li   case Builtin::BI__sync_fetch_and_nand_16:
2815*67e74705SXin Li     BuiltinIndex = 5;
2816*67e74705SXin Li     WarnAboutSemanticsChange = true;
2817*67e74705SXin Li     break;
2818*67e74705SXin Li 
2819*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch:
2820*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_1:
2821*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_2:
2822*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_4:
2823*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_8:
2824*67e74705SXin Li   case Builtin::BI__sync_add_and_fetch_16:
2825*67e74705SXin Li     BuiltinIndex = 6;
2826*67e74705SXin Li     break;
2827*67e74705SXin Li 
2828*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch:
2829*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_1:
2830*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_2:
2831*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_4:
2832*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_8:
2833*67e74705SXin Li   case Builtin::BI__sync_sub_and_fetch_16:
2834*67e74705SXin Li     BuiltinIndex = 7;
2835*67e74705SXin Li     break;
2836*67e74705SXin Li 
2837*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch:
2838*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_1:
2839*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_2:
2840*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_4:
2841*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_8:
2842*67e74705SXin Li   case Builtin::BI__sync_and_and_fetch_16:
2843*67e74705SXin Li     BuiltinIndex = 8;
2844*67e74705SXin Li     break;
2845*67e74705SXin Li 
2846*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch:
2847*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_1:
2848*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_2:
2849*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_4:
2850*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_8:
2851*67e74705SXin Li   case Builtin::BI__sync_or_and_fetch_16:
2852*67e74705SXin Li     BuiltinIndex = 9;
2853*67e74705SXin Li     break;
2854*67e74705SXin Li 
2855*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch:
2856*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_1:
2857*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_2:
2858*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_4:
2859*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_8:
2860*67e74705SXin Li   case Builtin::BI__sync_xor_and_fetch_16:
2861*67e74705SXin Li     BuiltinIndex = 10;
2862*67e74705SXin Li     break;
2863*67e74705SXin Li 
2864*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch:
2865*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_1:
2866*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_2:
2867*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_4:
2868*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_8:
2869*67e74705SXin Li   case Builtin::BI__sync_nand_and_fetch_16:
2870*67e74705SXin Li     BuiltinIndex = 11;
2871*67e74705SXin Li     WarnAboutSemanticsChange = true;
2872*67e74705SXin Li     break;
2873*67e74705SXin Li 
2874*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap:
2875*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_1:
2876*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_2:
2877*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_4:
2878*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_8:
2879*67e74705SXin Li   case Builtin::BI__sync_val_compare_and_swap_16:
2880*67e74705SXin Li     BuiltinIndex = 12;
2881*67e74705SXin Li     NumFixed = 2;
2882*67e74705SXin Li     break;
2883*67e74705SXin Li 
2884*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap:
2885*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_1:
2886*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_2:
2887*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_4:
2888*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_8:
2889*67e74705SXin Li   case Builtin::BI__sync_bool_compare_and_swap_16:
2890*67e74705SXin Li     BuiltinIndex = 13;
2891*67e74705SXin Li     NumFixed = 2;
2892*67e74705SXin Li     ResultType = Context.BoolTy;
2893*67e74705SXin Li     break;
2894*67e74705SXin Li 
2895*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set:
2896*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_1:
2897*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_2:
2898*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_4:
2899*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_8:
2900*67e74705SXin Li   case Builtin::BI__sync_lock_test_and_set_16:
2901*67e74705SXin Li     BuiltinIndex = 14;
2902*67e74705SXin Li     break;
2903*67e74705SXin Li 
2904*67e74705SXin Li   case Builtin::BI__sync_lock_release:
2905*67e74705SXin Li   case Builtin::BI__sync_lock_release_1:
2906*67e74705SXin Li   case Builtin::BI__sync_lock_release_2:
2907*67e74705SXin Li   case Builtin::BI__sync_lock_release_4:
2908*67e74705SXin Li   case Builtin::BI__sync_lock_release_8:
2909*67e74705SXin Li   case Builtin::BI__sync_lock_release_16:
2910*67e74705SXin Li     BuiltinIndex = 15;
2911*67e74705SXin Li     NumFixed = 0;
2912*67e74705SXin Li     ResultType = Context.VoidTy;
2913*67e74705SXin Li     break;
2914*67e74705SXin Li 
2915*67e74705SXin Li   case Builtin::BI__sync_swap:
2916*67e74705SXin Li   case Builtin::BI__sync_swap_1:
2917*67e74705SXin Li   case Builtin::BI__sync_swap_2:
2918*67e74705SXin Li   case Builtin::BI__sync_swap_4:
2919*67e74705SXin Li   case Builtin::BI__sync_swap_8:
2920*67e74705SXin Li   case Builtin::BI__sync_swap_16:
2921*67e74705SXin Li     BuiltinIndex = 16;
2922*67e74705SXin Li     break;
2923*67e74705SXin Li   }
2924*67e74705SXin Li 
2925*67e74705SXin Li   // Now that we know how many fixed arguments we expect, first check that we
2926*67e74705SXin Li   // have at least that many.
2927*67e74705SXin Li   if (TheCall->getNumArgs() < 1+NumFixed) {
2928*67e74705SXin Li     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
2929*67e74705SXin Li       << 0 << 1+NumFixed << TheCall->getNumArgs()
2930*67e74705SXin Li       << TheCall->getCallee()->getSourceRange();
2931*67e74705SXin Li     return ExprError();
2932*67e74705SXin Li   }
2933*67e74705SXin Li 
2934*67e74705SXin Li   if (WarnAboutSemanticsChange) {
2935*67e74705SXin Li     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
2936*67e74705SXin Li       << TheCall->getCallee()->getSourceRange();
2937*67e74705SXin Li   }
2938*67e74705SXin Li 
2939*67e74705SXin Li   // Get the decl for the concrete builtin from this, we can tell what the
2940*67e74705SXin Li   // concrete integer type we should convert to is.
2941*67e74705SXin Li   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
2942*67e74705SXin Li   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
2943*67e74705SXin Li   FunctionDecl *NewBuiltinDecl;
2944*67e74705SXin Li   if (NewBuiltinID == BuiltinID)
2945*67e74705SXin Li     NewBuiltinDecl = FDecl;
2946*67e74705SXin Li   else {
2947*67e74705SXin Li     // Perform builtin lookup to avoid redeclaring it.
2948*67e74705SXin Li     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
2949*67e74705SXin Li     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
2950*67e74705SXin Li     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
2951*67e74705SXin Li     assert(Res.getFoundDecl());
2952*67e74705SXin Li     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
2953*67e74705SXin Li     if (!NewBuiltinDecl)
2954*67e74705SXin Li       return ExprError();
2955*67e74705SXin Li   }
2956*67e74705SXin Li 
2957*67e74705SXin Li   // The first argument --- the pointer --- has a fixed type; we
2958*67e74705SXin Li   // deduce the types of the rest of the arguments accordingly.  Walk
2959*67e74705SXin Li   // the remaining arguments, converting them to the deduced value type.
2960*67e74705SXin Li   for (unsigned i = 0; i != NumFixed; ++i) {
2961*67e74705SXin Li     ExprResult Arg = TheCall->getArg(i+1);
2962*67e74705SXin Li 
2963*67e74705SXin Li     // GCC does an implicit conversion to the pointer or integer ValType.  This
2964*67e74705SXin Li     // can fail in some cases (1i -> int**), check for this error case now.
2965*67e74705SXin Li     // Initialize the argument.
2966*67e74705SXin Li     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2967*67e74705SXin Li                                                    ValType, /*consume*/ false);
2968*67e74705SXin Li     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2969*67e74705SXin Li     if (Arg.isInvalid())
2970*67e74705SXin Li       return ExprError();
2971*67e74705SXin Li 
2972*67e74705SXin Li     // Okay, we have something that *can* be converted to the right type.  Check
2973*67e74705SXin Li     // to see if there is a potentially weird extension going on here.  This can
2974*67e74705SXin Li     // happen when you do an atomic operation on something like an char* and
2975*67e74705SXin Li     // pass in 42.  The 42 gets converted to char.  This is even more strange
2976*67e74705SXin Li     // for things like 45.123 -> char, etc.
2977*67e74705SXin Li     // FIXME: Do this check.
2978*67e74705SXin Li     TheCall->setArg(i+1, Arg.get());
2979*67e74705SXin Li   }
2980*67e74705SXin Li 
2981*67e74705SXin Li   ASTContext& Context = this->getASTContext();
2982*67e74705SXin Li 
2983*67e74705SXin Li   // Create a new DeclRefExpr to refer to the new decl.
2984*67e74705SXin Li   DeclRefExpr* NewDRE = DeclRefExpr::Create(
2985*67e74705SXin Li       Context,
2986*67e74705SXin Li       DRE->getQualifierLoc(),
2987*67e74705SXin Li       SourceLocation(),
2988*67e74705SXin Li       NewBuiltinDecl,
2989*67e74705SXin Li       /*enclosing*/ false,
2990*67e74705SXin Li       DRE->getLocation(),
2991*67e74705SXin Li       Context.BuiltinFnTy,
2992*67e74705SXin Li       DRE->getValueKind());
2993*67e74705SXin Li 
2994*67e74705SXin Li   // Set the callee in the CallExpr.
2995*67e74705SXin Li   // FIXME: This loses syntactic information.
2996*67e74705SXin Li   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
2997*67e74705SXin Li   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
2998*67e74705SXin Li                                               CK_BuiltinFnToFnPtr);
2999*67e74705SXin Li   TheCall->setCallee(PromotedCall.get());
3000*67e74705SXin Li 
3001*67e74705SXin Li   // Change the result type of the call to match the original value type. This
3002*67e74705SXin Li   // is arbitrary, but the codegen for these builtins ins design to handle it
3003*67e74705SXin Li   // gracefully.
3004*67e74705SXin Li   TheCall->setType(ResultType);
3005*67e74705SXin Li 
3006*67e74705SXin Li   return TheCallResult;
3007*67e74705SXin Li }
3008*67e74705SXin Li 
3009*67e74705SXin Li /// SemaBuiltinNontemporalOverloaded - We have a call to
3010*67e74705SXin Li /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
3011*67e74705SXin Li /// overloaded function based on the pointer type of its last argument.
3012*67e74705SXin Li ///
3013*67e74705SXin Li /// This function goes through and does final semantic checking for these
3014*67e74705SXin Li /// builtins.
SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult)3015*67e74705SXin Li ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
3016*67e74705SXin Li   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
3017*67e74705SXin Li   DeclRefExpr *DRE =
3018*67e74705SXin Li       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3019*67e74705SXin Li   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3020*67e74705SXin Li   unsigned BuiltinID = FDecl->getBuiltinID();
3021*67e74705SXin Li   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
3022*67e74705SXin Li           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
3023*67e74705SXin Li          "Unexpected nontemporal load/store builtin!");
3024*67e74705SXin Li   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
3025*67e74705SXin Li   unsigned numArgs = isStore ? 2 : 1;
3026*67e74705SXin Li 
3027*67e74705SXin Li   // Ensure that we have the proper number of arguments.
3028*67e74705SXin Li   if (checkArgCount(*this, TheCall, numArgs))
3029*67e74705SXin Li     return ExprError();
3030*67e74705SXin Li 
3031*67e74705SXin Li   // Inspect the last argument of the nontemporal builtin.  This should always
3032*67e74705SXin Li   // be a pointer type, from which we imply the type of the memory access.
3033*67e74705SXin Li   // Because it is a pointer type, we don't have to worry about any implicit
3034*67e74705SXin Li   // casts here.
3035*67e74705SXin Li   Expr *PointerArg = TheCall->getArg(numArgs - 1);
3036*67e74705SXin Li   ExprResult PointerArgResult =
3037*67e74705SXin Li       DefaultFunctionArrayLvalueConversion(PointerArg);
3038*67e74705SXin Li 
3039*67e74705SXin Li   if (PointerArgResult.isInvalid())
3040*67e74705SXin Li     return ExprError();
3041*67e74705SXin Li   PointerArg = PointerArgResult.get();
3042*67e74705SXin Li   TheCall->setArg(numArgs - 1, PointerArg);
3043*67e74705SXin Li 
3044*67e74705SXin Li   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3045*67e74705SXin Li   if (!pointerType) {
3046*67e74705SXin Li     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
3047*67e74705SXin Li         << PointerArg->getType() << PointerArg->getSourceRange();
3048*67e74705SXin Li     return ExprError();
3049*67e74705SXin Li   }
3050*67e74705SXin Li 
3051*67e74705SXin Li   QualType ValType = pointerType->getPointeeType();
3052*67e74705SXin Li 
3053*67e74705SXin Li   // Strip any qualifiers off ValType.
3054*67e74705SXin Li   ValType = ValType.getUnqualifiedType();
3055*67e74705SXin Li   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3056*67e74705SXin Li       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
3057*67e74705SXin Li       !ValType->isVectorType()) {
3058*67e74705SXin Li     Diag(DRE->getLocStart(),
3059*67e74705SXin Li          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
3060*67e74705SXin Li         << PointerArg->getType() << PointerArg->getSourceRange();
3061*67e74705SXin Li     return ExprError();
3062*67e74705SXin Li   }
3063*67e74705SXin Li 
3064*67e74705SXin Li   if (!isStore) {
3065*67e74705SXin Li     TheCall->setType(ValType);
3066*67e74705SXin Li     return TheCallResult;
3067*67e74705SXin Li   }
3068*67e74705SXin Li 
3069*67e74705SXin Li   ExprResult ValArg = TheCall->getArg(0);
3070*67e74705SXin Li   InitializedEntity Entity = InitializedEntity::InitializeParameter(
3071*67e74705SXin Li       Context, ValType, /*consume*/ false);
3072*67e74705SXin Li   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3073*67e74705SXin Li   if (ValArg.isInvalid())
3074*67e74705SXin Li     return ExprError();
3075*67e74705SXin Li 
3076*67e74705SXin Li   TheCall->setArg(0, ValArg.get());
3077*67e74705SXin Li   TheCall->setType(Context.VoidTy);
3078*67e74705SXin Li   return TheCallResult;
3079*67e74705SXin Li }
3080*67e74705SXin Li 
3081*67e74705SXin Li /// CheckObjCString - Checks that the argument to the builtin
3082*67e74705SXin Li /// CFString constructor is correct
3083*67e74705SXin Li /// Note: It might also make sense to do the UTF-16 conversion here (would
3084*67e74705SXin Li /// simplify the backend).
CheckObjCString(Expr * Arg)3085*67e74705SXin Li bool Sema::CheckObjCString(Expr *Arg) {
3086*67e74705SXin Li   Arg = Arg->IgnoreParenCasts();
3087*67e74705SXin Li   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
3088*67e74705SXin Li 
3089*67e74705SXin Li   if (!Literal || !Literal->isAscii()) {
3090*67e74705SXin Li     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
3091*67e74705SXin Li       << Arg->getSourceRange();
3092*67e74705SXin Li     return true;
3093*67e74705SXin Li   }
3094*67e74705SXin Li 
3095*67e74705SXin Li   if (Literal->containsNonAsciiOrNull()) {
3096*67e74705SXin Li     StringRef String = Literal->getString();
3097*67e74705SXin Li     unsigned NumBytes = String.size();
3098*67e74705SXin Li     SmallVector<UTF16, 128> ToBuf(NumBytes);
3099*67e74705SXin Li     const UTF8 *FromPtr = (const UTF8 *)String.data();
3100*67e74705SXin Li     UTF16 *ToPtr = &ToBuf[0];
3101*67e74705SXin Li 
3102*67e74705SXin Li     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3103*67e74705SXin Li                                                  &ToPtr, ToPtr + NumBytes,
3104*67e74705SXin Li                                                  strictConversion);
3105*67e74705SXin Li     // Check for conversion failure.
3106*67e74705SXin Li     if (Result != conversionOK)
3107*67e74705SXin Li       Diag(Arg->getLocStart(),
3108*67e74705SXin Li            diag::warn_cfstring_truncated) << Arg->getSourceRange();
3109*67e74705SXin Li   }
3110*67e74705SXin Li   return false;
3111*67e74705SXin Li }
3112*67e74705SXin Li 
3113*67e74705SXin Li /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
3114*67e74705SXin Li /// for validity.  Emit an error and return true on failure; return false
3115*67e74705SXin Li /// on success.
SemaBuiltinVAStartImpl(CallExpr * TheCall)3116*67e74705SXin Li bool Sema::SemaBuiltinVAStartImpl(CallExpr *TheCall) {
3117*67e74705SXin Li   Expr *Fn = TheCall->getCallee();
3118*67e74705SXin Li   if (TheCall->getNumArgs() > 2) {
3119*67e74705SXin Li     Diag(TheCall->getArg(2)->getLocStart(),
3120*67e74705SXin Li          diag::err_typecheck_call_too_many_args)
3121*67e74705SXin Li       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3122*67e74705SXin Li       << Fn->getSourceRange()
3123*67e74705SXin Li       << SourceRange(TheCall->getArg(2)->getLocStart(),
3124*67e74705SXin Li                      (*(TheCall->arg_end()-1))->getLocEnd());
3125*67e74705SXin Li     return true;
3126*67e74705SXin Li   }
3127*67e74705SXin Li 
3128*67e74705SXin Li   if (TheCall->getNumArgs() < 2) {
3129*67e74705SXin Li     return Diag(TheCall->getLocEnd(),
3130*67e74705SXin Li       diag::err_typecheck_call_too_few_args_at_least)
3131*67e74705SXin Li       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
3132*67e74705SXin Li   }
3133*67e74705SXin Li 
3134*67e74705SXin Li   // Type-check the first argument normally.
3135*67e74705SXin Li   if (checkBuiltinArgument(*this, TheCall, 0))
3136*67e74705SXin Li     return true;
3137*67e74705SXin Li 
3138*67e74705SXin Li   // Determine whether the current function is variadic or not.
3139*67e74705SXin Li   BlockScopeInfo *CurBlock = getCurBlock();
3140*67e74705SXin Li   bool isVariadic;
3141*67e74705SXin Li   if (CurBlock)
3142*67e74705SXin Li     isVariadic = CurBlock->TheDecl->isVariadic();
3143*67e74705SXin Li   else if (FunctionDecl *FD = getCurFunctionDecl())
3144*67e74705SXin Li     isVariadic = FD->isVariadic();
3145*67e74705SXin Li   else
3146*67e74705SXin Li     isVariadic = getCurMethodDecl()->isVariadic();
3147*67e74705SXin Li 
3148*67e74705SXin Li   if (!isVariadic) {
3149*67e74705SXin Li     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
3150*67e74705SXin Li     return true;
3151*67e74705SXin Li   }
3152*67e74705SXin Li 
3153*67e74705SXin Li   // Verify that the second argument to the builtin is the last argument of the
3154*67e74705SXin Li   // current function or method.
3155*67e74705SXin Li   bool SecondArgIsLastNamedArgument = false;
3156*67e74705SXin Li   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
3157*67e74705SXin Li 
3158*67e74705SXin Li   // These are valid if SecondArgIsLastNamedArgument is false after the next
3159*67e74705SXin Li   // block.
3160*67e74705SXin Li   QualType Type;
3161*67e74705SXin Li   SourceLocation ParamLoc;
3162*67e74705SXin Li   bool IsCRegister = false;
3163*67e74705SXin Li 
3164*67e74705SXin Li   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
3165*67e74705SXin Li     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
3166*67e74705SXin Li       // FIXME: This isn't correct for methods (results in bogus warning).
3167*67e74705SXin Li       // Get the last formal in the current function.
3168*67e74705SXin Li       const ParmVarDecl *LastArg;
3169*67e74705SXin Li       if (CurBlock)
3170*67e74705SXin Li         LastArg = CurBlock->TheDecl->parameters().back();
3171*67e74705SXin Li       else if (FunctionDecl *FD = getCurFunctionDecl())
3172*67e74705SXin Li         LastArg = FD->parameters().back();
3173*67e74705SXin Li       else
3174*67e74705SXin Li         LastArg = getCurMethodDecl()->parameters().back();
3175*67e74705SXin Li       SecondArgIsLastNamedArgument = PV == LastArg;
3176*67e74705SXin Li 
3177*67e74705SXin Li       Type = PV->getType();
3178*67e74705SXin Li       ParamLoc = PV->getLocation();
3179*67e74705SXin Li       IsCRegister =
3180*67e74705SXin Li           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
3181*67e74705SXin Li     }
3182*67e74705SXin Li   }
3183*67e74705SXin Li 
3184*67e74705SXin Li   if (!SecondArgIsLastNamedArgument)
3185*67e74705SXin Li     Diag(TheCall->getArg(1)->getLocStart(),
3186*67e74705SXin Li          diag::warn_second_arg_of_va_start_not_last_named_param);
3187*67e74705SXin Li   else if (IsCRegister || Type->isReferenceType() ||
3188*67e74705SXin Li            Type->isPromotableIntegerType() ||
3189*67e74705SXin Li            Type->isSpecificBuiltinType(BuiltinType::Float)) {
3190*67e74705SXin Li     unsigned Reason = 0;
3191*67e74705SXin Li     if (Type->isReferenceType())  Reason = 1;
3192*67e74705SXin Li     else if (IsCRegister)         Reason = 2;
3193*67e74705SXin Li     Diag(Arg->getLocStart(), diag::warn_va_start_type_is_undefined) << Reason;
3194*67e74705SXin Li     Diag(ParamLoc, diag::note_parameter_type) << Type;
3195*67e74705SXin Li   }
3196*67e74705SXin Li 
3197*67e74705SXin Li   TheCall->setType(Context.VoidTy);
3198*67e74705SXin Li   return false;
3199*67e74705SXin Li }
3200*67e74705SXin Li 
3201*67e74705SXin Li /// Check the arguments to '__builtin_va_start' for validity, and that
3202*67e74705SXin Li /// it was called from a function of the native ABI.
3203*67e74705SXin Li /// Emit an error and return true on failure; return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)3204*67e74705SXin Li bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
3205*67e74705SXin Li   // On x86-64 Unix, don't allow this in Win64 ABI functions.
3206*67e74705SXin Li   // On x64 Windows, don't allow this in System V ABI functions.
3207*67e74705SXin Li   // (Yes, that means there's no corresponding way to support variadic
3208*67e74705SXin Li   // System V ABI functions on Windows.)
3209*67e74705SXin Li   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) {
3210*67e74705SXin Li     unsigned OS = Context.getTargetInfo().getTriple().getOS();
3211*67e74705SXin Li     clang::CallingConv CC = CC_C;
3212*67e74705SXin Li     if (const FunctionDecl *FD = getCurFunctionDecl())
3213*67e74705SXin Li       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
3214*67e74705SXin Li     if ((OS == llvm::Triple::Win32 && CC == CC_X86_64SysV) ||
3215*67e74705SXin Li         (OS != llvm::Triple::Win32 && CC == CC_X86_64Win64))
3216*67e74705SXin Li       return Diag(TheCall->getCallee()->getLocStart(),
3217*67e74705SXin Li                   diag::err_va_start_used_in_wrong_abi_function)
3218*67e74705SXin Li              << (OS != llvm::Triple::Win32);
3219*67e74705SXin Li   }
3220*67e74705SXin Li   return SemaBuiltinVAStartImpl(TheCall);
3221*67e74705SXin Li }
3222*67e74705SXin Li 
3223*67e74705SXin Li /// Check the arguments to '__builtin_ms_va_start' for validity, and that
3224*67e74705SXin Li /// it was called from a Win64 ABI function.
3225*67e74705SXin Li /// Emit an error and return true on failure; return false on success.
SemaBuiltinMSVAStart(CallExpr * TheCall)3226*67e74705SXin Li bool Sema::SemaBuiltinMSVAStart(CallExpr *TheCall) {
3227*67e74705SXin Li   // This only makes sense for x86-64.
3228*67e74705SXin Li   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
3229*67e74705SXin Li   Expr *Callee = TheCall->getCallee();
3230*67e74705SXin Li   if (TT.getArch() != llvm::Triple::x86_64)
3231*67e74705SXin Li     return Diag(Callee->getLocStart(), diag::err_x86_builtin_32_bit_tgt);
3232*67e74705SXin Li   // Don't allow this in System V ABI functions.
3233*67e74705SXin Li   clang::CallingConv CC = CC_C;
3234*67e74705SXin Li   if (const FunctionDecl *FD = getCurFunctionDecl())
3235*67e74705SXin Li     CC = FD->getType()->getAs<FunctionType>()->getCallConv();
3236*67e74705SXin Li   if (CC == CC_X86_64SysV ||
3237*67e74705SXin Li       (TT.getOS() != llvm::Triple::Win32 && CC != CC_X86_64Win64))
3238*67e74705SXin Li     return Diag(Callee->getLocStart(),
3239*67e74705SXin Li                 diag::err_ms_va_start_used_in_sysv_function);
3240*67e74705SXin Li   return SemaBuiltinVAStartImpl(TheCall);
3241*67e74705SXin Li }
3242*67e74705SXin Li 
SemaBuiltinVAStartARM(CallExpr * Call)3243*67e74705SXin Li bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
3244*67e74705SXin Li   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
3245*67e74705SXin Li   //                 const char *named_addr);
3246*67e74705SXin Li 
3247*67e74705SXin Li   Expr *Func = Call->getCallee();
3248*67e74705SXin Li 
3249*67e74705SXin Li   if (Call->getNumArgs() < 3)
3250*67e74705SXin Li     return Diag(Call->getLocEnd(),
3251*67e74705SXin Li                 diag::err_typecheck_call_too_few_args_at_least)
3252*67e74705SXin Li            << 0 /*function call*/ << 3 << Call->getNumArgs();
3253*67e74705SXin Li 
3254*67e74705SXin Li   // Determine whether the current function is variadic or not.
3255*67e74705SXin Li   bool IsVariadic;
3256*67e74705SXin Li   if (BlockScopeInfo *CurBlock = getCurBlock())
3257*67e74705SXin Li     IsVariadic = CurBlock->TheDecl->isVariadic();
3258*67e74705SXin Li   else if (FunctionDecl *FD = getCurFunctionDecl())
3259*67e74705SXin Li     IsVariadic = FD->isVariadic();
3260*67e74705SXin Li   else if (ObjCMethodDecl *MD = getCurMethodDecl())
3261*67e74705SXin Li     IsVariadic = MD->isVariadic();
3262*67e74705SXin Li   else
3263*67e74705SXin Li     llvm_unreachable("unexpected statement type");
3264*67e74705SXin Li 
3265*67e74705SXin Li   if (!IsVariadic) {
3266*67e74705SXin Li     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
3267*67e74705SXin Li     return true;
3268*67e74705SXin Li   }
3269*67e74705SXin Li 
3270*67e74705SXin Li   // Type-check the first argument normally.
3271*67e74705SXin Li   if (checkBuiltinArgument(*this, Call, 0))
3272*67e74705SXin Li     return true;
3273*67e74705SXin Li 
3274*67e74705SXin Li   const struct {
3275*67e74705SXin Li     unsigned ArgNo;
3276*67e74705SXin Li     QualType Type;
3277*67e74705SXin Li   } ArgumentTypes[] = {
3278*67e74705SXin Li     { 1, Context.getPointerType(Context.CharTy.withConst()) },
3279*67e74705SXin Li     { 2, Context.getSizeType() },
3280*67e74705SXin Li   };
3281*67e74705SXin Li 
3282*67e74705SXin Li   for (const auto &AT : ArgumentTypes) {
3283*67e74705SXin Li     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
3284*67e74705SXin Li     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
3285*67e74705SXin Li       continue;
3286*67e74705SXin Li     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
3287*67e74705SXin Li       << Arg->getType() << AT.Type << 1 /* different class */
3288*67e74705SXin Li       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
3289*67e74705SXin Li       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
3290*67e74705SXin Li   }
3291*67e74705SXin Li 
3292*67e74705SXin Li   return false;
3293*67e74705SXin Li }
3294*67e74705SXin Li 
3295*67e74705SXin Li /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
3296*67e74705SXin Li /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)3297*67e74705SXin Li bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
3298*67e74705SXin Li   if (TheCall->getNumArgs() < 2)
3299*67e74705SXin Li     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
3300*67e74705SXin Li       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
3301*67e74705SXin Li   if (TheCall->getNumArgs() > 2)
3302*67e74705SXin Li     return Diag(TheCall->getArg(2)->getLocStart(),
3303*67e74705SXin Li                 diag::err_typecheck_call_too_many_args)
3304*67e74705SXin Li       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3305*67e74705SXin Li       << SourceRange(TheCall->getArg(2)->getLocStart(),
3306*67e74705SXin Li                      (*(TheCall->arg_end()-1))->getLocEnd());
3307*67e74705SXin Li 
3308*67e74705SXin Li   ExprResult OrigArg0 = TheCall->getArg(0);
3309*67e74705SXin Li   ExprResult OrigArg1 = TheCall->getArg(1);
3310*67e74705SXin Li 
3311*67e74705SXin Li   // Do standard promotions between the two arguments, returning their common
3312*67e74705SXin Li   // type.
3313*67e74705SXin Li   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
3314*67e74705SXin Li   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
3315*67e74705SXin Li     return true;
3316*67e74705SXin Li 
3317*67e74705SXin Li   // Make sure any conversions are pushed back into the call; this is
3318*67e74705SXin Li   // type safe since unordered compare builtins are declared as "_Bool
3319*67e74705SXin Li   // foo(...)".
3320*67e74705SXin Li   TheCall->setArg(0, OrigArg0.get());
3321*67e74705SXin Li   TheCall->setArg(1, OrigArg1.get());
3322*67e74705SXin Li 
3323*67e74705SXin Li   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
3324*67e74705SXin Li     return false;
3325*67e74705SXin Li 
3326*67e74705SXin Li   // If the common type isn't a real floating type, then the arguments were
3327*67e74705SXin Li   // invalid for this operation.
3328*67e74705SXin Li   if (Res.isNull() || !Res->isRealFloatingType())
3329*67e74705SXin Li     return Diag(OrigArg0.get()->getLocStart(),
3330*67e74705SXin Li                 diag::err_typecheck_call_invalid_ordered_compare)
3331*67e74705SXin Li       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
3332*67e74705SXin Li       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
3333*67e74705SXin Li 
3334*67e74705SXin Li   return false;
3335*67e74705SXin Li }
3336*67e74705SXin Li 
3337*67e74705SXin Li /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
3338*67e74705SXin Li /// __builtin_isnan and friends.  This is declared to take (...), so we have
3339*67e74705SXin Li /// to check everything. We expect the last argument to be a floating point
3340*67e74705SXin Li /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)3341*67e74705SXin Li bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
3342*67e74705SXin Li   if (TheCall->getNumArgs() < NumArgs)
3343*67e74705SXin Li     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
3344*67e74705SXin Li       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
3345*67e74705SXin Li   if (TheCall->getNumArgs() > NumArgs)
3346*67e74705SXin Li     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
3347*67e74705SXin Li                 diag::err_typecheck_call_too_many_args)
3348*67e74705SXin Li       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
3349*67e74705SXin Li       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
3350*67e74705SXin Li                      (*(TheCall->arg_end()-1))->getLocEnd());
3351*67e74705SXin Li 
3352*67e74705SXin Li   Expr *OrigArg = TheCall->getArg(NumArgs-1);
3353*67e74705SXin Li 
3354*67e74705SXin Li   if (OrigArg->isTypeDependent())
3355*67e74705SXin Li     return false;
3356*67e74705SXin Li 
3357*67e74705SXin Li   // This operation requires a non-_Complex floating-point number.
3358*67e74705SXin Li   if (!OrigArg->getType()->isRealFloatingType())
3359*67e74705SXin Li     return Diag(OrigArg->getLocStart(),
3360*67e74705SXin Li                 diag::err_typecheck_call_invalid_unary_fp)
3361*67e74705SXin Li       << OrigArg->getType() << OrigArg->getSourceRange();
3362*67e74705SXin Li 
3363*67e74705SXin Li   // If this is an implicit conversion from float -> double, remove it.
3364*67e74705SXin Li   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
3365*67e74705SXin Li     Expr *CastArg = Cast->getSubExpr();
3366*67e74705SXin Li     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
3367*67e74705SXin Li       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
3368*67e74705SXin Li              "promotion from float to double is the only expected cast here");
3369*67e74705SXin Li       Cast->setSubExpr(nullptr);
3370*67e74705SXin Li       TheCall->setArg(NumArgs-1, CastArg);
3371*67e74705SXin Li     }
3372*67e74705SXin Li   }
3373*67e74705SXin Li 
3374*67e74705SXin Li   return false;
3375*67e74705SXin Li }
3376*67e74705SXin Li 
3377*67e74705SXin Li /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
3378*67e74705SXin Li // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)3379*67e74705SXin Li ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
3380*67e74705SXin Li   if (TheCall->getNumArgs() < 2)
3381*67e74705SXin Li     return ExprError(Diag(TheCall->getLocEnd(),
3382*67e74705SXin Li                           diag::err_typecheck_call_too_few_args_at_least)
3383*67e74705SXin Li                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
3384*67e74705SXin Li                      << TheCall->getSourceRange());
3385*67e74705SXin Li 
3386*67e74705SXin Li   // Determine which of the following types of shufflevector we're checking:
3387*67e74705SXin Li   // 1) unary, vector mask: (lhs, mask)
3388*67e74705SXin Li   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
3389*67e74705SXin Li   QualType resType = TheCall->getArg(0)->getType();
3390*67e74705SXin Li   unsigned numElements = 0;
3391*67e74705SXin Li 
3392*67e74705SXin Li   if (!TheCall->getArg(0)->isTypeDependent() &&
3393*67e74705SXin Li       !TheCall->getArg(1)->isTypeDependent()) {
3394*67e74705SXin Li     QualType LHSType = TheCall->getArg(0)->getType();
3395*67e74705SXin Li     QualType RHSType = TheCall->getArg(1)->getType();
3396*67e74705SXin Li 
3397*67e74705SXin Li     if (!LHSType->isVectorType() || !RHSType->isVectorType())
3398*67e74705SXin Li       return ExprError(Diag(TheCall->getLocStart(),
3399*67e74705SXin Li                             diag::err_shufflevector_non_vector)
3400*67e74705SXin Li                        << SourceRange(TheCall->getArg(0)->getLocStart(),
3401*67e74705SXin Li                                       TheCall->getArg(1)->getLocEnd()));
3402*67e74705SXin Li 
3403*67e74705SXin Li     numElements = LHSType->getAs<VectorType>()->getNumElements();
3404*67e74705SXin Li     unsigned numResElements = TheCall->getNumArgs() - 2;
3405*67e74705SXin Li 
3406*67e74705SXin Li     // Check to see if we have a call with 2 vector arguments, the unary shuffle
3407*67e74705SXin Li     // with mask.  If so, verify that RHS is an integer vector type with the
3408*67e74705SXin Li     // same number of elts as lhs.
3409*67e74705SXin Li     if (TheCall->getNumArgs() == 2) {
3410*67e74705SXin Li       if (!RHSType->hasIntegerRepresentation() ||
3411*67e74705SXin Li           RHSType->getAs<VectorType>()->getNumElements() != numElements)
3412*67e74705SXin Li         return ExprError(Diag(TheCall->getLocStart(),
3413*67e74705SXin Li                               diag::err_shufflevector_incompatible_vector)
3414*67e74705SXin Li                          << SourceRange(TheCall->getArg(1)->getLocStart(),
3415*67e74705SXin Li                                         TheCall->getArg(1)->getLocEnd()));
3416*67e74705SXin Li     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
3417*67e74705SXin Li       return ExprError(Diag(TheCall->getLocStart(),
3418*67e74705SXin Li                             diag::err_shufflevector_incompatible_vector)
3419*67e74705SXin Li                        << SourceRange(TheCall->getArg(0)->getLocStart(),
3420*67e74705SXin Li                                       TheCall->getArg(1)->getLocEnd()));
3421*67e74705SXin Li     } else if (numElements != numResElements) {
3422*67e74705SXin Li       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
3423*67e74705SXin Li       resType = Context.getVectorType(eltType, numResElements,
3424*67e74705SXin Li                                       VectorType::GenericVector);
3425*67e74705SXin Li     }
3426*67e74705SXin Li   }
3427*67e74705SXin Li 
3428*67e74705SXin Li   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
3429*67e74705SXin Li     if (TheCall->getArg(i)->isTypeDependent() ||
3430*67e74705SXin Li         TheCall->getArg(i)->isValueDependent())
3431*67e74705SXin Li       continue;
3432*67e74705SXin Li 
3433*67e74705SXin Li     llvm::APSInt Result(32);
3434*67e74705SXin Li     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
3435*67e74705SXin Li       return ExprError(Diag(TheCall->getLocStart(),
3436*67e74705SXin Li                             diag::err_shufflevector_nonconstant_argument)
3437*67e74705SXin Li                        << TheCall->getArg(i)->getSourceRange());
3438*67e74705SXin Li 
3439*67e74705SXin Li     // Allow -1 which will be translated to undef in the IR.
3440*67e74705SXin Li     if (Result.isSigned() && Result.isAllOnesValue())
3441*67e74705SXin Li       continue;
3442*67e74705SXin Li 
3443*67e74705SXin Li     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
3444*67e74705SXin Li       return ExprError(Diag(TheCall->getLocStart(),
3445*67e74705SXin Li                             diag::err_shufflevector_argument_too_large)
3446*67e74705SXin Li                        << TheCall->getArg(i)->getSourceRange());
3447*67e74705SXin Li   }
3448*67e74705SXin Li 
3449*67e74705SXin Li   SmallVector<Expr*, 32> exprs;
3450*67e74705SXin Li 
3451*67e74705SXin Li   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
3452*67e74705SXin Li     exprs.push_back(TheCall->getArg(i));
3453*67e74705SXin Li     TheCall->setArg(i, nullptr);
3454*67e74705SXin Li   }
3455*67e74705SXin Li 
3456*67e74705SXin Li   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
3457*67e74705SXin Li                                          TheCall->getCallee()->getLocStart(),
3458*67e74705SXin Li                                          TheCall->getRParenLoc());
3459*67e74705SXin Li }
3460*67e74705SXin Li 
3461*67e74705SXin Li /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)3462*67e74705SXin Li ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
3463*67e74705SXin Li                                        SourceLocation BuiltinLoc,
3464*67e74705SXin Li                                        SourceLocation RParenLoc) {
3465*67e74705SXin Li   ExprValueKind VK = VK_RValue;
3466*67e74705SXin Li   ExprObjectKind OK = OK_Ordinary;
3467*67e74705SXin Li   QualType DstTy = TInfo->getType();
3468*67e74705SXin Li   QualType SrcTy = E->getType();
3469*67e74705SXin Li 
3470*67e74705SXin Li   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
3471*67e74705SXin Li     return ExprError(Diag(BuiltinLoc,
3472*67e74705SXin Li                           diag::err_convertvector_non_vector)
3473*67e74705SXin Li                      << E->getSourceRange());
3474*67e74705SXin Li   if (!DstTy->isVectorType() && !DstTy->isDependentType())
3475*67e74705SXin Li     return ExprError(Diag(BuiltinLoc,
3476*67e74705SXin Li                           diag::err_convertvector_non_vector_type));
3477*67e74705SXin Li 
3478*67e74705SXin Li   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
3479*67e74705SXin Li     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
3480*67e74705SXin Li     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
3481*67e74705SXin Li     if (SrcElts != DstElts)
3482*67e74705SXin Li       return ExprError(Diag(BuiltinLoc,
3483*67e74705SXin Li                             diag::err_convertvector_incompatible_vector)
3484*67e74705SXin Li                        << E->getSourceRange());
3485*67e74705SXin Li   }
3486*67e74705SXin Li 
3487*67e74705SXin Li   return new (Context)
3488*67e74705SXin Li       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
3489*67e74705SXin Li }
3490*67e74705SXin Li 
3491*67e74705SXin Li /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
3492*67e74705SXin Li // This is declared to take (const void*, ...) and can take two
3493*67e74705SXin Li // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)3494*67e74705SXin Li bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
3495*67e74705SXin Li   unsigned NumArgs = TheCall->getNumArgs();
3496*67e74705SXin Li 
3497*67e74705SXin Li   if (NumArgs > 3)
3498*67e74705SXin Li     return Diag(TheCall->getLocEnd(),
3499*67e74705SXin Li              diag::err_typecheck_call_too_many_args_at_most)
3500*67e74705SXin Li              << 0 /*function call*/ << 3 << NumArgs
3501*67e74705SXin Li              << TheCall->getSourceRange();
3502*67e74705SXin Li 
3503*67e74705SXin Li   // Argument 0 is checked for us and the remaining arguments must be
3504*67e74705SXin Li   // constant integers.
3505*67e74705SXin Li   for (unsigned i = 1; i != NumArgs; ++i)
3506*67e74705SXin Li     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
3507*67e74705SXin Li       return true;
3508*67e74705SXin Li 
3509*67e74705SXin Li   return false;
3510*67e74705SXin Li }
3511*67e74705SXin Li 
3512*67e74705SXin Li /// SemaBuiltinAssume - Handle __assume (MS Extension).
3513*67e74705SXin Li // __assume does not evaluate its arguments, and should warn if its argument
3514*67e74705SXin Li // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)3515*67e74705SXin Li bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
3516*67e74705SXin Li   Expr *Arg = TheCall->getArg(0);
3517*67e74705SXin Li   if (Arg->isInstantiationDependent()) return false;
3518*67e74705SXin Li 
3519*67e74705SXin Li   if (Arg->HasSideEffects(Context))
3520*67e74705SXin Li     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
3521*67e74705SXin Li       << Arg->getSourceRange()
3522*67e74705SXin Li       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
3523*67e74705SXin Li 
3524*67e74705SXin Li   return false;
3525*67e74705SXin Li }
3526*67e74705SXin Li 
3527*67e74705SXin Li /// Handle __builtin_assume_aligned. This is declared
3528*67e74705SXin Li /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)3529*67e74705SXin Li bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
3530*67e74705SXin Li   unsigned NumArgs = TheCall->getNumArgs();
3531*67e74705SXin Li 
3532*67e74705SXin Li   if (NumArgs > 3)
3533*67e74705SXin Li     return Diag(TheCall->getLocEnd(),
3534*67e74705SXin Li              diag::err_typecheck_call_too_many_args_at_most)
3535*67e74705SXin Li              << 0 /*function call*/ << 3 << NumArgs
3536*67e74705SXin Li              << TheCall->getSourceRange();
3537*67e74705SXin Li 
3538*67e74705SXin Li   // The alignment must be a constant integer.
3539*67e74705SXin Li   Expr *Arg = TheCall->getArg(1);
3540*67e74705SXin Li 
3541*67e74705SXin Li   // We can't check the value of a dependent argument.
3542*67e74705SXin Li   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
3543*67e74705SXin Li     llvm::APSInt Result;
3544*67e74705SXin Li     if (SemaBuiltinConstantArg(TheCall, 1, Result))
3545*67e74705SXin Li       return true;
3546*67e74705SXin Li 
3547*67e74705SXin Li     if (!Result.isPowerOf2())
3548*67e74705SXin Li       return Diag(TheCall->getLocStart(),
3549*67e74705SXin Li                   diag::err_alignment_not_power_of_two)
3550*67e74705SXin Li            << Arg->getSourceRange();
3551*67e74705SXin Li   }
3552*67e74705SXin Li 
3553*67e74705SXin Li   if (NumArgs > 2) {
3554*67e74705SXin Li     ExprResult Arg(TheCall->getArg(2));
3555*67e74705SXin Li     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
3556*67e74705SXin Li       Context.getSizeType(), false);
3557*67e74705SXin Li     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
3558*67e74705SXin Li     if (Arg.isInvalid()) return true;
3559*67e74705SXin Li     TheCall->setArg(2, Arg.get());
3560*67e74705SXin Li   }
3561*67e74705SXin Li 
3562*67e74705SXin Li   return false;
3563*67e74705SXin Li }
3564*67e74705SXin Li 
3565*67e74705SXin Li /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
3566*67e74705SXin Li /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)3567*67e74705SXin Li bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
3568*67e74705SXin Li                                   llvm::APSInt &Result) {
3569*67e74705SXin Li   Expr *Arg = TheCall->getArg(ArgNum);
3570*67e74705SXin Li   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3571*67e74705SXin Li   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
3572*67e74705SXin Li 
3573*67e74705SXin Li   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
3574*67e74705SXin Li 
3575*67e74705SXin Li   if (!Arg->isIntegerConstantExpr(Result, Context))
3576*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
3577*67e74705SXin Li                 << FDecl->getDeclName() <<  Arg->getSourceRange();
3578*67e74705SXin Li 
3579*67e74705SXin Li   return false;
3580*67e74705SXin Li }
3581*67e74705SXin Li 
3582*67e74705SXin Li /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
3583*67e74705SXin Li /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High)3584*67e74705SXin Li bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
3585*67e74705SXin Li                                        int Low, int High) {
3586*67e74705SXin Li   llvm::APSInt Result;
3587*67e74705SXin Li 
3588*67e74705SXin Li   // We can't check the value of a dependent argument.
3589*67e74705SXin Li   Expr *Arg = TheCall->getArg(ArgNum);
3590*67e74705SXin Li   if (Arg->isTypeDependent() || Arg->isValueDependent())
3591*67e74705SXin Li     return false;
3592*67e74705SXin Li 
3593*67e74705SXin Li   // Check constant-ness first.
3594*67e74705SXin Li   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3595*67e74705SXin Li     return true;
3596*67e74705SXin Li 
3597*67e74705SXin Li   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
3598*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
3599*67e74705SXin Li       << Low << High << Arg->getSourceRange();
3600*67e74705SXin Li 
3601*67e74705SXin Li   return false;
3602*67e74705SXin Li }
3603*67e74705SXin Li 
3604*67e74705SXin Li /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
3605*67e74705SXin Li /// TheCall is an ARM/AArch64 special register string literal.
SemaBuiltinARMSpecialReg(unsigned BuiltinID,CallExpr * TheCall,int ArgNum,unsigned ExpectedFieldNum,bool AllowName)3606*67e74705SXin Li bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
3607*67e74705SXin Li                                     int ArgNum, unsigned ExpectedFieldNum,
3608*67e74705SXin Li                                     bool AllowName) {
3609*67e74705SXin Li   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3610*67e74705SXin Li                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
3611*67e74705SXin Li                       BuiltinID == ARM::BI__builtin_arm_rsr ||
3612*67e74705SXin Li                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
3613*67e74705SXin Li                       BuiltinID == ARM::BI__builtin_arm_wsr ||
3614*67e74705SXin Li                       BuiltinID == ARM::BI__builtin_arm_wsrp;
3615*67e74705SXin Li   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
3616*67e74705SXin Li                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
3617*67e74705SXin Li                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
3618*67e74705SXin Li                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
3619*67e74705SXin Li                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
3620*67e74705SXin Li                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
3621*67e74705SXin Li   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
3622*67e74705SXin Li 
3623*67e74705SXin Li   // We can't check the value of a dependent argument.
3624*67e74705SXin Li   Expr *Arg = TheCall->getArg(ArgNum);
3625*67e74705SXin Li   if (Arg->isTypeDependent() || Arg->isValueDependent())
3626*67e74705SXin Li     return false;
3627*67e74705SXin Li 
3628*67e74705SXin Li   // Check if the argument is a string literal.
3629*67e74705SXin Li   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3630*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
3631*67e74705SXin Li            << Arg->getSourceRange();
3632*67e74705SXin Li 
3633*67e74705SXin Li   // Check the type of special register given.
3634*67e74705SXin Li   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3635*67e74705SXin Li   SmallVector<StringRef, 6> Fields;
3636*67e74705SXin Li   Reg.split(Fields, ":");
3637*67e74705SXin Li 
3638*67e74705SXin Li   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
3639*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
3640*67e74705SXin Li            << Arg->getSourceRange();
3641*67e74705SXin Li 
3642*67e74705SXin Li   // If the string is the name of a register then we cannot check that it is
3643*67e74705SXin Li   // valid here but if the string is of one the forms described in ACLE then we
3644*67e74705SXin Li   // can check that the supplied fields are integers and within the valid
3645*67e74705SXin Li   // ranges.
3646*67e74705SXin Li   if (Fields.size() > 1) {
3647*67e74705SXin Li     bool FiveFields = Fields.size() == 5;
3648*67e74705SXin Li 
3649*67e74705SXin Li     bool ValidString = true;
3650*67e74705SXin Li     if (IsARMBuiltin) {
3651*67e74705SXin Li       ValidString &= Fields[0].startswith_lower("cp") ||
3652*67e74705SXin Li                      Fields[0].startswith_lower("p");
3653*67e74705SXin Li       if (ValidString)
3654*67e74705SXin Li         Fields[0] =
3655*67e74705SXin Li           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
3656*67e74705SXin Li 
3657*67e74705SXin Li       ValidString &= Fields[2].startswith_lower("c");
3658*67e74705SXin Li       if (ValidString)
3659*67e74705SXin Li         Fields[2] = Fields[2].drop_front(1);
3660*67e74705SXin Li 
3661*67e74705SXin Li       if (FiveFields) {
3662*67e74705SXin Li         ValidString &= Fields[3].startswith_lower("c");
3663*67e74705SXin Li         if (ValidString)
3664*67e74705SXin Li           Fields[3] = Fields[3].drop_front(1);
3665*67e74705SXin Li       }
3666*67e74705SXin Li     }
3667*67e74705SXin Li 
3668*67e74705SXin Li     SmallVector<int, 5> Ranges;
3669*67e74705SXin Li     if (FiveFields)
3670*67e74705SXin Li       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 7, 15, 15});
3671*67e74705SXin Li     else
3672*67e74705SXin Li       Ranges.append({15, 7, 15});
3673*67e74705SXin Li 
3674*67e74705SXin Li     for (unsigned i=0; i<Fields.size(); ++i) {
3675*67e74705SXin Li       int IntField;
3676*67e74705SXin Li       ValidString &= !Fields[i].getAsInteger(10, IntField);
3677*67e74705SXin Li       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
3678*67e74705SXin Li     }
3679*67e74705SXin Li 
3680*67e74705SXin Li     if (!ValidString)
3681*67e74705SXin Li       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
3682*67e74705SXin Li              << Arg->getSourceRange();
3683*67e74705SXin Li 
3684*67e74705SXin Li   } else if (IsAArch64Builtin && Fields.size() == 1) {
3685*67e74705SXin Li     // If the register name is one of those that appear in the condition below
3686*67e74705SXin Li     // and the special register builtin being used is one of the write builtins,
3687*67e74705SXin Li     // then we require that the argument provided for writing to the register
3688*67e74705SXin Li     // is an integer constant expression. This is because it will be lowered to
3689*67e74705SXin Li     // an MSR (immediate) instruction, so we need to know the immediate at
3690*67e74705SXin Li     // compile time.
3691*67e74705SXin Li     if (TheCall->getNumArgs() != 2)
3692*67e74705SXin Li       return false;
3693*67e74705SXin Li 
3694*67e74705SXin Li     std::string RegLower = Reg.lower();
3695*67e74705SXin Li     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
3696*67e74705SXin Li         RegLower != "pan" && RegLower != "uao")
3697*67e74705SXin Li       return false;
3698*67e74705SXin Li 
3699*67e74705SXin Li     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3700*67e74705SXin Li   }
3701*67e74705SXin Li 
3702*67e74705SXin Li   return false;
3703*67e74705SXin Li }
3704*67e74705SXin Li 
3705*67e74705SXin Li /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
3706*67e74705SXin Li /// This checks that the target supports __builtin_longjmp and
3707*67e74705SXin Li /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)3708*67e74705SXin Li bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
3709*67e74705SXin Li   if (!Context.getTargetInfo().hasSjLjLowering())
3710*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
3711*67e74705SXin Li              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
3712*67e74705SXin Li 
3713*67e74705SXin Li   Expr *Arg = TheCall->getArg(1);
3714*67e74705SXin Li   llvm::APSInt Result;
3715*67e74705SXin Li 
3716*67e74705SXin Li   // TODO: This is less than ideal. Overload this to take a value.
3717*67e74705SXin Li   if (SemaBuiltinConstantArg(TheCall, 1, Result))
3718*67e74705SXin Li     return true;
3719*67e74705SXin Li 
3720*67e74705SXin Li   if (Result != 1)
3721*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
3722*67e74705SXin Li              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
3723*67e74705SXin Li 
3724*67e74705SXin Li   return false;
3725*67e74705SXin Li }
3726*67e74705SXin Li 
3727*67e74705SXin Li /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
3728*67e74705SXin Li /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)3729*67e74705SXin Li bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
3730*67e74705SXin Li   if (!Context.getTargetInfo().hasSjLjLowering())
3731*67e74705SXin Li     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
3732*67e74705SXin Li              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
3733*67e74705SXin Li   return false;
3734*67e74705SXin Li }
3735*67e74705SXin Li 
3736*67e74705SXin Li namespace {
3737*67e74705SXin Li class UncoveredArgHandler {
3738*67e74705SXin Li   enum { Unknown = -1, AllCovered = -2 };
3739*67e74705SXin Li   signed FirstUncoveredArg;
3740*67e74705SXin Li   SmallVector<const Expr *, 4> DiagnosticExprs;
3741*67e74705SXin Li 
3742*67e74705SXin Li public:
UncoveredArgHandler()3743*67e74705SXin Li   UncoveredArgHandler() : FirstUncoveredArg(Unknown) { }
3744*67e74705SXin Li 
hasUncoveredArg() const3745*67e74705SXin Li   bool hasUncoveredArg() const {
3746*67e74705SXin Li     return (FirstUncoveredArg >= 0);
3747*67e74705SXin Li   }
3748*67e74705SXin Li 
getUncoveredArg() const3749*67e74705SXin Li   unsigned getUncoveredArg() const {
3750*67e74705SXin Li     assert(hasUncoveredArg() && "no uncovered argument");
3751*67e74705SXin Li     return FirstUncoveredArg;
3752*67e74705SXin Li   }
3753*67e74705SXin Li 
setAllCovered()3754*67e74705SXin Li   void setAllCovered() {
3755*67e74705SXin Li     // A string has been found with all arguments covered, so clear out
3756*67e74705SXin Li     // the diagnostics.
3757*67e74705SXin Li     DiagnosticExprs.clear();
3758*67e74705SXin Li     FirstUncoveredArg = AllCovered;
3759*67e74705SXin Li   }
3760*67e74705SXin Li 
Update(signed NewFirstUncoveredArg,const Expr * StrExpr)3761*67e74705SXin Li   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
3762*67e74705SXin Li     assert(NewFirstUncoveredArg >= 0 && "Outside range");
3763*67e74705SXin Li 
3764*67e74705SXin Li     // Don't update if a previous string covers all arguments.
3765*67e74705SXin Li     if (FirstUncoveredArg == AllCovered)
3766*67e74705SXin Li       return;
3767*67e74705SXin Li 
3768*67e74705SXin Li     // UncoveredArgHandler tracks the highest uncovered argument index
3769*67e74705SXin Li     // and with it all the strings that match this index.
3770*67e74705SXin Li     if (NewFirstUncoveredArg == FirstUncoveredArg)
3771*67e74705SXin Li       DiagnosticExprs.push_back(StrExpr);
3772*67e74705SXin Li     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
3773*67e74705SXin Li       DiagnosticExprs.clear();
3774*67e74705SXin Li       DiagnosticExprs.push_back(StrExpr);
3775*67e74705SXin Li       FirstUncoveredArg = NewFirstUncoveredArg;
3776*67e74705SXin Li     }
3777*67e74705SXin Li   }
3778*67e74705SXin Li 
3779*67e74705SXin Li   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
3780*67e74705SXin Li };
3781*67e74705SXin Li 
3782*67e74705SXin Li enum StringLiteralCheckType {
3783*67e74705SXin Li   SLCT_NotALiteral,
3784*67e74705SXin Li   SLCT_UncheckedLiteral,
3785*67e74705SXin Li   SLCT_CheckedLiteral
3786*67e74705SXin Li };
3787*67e74705SXin Li } // end anonymous namespace
3788*67e74705SXin Li 
3789*67e74705SXin Li static void CheckFormatString(Sema &S, const StringLiteral *FExpr,
3790*67e74705SXin Li                               const Expr *OrigFormatExpr,
3791*67e74705SXin Li                               ArrayRef<const Expr *> Args,
3792*67e74705SXin Li                               bool HasVAListArg, unsigned format_idx,
3793*67e74705SXin Li                               unsigned firstDataArg,
3794*67e74705SXin Li                               Sema::FormatStringType Type,
3795*67e74705SXin Li                               bool inFunctionCall,
3796*67e74705SXin Li                               Sema::VariadicCallType CallType,
3797*67e74705SXin Li                               llvm::SmallBitVector &CheckedVarArgs,
3798*67e74705SXin Li                               UncoveredArgHandler &UncoveredArg);
3799*67e74705SXin Li 
3800*67e74705SXin Li // Determine if an expression is a string literal or constant string.
3801*67e74705SXin Li // If this function returns false on the arguments to a function expecting a
3802*67e74705SXin Li // format string, we will usually need to emit a warning.
3803*67e74705SXin Li // True string literals are then checked by CheckFormatString.
3804*67e74705SXin Li static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)3805*67e74705SXin Li checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
3806*67e74705SXin Li                       bool HasVAListArg, unsigned format_idx,
3807*67e74705SXin Li                       unsigned firstDataArg, Sema::FormatStringType Type,
3808*67e74705SXin Li                       Sema::VariadicCallType CallType, bool InFunctionCall,
3809*67e74705SXin Li                       llvm::SmallBitVector &CheckedVarArgs,
3810*67e74705SXin Li                       UncoveredArgHandler &UncoveredArg) {
3811*67e74705SXin Li  tryAgain:
3812*67e74705SXin Li   if (E->isTypeDependent() || E->isValueDependent())
3813*67e74705SXin Li     return SLCT_NotALiteral;
3814*67e74705SXin Li 
3815*67e74705SXin Li   E = E->IgnoreParenCasts();
3816*67e74705SXin Li 
3817*67e74705SXin Li   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
3818*67e74705SXin Li     // Technically -Wformat-nonliteral does not warn about this case.
3819*67e74705SXin Li     // The behavior of printf and friends in this case is implementation
3820*67e74705SXin Li     // dependent.  Ideally if the format string cannot be null then
3821*67e74705SXin Li     // it should have a 'nonnull' attribute in the function prototype.
3822*67e74705SXin Li     return SLCT_UncheckedLiteral;
3823*67e74705SXin Li 
3824*67e74705SXin Li   switch (E->getStmtClass()) {
3825*67e74705SXin Li   case Stmt::BinaryConditionalOperatorClass:
3826*67e74705SXin Li   case Stmt::ConditionalOperatorClass: {
3827*67e74705SXin Li     // The expression is a literal if both sub-expressions were, and it was
3828*67e74705SXin Li     // completely checked only if both sub-expressions were checked.
3829*67e74705SXin Li     const AbstractConditionalOperator *C =
3830*67e74705SXin Li         cast<AbstractConditionalOperator>(E);
3831*67e74705SXin Li 
3832*67e74705SXin Li     // Determine whether it is necessary to check both sub-expressions, for
3833*67e74705SXin Li     // example, because the condition expression is a constant that can be
3834*67e74705SXin Li     // evaluated at compile time.
3835*67e74705SXin Li     bool CheckLeft = true, CheckRight = true;
3836*67e74705SXin Li 
3837*67e74705SXin Li     bool Cond;
3838*67e74705SXin Li     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext())) {
3839*67e74705SXin Li       if (Cond)
3840*67e74705SXin Li         CheckRight = false;
3841*67e74705SXin Li       else
3842*67e74705SXin Li         CheckLeft = false;
3843*67e74705SXin Li     }
3844*67e74705SXin Li 
3845*67e74705SXin Li     StringLiteralCheckType Left;
3846*67e74705SXin Li     if (!CheckLeft)
3847*67e74705SXin Li       Left = SLCT_UncheckedLiteral;
3848*67e74705SXin Li     else {
3849*67e74705SXin Li       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
3850*67e74705SXin Li                                    HasVAListArg, format_idx, firstDataArg,
3851*67e74705SXin Li                                    Type, CallType, InFunctionCall,
3852*67e74705SXin Li                                    CheckedVarArgs, UncoveredArg);
3853*67e74705SXin Li       if (Left == SLCT_NotALiteral || !CheckRight)
3854*67e74705SXin Li         return Left;
3855*67e74705SXin Li     }
3856*67e74705SXin Li 
3857*67e74705SXin Li     StringLiteralCheckType Right =
3858*67e74705SXin Li         checkFormatStringExpr(S, C->getFalseExpr(), Args,
3859*67e74705SXin Li                               HasVAListArg, format_idx, firstDataArg,
3860*67e74705SXin Li                               Type, CallType, InFunctionCall, CheckedVarArgs,
3861*67e74705SXin Li                               UncoveredArg);
3862*67e74705SXin Li 
3863*67e74705SXin Li     return (CheckLeft && Left < Right) ? Left : Right;
3864*67e74705SXin Li   }
3865*67e74705SXin Li 
3866*67e74705SXin Li   case Stmt::ImplicitCastExprClass: {
3867*67e74705SXin Li     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3868*67e74705SXin Li     goto tryAgain;
3869*67e74705SXin Li   }
3870*67e74705SXin Li 
3871*67e74705SXin Li   case Stmt::OpaqueValueExprClass:
3872*67e74705SXin Li     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
3873*67e74705SXin Li       E = src;
3874*67e74705SXin Li       goto tryAgain;
3875*67e74705SXin Li     }
3876*67e74705SXin Li     return SLCT_NotALiteral;
3877*67e74705SXin Li 
3878*67e74705SXin Li   case Stmt::PredefinedExprClass:
3879*67e74705SXin Li     // While __func__, etc., are technically not string literals, they
3880*67e74705SXin Li     // cannot contain format specifiers and thus are not a security
3881*67e74705SXin Li     // liability.
3882*67e74705SXin Li     return SLCT_UncheckedLiteral;
3883*67e74705SXin Li 
3884*67e74705SXin Li   case Stmt::DeclRefExprClass: {
3885*67e74705SXin Li     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
3886*67e74705SXin Li 
3887*67e74705SXin Li     // As an exception, do not flag errors for variables binding to
3888*67e74705SXin Li     // const string literals.
3889*67e74705SXin Li     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
3890*67e74705SXin Li       bool isConstant = false;
3891*67e74705SXin Li       QualType T = DR->getType();
3892*67e74705SXin Li 
3893*67e74705SXin Li       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
3894*67e74705SXin Li         isConstant = AT->getElementType().isConstant(S.Context);
3895*67e74705SXin Li       } else if (const PointerType *PT = T->getAs<PointerType>()) {
3896*67e74705SXin Li         isConstant = T.isConstant(S.Context) &&
3897*67e74705SXin Li                      PT->getPointeeType().isConstant(S.Context);
3898*67e74705SXin Li       } else if (T->isObjCObjectPointerType()) {
3899*67e74705SXin Li         // In ObjC, there is usually no "const ObjectPointer" type,
3900*67e74705SXin Li         // so don't check if the pointee type is constant.
3901*67e74705SXin Li         isConstant = T.isConstant(S.Context);
3902*67e74705SXin Li       }
3903*67e74705SXin Li 
3904*67e74705SXin Li       if (isConstant) {
3905*67e74705SXin Li         if (const Expr *Init = VD->getAnyInitializer()) {
3906*67e74705SXin Li           // Look through initializers like const char c[] = { "foo" }
3907*67e74705SXin Li           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3908*67e74705SXin Li             if (InitList->isStringLiteralInit())
3909*67e74705SXin Li               Init = InitList->getInit(0)->IgnoreParenImpCasts();
3910*67e74705SXin Li           }
3911*67e74705SXin Li           return checkFormatStringExpr(S, Init, Args,
3912*67e74705SXin Li                                        HasVAListArg, format_idx,
3913*67e74705SXin Li                                        firstDataArg, Type, CallType,
3914*67e74705SXin Li                                        /*InFunctionCall*/false, CheckedVarArgs,
3915*67e74705SXin Li                                        UncoveredArg);
3916*67e74705SXin Li         }
3917*67e74705SXin Li       }
3918*67e74705SXin Li 
3919*67e74705SXin Li       // For vprintf* functions (i.e., HasVAListArg==true), we add a
3920*67e74705SXin Li       // special check to see if the format string is a function parameter
3921*67e74705SXin Li       // of the function calling the printf function.  If the function
3922*67e74705SXin Li       // has an attribute indicating it is a printf-like function, then we
3923*67e74705SXin Li       // should suppress warnings concerning non-literals being used in a call
3924*67e74705SXin Li       // to a vprintf function.  For example:
3925*67e74705SXin Li       //
3926*67e74705SXin Li       // void
3927*67e74705SXin Li       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
3928*67e74705SXin Li       //      va_list ap;
3929*67e74705SXin Li       //      va_start(ap, fmt);
3930*67e74705SXin Li       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
3931*67e74705SXin Li       //      ...
3932*67e74705SXin Li       // }
3933*67e74705SXin Li       if (HasVAListArg) {
3934*67e74705SXin Li         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
3935*67e74705SXin Li           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
3936*67e74705SXin Li             int PVIndex = PV->getFunctionScopeIndex() + 1;
3937*67e74705SXin Li             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
3938*67e74705SXin Li               // adjust for implicit parameter
3939*67e74705SXin Li               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3940*67e74705SXin Li                 if (MD->isInstance())
3941*67e74705SXin Li                   ++PVIndex;
3942*67e74705SXin Li               // We also check if the formats are compatible.
3943*67e74705SXin Li               // We can't pass a 'scanf' string to a 'printf' function.
3944*67e74705SXin Li               if (PVIndex == PVFormat->getFormatIdx() &&
3945*67e74705SXin Li                   Type == S.GetFormatStringType(PVFormat))
3946*67e74705SXin Li                 return SLCT_UncheckedLiteral;
3947*67e74705SXin Li             }
3948*67e74705SXin Li           }
3949*67e74705SXin Li         }
3950*67e74705SXin Li       }
3951*67e74705SXin Li     }
3952*67e74705SXin Li 
3953*67e74705SXin Li     return SLCT_NotALiteral;
3954*67e74705SXin Li   }
3955*67e74705SXin Li 
3956*67e74705SXin Li   case Stmt::CallExprClass:
3957*67e74705SXin Li   case Stmt::CXXMemberCallExprClass: {
3958*67e74705SXin Li     const CallExpr *CE = cast<CallExpr>(E);
3959*67e74705SXin Li     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
3960*67e74705SXin Li       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
3961*67e74705SXin Li         unsigned ArgIndex = FA->getFormatIdx();
3962*67e74705SXin Li         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
3963*67e74705SXin Li           if (MD->isInstance())
3964*67e74705SXin Li             --ArgIndex;
3965*67e74705SXin Li         const Expr *Arg = CE->getArg(ArgIndex - 1);
3966*67e74705SXin Li 
3967*67e74705SXin Li         return checkFormatStringExpr(S, Arg, Args,
3968*67e74705SXin Li                                      HasVAListArg, format_idx, firstDataArg,
3969*67e74705SXin Li                                      Type, CallType, InFunctionCall,
3970*67e74705SXin Li                                      CheckedVarArgs, UncoveredArg);
3971*67e74705SXin Li       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
3972*67e74705SXin Li         unsigned BuiltinID = FD->getBuiltinID();
3973*67e74705SXin Li         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
3974*67e74705SXin Li             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
3975*67e74705SXin Li           const Expr *Arg = CE->getArg(0);
3976*67e74705SXin Li           return checkFormatStringExpr(S, Arg, Args,
3977*67e74705SXin Li                                        HasVAListArg, format_idx,
3978*67e74705SXin Li                                        firstDataArg, Type, CallType,
3979*67e74705SXin Li                                        InFunctionCall, CheckedVarArgs,
3980*67e74705SXin Li                                        UncoveredArg);
3981*67e74705SXin Li         }
3982*67e74705SXin Li       }
3983*67e74705SXin Li     }
3984*67e74705SXin Li 
3985*67e74705SXin Li     return SLCT_NotALiteral;
3986*67e74705SXin Li   }
3987*67e74705SXin Li   case Stmt::ObjCStringLiteralClass:
3988*67e74705SXin Li   case Stmt::StringLiteralClass: {
3989*67e74705SXin Li     const StringLiteral *StrE = nullptr;
3990*67e74705SXin Li 
3991*67e74705SXin Li     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
3992*67e74705SXin Li       StrE = ObjCFExpr->getString();
3993*67e74705SXin Li     else
3994*67e74705SXin Li       StrE = cast<StringLiteral>(E);
3995*67e74705SXin Li 
3996*67e74705SXin Li     if (StrE) {
3997*67e74705SXin Li       CheckFormatString(S, StrE, E, Args, HasVAListArg, format_idx,
3998*67e74705SXin Li                         firstDataArg, Type, InFunctionCall, CallType,
3999*67e74705SXin Li                         CheckedVarArgs, UncoveredArg);
4000*67e74705SXin Li       return SLCT_CheckedLiteral;
4001*67e74705SXin Li     }
4002*67e74705SXin Li 
4003*67e74705SXin Li     return SLCT_NotALiteral;
4004*67e74705SXin Li   }
4005*67e74705SXin Li 
4006*67e74705SXin Li   default:
4007*67e74705SXin Li     return SLCT_NotALiteral;
4008*67e74705SXin Li   }
4009*67e74705SXin Li }
4010*67e74705SXin Li 
GetFormatStringType(const FormatAttr * Format)4011*67e74705SXin Li Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
4012*67e74705SXin Li   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
4013*67e74705SXin Li   .Case("scanf", FST_Scanf)
4014*67e74705SXin Li   .Cases("printf", "printf0", FST_Printf)
4015*67e74705SXin Li   .Cases("NSString", "CFString", FST_NSString)
4016*67e74705SXin Li   .Case("strftime", FST_Strftime)
4017*67e74705SXin Li   .Case("strfmon", FST_Strfmon)
4018*67e74705SXin Li   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
4019*67e74705SXin Li   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
4020*67e74705SXin Li   .Case("os_trace", FST_OSTrace)
4021*67e74705SXin Li   .Default(FST_Unknown);
4022*67e74705SXin Li }
4023*67e74705SXin Li 
4024*67e74705SXin Li /// CheckFormatArguments - Check calls to printf and scanf (and similar
4025*67e74705SXin Li /// functions) for correct use of format strings.
4026*67e74705SXin Li /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)4027*67e74705SXin Li bool Sema::CheckFormatArguments(const FormatAttr *Format,
4028*67e74705SXin Li                                 ArrayRef<const Expr *> Args,
4029*67e74705SXin Li                                 bool IsCXXMember,
4030*67e74705SXin Li                                 VariadicCallType CallType,
4031*67e74705SXin Li                                 SourceLocation Loc, SourceRange Range,
4032*67e74705SXin Li                                 llvm::SmallBitVector &CheckedVarArgs) {
4033*67e74705SXin Li   FormatStringInfo FSI;
4034*67e74705SXin Li   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
4035*67e74705SXin Li     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
4036*67e74705SXin Li                                 FSI.FirstDataArg, GetFormatStringType(Format),
4037*67e74705SXin Li                                 CallType, Loc, Range, CheckedVarArgs);
4038*67e74705SXin Li   return false;
4039*67e74705SXin Li }
4040*67e74705SXin Li 
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)4041*67e74705SXin Li bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
4042*67e74705SXin Li                                 bool HasVAListArg, unsigned format_idx,
4043*67e74705SXin Li                                 unsigned firstDataArg, FormatStringType Type,
4044*67e74705SXin Li                                 VariadicCallType CallType,
4045*67e74705SXin Li                                 SourceLocation Loc, SourceRange Range,
4046*67e74705SXin Li                                 llvm::SmallBitVector &CheckedVarArgs) {
4047*67e74705SXin Li   // CHECK: printf/scanf-like function is called with no format string.
4048*67e74705SXin Li   if (format_idx >= Args.size()) {
4049*67e74705SXin Li     Diag(Loc, diag::warn_missing_format_string) << Range;
4050*67e74705SXin Li     return false;
4051*67e74705SXin Li   }
4052*67e74705SXin Li 
4053*67e74705SXin Li   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
4054*67e74705SXin Li 
4055*67e74705SXin Li   // CHECK: format string is not a string literal.
4056*67e74705SXin Li   //
4057*67e74705SXin Li   // Dynamically generated format strings are difficult to
4058*67e74705SXin Li   // automatically vet at compile time.  Requiring that format strings
4059*67e74705SXin Li   // are string literals: (1) permits the checking of format strings by
4060*67e74705SXin Li   // the compiler and thereby (2) can practically remove the source of
4061*67e74705SXin Li   // many format string exploits.
4062*67e74705SXin Li 
4063*67e74705SXin Li   // Format string can be either ObjC string (e.g. @"%d") or
4064*67e74705SXin Li   // C string (e.g. "%d")
4065*67e74705SXin Li   // ObjC string uses the same format specifiers as C string, so we can use
4066*67e74705SXin Li   // the same format string checking logic for both ObjC and C strings.
4067*67e74705SXin Li   UncoveredArgHandler UncoveredArg;
4068*67e74705SXin Li   StringLiteralCheckType CT =
4069*67e74705SXin Li       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
4070*67e74705SXin Li                             format_idx, firstDataArg, Type, CallType,
4071*67e74705SXin Li                             /*IsFunctionCall*/true, CheckedVarArgs,
4072*67e74705SXin Li                             UncoveredArg);
4073*67e74705SXin Li 
4074*67e74705SXin Li   // Generate a diagnostic where an uncovered argument is detected.
4075*67e74705SXin Li   if (UncoveredArg.hasUncoveredArg()) {
4076*67e74705SXin Li     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
4077*67e74705SXin Li     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
4078*67e74705SXin Li     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
4079*67e74705SXin Li   }
4080*67e74705SXin Li 
4081*67e74705SXin Li   if (CT != SLCT_NotALiteral)
4082*67e74705SXin Li     // Literal format string found, check done!
4083*67e74705SXin Li     return CT == SLCT_CheckedLiteral;
4084*67e74705SXin Li 
4085*67e74705SXin Li   // Strftime is particular as it always uses a single 'time' argument,
4086*67e74705SXin Li   // so it is safe to pass a non-literal string.
4087*67e74705SXin Li   if (Type == FST_Strftime)
4088*67e74705SXin Li     return false;
4089*67e74705SXin Li 
4090*67e74705SXin Li   // Do not emit diag when the string param is a macro expansion and the
4091*67e74705SXin Li   // format is either NSString or CFString. This is a hack to prevent
4092*67e74705SXin Li   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
4093*67e74705SXin Li   // which are usually used in place of NS and CF string literals.
4094*67e74705SXin Li   SourceLocation FormatLoc = Args[format_idx]->getLocStart();
4095*67e74705SXin Li   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
4096*67e74705SXin Li     return false;
4097*67e74705SXin Li 
4098*67e74705SXin Li   // If there are no arguments specified, warn with -Wformat-security, otherwise
4099*67e74705SXin Li   // warn only with -Wformat-nonliteral.
4100*67e74705SXin Li   if (Args.size() == firstDataArg) {
4101*67e74705SXin Li     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
4102*67e74705SXin Li       << OrigFormatExpr->getSourceRange();
4103*67e74705SXin Li     switch (Type) {
4104*67e74705SXin Li     default:
4105*67e74705SXin Li       break;
4106*67e74705SXin Li     case FST_Kprintf:
4107*67e74705SXin Li     case FST_FreeBSDKPrintf:
4108*67e74705SXin Li     case FST_Printf:
4109*67e74705SXin Li       Diag(FormatLoc, diag::note_format_security_fixit)
4110*67e74705SXin Li         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
4111*67e74705SXin Li       break;
4112*67e74705SXin Li     case FST_NSString:
4113*67e74705SXin Li       Diag(FormatLoc, diag::note_format_security_fixit)
4114*67e74705SXin Li         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
4115*67e74705SXin Li       break;
4116*67e74705SXin Li     }
4117*67e74705SXin Li   } else {
4118*67e74705SXin Li     Diag(FormatLoc, diag::warn_format_nonliteral)
4119*67e74705SXin Li       << OrigFormatExpr->getSourceRange();
4120*67e74705SXin Li   }
4121*67e74705SXin Li   return false;
4122*67e74705SXin Li }
4123*67e74705SXin Li 
4124*67e74705SXin Li namespace {
4125*67e74705SXin Li class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
4126*67e74705SXin Li protected:
4127*67e74705SXin Li   Sema &S;
4128*67e74705SXin Li   const StringLiteral *FExpr;
4129*67e74705SXin Li   const Expr *OrigFormatExpr;
4130*67e74705SXin Li   const unsigned FirstDataArg;
4131*67e74705SXin Li   const unsigned NumDataArgs;
4132*67e74705SXin Li   const char *Beg; // Start of format string.
4133*67e74705SXin Li   const bool HasVAListArg;
4134*67e74705SXin Li   ArrayRef<const Expr *> Args;
4135*67e74705SXin Li   unsigned FormatIdx;
4136*67e74705SXin Li   llvm::SmallBitVector CoveredArgs;
4137*67e74705SXin Li   bool usesPositionalArgs;
4138*67e74705SXin Li   bool atFirstArg;
4139*67e74705SXin Li   bool inFunctionCall;
4140*67e74705SXin Li   Sema::VariadicCallType CallType;
4141*67e74705SXin Li   llvm::SmallBitVector &CheckedVarArgs;
4142*67e74705SXin Li   UncoveredArgHandler &UncoveredArg;
4143*67e74705SXin Li 
4144*67e74705SXin Li public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)4145*67e74705SXin Li   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
4146*67e74705SXin Li                      const Expr *origFormatExpr, unsigned firstDataArg,
4147*67e74705SXin Li                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
4148*67e74705SXin Li                      ArrayRef<const Expr *> Args,
4149*67e74705SXin Li                      unsigned formatIdx, bool inFunctionCall,
4150*67e74705SXin Li                      Sema::VariadicCallType callType,
4151*67e74705SXin Li                      llvm::SmallBitVector &CheckedVarArgs,
4152*67e74705SXin Li                      UncoveredArgHandler &UncoveredArg)
4153*67e74705SXin Li     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
4154*67e74705SXin Li       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
4155*67e74705SXin Li       Beg(beg), HasVAListArg(hasVAListArg),
4156*67e74705SXin Li       Args(Args), FormatIdx(formatIdx),
4157*67e74705SXin Li       usesPositionalArgs(false), atFirstArg(true),
4158*67e74705SXin Li       inFunctionCall(inFunctionCall), CallType(callType),
4159*67e74705SXin Li       CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
4160*67e74705SXin Li     CoveredArgs.resize(numDataArgs);
4161*67e74705SXin Li     CoveredArgs.reset();
4162*67e74705SXin Li   }
4163*67e74705SXin Li 
4164*67e74705SXin Li   void DoneProcessing();
4165*67e74705SXin Li 
4166*67e74705SXin Li   void HandleIncompleteSpecifier(const char *startSpecifier,
4167*67e74705SXin Li                                  unsigned specifierLen) override;
4168*67e74705SXin Li 
4169*67e74705SXin Li   void HandleInvalidLengthModifier(
4170*67e74705SXin Li                            const analyze_format_string::FormatSpecifier &FS,
4171*67e74705SXin Li                            const analyze_format_string::ConversionSpecifier &CS,
4172*67e74705SXin Li                            const char *startSpecifier, unsigned specifierLen,
4173*67e74705SXin Li                            unsigned DiagID);
4174*67e74705SXin Li 
4175*67e74705SXin Li   void HandleNonStandardLengthModifier(
4176*67e74705SXin Li                     const analyze_format_string::FormatSpecifier &FS,
4177*67e74705SXin Li                     const char *startSpecifier, unsigned specifierLen);
4178*67e74705SXin Li 
4179*67e74705SXin Li   void HandleNonStandardConversionSpecifier(
4180*67e74705SXin Li                     const analyze_format_string::ConversionSpecifier &CS,
4181*67e74705SXin Li                     const char *startSpecifier, unsigned specifierLen);
4182*67e74705SXin Li 
4183*67e74705SXin Li   void HandlePosition(const char *startPos, unsigned posLen) override;
4184*67e74705SXin Li 
4185*67e74705SXin Li   void HandleInvalidPosition(const char *startSpecifier,
4186*67e74705SXin Li                              unsigned specifierLen,
4187*67e74705SXin Li                              analyze_format_string::PositionContext p) override;
4188*67e74705SXin Li 
4189*67e74705SXin Li   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
4190*67e74705SXin Li 
4191*67e74705SXin Li   void HandleNullChar(const char *nullCharacter) override;
4192*67e74705SXin Li 
4193*67e74705SXin Li   template <typename Range>
4194*67e74705SXin Li   static void
4195*67e74705SXin Li   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
4196*67e74705SXin Li                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
4197*67e74705SXin Li                        bool IsStringLocation, Range StringRange,
4198*67e74705SXin Li                        ArrayRef<FixItHint> Fixit = None);
4199*67e74705SXin Li 
4200*67e74705SXin Li protected:
4201*67e74705SXin Li   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
4202*67e74705SXin Li                                         const char *startSpec,
4203*67e74705SXin Li                                         unsigned specifierLen,
4204*67e74705SXin Li                                         const char *csStart, unsigned csLen);
4205*67e74705SXin Li 
4206*67e74705SXin Li   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
4207*67e74705SXin Li                                          const char *startSpec,
4208*67e74705SXin Li                                          unsigned specifierLen);
4209*67e74705SXin Li 
4210*67e74705SXin Li   SourceRange getFormatStringRange();
4211*67e74705SXin Li   CharSourceRange getSpecifierRange(const char *startSpecifier,
4212*67e74705SXin Li                                     unsigned specifierLen);
4213*67e74705SXin Li   SourceLocation getLocationOfByte(const char *x);
4214*67e74705SXin Li 
4215*67e74705SXin Li   const Expr *getDataArg(unsigned i) const;
4216*67e74705SXin Li 
4217*67e74705SXin Li   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
4218*67e74705SXin Li                     const analyze_format_string::ConversionSpecifier &CS,
4219*67e74705SXin Li                     const char *startSpecifier, unsigned specifierLen,
4220*67e74705SXin Li                     unsigned argIndex);
4221*67e74705SXin Li 
4222*67e74705SXin Li   template <typename Range>
4223*67e74705SXin Li   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
4224*67e74705SXin Li                             bool IsStringLocation, Range StringRange,
4225*67e74705SXin Li                             ArrayRef<FixItHint> Fixit = None);
4226*67e74705SXin Li };
4227*67e74705SXin Li } // end anonymous namespace
4228*67e74705SXin Li 
getFormatStringRange()4229*67e74705SXin Li SourceRange CheckFormatHandler::getFormatStringRange() {
4230*67e74705SXin Li   return OrigFormatExpr->getSourceRange();
4231*67e74705SXin Li }
4232*67e74705SXin Li 
4233*67e74705SXin Li CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)4234*67e74705SXin Li getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
4235*67e74705SXin Li   SourceLocation Start = getLocationOfByte(startSpecifier);
4236*67e74705SXin Li   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
4237*67e74705SXin Li 
4238*67e74705SXin Li   // Advance the end SourceLocation by one due to half-open ranges.
4239*67e74705SXin Li   End = End.getLocWithOffset(1);
4240*67e74705SXin Li 
4241*67e74705SXin Li   return CharSourceRange::getCharRange(Start, End);
4242*67e74705SXin Li }
4243*67e74705SXin Li 
getLocationOfByte(const char * x)4244*67e74705SXin Li SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
4245*67e74705SXin Li   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
4246*67e74705SXin Li }
4247*67e74705SXin Li 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)4248*67e74705SXin Li void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
4249*67e74705SXin Li                                                    unsigned specifierLen){
4250*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
4251*67e74705SXin Li                        getLocationOfByte(startSpecifier),
4252*67e74705SXin Li                        /*IsStringLocation*/true,
4253*67e74705SXin Li                        getSpecifierRange(startSpecifier, specifierLen));
4254*67e74705SXin Li }
4255*67e74705SXin Li 
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)4256*67e74705SXin Li void CheckFormatHandler::HandleInvalidLengthModifier(
4257*67e74705SXin Li     const analyze_format_string::FormatSpecifier &FS,
4258*67e74705SXin Li     const analyze_format_string::ConversionSpecifier &CS,
4259*67e74705SXin Li     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
4260*67e74705SXin Li   using namespace analyze_format_string;
4261*67e74705SXin Li 
4262*67e74705SXin Li   const LengthModifier &LM = FS.getLengthModifier();
4263*67e74705SXin Li   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
4264*67e74705SXin Li 
4265*67e74705SXin Li   // See if we know how to fix this length modifier.
4266*67e74705SXin Li   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
4267*67e74705SXin Li   if (FixedLM) {
4268*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
4269*67e74705SXin Li                          getLocationOfByte(LM.getStart()),
4270*67e74705SXin Li                          /*IsStringLocation*/true,
4271*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
4272*67e74705SXin Li 
4273*67e74705SXin Li     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
4274*67e74705SXin Li       << FixedLM->toString()
4275*67e74705SXin Li       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
4276*67e74705SXin Li 
4277*67e74705SXin Li   } else {
4278*67e74705SXin Li     FixItHint Hint;
4279*67e74705SXin Li     if (DiagID == diag::warn_format_nonsensical_length)
4280*67e74705SXin Li       Hint = FixItHint::CreateRemoval(LMRange);
4281*67e74705SXin Li 
4282*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
4283*67e74705SXin Li                          getLocationOfByte(LM.getStart()),
4284*67e74705SXin Li                          /*IsStringLocation*/true,
4285*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen),
4286*67e74705SXin Li                          Hint);
4287*67e74705SXin Li   }
4288*67e74705SXin Li }
4289*67e74705SXin Li 
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4290*67e74705SXin Li void CheckFormatHandler::HandleNonStandardLengthModifier(
4291*67e74705SXin Li     const analyze_format_string::FormatSpecifier &FS,
4292*67e74705SXin Li     const char *startSpecifier, unsigned specifierLen) {
4293*67e74705SXin Li   using namespace analyze_format_string;
4294*67e74705SXin Li 
4295*67e74705SXin Li   const LengthModifier &LM = FS.getLengthModifier();
4296*67e74705SXin Li   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
4297*67e74705SXin Li 
4298*67e74705SXin Li   // See if we know how to fix this length modifier.
4299*67e74705SXin Li   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
4300*67e74705SXin Li   if (FixedLM) {
4301*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4302*67e74705SXin Li                            << LM.toString() << 0,
4303*67e74705SXin Li                          getLocationOfByte(LM.getStart()),
4304*67e74705SXin Li                          /*IsStringLocation*/true,
4305*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
4306*67e74705SXin Li 
4307*67e74705SXin Li     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
4308*67e74705SXin Li       << FixedLM->toString()
4309*67e74705SXin Li       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
4310*67e74705SXin Li 
4311*67e74705SXin Li   } else {
4312*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4313*67e74705SXin Li                            << LM.toString() << 0,
4314*67e74705SXin Li                          getLocationOfByte(LM.getStart()),
4315*67e74705SXin Li                          /*IsStringLocation*/true,
4316*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
4317*67e74705SXin Li   }
4318*67e74705SXin Li }
4319*67e74705SXin Li 
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)4320*67e74705SXin Li void CheckFormatHandler::HandleNonStandardConversionSpecifier(
4321*67e74705SXin Li     const analyze_format_string::ConversionSpecifier &CS,
4322*67e74705SXin Li     const char *startSpecifier, unsigned specifierLen) {
4323*67e74705SXin Li   using namespace analyze_format_string;
4324*67e74705SXin Li 
4325*67e74705SXin Li   // See if we know how to fix this conversion specifier.
4326*67e74705SXin Li   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
4327*67e74705SXin Li   if (FixedCS) {
4328*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4329*67e74705SXin Li                           << CS.toString() << /*conversion specifier*/1,
4330*67e74705SXin Li                          getLocationOfByte(CS.getStart()),
4331*67e74705SXin Li                          /*IsStringLocation*/true,
4332*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
4333*67e74705SXin Li 
4334*67e74705SXin Li     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
4335*67e74705SXin Li     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
4336*67e74705SXin Li       << FixedCS->toString()
4337*67e74705SXin Li       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
4338*67e74705SXin Li   } else {
4339*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
4340*67e74705SXin Li                           << CS.toString() << /*conversion specifier*/1,
4341*67e74705SXin Li                          getLocationOfByte(CS.getStart()),
4342*67e74705SXin Li                          /*IsStringLocation*/true,
4343*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
4344*67e74705SXin Li   }
4345*67e74705SXin Li }
4346*67e74705SXin Li 
HandlePosition(const char * startPos,unsigned posLen)4347*67e74705SXin Li void CheckFormatHandler::HandlePosition(const char *startPos,
4348*67e74705SXin Li                                         unsigned posLen) {
4349*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
4350*67e74705SXin Li                                getLocationOfByte(startPos),
4351*67e74705SXin Li                                /*IsStringLocation*/true,
4352*67e74705SXin Li                                getSpecifierRange(startPos, posLen));
4353*67e74705SXin Li }
4354*67e74705SXin Li 
4355*67e74705SXin Li void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)4356*67e74705SXin Li CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
4357*67e74705SXin Li                                      analyze_format_string::PositionContext p) {
4358*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
4359*67e74705SXin Li                          << (unsigned) p,
4360*67e74705SXin Li                        getLocationOfByte(startPos), /*IsStringLocation*/true,
4361*67e74705SXin Li                        getSpecifierRange(startPos, posLen));
4362*67e74705SXin Li }
4363*67e74705SXin Li 
HandleZeroPosition(const char * startPos,unsigned posLen)4364*67e74705SXin Li void CheckFormatHandler::HandleZeroPosition(const char *startPos,
4365*67e74705SXin Li                                             unsigned posLen) {
4366*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
4367*67e74705SXin Li                                getLocationOfByte(startPos),
4368*67e74705SXin Li                                /*IsStringLocation*/true,
4369*67e74705SXin Li                                getSpecifierRange(startPos, posLen));
4370*67e74705SXin Li }
4371*67e74705SXin Li 
HandleNullChar(const char * nullCharacter)4372*67e74705SXin Li void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
4373*67e74705SXin Li   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
4374*67e74705SXin Li     // The presence of a null character is likely an error.
4375*67e74705SXin Li     EmitFormatDiagnostic(
4376*67e74705SXin Li       S.PDiag(diag::warn_printf_format_string_contains_null_char),
4377*67e74705SXin Li       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
4378*67e74705SXin Li       getFormatStringRange());
4379*67e74705SXin Li   }
4380*67e74705SXin Li }
4381*67e74705SXin Li 
4382*67e74705SXin Li // Note that this may return NULL if there was an error parsing or building
4383*67e74705SXin Li // one of the argument expressions.
getDataArg(unsigned i) const4384*67e74705SXin Li const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
4385*67e74705SXin Li   return Args[FirstDataArg + i];
4386*67e74705SXin Li }
4387*67e74705SXin Li 
DoneProcessing()4388*67e74705SXin Li void CheckFormatHandler::DoneProcessing() {
4389*67e74705SXin Li   // Does the number of data arguments exceed the number of
4390*67e74705SXin Li   // format conversions in the format string?
4391*67e74705SXin Li   if (!HasVAListArg) {
4392*67e74705SXin Li       // Find any arguments that weren't covered.
4393*67e74705SXin Li     CoveredArgs.flip();
4394*67e74705SXin Li     signed notCoveredArg = CoveredArgs.find_first();
4395*67e74705SXin Li     if (notCoveredArg >= 0) {
4396*67e74705SXin Li       assert((unsigned)notCoveredArg < NumDataArgs);
4397*67e74705SXin Li       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
4398*67e74705SXin Li     } else {
4399*67e74705SXin Li       UncoveredArg.setAllCovered();
4400*67e74705SXin Li     }
4401*67e74705SXin Li   }
4402*67e74705SXin Li }
4403*67e74705SXin Li 
Diagnose(Sema & S,bool IsFunctionCall,const Expr * ArgExpr)4404*67e74705SXin Li void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
4405*67e74705SXin Li                                    const Expr *ArgExpr) {
4406*67e74705SXin Li   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
4407*67e74705SXin Li          "Invalid state");
4408*67e74705SXin Li 
4409*67e74705SXin Li   if (!ArgExpr)
4410*67e74705SXin Li     return;
4411*67e74705SXin Li 
4412*67e74705SXin Li   SourceLocation Loc = ArgExpr->getLocStart();
4413*67e74705SXin Li 
4414*67e74705SXin Li   if (S.getSourceManager().isInSystemMacro(Loc))
4415*67e74705SXin Li     return;
4416*67e74705SXin Li 
4417*67e74705SXin Li   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
4418*67e74705SXin Li   for (auto E : DiagnosticExprs)
4419*67e74705SXin Li     PDiag << E->getSourceRange();
4420*67e74705SXin Li 
4421*67e74705SXin Li   CheckFormatHandler::EmitFormatDiagnostic(
4422*67e74705SXin Li                                   S, IsFunctionCall, DiagnosticExprs[0],
4423*67e74705SXin Li                                   PDiag, Loc, /*IsStringLocation*/false,
4424*67e74705SXin Li                                   DiagnosticExprs[0]->getSourceRange());
4425*67e74705SXin Li }
4426*67e74705SXin Li 
4427*67e74705SXin Li bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)4428*67e74705SXin Li CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
4429*67e74705SXin Li                                                      SourceLocation Loc,
4430*67e74705SXin Li                                                      const char *startSpec,
4431*67e74705SXin Li                                                      unsigned specifierLen,
4432*67e74705SXin Li                                                      const char *csStart,
4433*67e74705SXin Li                                                      unsigned csLen) {
4434*67e74705SXin Li   bool keepGoing = true;
4435*67e74705SXin Li   if (argIndex < NumDataArgs) {
4436*67e74705SXin Li     // Consider the argument coverered, even though the specifier doesn't
4437*67e74705SXin Li     // make sense.
4438*67e74705SXin Li     CoveredArgs.set(argIndex);
4439*67e74705SXin Li   }
4440*67e74705SXin Li   else {
4441*67e74705SXin Li     // If argIndex exceeds the number of data arguments we
4442*67e74705SXin Li     // don't issue a warning because that is just a cascade of warnings (and
4443*67e74705SXin Li     // they may have intended '%%' anyway). We don't want to continue processing
4444*67e74705SXin Li     // the format string after this point, however, as we will like just get
4445*67e74705SXin Li     // gibberish when trying to match arguments.
4446*67e74705SXin Li     keepGoing = false;
4447*67e74705SXin Li   }
4448*67e74705SXin Li 
4449*67e74705SXin Li   StringRef Specifier(csStart, csLen);
4450*67e74705SXin Li 
4451*67e74705SXin Li   // If the specifier in non-printable, it could be the first byte of a UTF-8
4452*67e74705SXin Li   // sequence. In that case, print the UTF-8 code point. If not, print the byte
4453*67e74705SXin Li   // hex value.
4454*67e74705SXin Li   std::string CodePointStr;
4455*67e74705SXin Li   if (!llvm::sys::locale::isPrint(*csStart)) {
4456*67e74705SXin Li     UTF32 CodePoint;
4457*67e74705SXin Li     const UTF8 **B = reinterpret_cast<const UTF8 **>(&csStart);
4458*67e74705SXin Li     const UTF8 *E =
4459*67e74705SXin Li         reinterpret_cast<const UTF8 *>(csStart + csLen);
4460*67e74705SXin Li     ConversionResult Result =
4461*67e74705SXin Li         llvm::convertUTF8Sequence(B, E, &CodePoint, strictConversion);
4462*67e74705SXin Li 
4463*67e74705SXin Li     if (Result != conversionOK) {
4464*67e74705SXin Li       unsigned char FirstChar = *csStart;
4465*67e74705SXin Li       CodePoint = (UTF32)FirstChar;
4466*67e74705SXin Li     }
4467*67e74705SXin Li 
4468*67e74705SXin Li     llvm::raw_string_ostream OS(CodePointStr);
4469*67e74705SXin Li     if (CodePoint < 256)
4470*67e74705SXin Li       OS << "\\x" << llvm::format("%02x", CodePoint);
4471*67e74705SXin Li     else if (CodePoint <= 0xFFFF)
4472*67e74705SXin Li       OS << "\\u" << llvm::format("%04x", CodePoint);
4473*67e74705SXin Li     else
4474*67e74705SXin Li       OS << "\\U" << llvm::format("%08x", CodePoint);
4475*67e74705SXin Li     OS.flush();
4476*67e74705SXin Li     Specifier = CodePointStr;
4477*67e74705SXin Li   }
4478*67e74705SXin Li 
4479*67e74705SXin Li   EmitFormatDiagnostic(
4480*67e74705SXin Li       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
4481*67e74705SXin Li       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
4482*67e74705SXin Li 
4483*67e74705SXin Li   return keepGoing;
4484*67e74705SXin Li }
4485*67e74705SXin Li 
4486*67e74705SXin Li void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)4487*67e74705SXin Li CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
4488*67e74705SXin Li                                                       const char *startSpec,
4489*67e74705SXin Li                                                       unsigned specifierLen) {
4490*67e74705SXin Li   EmitFormatDiagnostic(
4491*67e74705SXin Li     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
4492*67e74705SXin Li     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
4493*67e74705SXin Li }
4494*67e74705SXin Li 
4495*67e74705SXin Li bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)4496*67e74705SXin Li CheckFormatHandler::CheckNumArgs(
4497*67e74705SXin Li   const analyze_format_string::FormatSpecifier &FS,
4498*67e74705SXin Li   const analyze_format_string::ConversionSpecifier &CS,
4499*67e74705SXin Li   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
4500*67e74705SXin Li 
4501*67e74705SXin Li   if (argIndex >= NumDataArgs) {
4502*67e74705SXin Li     PartialDiagnostic PDiag = FS.usesPositionalArg()
4503*67e74705SXin Li       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
4504*67e74705SXin Li            << (argIndex+1) << NumDataArgs)
4505*67e74705SXin Li       : S.PDiag(diag::warn_printf_insufficient_data_args);
4506*67e74705SXin Li     EmitFormatDiagnostic(
4507*67e74705SXin Li       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
4508*67e74705SXin Li       getSpecifierRange(startSpecifier, specifierLen));
4509*67e74705SXin Li 
4510*67e74705SXin Li     // Since more arguments than conversion tokens are given, by extension
4511*67e74705SXin Li     // all arguments are covered, so mark this as so.
4512*67e74705SXin Li     UncoveredArg.setAllCovered();
4513*67e74705SXin Li     return false;
4514*67e74705SXin Li   }
4515*67e74705SXin Li   return true;
4516*67e74705SXin Li }
4517*67e74705SXin Li 
4518*67e74705SXin Li template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)4519*67e74705SXin Li void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
4520*67e74705SXin Li                                               SourceLocation Loc,
4521*67e74705SXin Li                                               bool IsStringLocation,
4522*67e74705SXin Li                                               Range StringRange,
4523*67e74705SXin Li                                               ArrayRef<FixItHint> FixIt) {
4524*67e74705SXin Li   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
4525*67e74705SXin Li                        Loc, IsStringLocation, StringRange, FixIt);
4526*67e74705SXin Li }
4527*67e74705SXin Li 
4528*67e74705SXin Li /// \brief If the format string is not within the funcion call, emit a note
4529*67e74705SXin Li /// so that the function call and string are in diagnostic messages.
4530*67e74705SXin Li ///
4531*67e74705SXin Li /// \param InFunctionCall if true, the format string is within the function
4532*67e74705SXin Li /// call and only one diagnostic message will be produced.  Otherwise, an
4533*67e74705SXin Li /// extra note will be emitted pointing to location of the format string.
4534*67e74705SXin Li ///
4535*67e74705SXin Li /// \param ArgumentExpr the expression that is passed as the format string
4536*67e74705SXin Li /// argument in the function call.  Used for getting locations when two
4537*67e74705SXin Li /// diagnostics are emitted.
4538*67e74705SXin Li ///
4539*67e74705SXin Li /// \param PDiag the callee should already have provided any strings for the
4540*67e74705SXin Li /// diagnostic message.  This function only adds locations and fixits
4541*67e74705SXin Li /// to diagnostics.
4542*67e74705SXin Li ///
4543*67e74705SXin Li /// \param Loc primary location for diagnostic.  If two diagnostics are
4544*67e74705SXin Li /// required, one will be at Loc and a new SourceLocation will be created for
4545*67e74705SXin Li /// the other one.
4546*67e74705SXin Li ///
4547*67e74705SXin Li /// \param IsStringLocation if true, Loc points to the format string should be
4548*67e74705SXin Li /// used for the note.  Otherwise, Loc points to the argument list and will
4549*67e74705SXin Li /// be used with PDiag.
4550*67e74705SXin Li ///
4551*67e74705SXin Li /// \param StringRange some or all of the string to highlight.  This is
4552*67e74705SXin Li /// templated so it can accept either a CharSourceRange or a SourceRange.
4553*67e74705SXin Li ///
4554*67e74705SXin Li /// \param FixIt optional fix it hint for the format string.
4555*67e74705SXin Li template <typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,const PartialDiagnostic & PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)4556*67e74705SXin Li void CheckFormatHandler::EmitFormatDiagnostic(
4557*67e74705SXin Li     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
4558*67e74705SXin Li     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
4559*67e74705SXin Li     Range StringRange, ArrayRef<FixItHint> FixIt) {
4560*67e74705SXin Li   if (InFunctionCall) {
4561*67e74705SXin Li     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
4562*67e74705SXin Li     D << StringRange;
4563*67e74705SXin Li     D << FixIt;
4564*67e74705SXin Li   } else {
4565*67e74705SXin Li     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
4566*67e74705SXin Li       << ArgumentExpr->getSourceRange();
4567*67e74705SXin Li 
4568*67e74705SXin Li     const Sema::SemaDiagnosticBuilder &Note =
4569*67e74705SXin Li       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
4570*67e74705SXin Li              diag::note_format_string_defined);
4571*67e74705SXin Li 
4572*67e74705SXin Li     Note << StringRange;
4573*67e74705SXin Li     Note << FixIt;
4574*67e74705SXin Li   }
4575*67e74705SXin Li }
4576*67e74705SXin Li 
4577*67e74705SXin Li //===--- CHECK: Printf format string checking ------------------------------===//
4578*67e74705SXin Li 
4579*67e74705SXin Li namespace {
4580*67e74705SXin Li class CheckPrintfHandler : public CheckFormatHandler {
4581*67e74705SXin Li   bool ObjCContext;
4582*67e74705SXin Li 
4583*67e74705SXin Li public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)4584*67e74705SXin Li   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
4585*67e74705SXin Li                      const Expr *origFormatExpr, unsigned firstDataArg,
4586*67e74705SXin Li                      unsigned numDataArgs, bool isObjC,
4587*67e74705SXin Li                      const char *beg, bool hasVAListArg,
4588*67e74705SXin Li                      ArrayRef<const Expr *> Args,
4589*67e74705SXin Li                      unsigned formatIdx, bool inFunctionCall,
4590*67e74705SXin Li                      Sema::VariadicCallType CallType,
4591*67e74705SXin Li                      llvm::SmallBitVector &CheckedVarArgs,
4592*67e74705SXin Li                      UncoveredArgHandler &UncoveredArg)
4593*67e74705SXin Li     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
4594*67e74705SXin Li                          numDataArgs, beg, hasVAListArg, Args,
4595*67e74705SXin Li                          formatIdx, inFunctionCall, CallType, CheckedVarArgs,
4596*67e74705SXin Li                          UncoveredArg),
4597*67e74705SXin Li       ObjCContext(isObjC)
4598*67e74705SXin Li   {}
4599*67e74705SXin Li 
4600*67e74705SXin Li   bool HandleInvalidPrintfConversionSpecifier(
4601*67e74705SXin Li                                       const analyze_printf::PrintfSpecifier &FS,
4602*67e74705SXin Li                                       const char *startSpecifier,
4603*67e74705SXin Li                                       unsigned specifierLen) override;
4604*67e74705SXin Li 
4605*67e74705SXin Li   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
4606*67e74705SXin Li                              const char *startSpecifier,
4607*67e74705SXin Li                              unsigned specifierLen) override;
4608*67e74705SXin Li   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
4609*67e74705SXin Li                        const char *StartSpecifier,
4610*67e74705SXin Li                        unsigned SpecifierLen,
4611*67e74705SXin Li                        const Expr *E);
4612*67e74705SXin Li 
4613*67e74705SXin Li   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
4614*67e74705SXin Li                     const char *startSpecifier, unsigned specifierLen);
4615*67e74705SXin Li   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
4616*67e74705SXin Li                            const analyze_printf::OptionalAmount &Amt,
4617*67e74705SXin Li                            unsigned type,
4618*67e74705SXin Li                            const char *startSpecifier, unsigned specifierLen);
4619*67e74705SXin Li   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
4620*67e74705SXin Li                   const analyze_printf::OptionalFlag &flag,
4621*67e74705SXin Li                   const char *startSpecifier, unsigned specifierLen);
4622*67e74705SXin Li   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
4623*67e74705SXin Li                          const analyze_printf::OptionalFlag &ignoredFlag,
4624*67e74705SXin Li                          const analyze_printf::OptionalFlag &flag,
4625*67e74705SXin Li                          const char *startSpecifier, unsigned specifierLen);
4626*67e74705SXin Li   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
4627*67e74705SXin Li                            const Expr *E);
4628*67e74705SXin Li 
4629*67e74705SXin Li   void HandleEmptyObjCModifierFlag(const char *startFlag,
4630*67e74705SXin Li                                    unsigned flagLen) override;
4631*67e74705SXin Li 
4632*67e74705SXin Li   void HandleInvalidObjCModifierFlag(const char *startFlag,
4633*67e74705SXin Li                                             unsigned flagLen) override;
4634*67e74705SXin Li 
4635*67e74705SXin Li   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
4636*67e74705SXin Li                                            const char *flagsEnd,
4637*67e74705SXin Li                                            const char *conversionPosition)
4638*67e74705SXin Li                                              override;
4639*67e74705SXin Li };
4640*67e74705SXin Li } // end anonymous namespace
4641*67e74705SXin Li 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4642*67e74705SXin Li bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
4643*67e74705SXin Li                                       const analyze_printf::PrintfSpecifier &FS,
4644*67e74705SXin Li                                       const char *startSpecifier,
4645*67e74705SXin Li                                       unsigned specifierLen) {
4646*67e74705SXin Li   const analyze_printf::PrintfConversionSpecifier &CS =
4647*67e74705SXin Li     FS.getConversionSpecifier();
4648*67e74705SXin Li 
4649*67e74705SXin Li   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
4650*67e74705SXin Li                                           getLocationOfByte(CS.getStart()),
4651*67e74705SXin Li                                           startSpecifier, specifierLen,
4652*67e74705SXin Li                                           CS.getStart(), CS.getLength());
4653*67e74705SXin Li }
4654*67e74705SXin Li 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)4655*67e74705SXin Li bool CheckPrintfHandler::HandleAmount(
4656*67e74705SXin Li                                const analyze_format_string::OptionalAmount &Amt,
4657*67e74705SXin Li                                unsigned k, const char *startSpecifier,
4658*67e74705SXin Li                                unsigned specifierLen) {
4659*67e74705SXin Li   if (Amt.hasDataArgument()) {
4660*67e74705SXin Li     if (!HasVAListArg) {
4661*67e74705SXin Li       unsigned argIndex = Amt.getArgIndex();
4662*67e74705SXin Li       if (argIndex >= NumDataArgs) {
4663*67e74705SXin Li         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
4664*67e74705SXin Li                                << k,
4665*67e74705SXin Li                              getLocationOfByte(Amt.getStart()),
4666*67e74705SXin Li                              /*IsStringLocation*/true,
4667*67e74705SXin Li                              getSpecifierRange(startSpecifier, specifierLen));
4668*67e74705SXin Li         // Don't do any more checking.  We will just emit
4669*67e74705SXin Li         // spurious errors.
4670*67e74705SXin Li         return false;
4671*67e74705SXin Li       }
4672*67e74705SXin Li 
4673*67e74705SXin Li       // Type check the data argument.  It should be an 'int'.
4674*67e74705SXin Li       // Although not in conformance with C99, we also allow the argument to be
4675*67e74705SXin Li       // an 'unsigned int' as that is a reasonably safe case.  GCC also
4676*67e74705SXin Li       // doesn't emit a warning for that case.
4677*67e74705SXin Li       CoveredArgs.set(argIndex);
4678*67e74705SXin Li       const Expr *Arg = getDataArg(argIndex);
4679*67e74705SXin Li       if (!Arg)
4680*67e74705SXin Li         return false;
4681*67e74705SXin Li 
4682*67e74705SXin Li       QualType T = Arg->getType();
4683*67e74705SXin Li 
4684*67e74705SXin Li       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
4685*67e74705SXin Li       assert(AT.isValid());
4686*67e74705SXin Li 
4687*67e74705SXin Li       if (!AT.matchesType(S.Context, T)) {
4688*67e74705SXin Li         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
4689*67e74705SXin Li                                << k << AT.getRepresentativeTypeName(S.Context)
4690*67e74705SXin Li                                << T << Arg->getSourceRange(),
4691*67e74705SXin Li                              getLocationOfByte(Amt.getStart()),
4692*67e74705SXin Li                              /*IsStringLocation*/true,
4693*67e74705SXin Li                              getSpecifierRange(startSpecifier, specifierLen));
4694*67e74705SXin Li         // Don't do any more checking.  We will just emit
4695*67e74705SXin Li         // spurious errors.
4696*67e74705SXin Li         return false;
4697*67e74705SXin Li       }
4698*67e74705SXin Li     }
4699*67e74705SXin Li   }
4700*67e74705SXin Li   return true;
4701*67e74705SXin Li }
4702*67e74705SXin Li 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)4703*67e74705SXin Li void CheckPrintfHandler::HandleInvalidAmount(
4704*67e74705SXin Li                                       const analyze_printf::PrintfSpecifier &FS,
4705*67e74705SXin Li                                       const analyze_printf::OptionalAmount &Amt,
4706*67e74705SXin Li                                       unsigned type,
4707*67e74705SXin Li                                       const char *startSpecifier,
4708*67e74705SXin Li                                       unsigned specifierLen) {
4709*67e74705SXin Li   const analyze_printf::PrintfConversionSpecifier &CS =
4710*67e74705SXin Li     FS.getConversionSpecifier();
4711*67e74705SXin Li 
4712*67e74705SXin Li   FixItHint fixit =
4713*67e74705SXin Li     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
4714*67e74705SXin Li       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
4715*67e74705SXin Li                                  Amt.getConstantLength()))
4716*67e74705SXin Li       : FixItHint();
4717*67e74705SXin Li 
4718*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
4719*67e74705SXin Li                          << type << CS.toString(),
4720*67e74705SXin Li                        getLocationOfByte(Amt.getStart()),
4721*67e74705SXin Li                        /*IsStringLocation*/true,
4722*67e74705SXin Li                        getSpecifierRange(startSpecifier, specifierLen),
4723*67e74705SXin Li                        fixit);
4724*67e74705SXin Li }
4725*67e74705SXin Li 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)4726*67e74705SXin Li void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
4727*67e74705SXin Li                                     const analyze_printf::OptionalFlag &flag,
4728*67e74705SXin Li                                     const char *startSpecifier,
4729*67e74705SXin Li                                     unsigned specifierLen) {
4730*67e74705SXin Li   // Warn about pointless flag with a fixit removal.
4731*67e74705SXin Li   const analyze_printf::PrintfConversionSpecifier &CS =
4732*67e74705SXin Li     FS.getConversionSpecifier();
4733*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
4734*67e74705SXin Li                          << flag.toString() << CS.toString(),
4735*67e74705SXin Li                        getLocationOfByte(flag.getPosition()),
4736*67e74705SXin Li                        /*IsStringLocation*/true,
4737*67e74705SXin Li                        getSpecifierRange(startSpecifier, specifierLen),
4738*67e74705SXin Li                        FixItHint::CreateRemoval(
4739*67e74705SXin Li                          getSpecifierRange(flag.getPosition(), 1)));
4740*67e74705SXin Li }
4741*67e74705SXin Li 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)4742*67e74705SXin Li void CheckPrintfHandler::HandleIgnoredFlag(
4743*67e74705SXin Li                                 const analyze_printf::PrintfSpecifier &FS,
4744*67e74705SXin Li                                 const analyze_printf::OptionalFlag &ignoredFlag,
4745*67e74705SXin Li                                 const analyze_printf::OptionalFlag &flag,
4746*67e74705SXin Li                                 const char *startSpecifier,
4747*67e74705SXin Li                                 unsigned specifierLen) {
4748*67e74705SXin Li   // Warn about ignored flag with a fixit removal.
4749*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
4750*67e74705SXin Li                          << ignoredFlag.toString() << flag.toString(),
4751*67e74705SXin Li                        getLocationOfByte(ignoredFlag.getPosition()),
4752*67e74705SXin Li                        /*IsStringLocation*/true,
4753*67e74705SXin Li                        getSpecifierRange(startSpecifier, specifierLen),
4754*67e74705SXin Li                        FixItHint::CreateRemoval(
4755*67e74705SXin Li                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
4756*67e74705SXin Li }
4757*67e74705SXin Li 
4758*67e74705SXin Li //  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
4759*67e74705SXin Li //                            bool IsStringLocation, Range StringRange,
4760*67e74705SXin Li //                            ArrayRef<FixItHint> Fixit = None);
4761*67e74705SXin Li 
HandleEmptyObjCModifierFlag(const char * startFlag,unsigned flagLen)4762*67e74705SXin Li void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
4763*67e74705SXin Li                                                      unsigned flagLen) {
4764*67e74705SXin Li   // Warn about an empty flag.
4765*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
4766*67e74705SXin Li                        getLocationOfByte(startFlag),
4767*67e74705SXin Li                        /*IsStringLocation*/true,
4768*67e74705SXin Li                        getSpecifierRange(startFlag, flagLen));
4769*67e74705SXin Li }
4770*67e74705SXin Li 
HandleInvalidObjCModifierFlag(const char * startFlag,unsigned flagLen)4771*67e74705SXin Li void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
4772*67e74705SXin Li                                                        unsigned flagLen) {
4773*67e74705SXin Li   // Warn about an invalid flag.
4774*67e74705SXin Li   auto Range = getSpecifierRange(startFlag, flagLen);
4775*67e74705SXin Li   StringRef flag(startFlag, flagLen);
4776*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
4777*67e74705SXin Li                       getLocationOfByte(startFlag),
4778*67e74705SXin Li                       /*IsStringLocation*/true,
4779*67e74705SXin Li                       Range, FixItHint::CreateRemoval(Range));
4780*67e74705SXin Li }
4781*67e74705SXin Li 
HandleObjCFlagsWithNonObjCConversion(const char * flagsStart,const char * flagsEnd,const char * conversionPosition)4782*67e74705SXin Li void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
4783*67e74705SXin Li     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
4784*67e74705SXin Li     // Warn about using '[...]' without a '@' conversion.
4785*67e74705SXin Li     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
4786*67e74705SXin Li     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
4787*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
4788*67e74705SXin Li                          getLocationOfByte(conversionPosition),
4789*67e74705SXin Li                          /*IsStringLocation*/true,
4790*67e74705SXin Li                          Range, FixItHint::CreateRemoval(Range));
4791*67e74705SXin Li }
4792*67e74705SXin Li 
4793*67e74705SXin Li // Determines if the specified is a C++ class or struct containing
4794*67e74705SXin Li // a member with the specified name and kind (e.g. a CXXMethodDecl named
4795*67e74705SXin Li // "c_str()").
4796*67e74705SXin Li template<typename MemberKind>
4797*67e74705SXin Li static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)4798*67e74705SXin Li CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
4799*67e74705SXin Li   const RecordType *RT = Ty->getAs<RecordType>();
4800*67e74705SXin Li   llvm::SmallPtrSet<MemberKind*, 1> Results;
4801*67e74705SXin Li 
4802*67e74705SXin Li   if (!RT)
4803*67e74705SXin Li     return Results;
4804*67e74705SXin Li   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
4805*67e74705SXin Li   if (!RD || !RD->getDefinition())
4806*67e74705SXin Li     return Results;
4807*67e74705SXin Li 
4808*67e74705SXin Li   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
4809*67e74705SXin Li                  Sema::LookupMemberName);
4810*67e74705SXin Li   R.suppressDiagnostics();
4811*67e74705SXin Li 
4812*67e74705SXin Li   // We just need to include all members of the right kind turned up by the
4813*67e74705SXin Li   // filter, at this point.
4814*67e74705SXin Li   if (S.LookupQualifiedName(R, RT->getDecl()))
4815*67e74705SXin Li     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4816*67e74705SXin Li       NamedDecl *decl = (*I)->getUnderlyingDecl();
4817*67e74705SXin Li       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
4818*67e74705SXin Li         Results.insert(FK);
4819*67e74705SXin Li     }
4820*67e74705SXin Li   return Results;
4821*67e74705SXin Li }
4822*67e74705SXin Li 
4823*67e74705SXin Li /// Check if we could call '.c_str()' on an object.
4824*67e74705SXin Li ///
4825*67e74705SXin Li /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
4826*67e74705SXin Li /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)4827*67e74705SXin Li bool Sema::hasCStrMethod(const Expr *E) {
4828*67e74705SXin Li   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
4829*67e74705SXin Li   MethodSet Results =
4830*67e74705SXin Li       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
4831*67e74705SXin Li   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
4832*67e74705SXin Li        MI != ME; ++MI)
4833*67e74705SXin Li     if ((*MI)->getMinRequiredArguments() == 0)
4834*67e74705SXin Li       return true;
4835*67e74705SXin Li   return false;
4836*67e74705SXin Li }
4837*67e74705SXin Li 
4838*67e74705SXin Li // Check if a (w)string was passed when a (w)char* was needed, and offer a
4839*67e74705SXin Li // better diagnostic if so. AT is assumed to be valid.
4840*67e74705SXin Li // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)4841*67e74705SXin Li bool CheckPrintfHandler::checkForCStrMembers(
4842*67e74705SXin Li     const analyze_printf::ArgType &AT, const Expr *E) {
4843*67e74705SXin Li   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
4844*67e74705SXin Li 
4845*67e74705SXin Li   MethodSet Results =
4846*67e74705SXin Li       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
4847*67e74705SXin Li 
4848*67e74705SXin Li   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
4849*67e74705SXin Li        MI != ME; ++MI) {
4850*67e74705SXin Li     const CXXMethodDecl *Method = *MI;
4851*67e74705SXin Li     if (Method->getMinRequiredArguments() == 0 &&
4852*67e74705SXin Li         AT.matchesType(S.Context, Method->getReturnType())) {
4853*67e74705SXin Li       // FIXME: Suggest parens if the expression needs them.
4854*67e74705SXin Li       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
4855*67e74705SXin Li       S.Diag(E->getLocStart(), diag::note_printf_c_str)
4856*67e74705SXin Li           << "c_str()"
4857*67e74705SXin Li           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
4858*67e74705SXin Li       return true;
4859*67e74705SXin Li     }
4860*67e74705SXin Li   }
4861*67e74705SXin Li 
4862*67e74705SXin Li   return false;
4863*67e74705SXin Li }
4864*67e74705SXin Li 
4865*67e74705SXin Li bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4866*67e74705SXin Li CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
4867*67e74705SXin Li                                             &FS,
4868*67e74705SXin Li                                           const char *startSpecifier,
4869*67e74705SXin Li                                           unsigned specifierLen) {
4870*67e74705SXin Li   using namespace analyze_format_string;
4871*67e74705SXin Li   using namespace analyze_printf;
4872*67e74705SXin Li   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
4873*67e74705SXin Li 
4874*67e74705SXin Li   if (FS.consumesDataArgument()) {
4875*67e74705SXin Li     if (atFirstArg) {
4876*67e74705SXin Li         atFirstArg = false;
4877*67e74705SXin Li         usesPositionalArgs = FS.usesPositionalArg();
4878*67e74705SXin Li     }
4879*67e74705SXin Li     else if (usesPositionalArgs != FS.usesPositionalArg()) {
4880*67e74705SXin Li       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
4881*67e74705SXin Li                                         startSpecifier, specifierLen);
4882*67e74705SXin Li       return false;
4883*67e74705SXin Li     }
4884*67e74705SXin Li   }
4885*67e74705SXin Li 
4886*67e74705SXin Li   // First check if the field width, precision, and conversion specifier
4887*67e74705SXin Li   // have matching data arguments.
4888*67e74705SXin Li   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
4889*67e74705SXin Li                     startSpecifier, specifierLen)) {
4890*67e74705SXin Li     return false;
4891*67e74705SXin Li   }
4892*67e74705SXin Li 
4893*67e74705SXin Li   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
4894*67e74705SXin Li                     startSpecifier, specifierLen)) {
4895*67e74705SXin Li     return false;
4896*67e74705SXin Li   }
4897*67e74705SXin Li 
4898*67e74705SXin Li   if (!CS.consumesDataArgument()) {
4899*67e74705SXin Li     // FIXME: Technically specifying a precision or field width here
4900*67e74705SXin Li     // makes no sense.  Worth issuing a warning at some point.
4901*67e74705SXin Li     return true;
4902*67e74705SXin Li   }
4903*67e74705SXin Li 
4904*67e74705SXin Li   // Consume the argument.
4905*67e74705SXin Li   unsigned argIndex = FS.getArgIndex();
4906*67e74705SXin Li   if (argIndex < NumDataArgs) {
4907*67e74705SXin Li     // The check to see if the argIndex is valid will come later.
4908*67e74705SXin Li     // We set the bit here because we may exit early from this
4909*67e74705SXin Li     // function if we encounter some other error.
4910*67e74705SXin Li     CoveredArgs.set(argIndex);
4911*67e74705SXin Li   }
4912*67e74705SXin Li 
4913*67e74705SXin Li   // FreeBSD kernel extensions.
4914*67e74705SXin Li   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
4915*67e74705SXin Li       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
4916*67e74705SXin Li     // We need at least two arguments.
4917*67e74705SXin Li     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
4918*67e74705SXin Li       return false;
4919*67e74705SXin Li 
4920*67e74705SXin Li     // Claim the second argument.
4921*67e74705SXin Li     CoveredArgs.set(argIndex + 1);
4922*67e74705SXin Li 
4923*67e74705SXin Li     // Type check the first argument (int for %b, pointer for %D)
4924*67e74705SXin Li     const Expr *Ex = getDataArg(argIndex);
4925*67e74705SXin Li     const analyze_printf::ArgType &AT =
4926*67e74705SXin Li       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
4927*67e74705SXin Li         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
4928*67e74705SXin Li     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
4929*67e74705SXin Li       EmitFormatDiagnostic(
4930*67e74705SXin Li         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4931*67e74705SXin Li         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
4932*67e74705SXin Li         << false << Ex->getSourceRange(),
4933*67e74705SXin Li         Ex->getLocStart(), /*IsStringLocation*/false,
4934*67e74705SXin Li         getSpecifierRange(startSpecifier, specifierLen));
4935*67e74705SXin Li 
4936*67e74705SXin Li     // Type check the second argument (char * for both %b and %D)
4937*67e74705SXin Li     Ex = getDataArg(argIndex + 1);
4938*67e74705SXin Li     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
4939*67e74705SXin Li     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
4940*67e74705SXin Li       EmitFormatDiagnostic(
4941*67e74705SXin Li         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
4942*67e74705SXin Li         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
4943*67e74705SXin Li         << false << Ex->getSourceRange(),
4944*67e74705SXin Li         Ex->getLocStart(), /*IsStringLocation*/false,
4945*67e74705SXin Li         getSpecifierRange(startSpecifier, specifierLen));
4946*67e74705SXin Li 
4947*67e74705SXin Li      return true;
4948*67e74705SXin Li   }
4949*67e74705SXin Li 
4950*67e74705SXin Li   // Check for using an Objective-C specific conversion specifier
4951*67e74705SXin Li   // in a non-ObjC literal.
4952*67e74705SXin Li   if (!ObjCContext && CS.isObjCArg()) {
4953*67e74705SXin Li     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
4954*67e74705SXin Li                                                   specifierLen);
4955*67e74705SXin Li   }
4956*67e74705SXin Li 
4957*67e74705SXin Li   // Check for invalid use of field width
4958*67e74705SXin Li   if (!FS.hasValidFieldWidth()) {
4959*67e74705SXin Li     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
4960*67e74705SXin Li         startSpecifier, specifierLen);
4961*67e74705SXin Li   }
4962*67e74705SXin Li 
4963*67e74705SXin Li   // Check for invalid use of precision
4964*67e74705SXin Li   if (!FS.hasValidPrecision()) {
4965*67e74705SXin Li     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
4966*67e74705SXin Li         startSpecifier, specifierLen);
4967*67e74705SXin Li   }
4968*67e74705SXin Li 
4969*67e74705SXin Li   // Check each flag does not conflict with any other component.
4970*67e74705SXin Li   if (!FS.hasValidThousandsGroupingPrefix())
4971*67e74705SXin Li     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
4972*67e74705SXin Li   if (!FS.hasValidLeadingZeros())
4973*67e74705SXin Li     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
4974*67e74705SXin Li   if (!FS.hasValidPlusPrefix())
4975*67e74705SXin Li     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
4976*67e74705SXin Li   if (!FS.hasValidSpacePrefix())
4977*67e74705SXin Li     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
4978*67e74705SXin Li   if (!FS.hasValidAlternativeForm())
4979*67e74705SXin Li     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
4980*67e74705SXin Li   if (!FS.hasValidLeftJustified())
4981*67e74705SXin Li     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
4982*67e74705SXin Li 
4983*67e74705SXin Li   // Check that flags are not ignored by another flag
4984*67e74705SXin Li   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
4985*67e74705SXin Li     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
4986*67e74705SXin Li         startSpecifier, specifierLen);
4987*67e74705SXin Li   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
4988*67e74705SXin Li     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
4989*67e74705SXin Li             startSpecifier, specifierLen);
4990*67e74705SXin Li 
4991*67e74705SXin Li   // Check the length modifier is valid with the given conversion specifier.
4992*67e74705SXin Li   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4993*67e74705SXin Li     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4994*67e74705SXin Li                                 diag::warn_format_nonsensical_length);
4995*67e74705SXin Li   else if (!FS.hasStandardLengthModifier())
4996*67e74705SXin Li     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4997*67e74705SXin Li   else if (!FS.hasStandardLengthConversionCombination())
4998*67e74705SXin Li     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4999*67e74705SXin Li                                 diag::warn_format_non_standard_conversion_spec);
5000*67e74705SXin Li 
5001*67e74705SXin Li   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
5002*67e74705SXin Li     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
5003*67e74705SXin Li 
5004*67e74705SXin Li   // The remaining checks depend on the data arguments.
5005*67e74705SXin Li   if (HasVAListArg)
5006*67e74705SXin Li     return true;
5007*67e74705SXin Li 
5008*67e74705SXin Li   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
5009*67e74705SXin Li     return false;
5010*67e74705SXin Li 
5011*67e74705SXin Li   const Expr *Arg = getDataArg(argIndex);
5012*67e74705SXin Li   if (!Arg)
5013*67e74705SXin Li     return true;
5014*67e74705SXin Li 
5015*67e74705SXin Li   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
5016*67e74705SXin Li }
5017*67e74705SXin Li 
requiresParensToAddCast(const Expr * E)5018*67e74705SXin Li static bool requiresParensToAddCast(const Expr *E) {
5019*67e74705SXin Li   // FIXME: We should have a general way to reason about operator
5020*67e74705SXin Li   // precedence and whether parens are actually needed here.
5021*67e74705SXin Li   // Take care of a few common cases where they aren't.
5022*67e74705SXin Li   const Expr *Inside = E->IgnoreImpCasts();
5023*67e74705SXin Li   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
5024*67e74705SXin Li     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
5025*67e74705SXin Li 
5026*67e74705SXin Li   switch (Inside->getStmtClass()) {
5027*67e74705SXin Li   case Stmt::ArraySubscriptExprClass:
5028*67e74705SXin Li   case Stmt::CallExprClass:
5029*67e74705SXin Li   case Stmt::CharacterLiteralClass:
5030*67e74705SXin Li   case Stmt::CXXBoolLiteralExprClass:
5031*67e74705SXin Li   case Stmt::DeclRefExprClass:
5032*67e74705SXin Li   case Stmt::FloatingLiteralClass:
5033*67e74705SXin Li   case Stmt::IntegerLiteralClass:
5034*67e74705SXin Li   case Stmt::MemberExprClass:
5035*67e74705SXin Li   case Stmt::ObjCArrayLiteralClass:
5036*67e74705SXin Li   case Stmt::ObjCBoolLiteralExprClass:
5037*67e74705SXin Li   case Stmt::ObjCBoxedExprClass:
5038*67e74705SXin Li   case Stmt::ObjCDictionaryLiteralClass:
5039*67e74705SXin Li   case Stmt::ObjCEncodeExprClass:
5040*67e74705SXin Li   case Stmt::ObjCIvarRefExprClass:
5041*67e74705SXin Li   case Stmt::ObjCMessageExprClass:
5042*67e74705SXin Li   case Stmt::ObjCPropertyRefExprClass:
5043*67e74705SXin Li   case Stmt::ObjCStringLiteralClass:
5044*67e74705SXin Li   case Stmt::ObjCSubscriptRefExprClass:
5045*67e74705SXin Li   case Stmt::ParenExprClass:
5046*67e74705SXin Li   case Stmt::StringLiteralClass:
5047*67e74705SXin Li   case Stmt::UnaryOperatorClass:
5048*67e74705SXin Li     return false;
5049*67e74705SXin Li   default:
5050*67e74705SXin Li     return true;
5051*67e74705SXin Li   }
5052*67e74705SXin Li }
5053*67e74705SXin Li 
5054*67e74705SXin Li static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)5055*67e74705SXin Li shouldNotPrintDirectly(const ASTContext &Context,
5056*67e74705SXin Li                        QualType IntendedTy,
5057*67e74705SXin Li                        const Expr *E) {
5058*67e74705SXin Li   // Use a 'while' to peel off layers of typedefs.
5059*67e74705SXin Li   QualType TyTy = IntendedTy;
5060*67e74705SXin Li   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
5061*67e74705SXin Li     StringRef Name = UserTy->getDecl()->getName();
5062*67e74705SXin Li     QualType CastTy = llvm::StringSwitch<QualType>(Name)
5063*67e74705SXin Li       .Case("NSInteger", Context.LongTy)
5064*67e74705SXin Li       .Case("NSUInteger", Context.UnsignedLongTy)
5065*67e74705SXin Li       .Case("SInt32", Context.IntTy)
5066*67e74705SXin Li       .Case("UInt32", Context.UnsignedIntTy)
5067*67e74705SXin Li       .Default(QualType());
5068*67e74705SXin Li 
5069*67e74705SXin Li     if (!CastTy.isNull())
5070*67e74705SXin Li       return std::make_pair(CastTy, Name);
5071*67e74705SXin Li 
5072*67e74705SXin Li     TyTy = UserTy->desugar();
5073*67e74705SXin Li   }
5074*67e74705SXin Li 
5075*67e74705SXin Li   // Strip parens if necessary.
5076*67e74705SXin Li   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
5077*67e74705SXin Li     return shouldNotPrintDirectly(Context,
5078*67e74705SXin Li                                   PE->getSubExpr()->getType(),
5079*67e74705SXin Li                                   PE->getSubExpr());
5080*67e74705SXin Li 
5081*67e74705SXin Li   // If this is a conditional expression, then its result type is constructed
5082*67e74705SXin Li   // via usual arithmetic conversions and thus there might be no necessary
5083*67e74705SXin Li   // typedef sugar there.  Recurse to operands to check for NSInteger &
5084*67e74705SXin Li   // Co. usage condition.
5085*67e74705SXin Li   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5086*67e74705SXin Li     QualType TrueTy, FalseTy;
5087*67e74705SXin Li     StringRef TrueName, FalseName;
5088*67e74705SXin Li 
5089*67e74705SXin Li     std::tie(TrueTy, TrueName) =
5090*67e74705SXin Li       shouldNotPrintDirectly(Context,
5091*67e74705SXin Li                              CO->getTrueExpr()->getType(),
5092*67e74705SXin Li                              CO->getTrueExpr());
5093*67e74705SXin Li     std::tie(FalseTy, FalseName) =
5094*67e74705SXin Li       shouldNotPrintDirectly(Context,
5095*67e74705SXin Li                              CO->getFalseExpr()->getType(),
5096*67e74705SXin Li                              CO->getFalseExpr());
5097*67e74705SXin Li 
5098*67e74705SXin Li     if (TrueTy == FalseTy)
5099*67e74705SXin Li       return std::make_pair(TrueTy, TrueName);
5100*67e74705SXin Li     else if (TrueTy.isNull())
5101*67e74705SXin Li       return std::make_pair(FalseTy, FalseName);
5102*67e74705SXin Li     else if (FalseTy.isNull())
5103*67e74705SXin Li       return std::make_pair(TrueTy, TrueName);
5104*67e74705SXin Li   }
5105*67e74705SXin Li 
5106*67e74705SXin Li   return std::make_pair(QualType(), StringRef());
5107*67e74705SXin Li }
5108*67e74705SXin Li 
5109*67e74705SXin Li bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)5110*67e74705SXin Li CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
5111*67e74705SXin Li                                     const char *StartSpecifier,
5112*67e74705SXin Li                                     unsigned SpecifierLen,
5113*67e74705SXin Li                                     const Expr *E) {
5114*67e74705SXin Li   using namespace analyze_format_string;
5115*67e74705SXin Li   using namespace analyze_printf;
5116*67e74705SXin Li   // Now type check the data expression that matches the
5117*67e74705SXin Li   // format specifier.
5118*67e74705SXin Li   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
5119*67e74705SXin Li                                                     ObjCContext);
5120*67e74705SXin Li   if (!AT.isValid())
5121*67e74705SXin Li     return true;
5122*67e74705SXin Li 
5123*67e74705SXin Li   QualType ExprTy = E->getType();
5124*67e74705SXin Li   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
5125*67e74705SXin Li     ExprTy = TET->getUnderlyingExpr()->getType();
5126*67e74705SXin Li   }
5127*67e74705SXin Li 
5128*67e74705SXin Li   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
5129*67e74705SXin Li 
5130*67e74705SXin Li   if (match == analyze_printf::ArgType::Match) {
5131*67e74705SXin Li     return true;
5132*67e74705SXin Li   }
5133*67e74705SXin Li 
5134*67e74705SXin Li   // Look through argument promotions for our error message's reported type.
5135*67e74705SXin Li   // This includes the integral and floating promotions, but excludes array
5136*67e74705SXin Li   // and function pointer decay; seeing that an argument intended to be a
5137*67e74705SXin Li   // string has type 'char [6]' is probably more confusing than 'char *'.
5138*67e74705SXin Li   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5139*67e74705SXin Li     if (ICE->getCastKind() == CK_IntegralCast ||
5140*67e74705SXin Li         ICE->getCastKind() == CK_FloatingCast) {
5141*67e74705SXin Li       E = ICE->getSubExpr();
5142*67e74705SXin Li       ExprTy = E->getType();
5143*67e74705SXin Li 
5144*67e74705SXin Li       // Check if we didn't match because of an implicit cast from a 'char'
5145*67e74705SXin Li       // or 'short' to an 'int'.  This is done because printf is a varargs
5146*67e74705SXin Li       // function.
5147*67e74705SXin Li       if (ICE->getType() == S.Context.IntTy ||
5148*67e74705SXin Li           ICE->getType() == S.Context.UnsignedIntTy) {
5149*67e74705SXin Li         // All further checking is done on the subexpression.
5150*67e74705SXin Li         if (AT.matchesType(S.Context, ExprTy))
5151*67e74705SXin Li           return true;
5152*67e74705SXin Li       }
5153*67e74705SXin Li     }
5154*67e74705SXin Li   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
5155*67e74705SXin Li     // Special case for 'a', which has type 'int' in C.
5156*67e74705SXin Li     // Note, however, that we do /not/ want to treat multibyte constants like
5157*67e74705SXin Li     // 'MooV' as characters! This form is deprecated but still exists.
5158*67e74705SXin Li     if (ExprTy == S.Context.IntTy)
5159*67e74705SXin Li       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
5160*67e74705SXin Li         ExprTy = S.Context.CharTy;
5161*67e74705SXin Li   }
5162*67e74705SXin Li 
5163*67e74705SXin Li   // Look through enums to their underlying type.
5164*67e74705SXin Li   bool IsEnum = false;
5165*67e74705SXin Li   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
5166*67e74705SXin Li     ExprTy = EnumTy->getDecl()->getIntegerType();
5167*67e74705SXin Li     IsEnum = true;
5168*67e74705SXin Li   }
5169*67e74705SXin Li 
5170*67e74705SXin Li   // %C in an Objective-C context prints a unichar, not a wchar_t.
5171*67e74705SXin Li   // If the argument is an integer of some kind, believe the %C and suggest
5172*67e74705SXin Li   // a cast instead of changing the conversion specifier.
5173*67e74705SXin Li   QualType IntendedTy = ExprTy;
5174*67e74705SXin Li   if (ObjCContext &&
5175*67e74705SXin Li       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
5176*67e74705SXin Li     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
5177*67e74705SXin Li         !ExprTy->isCharType()) {
5178*67e74705SXin Li       // 'unichar' is defined as a typedef of unsigned short, but we should
5179*67e74705SXin Li       // prefer using the typedef if it is visible.
5180*67e74705SXin Li       IntendedTy = S.Context.UnsignedShortTy;
5181*67e74705SXin Li 
5182*67e74705SXin Li       // While we are here, check if the value is an IntegerLiteral that happens
5183*67e74705SXin Li       // to be within the valid range.
5184*67e74705SXin Li       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
5185*67e74705SXin Li         const llvm::APInt &V = IL->getValue();
5186*67e74705SXin Li         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
5187*67e74705SXin Li           return true;
5188*67e74705SXin Li       }
5189*67e74705SXin Li 
5190*67e74705SXin Li       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
5191*67e74705SXin Li                           Sema::LookupOrdinaryName);
5192*67e74705SXin Li       if (S.LookupName(Result, S.getCurScope())) {
5193*67e74705SXin Li         NamedDecl *ND = Result.getFoundDecl();
5194*67e74705SXin Li         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
5195*67e74705SXin Li           if (TD->getUnderlyingType() == IntendedTy)
5196*67e74705SXin Li             IntendedTy = S.Context.getTypedefType(TD);
5197*67e74705SXin Li       }
5198*67e74705SXin Li     }
5199*67e74705SXin Li   }
5200*67e74705SXin Li 
5201*67e74705SXin Li   // Special-case some of Darwin's platform-independence types by suggesting
5202*67e74705SXin Li   // casts to primitive types that are known to be large enough.
5203*67e74705SXin Li   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
5204*67e74705SXin Li   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
5205*67e74705SXin Li     QualType CastTy;
5206*67e74705SXin Li     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
5207*67e74705SXin Li     if (!CastTy.isNull()) {
5208*67e74705SXin Li       IntendedTy = CastTy;
5209*67e74705SXin Li       ShouldNotPrintDirectly = true;
5210*67e74705SXin Li     }
5211*67e74705SXin Li   }
5212*67e74705SXin Li 
5213*67e74705SXin Li   // We may be able to offer a FixItHint if it is a supported type.
5214*67e74705SXin Li   PrintfSpecifier fixedFS = FS;
5215*67e74705SXin Li   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
5216*67e74705SXin Li                                  S.Context, ObjCContext);
5217*67e74705SXin Li 
5218*67e74705SXin Li   if (success) {
5219*67e74705SXin Li     // Get the fix string from the fixed format specifier
5220*67e74705SXin Li     SmallString<16> buf;
5221*67e74705SXin Li     llvm::raw_svector_ostream os(buf);
5222*67e74705SXin Li     fixedFS.toString(os);
5223*67e74705SXin Li 
5224*67e74705SXin Li     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
5225*67e74705SXin Li 
5226*67e74705SXin Li     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
5227*67e74705SXin Li       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
5228*67e74705SXin Li       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
5229*67e74705SXin Li         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
5230*67e74705SXin Li       }
5231*67e74705SXin Li       // In this case, the specifier is wrong and should be changed to match
5232*67e74705SXin Li       // the argument.
5233*67e74705SXin Li       EmitFormatDiagnostic(S.PDiag(diag)
5234*67e74705SXin Li                                << AT.getRepresentativeTypeName(S.Context)
5235*67e74705SXin Li                                << IntendedTy << IsEnum << E->getSourceRange(),
5236*67e74705SXin Li                            E->getLocStart(),
5237*67e74705SXin Li                            /*IsStringLocation*/ false, SpecRange,
5238*67e74705SXin Li                            FixItHint::CreateReplacement(SpecRange, os.str()));
5239*67e74705SXin Li     } else {
5240*67e74705SXin Li       // The canonical type for formatting this value is different from the
5241*67e74705SXin Li       // actual type of the expression. (This occurs, for example, with Darwin's
5242*67e74705SXin Li       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
5243*67e74705SXin Li       // should be printed as 'long' for 64-bit compatibility.)
5244*67e74705SXin Li       // Rather than emitting a normal format/argument mismatch, we want to
5245*67e74705SXin Li       // add a cast to the recommended type (and correct the format string
5246*67e74705SXin Li       // if necessary).
5247*67e74705SXin Li       SmallString<16> CastBuf;
5248*67e74705SXin Li       llvm::raw_svector_ostream CastFix(CastBuf);
5249*67e74705SXin Li       CastFix << "(";
5250*67e74705SXin Li       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
5251*67e74705SXin Li       CastFix << ")";
5252*67e74705SXin Li 
5253*67e74705SXin Li       SmallVector<FixItHint,4> Hints;
5254*67e74705SXin Li       if (!AT.matchesType(S.Context, IntendedTy))
5255*67e74705SXin Li         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
5256*67e74705SXin Li 
5257*67e74705SXin Li       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
5258*67e74705SXin Li         // If there's already a cast present, just replace it.
5259*67e74705SXin Li         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
5260*67e74705SXin Li         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
5261*67e74705SXin Li 
5262*67e74705SXin Li       } else if (!requiresParensToAddCast(E)) {
5263*67e74705SXin Li         // If the expression has high enough precedence,
5264*67e74705SXin Li         // just write the C-style cast.
5265*67e74705SXin Li         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
5266*67e74705SXin Li                                                    CastFix.str()));
5267*67e74705SXin Li       } else {
5268*67e74705SXin Li         // Otherwise, add parens around the expression as well as the cast.
5269*67e74705SXin Li         CastFix << "(";
5270*67e74705SXin Li         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
5271*67e74705SXin Li                                                    CastFix.str()));
5272*67e74705SXin Li 
5273*67e74705SXin Li         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
5274*67e74705SXin Li         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
5275*67e74705SXin Li       }
5276*67e74705SXin Li 
5277*67e74705SXin Li       if (ShouldNotPrintDirectly) {
5278*67e74705SXin Li         // The expression has a type that should not be printed directly.
5279*67e74705SXin Li         // We extract the name from the typedef because we don't want to show
5280*67e74705SXin Li         // the underlying type in the diagnostic.
5281*67e74705SXin Li         StringRef Name;
5282*67e74705SXin Li         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
5283*67e74705SXin Li           Name = TypedefTy->getDecl()->getName();
5284*67e74705SXin Li         else
5285*67e74705SXin Li           Name = CastTyName;
5286*67e74705SXin Li         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
5287*67e74705SXin Li                                << Name << IntendedTy << IsEnum
5288*67e74705SXin Li                                << E->getSourceRange(),
5289*67e74705SXin Li                              E->getLocStart(), /*IsStringLocation=*/false,
5290*67e74705SXin Li                              SpecRange, Hints);
5291*67e74705SXin Li       } else {
5292*67e74705SXin Li         // In this case, the expression could be printed using a different
5293*67e74705SXin Li         // specifier, but we've decided that the specifier is probably correct
5294*67e74705SXin Li         // and we should cast instead. Just use the normal warning message.
5295*67e74705SXin Li         EmitFormatDiagnostic(
5296*67e74705SXin Li           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
5297*67e74705SXin Li             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
5298*67e74705SXin Li             << E->getSourceRange(),
5299*67e74705SXin Li           E->getLocStart(), /*IsStringLocation*/false,
5300*67e74705SXin Li           SpecRange, Hints);
5301*67e74705SXin Li       }
5302*67e74705SXin Li     }
5303*67e74705SXin Li   } else {
5304*67e74705SXin Li     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
5305*67e74705SXin Li                                                    SpecifierLen);
5306*67e74705SXin Li     // Since the warning for passing non-POD types to variadic functions
5307*67e74705SXin Li     // was deferred until now, we emit a warning for non-POD
5308*67e74705SXin Li     // arguments here.
5309*67e74705SXin Li     switch (S.isValidVarArgType(ExprTy)) {
5310*67e74705SXin Li     case Sema::VAK_Valid:
5311*67e74705SXin Li     case Sema::VAK_ValidInCXX11: {
5312*67e74705SXin Li       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
5313*67e74705SXin Li       if (match == analyze_printf::ArgType::NoMatchPedantic) {
5314*67e74705SXin Li         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
5315*67e74705SXin Li       }
5316*67e74705SXin Li 
5317*67e74705SXin Li       EmitFormatDiagnostic(
5318*67e74705SXin Li           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
5319*67e74705SXin Li                         << IsEnum << CSR << E->getSourceRange(),
5320*67e74705SXin Li           E->getLocStart(), /*IsStringLocation*/ false, CSR);
5321*67e74705SXin Li       break;
5322*67e74705SXin Li     }
5323*67e74705SXin Li     case Sema::VAK_Undefined:
5324*67e74705SXin Li     case Sema::VAK_MSVCUndefined:
5325*67e74705SXin Li       EmitFormatDiagnostic(
5326*67e74705SXin Li         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
5327*67e74705SXin Li           << S.getLangOpts().CPlusPlus11
5328*67e74705SXin Li           << ExprTy
5329*67e74705SXin Li           << CallType
5330*67e74705SXin Li           << AT.getRepresentativeTypeName(S.Context)
5331*67e74705SXin Li           << CSR
5332*67e74705SXin Li           << E->getSourceRange(),
5333*67e74705SXin Li         E->getLocStart(), /*IsStringLocation*/false, CSR);
5334*67e74705SXin Li       checkForCStrMembers(AT, E);
5335*67e74705SXin Li       break;
5336*67e74705SXin Li 
5337*67e74705SXin Li     case Sema::VAK_Invalid:
5338*67e74705SXin Li       if (ExprTy->isObjCObjectType())
5339*67e74705SXin Li         EmitFormatDiagnostic(
5340*67e74705SXin Li           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
5341*67e74705SXin Li             << S.getLangOpts().CPlusPlus11
5342*67e74705SXin Li             << ExprTy
5343*67e74705SXin Li             << CallType
5344*67e74705SXin Li             << AT.getRepresentativeTypeName(S.Context)
5345*67e74705SXin Li             << CSR
5346*67e74705SXin Li             << E->getSourceRange(),
5347*67e74705SXin Li           E->getLocStart(), /*IsStringLocation*/false, CSR);
5348*67e74705SXin Li       else
5349*67e74705SXin Li         // FIXME: If this is an initializer list, suggest removing the braces
5350*67e74705SXin Li         // or inserting a cast to the target type.
5351*67e74705SXin Li         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
5352*67e74705SXin Li           << isa<InitListExpr>(E) << ExprTy << CallType
5353*67e74705SXin Li           << AT.getRepresentativeTypeName(S.Context)
5354*67e74705SXin Li           << E->getSourceRange();
5355*67e74705SXin Li       break;
5356*67e74705SXin Li     }
5357*67e74705SXin Li 
5358*67e74705SXin Li     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
5359*67e74705SXin Li            "format string specifier index out of range");
5360*67e74705SXin Li     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
5361*67e74705SXin Li   }
5362*67e74705SXin Li 
5363*67e74705SXin Li   return true;
5364*67e74705SXin Li }
5365*67e74705SXin Li 
5366*67e74705SXin Li //===--- CHECK: Scanf format string checking ------------------------------===//
5367*67e74705SXin Li 
5368*67e74705SXin Li namespace {
5369*67e74705SXin Li class CheckScanfHandler : public CheckFormatHandler {
5370*67e74705SXin Li public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)5371*67e74705SXin Li   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
5372*67e74705SXin Li                     const Expr *origFormatExpr, unsigned firstDataArg,
5373*67e74705SXin Li                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
5374*67e74705SXin Li                     ArrayRef<const Expr *> Args,
5375*67e74705SXin Li                     unsigned formatIdx, bool inFunctionCall,
5376*67e74705SXin Li                     Sema::VariadicCallType CallType,
5377*67e74705SXin Li                     llvm::SmallBitVector &CheckedVarArgs,
5378*67e74705SXin Li                     UncoveredArgHandler &UncoveredArg)
5379*67e74705SXin Li     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
5380*67e74705SXin Li                          numDataArgs, beg, hasVAListArg,
5381*67e74705SXin Li                          Args, formatIdx, inFunctionCall, CallType,
5382*67e74705SXin Li                          CheckedVarArgs, UncoveredArg)
5383*67e74705SXin Li   {}
5384*67e74705SXin Li 
5385*67e74705SXin Li   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
5386*67e74705SXin Li                             const char *startSpecifier,
5387*67e74705SXin Li                             unsigned specifierLen) override;
5388*67e74705SXin Li 
5389*67e74705SXin Li   bool HandleInvalidScanfConversionSpecifier(
5390*67e74705SXin Li           const analyze_scanf::ScanfSpecifier &FS,
5391*67e74705SXin Li           const char *startSpecifier,
5392*67e74705SXin Li           unsigned specifierLen) override;
5393*67e74705SXin Li 
5394*67e74705SXin Li   void HandleIncompleteScanList(const char *start, const char *end) override;
5395*67e74705SXin Li };
5396*67e74705SXin Li } // end anonymous namespace
5397*67e74705SXin Li 
HandleIncompleteScanList(const char * start,const char * end)5398*67e74705SXin Li void CheckScanfHandler::HandleIncompleteScanList(const char *start,
5399*67e74705SXin Li                                                  const char *end) {
5400*67e74705SXin Li   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
5401*67e74705SXin Li                        getLocationOfByte(end), /*IsStringLocation*/true,
5402*67e74705SXin Li                        getSpecifierRange(start, end - start));
5403*67e74705SXin Li }
5404*67e74705SXin Li 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)5405*67e74705SXin Li bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
5406*67e74705SXin Li                                         const analyze_scanf::ScanfSpecifier &FS,
5407*67e74705SXin Li                                         const char *startSpecifier,
5408*67e74705SXin Li                                         unsigned specifierLen) {
5409*67e74705SXin Li 
5410*67e74705SXin Li   const analyze_scanf::ScanfConversionSpecifier &CS =
5411*67e74705SXin Li     FS.getConversionSpecifier();
5412*67e74705SXin Li 
5413*67e74705SXin Li   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
5414*67e74705SXin Li                                           getLocationOfByte(CS.getStart()),
5415*67e74705SXin Li                                           startSpecifier, specifierLen,
5416*67e74705SXin Li                                           CS.getStart(), CS.getLength());
5417*67e74705SXin Li }
5418*67e74705SXin Li 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)5419*67e74705SXin Li bool CheckScanfHandler::HandleScanfSpecifier(
5420*67e74705SXin Li                                        const analyze_scanf::ScanfSpecifier &FS,
5421*67e74705SXin Li                                        const char *startSpecifier,
5422*67e74705SXin Li                                        unsigned specifierLen) {
5423*67e74705SXin Li   using namespace analyze_scanf;
5424*67e74705SXin Li   using namespace analyze_format_string;
5425*67e74705SXin Li 
5426*67e74705SXin Li   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
5427*67e74705SXin Li 
5428*67e74705SXin Li   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
5429*67e74705SXin Li   // be used to decide if we are using positional arguments consistently.
5430*67e74705SXin Li   if (FS.consumesDataArgument()) {
5431*67e74705SXin Li     if (atFirstArg) {
5432*67e74705SXin Li       atFirstArg = false;
5433*67e74705SXin Li       usesPositionalArgs = FS.usesPositionalArg();
5434*67e74705SXin Li     }
5435*67e74705SXin Li     else if (usesPositionalArgs != FS.usesPositionalArg()) {
5436*67e74705SXin Li       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
5437*67e74705SXin Li                                         startSpecifier, specifierLen);
5438*67e74705SXin Li       return false;
5439*67e74705SXin Li     }
5440*67e74705SXin Li   }
5441*67e74705SXin Li 
5442*67e74705SXin Li   // Check if the field with is non-zero.
5443*67e74705SXin Li   const OptionalAmount &Amt = FS.getFieldWidth();
5444*67e74705SXin Li   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
5445*67e74705SXin Li     if (Amt.getConstantAmount() == 0) {
5446*67e74705SXin Li       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
5447*67e74705SXin Li                                                    Amt.getConstantLength());
5448*67e74705SXin Li       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
5449*67e74705SXin Li                            getLocationOfByte(Amt.getStart()),
5450*67e74705SXin Li                            /*IsStringLocation*/true, R,
5451*67e74705SXin Li                            FixItHint::CreateRemoval(R));
5452*67e74705SXin Li     }
5453*67e74705SXin Li   }
5454*67e74705SXin Li 
5455*67e74705SXin Li   if (!FS.consumesDataArgument()) {
5456*67e74705SXin Li     // FIXME: Technically specifying a precision or field width here
5457*67e74705SXin Li     // makes no sense.  Worth issuing a warning at some point.
5458*67e74705SXin Li     return true;
5459*67e74705SXin Li   }
5460*67e74705SXin Li 
5461*67e74705SXin Li   // Consume the argument.
5462*67e74705SXin Li   unsigned argIndex = FS.getArgIndex();
5463*67e74705SXin Li   if (argIndex < NumDataArgs) {
5464*67e74705SXin Li       // The check to see if the argIndex is valid will come later.
5465*67e74705SXin Li       // We set the bit here because we may exit early from this
5466*67e74705SXin Li       // function if we encounter some other error.
5467*67e74705SXin Li     CoveredArgs.set(argIndex);
5468*67e74705SXin Li   }
5469*67e74705SXin Li 
5470*67e74705SXin Li   // Check the length modifier is valid with the given conversion specifier.
5471*67e74705SXin Li   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
5472*67e74705SXin Li     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
5473*67e74705SXin Li                                 diag::warn_format_nonsensical_length);
5474*67e74705SXin Li   else if (!FS.hasStandardLengthModifier())
5475*67e74705SXin Li     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
5476*67e74705SXin Li   else if (!FS.hasStandardLengthConversionCombination())
5477*67e74705SXin Li     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
5478*67e74705SXin Li                                 diag::warn_format_non_standard_conversion_spec);
5479*67e74705SXin Li 
5480*67e74705SXin Li   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
5481*67e74705SXin Li     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
5482*67e74705SXin Li 
5483*67e74705SXin Li   // The remaining checks depend on the data arguments.
5484*67e74705SXin Li   if (HasVAListArg)
5485*67e74705SXin Li     return true;
5486*67e74705SXin Li 
5487*67e74705SXin Li   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
5488*67e74705SXin Li     return false;
5489*67e74705SXin Li 
5490*67e74705SXin Li   // Check that the argument type matches the format specifier.
5491*67e74705SXin Li   const Expr *Ex = getDataArg(argIndex);
5492*67e74705SXin Li   if (!Ex)
5493*67e74705SXin Li     return true;
5494*67e74705SXin Li 
5495*67e74705SXin Li   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
5496*67e74705SXin Li 
5497*67e74705SXin Li   if (!AT.isValid()) {
5498*67e74705SXin Li     return true;
5499*67e74705SXin Li   }
5500*67e74705SXin Li 
5501*67e74705SXin Li   analyze_format_string::ArgType::MatchKind match =
5502*67e74705SXin Li       AT.matchesType(S.Context, Ex->getType());
5503*67e74705SXin Li   if (match == analyze_format_string::ArgType::Match) {
5504*67e74705SXin Li     return true;
5505*67e74705SXin Li   }
5506*67e74705SXin Li 
5507*67e74705SXin Li   ScanfSpecifier fixedFS = FS;
5508*67e74705SXin Li   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
5509*67e74705SXin Li                                  S.getLangOpts(), S.Context);
5510*67e74705SXin Li 
5511*67e74705SXin Li   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
5512*67e74705SXin Li   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
5513*67e74705SXin Li     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
5514*67e74705SXin Li   }
5515*67e74705SXin Li 
5516*67e74705SXin Li   if (success) {
5517*67e74705SXin Li     // Get the fix string from the fixed format specifier.
5518*67e74705SXin Li     SmallString<128> buf;
5519*67e74705SXin Li     llvm::raw_svector_ostream os(buf);
5520*67e74705SXin Li     fixedFS.toString(os);
5521*67e74705SXin Li 
5522*67e74705SXin Li     EmitFormatDiagnostic(
5523*67e74705SXin Li         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
5524*67e74705SXin Li                       << Ex->getType() << false << Ex->getSourceRange(),
5525*67e74705SXin Li         Ex->getLocStart(),
5526*67e74705SXin Li         /*IsStringLocation*/ false,
5527*67e74705SXin Li         getSpecifierRange(startSpecifier, specifierLen),
5528*67e74705SXin Li         FixItHint::CreateReplacement(
5529*67e74705SXin Li             getSpecifierRange(startSpecifier, specifierLen), os.str()));
5530*67e74705SXin Li   } else {
5531*67e74705SXin Li     EmitFormatDiagnostic(S.PDiag(diag)
5532*67e74705SXin Li                              << AT.getRepresentativeTypeName(S.Context)
5533*67e74705SXin Li                              << Ex->getType() << false << Ex->getSourceRange(),
5534*67e74705SXin Li                          Ex->getLocStart(),
5535*67e74705SXin Li                          /*IsStringLocation*/ false,
5536*67e74705SXin Li                          getSpecifierRange(startSpecifier, specifierLen));
5537*67e74705SXin Li   }
5538*67e74705SXin Li 
5539*67e74705SXin Li   return true;
5540*67e74705SXin Li }
5541*67e74705SXin Li 
CheckFormatString(Sema & S,const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs,UncoveredArgHandler & UncoveredArg)5542*67e74705SXin Li static void CheckFormatString(Sema &S, const StringLiteral *FExpr,
5543*67e74705SXin Li                               const Expr *OrigFormatExpr,
5544*67e74705SXin Li                               ArrayRef<const Expr *> Args,
5545*67e74705SXin Li                               bool HasVAListArg, unsigned format_idx,
5546*67e74705SXin Li                               unsigned firstDataArg,
5547*67e74705SXin Li                               Sema::FormatStringType Type,
5548*67e74705SXin Li                               bool inFunctionCall,
5549*67e74705SXin Li                               Sema::VariadicCallType CallType,
5550*67e74705SXin Li                               llvm::SmallBitVector &CheckedVarArgs,
5551*67e74705SXin Li                               UncoveredArgHandler &UncoveredArg) {
5552*67e74705SXin Li   // CHECK: is the format string a wide literal?
5553*67e74705SXin Li   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
5554*67e74705SXin Li     CheckFormatHandler::EmitFormatDiagnostic(
5555*67e74705SXin Li       S, inFunctionCall, Args[format_idx],
5556*67e74705SXin Li       S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
5557*67e74705SXin Li       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
5558*67e74705SXin Li     return;
5559*67e74705SXin Li   }
5560*67e74705SXin Li 
5561*67e74705SXin Li   // Str - The format string.  NOTE: this is NOT null-terminated!
5562*67e74705SXin Li   StringRef StrRef = FExpr->getString();
5563*67e74705SXin Li   const char *Str = StrRef.data();
5564*67e74705SXin Li   // Account for cases where the string literal is truncated in a declaration.
5565*67e74705SXin Li   const ConstantArrayType *T =
5566*67e74705SXin Li     S.Context.getAsConstantArrayType(FExpr->getType());
5567*67e74705SXin Li   assert(T && "String literal not of constant array type!");
5568*67e74705SXin Li   size_t TypeSize = T->getSize().getZExtValue();
5569*67e74705SXin Li   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
5570*67e74705SXin Li   const unsigned numDataArgs = Args.size() - firstDataArg;
5571*67e74705SXin Li 
5572*67e74705SXin Li   // Emit a warning if the string literal is truncated and does not contain an
5573*67e74705SXin Li   // embedded null character.
5574*67e74705SXin Li   if (TypeSize <= StrRef.size() &&
5575*67e74705SXin Li       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
5576*67e74705SXin Li     CheckFormatHandler::EmitFormatDiagnostic(
5577*67e74705SXin Li         S, inFunctionCall, Args[format_idx],
5578*67e74705SXin Li         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
5579*67e74705SXin Li         FExpr->getLocStart(),
5580*67e74705SXin Li         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
5581*67e74705SXin Li     return;
5582*67e74705SXin Li   }
5583*67e74705SXin Li 
5584*67e74705SXin Li   // CHECK: empty format string?
5585*67e74705SXin Li   if (StrLen == 0 && numDataArgs > 0) {
5586*67e74705SXin Li     CheckFormatHandler::EmitFormatDiagnostic(
5587*67e74705SXin Li       S, inFunctionCall, Args[format_idx],
5588*67e74705SXin Li       S.PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
5589*67e74705SXin Li       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
5590*67e74705SXin Li     return;
5591*67e74705SXin Li   }
5592*67e74705SXin Li 
5593*67e74705SXin Li   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
5594*67e74705SXin Li       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSTrace) {
5595*67e74705SXin Li     CheckPrintfHandler H(S, FExpr, OrigFormatExpr, firstDataArg,
5596*67e74705SXin Li                          numDataArgs, (Type == Sema::FST_NSString ||
5597*67e74705SXin Li                                        Type == Sema::FST_OSTrace),
5598*67e74705SXin Li                          Str, HasVAListArg, Args, format_idx,
5599*67e74705SXin Li                          inFunctionCall, CallType, CheckedVarArgs,
5600*67e74705SXin Li                          UncoveredArg);
5601*67e74705SXin Li 
5602*67e74705SXin Li     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
5603*67e74705SXin Li                                                   S.getLangOpts(),
5604*67e74705SXin Li                                                   S.Context.getTargetInfo(),
5605*67e74705SXin Li                                             Type == Sema::FST_FreeBSDKPrintf))
5606*67e74705SXin Li       H.DoneProcessing();
5607*67e74705SXin Li   } else if (Type == Sema::FST_Scanf) {
5608*67e74705SXin Li     CheckScanfHandler H(S, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
5609*67e74705SXin Li                         Str, HasVAListArg, Args, format_idx,
5610*67e74705SXin Li                         inFunctionCall, CallType, CheckedVarArgs,
5611*67e74705SXin Li                         UncoveredArg);
5612*67e74705SXin Li 
5613*67e74705SXin Li     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
5614*67e74705SXin Li                                                  S.getLangOpts(),
5615*67e74705SXin Li                                                  S.Context.getTargetInfo()))
5616*67e74705SXin Li       H.DoneProcessing();
5617*67e74705SXin Li   } // TODO: handle other formats
5618*67e74705SXin Li }
5619*67e74705SXin Li 
FormatStringHasSArg(const StringLiteral * FExpr)5620*67e74705SXin Li bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
5621*67e74705SXin Li   // Str - The format string.  NOTE: this is NOT null-terminated!
5622*67e74705SXin Li   StringRef StrRef = FExpr->getString();
5623*67e74705SXin Li   const char *Str = StrRef.data();
5624*67e74705SXin Li   // Account for cases where the string literal is truncated in a declaration.
5625*67e74705SXin Li   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
5626*67e74705SXin Li   assert(T && "String literal not of constant array type!");
5627*67e74705SXin Li   size_t TypeSize = T->getSize().getZExtValue();
5628*67e74705SXin Li   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
5629*67e74705SXin Li   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
5630*67e74705SXin Li                                                          getLangOpts(),
5631*67e74705SXin Li                                                          Context.getTargetInfo());
5632*67e74705SXin Li }
5633*67e74705SXin Li 
5634*67e74705SXin Li //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
5635*67e74705SXin Li 
5636*67e74705SXin Li // Returns the related absolute value function that is larger, of 0 if one
5637*67e74705SXin Li // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)5638*67e74705SXin Li static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
5639*67e74705SXin Li   switch (AbsFunction) {
5640*67e74705SXin Li   default:
5641*67e74705SXin Li     return 0;
5642*67e74705SXin Li 
5643*67e74705SXin Li   case Builtin::BI__builtin_abs:
5644*67e74705SXin Li     return Builtin::BI__builtin_labs;
5645*67e74705SXin Li   case Builtin::BI__builtin_labs:
5646*67e74705SXin Li     return Builtin::BI__builtin_llabs;
5647*67e74705SXin Li   case Builtin::BI__builtin_llabs:
5648*67e74705SXin Li     return 0;
5649*67e74705SXin Li 
5650*67e74705SXin Li   case Builtin::BI__builtin_fabsf:
5651*67e74705SXin Li     return Builtin::BI__builtin_fabs;
5652*67e74705SXin Li   case Builtin::BI__builtin_fabs:
5653*67e74705SXin Li     return Builtin::BI__builtin_fabsl;
5654*67e74705SXin Li   case Builtin::BI__builtin_fabsl:
5655*67e74705SXin Li     return 0;
5656*67e74705SXin Li 
5657*67e74705SXin Li   case Builtin::BI__builtin_cabsf:
5658*67e74705SXin Li     return Builtin::BI__builtin_cabs;
5659*67e74705SXin Li   case Builtin::BI__builtin_cabs:
5660*67e74705SXin Li     return Builtin::BI__builtin_cabsl;
5661*67e74705SXin Li   case Builtin::BI__builtin_cabsl:
5662*67e74705SXin Li     return 0;
5663*67e74705SXin Li 
5664*67e74705SXin Li   case Builtin::BIabs:
5665*67e74705SXin Li     return Builtin::BIlabs;
5666*67e74705SXin Li   case Builtin::BIlabs:
5667*67e74705SXin Li     return Builtin::BIllabs;
5668*67e74705SXin Li   case Builtin::BIllabs:
5669*67e74705SXin Li     return 0;
5670*67e74705SXin Li 
5671*67e74705SXin Li   case Builtin::BIfabsf:
5672*67e74705SXin Li     return Builtin::BIfabs;
5673*67e74705SXin Li   case Builtin::BIfabs:
5674*67e74705SXin Li     return Builtin::BIfabsl;
5675*67e74705SXin Li   case Builtin::BIfabsl:
5676*67e74705SXin Li     return 0;
5677*67e74705SXin Li 
5678*67e74705SXin Li   case Builtin::BIcabsf:
5679*67e74705SXin Li    return Builtin::BIcabs;
5680*67e74705SXin Li   case Builtin::BIcabs:
5681*67e74705SXin Li     return Builtin::BIcabsl;
5682*67e74705SXin Li   case Builtin::BIcabsl:
5683*67e74705SXin Li     return 0;
5684*67e74705SXin Li   }
5685*67e74705SXin Li }
5686*67e74705SXin Li 
5687*67e74705SXin Li // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)5688*67e74705SXin Li static QualType getAbsoluteValueArgumentType(ASTContext &Context,
5689*67e74705SXin Li                                              unsigned AbsType) {
5690*67e74705SXin Li   if (AbsType == 0)
5691*67e74705SXin Li     return QualType();
5692*67e74705SXin Li 
5693*67e74705SXin Li   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
5694*67e74705SXin Li   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
5695*67e74705SXin Li   if (Error != ASTContext::GE_None)
5696*67e74705SXin Li     return QualType();
5697*67e74705SXin Li 
5698*67e74705SXin Li   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
5699*67e74705SXin Li   if (!FT)
5700*67e74705SXin Li     return QualType();
5701*67e74705SXin Li 
5702*67e74705SXin Li   if (FT->getNumParams() != 1)
5703*67e74705SXin Li     return QualType();
5704*67e74705SXin Li 
5705*67e74705SXin Li   return FT->getParamType(0);
5706*67e74705SXin Li }
5707*67e74705SXin Li 
5708*67e74705SXin Li // Returns the best absolute value function, or zero, based on type and
5709*67e74705SXin Li // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)5710*67e74705SXin Li static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
5711*67e74705SXin Li                                    unsigned AbsFunctionKind) {
5712*67e74705SXin Li   unsigned BestKind = 0;
5713*67e74705SXin Li   uint64_t ArgSize = Context.getTypeSize(ArgType);
5714*67e74705SXin Li   for (unsigned Kind = AbsFunctionKind; Kind != 0;
5715*67e74705SXin Li        Kind = getLargerAbsoluteValueFunction(Kind)) {
5716*67e74705SXin Li     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
5717*67e74705SXin Li     if (Context.getTypeSize(ParamType) >= ArgSize) {
5718*67e74705SXin Li       if (BestKind == 0)
5719*67e74705SXin Li         BestKind = Kind;
5720*67e74705SXin Li       else if (Context.hasSameType(ParamType, ArgType)) {
5721*67e74705SXin Li         BestKind = Kind;
5722*67e74705SXin Li         break;
5723*67e74705SXin Li       }
5724*67e74705SXin Li     }
5725*67e74705SXin Li   }
5726*67e74705SXin Li   return BestKind;
5727*67e74705SXin Li }
5728*67e74705SXin Li 
5729*67e74705SXin Li enum AbsoluteValueKind {
5730*67e74705SXin Li   AVK_Integer,
5731*67e74705SXin Li   AVK_Floating,
5732*67e74705SXin Li   AVK_Complex
5733*67e74705SXin Li };
5734*67e74705SXin Li 
getAbsoluteValueKind(QualType T)5735*67e74705SXin Li static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
5736*67e74705SXin Li   if (T->isIntegralOrEnumerationType())
5737*67e74705SXin Li     return AVK_Integer;
5738*67e74705SXin Li   if (T->isRealFloatingType())
5739*67e74705SXin Li     return AVK_Floating;
5740*67e74705SXin Li   if (T->isAnyComplexType())
5741*67e74705SXin Li     return AVK_Complex;
5742*67e74705SXin Li 
5743*67e74705SXin Li   llvm_unreachable("Type not integer, floating, or complex");
5744*67e74705SXin Li }
5745*67e74705SXin Li 
5746*67e74705SXin Li // Changes the absolute value function to a different type.  Preserves whether
5747*67e74705SXin Li // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)5748*67e74705SXin Li static unsigned changeAbsFunction(unsigned AbsKind,
5749*67e74705SXin Li                                   AbsoluteValueKind ValueKind) {
5750*67e74705SXin Li   switch (ValueKind) {
5751*67e74705SXin Li   case AVK_Integer:
5752*67e74705SXin Li     switch (AbsKind) {
5753*67e74705SXin Li     default:
5754*67e74705SXin Li       return 0;
5755*67e74705SXin Li     case Builtin::BI__builtin_fabsf:
5756*67e74705SXin Li     case Builtin::BI__builtin_fabs:
5757*67e74705SXin Li     case Builtin::BI__builtin_fabsl:
5758*67e74705SXin Li     case Builtin::BI__builtin_cabsf:
5759*67e74705SXin Li     case Builtin::BI__builtin_cabs:
5760*67e74705SXin Li     case Builtin::BI__builtin_cabsl:
5761*67e74705SXin Li       return Builtin::BI__builtin_abs;
5762*67e74705SXin Li     case Builtin::BIfabsf:
5763*67e74705SXin Li     case Builtin::BIfabs:
5764*67e74705SXin Li     case Builtin::BIfabsl:
5765*67e74705SXin Li     case Builtin::BIcabsf:
5766*67e74705SXin Li     case Builtin::BIcabs:
5767*67e74705SXin Li     case Builtin::BIcabsl:
5768*67e74705SXin Li       return Builtin::BIabs;
5769*67e74705SXin Li     }
5770*67e74705SXin Li   case AVK_Floating:
5771*67e74705SXin Li     switch (AbsKind) {
5772*67e74705SXin Li     default:
5773*67e74705SXin Li       return 0;
5774*67e74705SXin Li     case Builtin::BI__builtin_abs:
5775*67e74705SXin Li     case Builtin::BI__builtin_labs:
5776*67e74705SXin Li     case Builtin::BI__builtin_llabs:
5777*67e74705SXin Li     case Builtin::BI__builtin_cabsf:
5778*67e74705SXin Li     case Builtin::BI__builtin_cabs:
5779*67e74705SXin Li     case Builtin::BI__builtin_cabsl:
5780*67e74705SXin Li       return Builtin::BI__builtin_fabsf;
5781*67e74705SXin Li     case Builtin::BIabs:
5782*67e74705SXin Li     case Builtin::BIlabs:
5783*67e74705SXin Li     case Builtin::BIllabs:
5784*67e74705SXin Li     case Builtin::BIcabsf:
5785*67e74705SXin Li     case Builtin::BIcabs:
5786*67e74705SXin Li     case Builtin::BIcabsl:
5787*67e74705SXin Li       return Builtin::BIfabsf;
5788*67e74705SXin Li     }
5789*67e74705SXin Li   case AVK_Complex:
5790*67e74705SXin Li     switch (AbsKind) {
5791*67e74705SXin Li     default:
5792*67e74705SXin Li       return 0;
5793*67e74705SXin Li     case Builtin::BI__builtin_abs:
5794*67e74705SXin Li     case Builtin::BI__builtin_labs:
5795*67e74705SXin Li     case Builtin::BI__builtin_llabs:
5796*67e74705SXin Li     case Builtin::BI__builtin_fabsf:
5797*67e74705SXin Li     case Builtin::BI__builtin_fabs:
5798*67e74705SXin Li     case Builtin::BI__builtin_fabsl:
5799*67e74705SXin Li       return Builtin::BI__builtin_cabsf;
5800*67e74705SXin Li     case Builtin::BIabs:
5801*67e74705SXin Li     case Builtin::BIlabs:
5802*67e74705SXin Li     case Builtin::BIllabs:
5803*67e74705SXin Li     case Builtin::BIfabsf:
5804*67e74705SXin Li     case Builtin::BIfabs:
5805*67e74705SXin Li     case Builtin::BIfabsl:
5806*67e74705SXin Li       return Builtin::BIcabsf;
5807*67e74705SXin Li     }
5808*67e74705SXin Li   }
5809*67e74705SXin Li   llvm_unreachable("Unable to convert function");
5810*67e74705SXin Li }
5811*67e74705SXin Li 
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)5812*67e74705SXin Li static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
5813*67e74705SXin Li   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
5814*67e74705SXin Li   if (!FnInfo)
5815*67e74705SXin Li     return 0;
5816*67e74705SXin Li 
5817*67e74705SXin Li   switch (FDecl->getBuiltinID()) {
5818*67e74705SXin Li   default:
5819*67e74705SXin Li     return 0;
5820*67e74705SXin Li   case Builtin::BI__builtin_abs:
5821*67e74705SXin Li   case Builtin::BI__builtin_fabs:
5822*67e74705SXin Li   case Builtin::BI__builtin_fabsf:
5823*67e74705SXin Li   case Builtin::BI__builtin_fabsl:
5824*67e74705SXin Li   case Builtin::BI__builtin_labs:
5825*67e74705SXin Li   case Builtin::BI__builtin_llabs:
5826*67e74705SXin Li   case Builtin::BI__builtin_cabs:
5827*67e74705SXin Li   case Builtin::BI__builtin_cabsf:
5828*67e74705SXin Li   case Builtin::BI__builtin_cabsl:
5829*67e74705SXin Li   case Builtin::BIabs:
5830*67e74705SXin Li   case Builtin::BIlabs:
5831*67e74705SXin Li   case Builtin::BIllabs:
5832*67e74705SXin Li   case Builtin::BIfabs:
5833*67e74705SXin Li   case Builtin::BIfabsf:
5834*67e74705SXin Li   case Builtin::BIfabsl:
5835*67e74705SXin Li   case Builtin::BIcabs:
5836*67e74705SXin Li   case Builtin::BIcabsf:
5837*67e74705SXin Li   case Builtin::BIcabsl:
5838*67e74705SXin Li     return FDecl->getBuiltinID();
5839*67e74705SXin Li   }
5840*67e74705SXin Li   llvm_unreachable("Unknown Builtin type");
5841*67e74705SXin Li }
5842*67e74705SXin Li 
5843*67e74705SXin Li // If the replacement is valid, emit a note with replacement function.
5844*67e74705SXin Li // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)5845*67e74705SXin Li static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
5846*67e74705SXin Li                             unsigned AbsKind, QualType ArgType) {
5847*67e74705SXin Li   bool EmitHeaderHint = true;
5848*67e74705SXin Li   const char *HeaderName = nullptr;
5849*67e74705SXin Li   const char *FunctionName = nullptr;
5850*67e74705SXin Li   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
5851*67e74705SXin Li     FunctionName = "std::abs";
5852*67e74705SXin Li     if (ArgType->isIntegralOrEnumerationType()) {
5853*67e74705SXin Li       HeaderName = "cstdlib";
5854*67e74705SXin Li     } else if (ArgType->isRealFloatingType()) {
5855*67e74705SXin Li       HeaderName = "cmath";
5856*67e74705SXin Li     } else {
5857*67e74705SXin Li       llvm_unreachable("Invalid Type");
5858*67e74705SXin Li     }
5859*67e74705SXin Li 
5860*67e74705SXin Li     // Lookup all std::abs
5861*67e74705SXin Li     if (NamespaceDecl *Std = S.getStdNamespace()) {
5862*67e74705SXin Li       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
5863*67e74705SXin Li       R.suppressDiagnostics();
5864*67e74705SXin Li       S.LookupQualifiedName(R, Std);
5865*67e74705SXin Li 
5866*67e74705SXin Li       for (const auto *I : R) {
5867*67e74705SXin Li         const FunctionDecl *FDecl = nullptr;
5868*67e74705SXin Li         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
5869*67e74705SXin Li           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
5870*67e74705SXin Li         } else {
5871*67e74705SXin Li           FDecl = dyn_cast<FunctionDecl>(I);
5872*67e74705SXin Li         }
5873*67e74705SXin Li         if (!FDecl)
5874*67e74705SXin Li           continue;
5875*67e74705SXin Li 
5876*67e74705SXin Li         // Found std::abs(), check that they are the right ones.
5877*67e74705SXin Li         if (FDecl->getNumParams() != 1)
5878*67e74705SXin Li           continue;
5879*67e74705SXin Li 
5880*67e74705SXin Li         // Check that the parameter type can handle the argument.
5881*67e74705SXin Li         QualType ParamType = FDecl->getParamDecl(0)->getType();
5882*67e74705SXin Li         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
5883*67e74705SXin Li             S.Context.getTypeSize(ArgType) <=
5884*67e74705SXin Li                 S.Context.getTypeSize(ParamType)) {
5885*67e74705SXin Li           // Found a function, don't need the header hint.
5886*67e74705SXin Li           EmitHeaderHint = false;
5887*67e74705SXin Li           break;
5888*67e74705SXin Li         }
5889*67e74705SXin Li       }
5890*67e74705SXin Li     }
5891*67e74705SXin Li   } else {
5892*67e74705SXin Li     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
5893*67e74705SXin Li     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
5894*67e74705SXin Li 
5895*67e74705SXin Li     if (HeaderName) {
5896*67e74705SXin Li       DeclarationName DN(&S.Context.Idents.get(FunctionName));
5897*67e74705SXin Li       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
5898*67e74705SXin Li       R.suppressDiagnostics();
5899*67e74705SXin Li       S.LookupName(R, S.getCurScope());
5900*67e74705SXin Li 
5901*67e74705SXin Li       if (R.isSingleResult()) {
5902*67e74705SXin Li         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
5903*67e74705SXin Li         if (FD && FD->getBuiltinID() == AbsKind) {
5904*67e74705SXin Li           EmitHeaderHint = false;
5905*67e74705SXin Li         } else {
5906*67e74705SXin Li           return;
5907*67e74705SXin Li         }
5908*67e74705SXin Li       } else if (!R.empty()) {
5909*67e74705SXin Li         return;
5910*67e74705SXin Li       }
5911*67e74705SXin Li     }
5912*67e74705SXin Li   }
5913*67e74705SXin Li 
5914*67e74705SXin Li   S.Diag(Loc, diag::note_replace_abs_function)
5915*67e74705SXin Li       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
5916*67e74705SXin Li 
5917*67e74705SXin Li   if (!HeaderName)
5918*67e74705SXin Li     return;
5919*67e74705SXin Li 
5920*67e74705SXin Li   if (!EmitHeaderHint)
5921*67e74705SXin Li     return;
5922*67e74705SXin Li 
5923*67e74705SXin Li   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
5924*67e74705SXin Li                                                     << FunctionName;
5925*67e74705SXin Li }
5926*67e74705SXin Li 
IsFunctionStdAbs(const FunctionDecl * FDecl)5927*67e74705SXin Li static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
5928*67e74705SXin Li   if (!FDecl)
5929*67e74705SXin Li     return false;
5930*67e74705SXin Li 
5931*67e74705SXin Li   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
5932*67e74705SXin Li     return false;
5933*67e74705SXin Li 
5934*67e74705SXin Li   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
5935*67e74705SXin Li 
5936*67e74705SXin Li   while (ND && ND->isInlineNamespace()) {
5937*67e74705SXin Li     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
5938*67e74705SXin Li   }
5939*67e74705SXin Li 
5940*67e74705SXin Li   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
5941*67e74705SXin Li     return false;
5942*67e74705SXin Li 
5943*67e74705SXin Li   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
5944*67e74705SXin Li     return false;
5945*67e74705SXin Li 
5946*67e74705SXin Li   return true;
5947*67e74705SXin Li }
5948*67e74705SXin Li 
5949*67e74705SXin Li // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl,IdentifierInfo * FnInfo)5950*67e74705SXin Li void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
5951*67e74705SXin Li                                       const FunctionDecl *FDecl,
5952*67e74705SXin Li                                       IdentifierInfo *FnInfo) {
5953*67e74705SXin Li   if (Call->getNumArgs() != 1)
5954*67e74705SXin Li     return;
5955*67e74705SXin Li 
5956*67e74705SXin Li   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
5957*67e74705SXin Li   bool IsStdAbs = IsFunctionStdAbs(FDecl);
5958*67e74705SXin Li   if (AbsKind == 0 && !IsStdAbs)
5959*67e74705SXin Li     return;
5960*67e74705SXin Li 
5961*67e74705SXin Li   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
5962*67e74705SXin Li   QualType ParamType = Call->getArg(0)->getType();
5963*67e74705SXin Li 
5964*67e74705SXin Li   // Unsigned types cannot be negative.  Suggest removing the absolute value
5965*67e74705SXin Li   // function call.
5966*67e74705SXin Li   if (ArgType->isUnsignedIntegerType()) {
5967*67e74705SXin Li     const char *FunctionName =
5968*67e74705SXin Li         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
5969*67e74705SXin Li     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
5970*67e74705SXin Li     Diag(Call->getExprLoc(), diag::note_remove_abs)
5971*67e74705SXin Li         << FunctionName
5972*67e74705SXin Li         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
5973*67e74705SXin Li     return;
5974*67e74705SXin Li   }
5975*67e74705SXin Li 
5976*67e74705SXin Li   // Taking the absolute value of a pointer is very suspicious, they probably
5977*67e74705SXin Li   // wanted to index into an array, dereference a pointer, call a function, etc.
5978*67e74705SXin Li   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
5979*67e74705SXin Li     unsigned DiagType = 0;
5980*67e74705SXin Li     if (ArgType->isFunctionType())
5981*67e74705SXin Li       DiagType = 1;
5982*67e74705SXin Li     else if (ArgType->isArrayType())
5983*67e74705SXin Li       DiagType = 2;
5984*67e74705SXin Li 
5985*67e74705SXin Li     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
5986*67e74705SXin Li     return;
5987*67e74705SXin Li   }
5988*67e74705SXin Li 
5989*67e74705SXin Li   // std::abs has overloads which prevent most of the absolute value problems
5990*67e74705SXin Li   // from occurring.
5991*67e74705SXin Li   if (IsStdAbs)
5992*67e74705SXin Li     return;
5993*67e74705SXin Li 
5994*67e74705SXin Li   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
5995*67e74705SXin Li   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
5996*67e74705SXin Li 
5997*67e74705SXin Li   // The argument and parameter are the same kind.  Check if they are the right
5998*67e74705SXin Li   // size.
5999*67e74705SXin Li   if (ArgValueKind == ParamValueKind) {
6000*67e74705SXin Li     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
6001*67e74705SXin Li       return;
6002*67e74705SXin Li 
6003*67e74705SXin Li     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
6004*67e74705SXin Li     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
6005*67e74705SXin Li         << FDecl << ArgType << ParamType;
6006*67e74705SXin Li 
6007*67e74705SXin Li     if (NewAbsKind == 0)
6008*67e74705SXin Li       return;
6009*67e74705SXin Li 
6010*67e74705SXin Li     emitReplacement(*this, Call->getExprLoc(),
6011*67e74705SXin Li                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
6012*67e74705SXin Li     return;
6013*67e74705SXin Li   }
6014*67e74705SXin Li 
6015*67e74705SXin Li   // ArgValueKind != ParamValueKind
6016*67e74705SXin Li   // The wrong type of absolute value function was used.  Attempt to find the
6017*67e74705SXin Li   // proper one.
6018*67e74705SXin Li   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
6019*67e74705SXin Li   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
6020*67e74705SXin Li   if (NewAbsKind == 0)
6021*67e74705SXin Li     return;
6022*67e74705SXin Li 
6023*67e74705SXin Li   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
6024*67e74705SXin Li       << FDecl << ParamValueKind << ArgValueKind;
6025*67e74705SXin Li 
6026*67e74705SXin Li   emitReplacement(*this, Call->getExprLoc(),
6027*67e74705SXin Li                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
6028*67e74705SXin Li }
6029*67e74705SXin Li 
6030*67e74705SXin Li //===--- CHECK: Standard memory functions ---------------------------------===//
6031*67e74705SXin Li 
6032*67e74705SXin Li /// \brief Takes the expression passed to the size_t parameter of functions
6033*67e74705SXin Li /// such as memcmp, strncat, etc and warns if it's a comparison.
6034*67e74705SXin Li ///
6035*67e74705SXin Li /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)6036*67e74705SXin Li static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
6037*67e74705SXin Li                                            IdentifierInfo *FnName,
6038*67e74705SXin Li                                            SourceLocation FnLoc,
6039*67e74705SXin Li                                            SourceLocation RParenLoc) {
6040*67e74705SXin Li   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
6041*67e74705SXin Li   if (!Size)
6042*67e74705SXin Li     return false;
6043*67e74705SXin Li 
6044*67e74705SXin Li   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
6045*67e74705SXin Li   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
6046*67e74705SXin Li     return false;
6047*67e74705SXin Li 
6048*67e74705SXin Li   SourceRange SizeRange = Size->getSourceRange();
6049*67e74705SXin Li   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
6050*67e74705SXin Li       << SizeRange << FnName;
6051*67e74705SXin Li   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
6052*67e74705SXin Li       << FnName << FixItHint::CreateInsertion(
6053*67e74705SXin Li                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
6054*67e74705SXin Li       << FixItHint::CreateRemoval(RParenLoc);
6055*67e74705SXin Li   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
6056*67e74705SXin Li       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
6057*67e74705SXin Li       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
6058*67e74705SXin Li                                     ")");
6059*67e74705SXin Li 
6060*67e74705SXin Li   return true;
6061*67e74705SXin Li }
6062*67e74705SXin Li 
6063*67e74705SXin Li /// \brief Determine whether the given type is or contains a dynamic class type
6064*67e74705SXin Li /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)6065*67e74705SXin Li static const CXXRecordDecl *getContainedDynamicClass(QualType T,
6066*67e74705SXin Li                                                      bool &IsContained) {
6067*67e74705SXin Li   // Look through array types while ignoring qualifiers.
6068*67e74705SXin Li   const Type *Ty = T->getBaseElementTypeUnsafe();
6069*67e74705SXin Li   IsContained = false;
6070*67e74705SXin Li 
6071*67e74705SXin Li   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
6072*67e74705SXin Li   RD = RD ? RD->getDefinition() : nullptr;
6073*67e74705SXin Li   if (!RD || RD->isInvalidDecl())
6074*67e74705SXin Li     return nullptr;
6075*67e74705SXin Li 
6076*67e74705SXin Li   if (RD->isDynamicClass())
6077*67e74705SXin Li     return RD;
6078*67e74705SXin Li 
6079*67e74705SXin Li   // Check all the fields.  If any bases were dynamic, the class is dynamic.
6080*67e74705SXin Li   // It's impossible for a class to transitively contain itself by value, so
6081*67e74705SXin Li   // infinite recursion is impossible.
6082*67e74705SXin Li   for (auto *FD : RD->fields()) {
6083*67e74705SXin Li     bool SubContained;
6084*67e74705SXin Li     if (const CXXRecordDecl *ContainedRD =
6085*67e74705SXin Li             getContainedDynamicClass(FD->getType(), SubContained)) {
6086*67e74705SXin Li       IsContained = true;
6087*67e74705SXin Li       return ContainedRD;
6088*67e74705SXin Li     }
6089*67e74705SXin Li   }
6090*67e74705SXin Li 
6091*67e74705SXin Li   return nullptr;
6092*67e74705SXin Li }
6093*67e74705SXin Li 
6094*67e74705SXin Li /// \brief If E is a sizeof expression, returns its argument expression,
6095*67e74705SXin Li /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)6096*67e74705SXin Li static const Expr *getSizeOfExprArg(const Expr *E) {
6097*67e74705SXin Li   if (const UnaryExprOrTypeTraitExpr *SizeOf =
6098*67e74705SXin Li       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
6099*67e74705SXin Li     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
6100*67e74705SXin Li       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
6101*67e74705SXin Li 
6102*67e74705SXin Li   return nullptr;
6103*67e74705SXin Li }
6104*67e74705SXin Li 
6105*67e74705SXin Li /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)6106*67e74705SXin Li static QualType getSizeOfArgType(const Expr *E) {
6107*67e74705SXin Li   if (const UnaryExprOrTypeTraitExpr *SizeOf =
6108*67e74705SXin Li       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
6109*67e74705SXin Li     if (SizeOf->getKind() == clang::UETT_SizeOf)
6110*67e74705SXin Li       return SizeOf->getTypeOfArgument();
6111*67e74705SXin Li 
6112*67e74705SXin Li   return QualType();
6113*67e74705SXin Li }
6114*67e74705SXin Li 
6115*67e74705SXin Li /// \brief Check for dangerous or invalid arguments to memset().
6116*67e74705SXin Li ///
6117*67e74705SXin Li /// This issues warnings on known problematic, dangerous or unspecified
6118*67e74705SXin Li /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
6119*67e74705SXin Li /// function calls.
6120*67e74705SXin Li ///
6121*67e74705SXin Li /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)6122*67e74705SXin Li void Sema::CheckMemaccessArguments(const CallExpr *Call,
6123*67e74705SXin Li                                    unsigned BId,
6124*67e74705SXin Li                                    IdentifierInfo *FnName) {
6125*67e74705SXin Li   assert(BId != 0);
6126*67e74705SXin Li 
6127*67e74705SXin Li   // It is possible to have a non-standard definition of memset.  Validate
6128*67e74705SXin Li   // we have enough arguments, and if not, abort further checking.
6129*67e74705SXin Li   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
6130*67e74705SXin Li   if (Call->getNumArgs() < ExpectedNumArgs)
6131*67e74705SXin Li     return;
6132*67e74705SXin Li 
6133*67e74705SXin Li   unsigned LastArg = (BId == Builtin::BImemset ||
6134*67e74705SXin Li                       BId == Builtin::BIstrndup ? 1 : 2);
6135*67e74705SXin Li   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
6136*67e74705SXin Li   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
6137*67e74705SXin Li 
6138*67e74705SXin Li   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
6139*67e74705SXin Li                                      Call->getLocStart(), Call->getRParenLoc()))
6140*67e74705SXin Li     return;
6141*67e74705SXin Li 
6142*67e74705SXin Li   // We have special checking when the length is a sizeof expression.
6143*67e74705SXin Li   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
6144*67e74705SXin Li   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
6145*67e74705SXin Li   llvm::FoldingSetNodeID SizeOfArgID;
6146*67e74705SXin Li 
6147*67e74705SXin Li   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
6148*67e74705SXin Li     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
6149*67e74705SXin Li     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
6150*67e74705SXin Li 
6151*67e74705SXin Li     QualType DestTy = Dest->getType();
6152*67e74705SXin Li     QualType PointeeTy;
6153*67e74705SXin Li     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
6154*67e74705SXin Li       PointeeTy = DestPtrTy->getPointeeType();
6155*67e74705SXin Li 
6156*67e74705SXin Li       // Never warn about void type pointers. This can be used to suppress
6157*67e74705SXin Li       // false positives.
6158*67e74705SXin Li       if (PointeeTy->isVoidType())
6159*67e74705SXin Li         continue;
6160*67e74705SXin Li 
6161*67e74705SXin Li       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
6162*67e74705SXin Li       // actually comparing the expressions for equality. Because computing the
6163*67e74705SXin Li       // expression IDs can be expensive, we only do this if the diagnostic is
6164*67e74705SXin Li       // enabled.
6165*67e74705SXin Li       if (SizeOfArg &&
6166*67e74705SXin Li           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
6167*67e74705SXin Li                            SizeOfArg->getExprLoc())) {
6168*67e74705SXin Li         // We only compute IDs for expressions if the warning is enabled, and
6169*67e74705SXin Li         // cache the sizeof arg's ID.
6170*67e74705SXin Li         if (SizeOfArgID == llvm::FoldingSetNodeID())
6171*67e74705SXin Li           SizeOfArg->Profile(SizeOfArgID, Context, true);
6172*67e74705SXin Li         llvm::FoldingSetNodeID DestID;
6173*67e74705SXin Li         Dest->Profile(DestID, Context, true);
6174*67e74705SXin Li         if (DestID == SizeOfArgID) {
6175*67e74705SXin Li           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
6176*67e74705SXin Li           //       over sizeof(src) as well.
6177*67e74705SXin Li           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
6178*67e74705SXin Li           StringRef ReadableName = FnName->getName();
6179*67e74705SXin Li 
6180*67e74705SXin Li           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
6181*67e74705SXin Li             if (UnaryOp->getOpcode() == UO_AddrOf)
6182*67e74705SXin Li               ActionIdx = 1; // If its an address-of operator, just remove it.
6183*67e74705SXin Li           if (!PointeeTy->isIncompleteType() &&
6184*67e74705SXin Li               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
6185*67e74705SXin Li             ActionIdx = 2; // If the pointee's size is sizeof(char),
6186*67e74705SXin Li                            // suggest an explicit length.
6187*67e74705SXin Li 
6188*67e74705SXin Li           // If the function is defined as a builtin macro, do not show macro
6189*67e74705SXin Li           // expansion.
6190*67e74705SXin Li           SourceLocation SL = SizeOfArg->getExprLoc();
6191*67e74705SXin Li           SourceRange DSR = Dest->getSourceRange();
6192*67e74705SXin Li           SourceRange SSR = SizeOfArg->getSourceRange();
6193*67e74705SXin Li           SourceManager &SM = getSourceManager();
6194*67e74705SXin Li 
6195*67e74705SXin Li           if (SM.isMacroArgExpansion(SL)) {
6196*67e74705SXin Li             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
6197*67e74705SXin Li             SL = SM.getSpellingLoc(SL);
6198*67e74705SXin Li             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
6199*67e74705SXin Li                              SM.getSpellingLoc(DSR.getEnd()));
6200*67e74705SXin Li             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
6201*67e74705SXin Li                              SM.getSpellingLoc(SSR.getEnd()));
6202*67e74705SXin Li           }
6203*67e74705SXin Li 
6204*67e74705SXin Li           DiagRuntimeBehavior(SL, SizeOfArg,
6205*67e74705SXin Li                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
6206*67e74705SXin Li                                 << ReadableName
6207*67e74705SXin Li                                 << PointeeTy
6208*67e74705SXin Li                                 << DestTy
6209*67e74705SXin Li                                 << DSR
6210*67e74705SXin Li                                 << SSR);
6211*67e74705SXin Li           DiagRuntimeBehavior(SL, SizeOfArg,
6212*67e74705SXin Li                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
6213*67e74705SXin Li                                 << ActionIdx
6214*67e74705SXin Li                                 << SSR);
6215*67e74705SXin Li 
6216*67e74705SXin Li           break;
6217*67e74705SXin Li         }
6218*67e74705SXin Li       }
6219*67e74705SXin Li 
6220*67e74705SXin Li       // Also check for cases where the sizeof argument is the exact same
6221*67e74705SXin Li       // type as the memory argument, and where it points to a user-defined
6222*67e74705SXin Li       // record type.
6223*67e74705SXin Li       if (SizeOfArgTy != QualType()) {
6224*67e74705SXin Li         if (PointeeTy->isRecordType() &&
6225*67e74705SXin Li             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
6226*67e74705SXin Li           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
6227*67e74705SXin Li                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
6228*67e74705SXin Li                                 << FnName << SizeOfArgTy << ArgIdx
6229*67e74705SXin Li                                 << PointeeTy << Dest->getSourceRange()
6230*67e74705SXin Li                                 << LenExpr->getSourceRange());
6231*67e74705SXin Li           break;
6232*67e74705SXin Li         }
6233*67e74705SXin Li       }
6234*67e74705SXin Li     } else if (DestTy->isArrayType()) {
6235*67e74705SXin Li       PointeeTy = DestTy;
6236*67e74705SXin Li     }
6237*67e74705SXin Li 
6238*67e74705SXin Li     if (PointeeTy == QualType())
6239*67e74705SXin Li       continue;
6240*67e74705SXin Li 
6241*67e74705SXin Li     // Always complain about dynamic classes.
6242*67e74705SXin Li     bool IsContained;
6243*67e74705SXin Li     if (const CXXRecordDecl *ContainedRD =
6244*67e74705SXin Li             getContainedDynamicClass(PointeeTy, IsContained)) {
6245*67e74705SXin Li 
6246*67e74705SXin Li       unsigned OperationType = 0;
6247*67e74705SXin Li       // "overwritten" if we're warning about the destination for any call
6248*67e74705SXin Li       // but memcmp; otherwise a verb appropriate to the call.
6249*67e74705SXin Li       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
6250*67e74705SXin Li         if (BId == Builtin::BImemcpy)
6251*67e74705SXin Li           OperationType = 1;
6252*67e74705SXin Li         else if(BId == Builtin::BImemmove)
6253*67e74705SXin Li           OperationType = 2;
6254*67e74705SXin Li         else if (BId == Builtin::BImemcmp)
6255*67e74705SXin Li           OperationType = 3;
6256*67e74705SXin Li       }
6257*67e74705SXin Li 
6258*67e74705SXin Li       DiagRuntimeBehavior(
6259*67e74705SXin Li         Dest->getExprLoc(), Dest,
6260*67e74705SXin Li         PDiag(diag::warn_dyn_class_memaccess)
6261*67e74705SXin Li           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
6262*67e74705SXin Li           << FnName << IsContained << ContainedRD << OperationType
6263*67e74705SXin Li           << Call->getCallee()->getSourceRange());
6264*67e74705SXin Li     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
6265*67e74705SXin Li              BId != Builtin::BImemset)
6266*67e74705SXin Li       DiagRuntimeBehavior(
6267*67e74705SXin Li         Dest->getExprLoc(), Dest,
6268*67e74705SXin Li         PDiag(diag::warn_arc_object_memaccess)
6269*67e74705SXin Li           << ArgIdx << FnName << PointeeTy
6270*67e74705SXin Li           << Call->getCallee()->getSourceRange());
6271*67e74705SXin Li     else
6272*67e74705SXin Li       continue;
6273*67e74705SXin Li 
6274*67e74705SXin Li     DiagRuntimeBehavior(
6275*67e74705SXin Li       Dest->getExprLoc(), Dest,
6276*67e74705SXin Li       PDiag(diag::note_bad_memaccess_silence)
6277*67e74705SXin Li         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
6278*67e74705SXin Li     break;
6279*67e74705SXin Li   }
6280*67e74705SXin Li }
6281*67e74705SXin Li 
6282*67e74705SXin Li // A little helper routine: ignore addition and subtraction of integer literals.
6283*67e74705SXin Li // This intentionally does not ignore all integer constant expressions because
6284*67e74705SXin Li // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)6285*67e74705SXin Li static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
6286*67e74705SXin Li   Ex = Ex->IgnoreParenCasts();
6287*67e74705SXin Li 
6288*67e74705SXin Li   for (;;) {
6289*67e74705SXin Li     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
6290*67e74705SXin Li     if (!BO || !BO->isAdditiveOp())
6291*67e74705SXin Li       break;
6292*67e74705SXin Li 
6293*67e74705SXin Li     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
6294*67e74705SXin Li     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
6295*67e74705SXin Li 
6296*67e74705SXin Li     if (isa<IntegerLiteral>(RHS))
6297*67e74705SXin Li       Ex = LHS;
6298*67e74705SXin Li     else if (isa<IntegerLiteral>(LHS))
6299*67e74705SXin Li       Ex = RHS;
6300*67e74705SXin Li     else
6301*67e74705SXin Li       break;
6302*67e74705SXin Li   }
6303*67e74705SXin Li 
6304*67e74705SXin Li   return Ex;
6305*67e74705SXin Li }
6306*67e74705SXin Li 
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)6307*67e74705SXin Li static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
6308*67e74705SXin Li                                                       ASTContext &Context) {
6309*67e74705SXin Li   // Only handle constant-sized or VLAs, but not flexible members.
6310*67e74705SXin Li   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
6311*67e74705SXin Li     // Only issue the FIXIT for arrays of size > 1.
6312*67e74705SXin Li     if (CAT->getSize().getSExtValue() <= 1)
6313*67e74705SXin Li       return false;
6314*67e74705SXin Li   } else if (!Ty->isVariableArrayType()) {
6315*67e74705SXin Li     return false;
6316*67e74705SXin Li   }
6317*67e74705SXin Li   return true;
6318*67e74705SXin Li }
6319*67e74705SXin Li 
6320*67e74705SXin Li // Warn if the user has made the 'size' argument to strlcpy or strlcat
6321*67e74705SXin Li // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)6322*67e74705SXin Li void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
6323*67e74705SXin Li                                     IdentifierInfo *FnName) {
6324*67e74705SXin Li 
6325*67e74705SXin Li   // Don't crash if the user has the wrong number of arguments
6326*67e74705SXin Li   unsigned NumArgs = Call->getNumArgs();
6327*67e74705SXin Li   if ((NumArgs != 3) && (NumArgs != 4))
6328*67e74705SXin Li     return;
6329*67e74705SXin Li 
6330*67e74705SXin Li   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
6331*67e74705SXin Li   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
6332*67e74705SXin Li   const Expr *CompareWithSrc = nullptr;
6333*67e74705SXin Li 
6334*67e74705SXin Li   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
6335*67e74705SXin Li                                      Call->getLocStart(), Call->getRParenLoc()))
6336*67e74705SXin Li     return;
6337*67e74705SXin Li 
6338*67e74705SXin Li   // Look for 'strlcpy(dst, x, sizeof(x))'
6339*67e74705SXin Li   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
6340*67e74705SXin Li     CompareWithSrc = Ex;
6341*67e74705SXin Li   else {
6342*67e74705SXin Li     // Look for 'strlcpy(dst, x, strlen(x))'
6343*67e74705SXin Li     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
6344*67e74705SXin Li       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
6345*67e74705SXin Li           SizeCall->getNumArgs() == 1)
6346*67e74705SXin Li         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
6347*67e74705SXin Li     }
6348*67e74705SXin Li   }
6349*67e74705SXin Li 
6350*67e74705SXin Li   if (!CompareWithSrc)
6351*67e74705SXin Li     return;
6352*67e74705SXin Li 
6353*67e74705SXin Li   // Determine if the argument to sizeof/strlen is equal to the source
6354*67e74705SXin Li   // argument.  In principle there's all kinds of things you could do
6355*67e74705SXin Li   // here, for instance creating an == expression and evaluating it with
6356*67e74705SXin Li   // EvaluateAsBooleanCondition, but this uses a more direct technique:
6357*67e74705SXin Li   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
6358*67e74705SXin Li   if (!SrcArgDRE)
6359*67e74705SXin Li     return;
6360*67e74705SXin Li 
6361*67e74705SXin Li   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
6362*67e74705SXin Li   if (!CompareWithSrcDRE ||
6363*67e74705SXin Li       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
6364*67e74705SXin Li     return;
6365*67e74705SXin Li 
6366*67e74705SXin Li   const Expr *OriginalSizeArg = Call->getArg(2);
6367*67e74705SXin Li   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
6368*67e74705SXin Li     << OriginalSizeArg->getSourceRange() << FnName;
6369*67e74705SXin Li 
6370*67e74705SXin Li   // Output a FIXIT hint if the destination is an array (rather than a
6371*67e74705SXin Li   // pointer to an array).  This could be enhanced to handle some
6372*67e74705SXin Li   // pointers if we know the actual size, like if DstArg is 'array+2'
6373*67e74705SXin Li   // we could say 'sizeof(array)-2'.
6374*67e74705SXin Li   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
6375*67e74705SXin Li   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
6376*67e74705SXin Li     return;
6377*67e74705SXin Li 
6378*67e74705SXin Li   SmallString<128> sizeString;
6379*67e74705SXin Li   llvm::raw_svector_ostream OS(sizeString);
6380*67e74705SXin Li   OS << "sizeof(";
6381*67e74705SXin Li   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
6382*67e74705SXin Li   OS << ")";
6383*67e74705SXin Li 
6384*67e74705SXin Li   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
6385*67e74705SXin Li     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
6386*67e74705SXin Li                                     OS.str());
6387*67e74705SXin Li }
6388*67e74705SXin Li 
6389*67e74705SXin Li /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)6390*67e74705SXin Li static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
6391*67e74705SXin Li   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
6392*67e74705SXin Li     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
6393*67e74705SXin Li       return D1->getDecl() == D2->getDecl();
6394*67e74705SXin Li   return false;
6395*67e74705SXin Li }
6396*67e74705SXin Li 
getStrlenExprArg(const Expr * E)6397*67e74705SXin Li static const Expr *getStrlenExprArg(const Expr *E) {
6398*67e74705SXin Li   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
6399*67e74705SXin Li     const FunctionDecl *FD = CE->getDirectCallee();
6400*67e74705SXin Li     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
6401*67e74705SXin Li       return nullptr;
6402*67e74705SXin Li     return CE->getArg(0)->IgnoreParenCasts();
6403*67e74705SXin Li   }
6404*67e74705SXin Li   return nullptr;
6405*67e74705SXin Li }
6406*67e74705SXin Li 
6407*67e74705SXin Li // Warn on anti-patterns as the 'size' argument to strncat.
6408*67e74705SXin Li // The correct size argument should look like following:
6409*67e74705SXin Li //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)6410*67e74705SXin Li void Sema::CheckStrncatArguments(const CallExpr *CE,
6411*67e74705SXin Li                                  IdentifierInfo *FnName) {
6412*67e74705SXin Li   // Don't crash if the user has the wrong number of arguments.
6413*67e74705SXin Li   if (CE->getNumArgs() < 3)
6414*67e74705SXin Li     return;
6415*67e74705SXin Li   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
6416*67e74705SXin Li   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
6417*67e74705SXin Li   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
6418*67e74705SXin Li 
6419*67e74705SXin Li   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
6420*67e74705SXin Li                                      CE->getRParenLoc()))
6421*67e74705SXin Li     return;
6422*67e74705SXin Li 
6423*67e74705SXin Li   // Identify common expressions, which are wrongly used as the size argument
6424*67e74705SXin Li   // to strncat and may lead to buffer overflows.
6425*67e74705SXin Li   unsigned PatternType = 0;
6426*67e74705SXin Li   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
6427*67e74705SXin Li     // - sizeof(dst)
6428*67e74705SXin Li     if (referToTheSameDecl(SizeOfArg, DstArg))
6429*67e74705SXin Li       PatternType = 1;
6430*67e74705SXin Li     // - sizeof(src)
6431*67e74705SXin Li     else if (referToTheSameDecl(SizeOfArg, SrcArg))
6432*67e74705SXin Li       PatternType = 2;
6433*67e74705SXin Li   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
6434*67e74705SXin Li     if (BE->getOpcode() == BO_Sub) {
6435*67e74705SXin Li       const Expr *L = BE->getLHS()->IgnoreParenCasts();
6436*67e74705SXin Li       const Expr *R = BE->getRHS()->IgnoreParenCasts();
6437*67e74705SXin Li       // - sizeof(dst) - strlen(dst)
6438*67e74705SXin Li       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
6439*67e74705SXin Li           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
6440*67e74705SXin Li         PatternType = 1;
6441*67e74705SXin Li       // - sizeof(src) - (anything)
6442*67e74705SXin Li       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
6443*67e74705SXin Li         PatternType = 2;
6444*67e74705SXin Li     }
6445*67e74705SXin Li   }
6446*67e74705SXin Li 
6447*67e74705SXin Li   if (PatternType == 0)
6448*67e74705SXin Li     return;
6449*67e74705SXin Li 
6450*67e74705SXin Li   // Generate the diagnostic.
6451*67e74705SXin Li   SourceLocation SL = LenArg->getLocStart();
6452*67e74705SXin Li   SourceRange SR = LenArg->getSourceRange();
6453*67e74705SXin Li   SourceManager &SM = getSourceManager();
6454*67e74705SXin Li 
6455*67e74705SXin Li   // If the function is defined as a builtin macro, do not show macro expansion.
6456*67e74705SXin Li   if (SM.isMacroArgExpansion(SL)) {
6457*67e74705SXin Li     SL = SM.getSpellingLoc(SL);
6458*67e74705SXin Li     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
6459*67e74705SXin Li                      SM.getSpellingLoc(SR.getEnd()));
6460*67e74705SXin Li   }
6461*67e74705SXin Li 
6462*67e74705SXin Li   // Check if the destination is an array (rather than a pointer to an array).
6463*67e74705SXin Li   QualType DstTy = DstArg->getType();
6464*67e74705SXin Li   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
6465*67e74705SXin Li                                                                     Context);
6466*67e74705SXin Li   if (!isKnownSizeArray) {
6467*67e74705SXin Li     if (PatternType == 1)
6468*67e74705SXin Li       Diag(SL, diag::warn_strncat_wrong_size) << SR;
6469*67e74705SXin Li     else
6470*67e74705SXin Li       Diag(SL, diag::warn_strncat_src_size) << SR;
6471*67e74705SXin Li     return;
6472*67e74705SXin Li   }
6473*67e74705SXin Li 
6474*67e74705SXin Li   if (PatternType == 1)
6475*67e74705SXin Li     Diag(SL, diag::warn_strncat_large_size) << SR;
6476*67e74705SXin Li   else
6477*67e74705SXin Li     Diag(SL, diag::warn_strncat_src_size) << SR;
6478*67e74705SXin Li 
6479*67e74705SXin Li   SmallString<128> sizeString;
6480*67e74705SXin Li   llvm::raw_svector_ostream OS(sizeString);
6481*67e74705SXin Li   OS << "sizeof(";
6482*67e74705SXin Li   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
6483*67e74705SXin Li   OS << ") - ";
6484*67e74705SXin Li   OS << "strlen(";
6485*67e74705SXin Li   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
6486*67e74705SXin Li   OS << ") - 1";
6487*67e74705SXin Li 
6488*67e74705SXin Li   Diag(SL, diag::note_strncat_wrong_size)
6489*67e74705SXin Li     << FixItHint::CreateReplacement(SR, OS.str());
6490*67e74705SXin Li }
6491*67e74705SXin Li 
6492*67e74705SXin Li //===--- CHECK: Return Address of Stack Variable --------------------------===//
6493*67e74705SXin Li 
6494*67e74705SXin Li static const Expr *EvalVal(const Expr *E,
6495*67e74705SXin Li                            SmallVectorImpl<const DeclRefExpr *> &refVars,
6496*67e74705SXin Li                            const Decl *ParentDecl);
6497*67e74705SXin Li static const Expr *EvalAddr(const Expr *E,
6498*67e74705SXin Li                             SmallVectorImpl<const DeclRefExpr *> &refVars,
6499*67e74705SXin Li                             const Decl *ParentDecl);
6500*67e74705SXin Li 
6501*67e74705SXin Li /// CheckReturnStackAddr - Check if a return statement returns the address
6502*67e74705SXin Li ///   of a stack variable.
6503*67e74705SXin Li static void
CheckReturnStackAddr(Sema & S,Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)6504*67e74705SXin Li CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
6505*67e74705SXin Li                      SourceLocation ReturnLoc) {
6506*67e74705SXin Li 
6507*67e74705SXin Li   const Expr *stackE = nullptr;
6508*67e74705SXin Li   SmallVector<const DeclRefExpr *, 8> refVars;
6509*67e74705SXin Li 
6510*67e74705SXin Li   // Perform checking for returned stack addresses, local blocks,
6511*67e74705SXin Li   // label addresses or references to temporaries.
6512*67e74705SXin Li   if (lhsType->isPointerType() ||
6513*67e74705SXin Li       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
6514*67e74705SXin Li     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
6515*67e74705SXin Li   } else if (lhsType->isReferenceType()) {
6516*67e74705SXin Li     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
6517*67e74705SXin Li   }
6518*67e74705SXin Li 
6519*67e74705SXin Li   if (!stackE)
6520*67e74705SXin Li     return; // Nothing suspicious was found.
6521*67e74705SXin Li 
6522*67e74705SXin Li   SourceLocation diagLoc;
6523*67e74705SXin Li   SourceRange diagRange;
6524*67e74705SXin Li   if (refVars.empty()) {
6525*67e74705SXin Li     diagLoc = stackE->getLocStart();
6526*67e74705SXin Li     diagRange = stackE->getSourceRange();
6527*67e74705SXin Li   } else {
6528*67e74705SXin Li     // We followed through a reference variable. 'stackE' contains the
6529*67e74705SXin Li     // problematic expression but we will warn at the return statement pointing
6530*67e74705SXin Li     // at the reference variable. We will later display the "trail" of
6531*67e74705SXin Li     // reference variables using notes.
6532*67e74705SXin Li     diagLoc = refVars[0]->getLocStart();
6533*67e74705SXin Li     diagRange = refVars[0]->getSourceRange();
6534*67e74705SXin Li   }
6535*67e74705SXin Li 
6536*67e74705SXin Li   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) {
6537*67e74705SXin Li     // address of local var
6538*67e74705SXin Li     S.Diag(diagLoc, diag::warn_ret_stack_addr_ref) << lhsType->isReferenceType()
6539*67e74705SXin Li      << DR->getDecl()->getDeclName() << diagRange;
6540*67e74705SXin Li   } else if (isa<BlockExpr>(stackE)) { // local block.
6541*67e74705SXin Li     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
6542*67e74705SXin Li   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
6543*67e74705SXin Li     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
6544*67e74705SXin Li   } else { // local temporary.
6545*67e74705SXin Li     S.Diag(diagLoc, diag::warn_ret_local_temp_addr_ref)
6546*67e74705SXin Li      << lhsType->isReferenceType() << diagRange;
6547*67e74705SXin Li   }
6548*67e74705SXin Li 
6549*67e74705SXin Li   // Display the "trail" of reference variables that we followed until we
6550*67e74705SXin Li   // found the problematic expression using notes.
6551*67e74705SXin Li   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
6552*67e74705SXin Li     const VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
6553*67e74705SXin Li     // If this var binds to another reference var, show the range of the next
6554*67e74705SXin Li     // var, otherwise the var binds to the problematic expression, in which case
6555*67e74705SXin Li     // show the range of the expression.
6556*67e74705SXin Li     SourceRange range = (i < e - 1) ? refVars[i + 1]->getSourceRange()
6557*67e74705SXin Li                                     : stackE->getSourceRange();
6558*67e74705SXin Li     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
6559*67e74705SXin Li         << VD->getDeclName() << range;
6560*67e74705SXin Li   }
6561*67e74705SXin Li }
6562*67e74705SXin Li 
6563*67e74705SXin Li /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
6564*67e74705SXin Li ///  check if the expression in a return statement evaluates to an address
6565*67e74705SXin Li ///  to a location on the stack, a local block, an address of a label, or a
6566*67e74705SXin Li ///  reference to local temporary. The recursion is used to traverse the
6567*67e74705SXin Li ///  AST of the return expression, with recursion backtracking when we
6568*67e74705SXin Li ///  encounter a subexpression that (1) clearly does not lead to one of the
6569*67e74705SXin Li ///  above problematic expressions (2) is something we cannot determine leads to
6570*67e74705SXin Li ///  a problematic expression based on such local checking.
6571*67e74705SXin Li ///
6572*67e74705SXin Li ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
6573*67e74705SXin Li ///  the expression that they point to. Such variables are added to the
6574*67e74705SXin Li ///  'refVars' vector so that we know what the reference variable "trail" was.
6575*67e74705SXin Li ///
6576*67e74705SXin Li ///  EvalAddr processes expressions that are pointers that are used as
6577*67e74705SXin Li ///  references (and not L-values).  EvalVal handles all other values.
6578*67e74705SXin Li ///  At the base case of the recursion is a check for the above problematic
6579*67e74705SXin Li ///  expressions.
6580*67e74705SXin Li ///
6581*67e74705SXin Li ///  This implementation handles:
6582*67e74705SXin Li ///
6583*67e74705SXin Li ///   * pointer-to-pointer casts
6584*67e74705SXin Li ///   * implicit conversions from array references to pointers
6585*67e74705SXin Li ///   * taking the address of fields
6586*67e74705SXin Li ///   * arbitrary interplay between "&" and "*" operators
6587*67e74705SXin Li ///   * pointer arithmetic from an address of a stack variable
6588*67e74705SXin Li ///   * taking the address of an array element where the array is on the stack
EvalAddr(const Expr * E,SmallVectorImpl<const DeclRefExpr * > & refVars,const Decl * ParentDecl)6589*67e74705SXin Li static const Expr *EvalAddr(const Expr *E,
6590*67e74705SXin Li                             SmallVectorImpl<const DeclRefExpr *> &refVars,
6591*67e74705SXin Li                             const Decl *ParentDecl) {
6592*67e74705SXin Li   if (E->isTypeDependent())
6593*67e74705SXin Li     return nullptr;
6594*67e74705SXin Li 
6595*67e74705SXin Li   // We should only be called for evaluating pointer expressions.
6596*67e74705SXin Li   assert((E->getType()->isAnyPointerType() ||
6597*67e74705SXin Li           E->getType()->isBlockPointerType() ||
6598*67e74705SXin Li           E->getType()->isObjCQualifiedIdType()) &&
6599*67e74705SXin Li          "EvalAddr only works on pointers");
6600*67e74705SXin Li 
6601*67e74705SXin Li   E = E->IgnoreParens();
6602*67e74705SXin Li 
6603*67e74705SXin Li   // Our "symbolic interpreter" is just a dispatch off the currently
6604*67e74705SXin Li   // viewed AST node.  We then recursively traverse the AST by calling
6605*67e74705SXin Li   // EvalAddr and EvalVal appropriately.
6606*67e74705SXin Li   switch (E->getStmtClass()) {
6607*67e74705SXin Li   case Stmt::DeclRefExprClass: {
6608*67e74705SXin Li     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
6609*67e74705SXin Li 
6610*67e74705SXin Li     // If we leave the immediate function, the lifetime isn't about to end.
6611*67e74705SXin Li     if (DR->refersToEnclosingVariableOrCapture())
6612*67e74705SXin Li       return nullptr;
6613*67e74705SXin Li 
6614*67e74705SXin Li     if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
6615*67e74705SXin Li       // If this is a reference variable, follow through to the expression that
6616*67e74705SXin Li       // it points to.
6617*67e74705SXin Li       if (V->hasLocalStorage() &&
6618*67e74705SXin Li           V->getType()->isReferenceType() && V->hasInit()) {
6619*67e74705SXin Li         // Add the reference variable to the "trail".
6620*67e74705SXin Li         refVars.push_back(DR);
6621*67e74705SXin Li         return EvalAddr(V->getInit(), refVars, ParentDecl);
6622*67e74705SXin Li       }
6623*67e74705SXin Li 
6624*67e74705SXin Li     return nullptr;
6625*67e74705SXin Li   }
6626*67e74705SXin Li 
6627*67e74705SXin Li   case Stmt::UnaryOperatorClass: {
6628*67e74705SXin Li     // The only unary operator that make sense to handle here
6629*67e74705SXin Li     // is AddrOf.  All others don't make sense as pointers.
6630*67e74705SXin Li     const UnaryOperator *U = cast<UnaryOperator>(E);
6631*67e74705SXin Li 
6632*67e74705SXin Li     if (U->getOpcode() == UO_AddrOf)
6633*67e74705SXin Li       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
6634*67e74705SXin Li     return nullptr;
6635*67e74705SXin Li   }
6636*67e74705SXin Li 
6637*67e74705SXin Li   case Stmt::BinaryOperatorClass: {
6638*67e74705SXin Li     // Handle pointer arithmetic.  All other binary operators are not valid
6639*67e74705SXin Li     // in this context.
6640*67e74705SXin Li     const BinaryOperator *B = cast<BinaryOperator>(E);
6641*67e74705SXin Li     BinaryOperatorKind op = B->getOpcode();
6642*67e74705SXin Li 
6643*67e74705SXin Li     if (op != BO_Add && op != BO_Sub)
6644*67e74705SXin Li       return nullptr;
6645*67e74705SXin Li 
6646*67e74705SXin Li     const Expr *Base = B->getLHS();
6647*67e74705SXin Li 
6648*67e74705SXin Li     // Determine which argument is the real pointer base.  It could be
6649*67e74705SXin Li     // the RHS argument instead of the LHS.
6650*67e74705SXin Li     if (!Base->getType()->isPointerType())
6651*67e74705SXin Li       Base = B->getRHS();
6652*67e74705SXin Li 
6653*67e74705SXin Li     assert(Base->getType()->isPointerType());
6654*67e74705SXin Li     return EvalAddr(Base, refVars, ParentDecl);
6655*67e74705SXin Li   }
6656*67e74705SXin Li 
6657*67e74705SXin Li   // For conditional operators we need to see if either the LHS or RHS are
6658*67e74705SXin Li   // valid DeclRefExpr*s.  If one of them is valid, we return it.
6659*67e74705SXin Li   case Stmt::ConditionalOperatorClass: {
6660*67e74705SXin Li     const ConditionalOperator *C = cast<ConditionalOperator>(E);
6661*67e74705SXin Li 
6662*67e74705SXin Li     // Handle the GNU extension for missing LHS.
6663*67e74705SXin Li     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
6664*67e74705SXin Li     if (const Expr *LHSExpr = C->getLHS()) {
6665*67e74705SXin Li       // In C++, we can have a throw-expression, which has 'void' type.
6666*67e74705SXin Li       if (!LHSExpr->getType()->isVoidType())
6667*67e74705SXin Li         if (const Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
6668*67e74705SXin Li           return LHS;
6669*67e74705SXin Li     }
6670*67e74705SXin Li 
6671*67e74705SXin Li     // In C++, we can have a throw-expression, which has 'void' type.
6672*67e74705SXin Li     if (C->getRHS()->getType()->isVoidType())
6673*67e74705SXin Li       return nullptr;
6674*67e74705SXin Li 
6675*67e74705SXin Li     return EvalAddr(C->getRHS(), refVars, ParentDecl);
6676*67e74705SXin Li   }
6677*67e74705SXin Li 
6678*67e74705SXin Li   case Stmt::BlockExprClass:
6679*67e74705SXin Li     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
6680*67e74705SXin Li       return E; // local block.
6681*67e74705SXin Li     return nullptr;
6682*67e74705SXin Li 
6683*67e74705SXin Li   case Stmt::AddrLabelExprClass:
6684*67e74705SXin Li     return E; // address of label.
6685*67e74705SXin Li 
6686*67e74705SXin Li   case Stmt::ExprWithCleanupsClass:
6687*67e74705SXin Li     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
6688*67e74705SXin Li                     ParentDecl);
6689*67e74705SXin Li 
6690*67e74705SXin Li   // For casts, we need to handle conversions from arrays to
6691*67e74705SXin Li   // pointer values, and pointer-to-pointer conversions.
6692*67e74705SXin Li   case Stmt::ImplicitCastExprClass:
6693*67e74705SXin Li   case Stmt::CStyleCastExprClass:
6694*67e74705SXin Li   case Stmt::CXXFunctionalCastExprClass:
6695*67e74705SXin Li   case Stmt::ObjCBridgedCastExprClass:
6696*67e74705SXin Li   case Stmt::CXXStaticCastExprClass:
6697*67e74705SXin Li   case Stmt::CXXDynamicCastExprClass:
6698*67e74705SXin Li   case Stmt::CXXConstCastExprClass:
6699*67e74705SXin Li   case Stmt::CXXReinterpretCastExprClass: {
6700*67e74705SXin Li     const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
6701*67e74705SXin Li     switch (cast<CastExpr>(E)->getCastKind()) {
6702*67e74705SXin Li     case CK_LValueToRValue:
6703*67e74705SXin Li     case CK_NoOp:
6704*67e74705SXin Li     case CK_BaseToDerived:
6705*67e74705SXin Li     case CK_DerivedToBase:
6706*67e74705SXin Li     case CK_UncheckedDerivedToBase:
6707*67e74705SXin Li     case CK_Dynamic:
6708*67e74705SXin Li     case CK_CPointerToObjCPointerCast:
6709*67e74705SXin Li     case CK_BlockPointerToObjCPointerCast:
6710*67e74705SXin Li     case CK_AnyPointerToBlockPointerCast:
6711*67e74705SXin Li       return EvalAddr(SubExpr, refVars, ParentDecl);
6712*67e74705SXin Li 
6713*67e74705SXin Li     case CK_ArrayToPointerDecay:
6714*67e74705SXin Li       return EvalVal(SubExpr, refVars, ParentDecl);
6715*67e74705SXin Li 
6716*67e74705SXin Li     case CK_BitCast:
6717*67e74705SXin Li       if (SubExpr->getType()->isAnyPointerType() ||
6718*67e74705SXin Li           SubExpr->getType()->isBlockPointerType() ||
6719*67e74705SXin Li           SubExpr->getType()->isObjCQualifiedIdType())
6720*67e74705SXin Li         return EvalAddr(SubExpr, refVars, ParentDecl);
6721*67e74705SXin Li       else
6722*67e74705SXin Li         return nullptr;
6723*67e74705SXin Li 
6724*67e74705SXin Li     default:
6725*67e74705SXin Li       return nullptr;
6726*67e74705SXin Li     }
6727*67e74705SXin Li   }
6728*67e74705SXin Li 
6729*67e74705SXin Li   case Stmt::MaterializeTemporaryExprClass:
6730*67e74705SXin Li     if (const Expr *Result =
6731*67e74705SXin Li             EvalAddr(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
6732*67e74705SXin Li                      refVars, ParentDecl))
6733*67e74705SXin Li       return Result;
6734*67e74705SXin Li     return E;
6735*67e74705SXin Li 
6736*67e74705SXin Li   // Everything else: we simply don't reason about them.
6737*67e74705SXin Li   default:
6738*67e74705SXin Li     return nullptr;
6739*67e74705SXin Li   }
6740*67e74705SXin Li }
6741*67e74705SXin Li 
6742*67e74705SXin Li ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
6743*67e74705SXin Li ///   See the comments for EvalAddr for more details.
EvalVal(const Expr * E,SmallVectorImpl<const DeclRefExpr * > & refVars,const Decl * ParentDecl)6744*67e74705SXin Li static const Expr *EvalVal(const Expr *E,
6745*67e74705SXin Li                            SmallVectorImpl<const DeclRefExpr *> &refVars,
6746*67e74705SXin Li                            const Decl *ParentDecl) {
6747*67e74705SXin Li   do {
6748*67e74705SXin Li     // We should only be called for evaluating non-pointer expressions, or
6749*67e74705SXin Li     // expressions with a pointer type that are not used as references but
6750*67e74705SXin Li     // instead
6751*67e74705SXin Li     // are l-values (e.g., DeclRefExpr with a pointer type).
6752*67e74705SXin Li 
6753*67e74705SXin Li     // Our "symbolic interpreter" is just a dispatch off the currently
6754*67e74705SXin Li     // viewed AST node.  We then recursively traverse the AST by calling
6755*67e74705SXin Li     // EvalAddr and EvalVal appropriately.
6756*67e74705SXin Li 
6757*67e74705SXin Li     E = E->IgnoreParens();
6758*67e74705SXin Li     switch (E->getStmtClass()) {
6759*67e74705SXin Li     case Stmt::ImplicitCastExprClass: {
6760*67e74705SXin Li       const ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
6761*67e74705SXin Li       if (IE->getValueKind() == VK_LValue) {
6762*67e74705SXin Li         E = IE->getSubExpr();
6763*67e74705SXin Li         continue;
6764*67e74705SXin Li       }
6765*67e74705SXin Li       return nullptr;
6766*67e74705SXin Li     }
6767*67e74705SXin Li 
6768*67e74705SXin Li     case Stmt::ExprWithCleanupsClass:
6769*67e74705SXin Li       return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
6770*67e74705SXin Li                      ParentDecl);
6771*67e74705SXin Li 
6772*67e74705SXin Li     case Stmt::DeclRefExprClass: {
6773*67e74705SXin Li       // When we hit a DeclRefExpr we are looking at code that refers to a
6774*67e74705SXin Li       // variable's name. If it's not a reference variable we check if it has
6775*67e74705SXin Li       // local storage within the function, and if so, return the expression.
6776*67e74705SXin Li       const DeclRefExpr *DR = cast<DeclRefExpr>(E);
6777*67e74705SXin Li 
6778*67e74705SXin Li       // If we leave the immediate function, the lifetime isn't about to end.
6779*67e74705SXin Li       if (DR->refersToEnclosingVariableOrCapture())
6780*67e74705SXin Li         return nullptr;
6781*67e74705SXin Li 
6782*67e74705SXin Li       if (const VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
6783*67e74705SXin Li         // Check if it refers to itself, e.g. "int& i = i;".
6784*67e74705SXin Li         if (V == ParentDecl)
6785*67e74705SXin Li           return DR;
6786*67e74705SXin Li 
6787*67e74705SXin Li         if (V->hasLocalStorage()) {
6788*67e74705SXin Li           if (!V->getType()->isReferenceType())
6789*67e74705SXin Li             return DR;
6790*67e74705SXin Li 
6791*67e74705SXin Li           // Reference variable, follow through to the expression that
6792*67e74705SXin Li           // it points to.
6793*67e74705SXin Li           if (V->hasInit()) {
6794*67e74705SXin Li             // Add the reference variable to the "trail".
6795*67e74705SXin Li             refVars.push_back(DR);
6796*67e74705SXin Li             return EvalVal(V->getInit(), refVars, V);
6797*67e74705SXin Li           }
6798*67e74705SXin Li         }
6799*67e74705SXin Li       }
6800*67e74705SXin Li 
6801*67e74705SXin Li       return nullptr;
6802*67e74705SXin Li     }
6803*67e74705SXin Li 
6804*67e74705SXin Li     case Stmt::UnaryOperatorClass: {
6805*67e74705SXin Li       // The only unary operator that make sense to handle here
6806*67e74705SXin Li       // is Deref.  All others don't resolve to a "name."  This includes
6807*67e74705SXin Li       // handling all sorts of rvalues passed to a unary operator.
6808*67e74705SXin Li       const UnaryOperator *U = cast<UnaryOperator>(E);
6809*67e74705SXin Li 
6810*67e74705SXin Li       if (U->getOpcode() == UO_Deref)
6811*67e74705SXin Li         return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
6812*67e74705SXin Li 
6813*67e74705SXin Li       return nullptr;
6814*67e74705SXin Li     }
6815*67e74705SXin Li 
6816*67e74705SXin Li     case Stmt::ArraySubscriptExprClass: {
6817*67e74705SXin Li       // Array subscripts are potential references to data on the stack.  We
6818*67e74705SXin Li       // retrieve the DeclRefExpr* for the array variable if it indeed
6819*67e74705SXin Li       // has local storage.
6820*67e74705SXin Li       const auto *ASE = cast<ArraySubscriptExpr>(E);
6821*67e74705SXin Li       if (ASE->isTypeDependent())
6822*67e74705SXin Li         return nullptr;
6823*67e74705SXin Li       return EvalAddr(ASE->getBase(), refVars, ParentDecl);
6824*67e74705SXin Li     }
6825*67e74705SXin Li 
6826*67e74705SXin Li     case Stmt::OMPArraySectionExprClass: {
6827*67e74705SXin Li       return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
6828*67e74705SXin Li                       ParentDecl);
6829*67e74705SXin Li     }
6830*67e74705SXin Li 
6831*67e74705SXin Li     case Stmt::ConditionalOperatorClass: {
6832*67e74705SXin Li       // For conditional operators we need to see if either the LHS or RHS are
6833*67e74705SXin Li       // non-NULL Expr's.  If one is non-NULL, we return it.
6834*67e74705SXin Li       const ConditionalOperator *C = cast<ConditionalOperator>(E);
6835*67e74705SXin Li 
6836*67e74705SXin Li       // Handle the GNU extension for missing LHS.
6837*67e74705SXin Li       if (const Expr *LHSExpr = C->getLHS()) {
6838*67e74705SXin Li         // In C++, we can have a throw-expression, which has 'void' type.
6839*67e74705SXin Li         if (!LHSExpr->getType()->isVoidType())
6840*67e74705SXin Li           if (const Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
6841*67e74705SXin Li             return LHS;
6842*67e74705SXin Li       }
6843*67e74705SXin Li 
6844*67e74705SXin Li       // In C++, we can have a throw-expression, which has 'void' type.
6845*67e74705SXin Li       if (C->getRHS()->getType()->isVoidType())
6846*67e74705SXin Li         return nullptr;
6847*67e74705SXin Li 
6848*67e74705SXin Li       return EvalVal(C->getRHS(), refVars, ParentDecl);
6849*67e74705SXin Li     }
6850*67e74705SXin Li 
6851*67e74705SXin Li     // Accesses to members are potential references to data on the stack.
6852*67e74705SXin Li     case Stmt::MemberExprClass: {
6853*67e74705SXin Li       const MemberExpr *M = cast<MemberExpr>(E);
6854*67e74705SXin Li 
6855*67e74705SXin Li       // Check for indirect access.  We only want direct field accesses.
6856*67e74705SXin Li       if (M->isArrow())
6857*67e74705SXin Li         return nullptr;
6858*67e74705SXin Li 
6859*67e74705SXin Li       // Check whether the member type is itself a reference, in which case
6860*67e74705SXin Li       // we're not going to refer to the member, but to what the member refers
6861*67e74705SXin Li       // to.
6862*67e74705SXin Li       if (M->getMemberDecl()->getType()->isReferenceType())
6863*67e74705SXin Li         return nullptr;
6864*67e74705SXin Li 
6865*67e74705SXin Li       return EvalVal(M->getBase(), refVars, ParentDecl);
6866*67e74705SXin Li     }
6867*67e74705SXin Li 
6868*67e74705SXin Li     case Stmt::MaterializeTemporaryExprClass:
6869*67e74705SXin Li       if (const Expr *Result =
6870*67e74705SXin Li               EvalVal(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
6871*67e74705SXin Li                       refVars, ParentDecl))
6872*67e74705SXin Li         return Result;
6873*67e74705SXin Li       return E;
6874*67e74705SXin Li 
6875*67e74705SXin Li     default:
6876*67e74705SXin Li       // Check that we don't return or take the address of a reference to a
6877*67e74705SXin Li       // temporary. This is only useful in C++.
6878*67e74705SXin Li       if (!E->isTypeDependent() && E->isRValue())
6879*67e74705SXin Li         return E;
6880*67e74705SXin Li 
6881*67e74705SXin Li       // Everything else: we simply don't reason about them.
6882*67e74705SXin Li       return nullptr;
6883*67e74705SXin Li     }
6884*67e74705SXin Li   } while (true);
6885*67e74705SXin Li }
6886*67e74705SXin Li 
6887*67e74705SXin Li void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)6888*67e74705SXin Li Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
6889*67e74705SXin Li                          SourceLocation ReturnLoc,
6890*67e74705SXin Li                          bool isObjCMethod,
6891*67e74705SXin Li                          const AttrVec *Attrs,
6892*67e74705SXin Li                          const FunctionDecl *FD) {
6893*67e74705SXin Li   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
6894*67e74705SXin Li 
6895*67e74705SXin Li   // Check if the return value is null but should not be.
6896*67e74705SXin Li   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
6897*67e74705SXin Li        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
6898*67e74705SXin Li       CheckNonNullExpr(*this, RetValExp))
6899*67e74705SXin Li     Diag(ReturnLoc, diag::warn_null_ret)
6900*67e74705SXin Li       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
6901*67e74705SXin Li 
6902*67e74705SXin Li   // C++11 [basic.stc.dynamic.allocation]p4:
6903*67e74705SXin Li   //   If an allocation function declared with a non-throwing
6904*67e74705SXin Li   //   exception-specification fails to allocate storage, it shall return
6905*67e74705SXin Li   //   a null pointer. Any other allocation function that fails to allocate
6906*67e74705SXin Li   //   storage shall indicate failure only by throwing an exception [...]
6907*67e74705SXin Li   if (FD) {
6908*67e74705SXin Li     OverloadedOperatorKind Op = FD->getOverloadedOperator();
6909*67e74705SXin Li     if (Op == OO_New || Op == OO_Array_New) {
6910*67e74705SXin Li       const FunctionProtoType *Proto
6911*67e74705SXin Li         = FD->getType()->castAs<FunctionProtoType>();
6912*67e74705SXin Li       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
6913*67e74705SXin Li           CheckNonNullExpr(*this, RetValExp))
6914*67e74705SXin Li         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
6915*67e74705SXin Li           << FD << getLangOpts().CPlusPlus11;
6916*67e74705SXin Li     }
6917*67e74705SXin Li   }
6918*67e74705SXin Li }
6919*67e74705SXin Li 
6920*67e74705SXin Li //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
6921*67e74705SXin Li 
6922*67e74705SXin Li /// Check for comparisons of floating point operands using != and ==.
6923*67e74705SXin Li /// Issue a warning if these are no self-comparisons, as they are not likely
6924*67e74705SXin Li /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)6925*67e74705SXin Li void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
6926*67e74705SXin Li   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
6927*67e74705SXin Li   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
6928*67e74705SXin Li 
6929*67e74705SXin Li   // Special case: check for x == x (which is OK).
6930*67e74705SXin Li   // Do not emit warnings for such cases.
6931*67e74705SXin Li   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
6932*67e74705SXin Li     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
6933*67e74705SXin Li       if (DRL->getDecl() == DRR->getDecl())
6934*67e74705SXin Li         return;
6935*67e74705SXin Li 
6936*67e74705SXin Li   // Special case: check for comparisons against literals that can be exactly
6937*67e74705SXin Li   //  represented by APFloat.  In such cases, do not emit a warning.  This
6938*67e74705SXin Li   //  is a heuristic: often comparison against such literals are used to
6939*67e74705SXin Li   //  detect if a value in a variable has not changed.  This clearly can
6940*67e74705SXin Li   //  lead to false negatives.
6941*67e74705SXin Li   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
6942*67e74705SXin Li     if (FLL->isExact())
6943*67e74705SXin Li       return;
6944*67e74705SXin Li   } else
6945*67e74705SXin Li     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
6946*67e74705SXin Li       if (FLR->isExact())
6947*67e74705SXin Li         return;
6948*67e74705SXin Li 
6949*67e74705SXin Li   // Check for comparisons with builtin types.
6950*67e74705SXin Li   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
6951*67e74705SXin Li     if (CL->getBuiltinCallee())
6952*67e74705SXin Li       return;
6953*67e74705SXin Li 
6954*67e74705SXin Li   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
6955*67e74705SXin Li     if (CR->getBuiltinCallee())
6956*67e74705SXin Li       return;
6957*67e74705SXin Li 
6958*67e74705SXin Li   // Emit the diagnostic.
6959*67e74705SXin Li   Diag(Loc, diag::warn_floatingpoint_eq)
6960*67e74705SXin Li     << LHS->getSourceRange() << RHS->getSourceRange();
6961*67e74705SXin Li }
6962*67e74705SXin Li 
6963*67e74705SXin Li //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
6964*67e74705SXin Li //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
6965*67e74705SXin Li 
6966*67e74705SXin Li namespace {
6967*67e74705SXin Li 
6968*67e74705SXin Li /// Structure recording the 'active' range of an integer-valued
6969*67e74705SXin Li /// expression.
6970*67e74705SXin Li struct IntRange {
6971*67e74705SXin Li   /// The number of bits active in the int.
6972*67e74705SXin Li   unsigned Width;
6973*67e74705SXin Li 
6974*67e74705SXin Li   /// True if the int is known not to have negative values.
6975*67e74705SXin Li   bool NonNegative;
6976*67e74705SXin Li 
IntRange__anona6c5d4490811::IntRange6977*67e74705SXin Li   IntRange(unsigned Width, bool NonNegative)
6978*67e74705SXin Li     : Width(Width), NonNegative(NonNegative)
6979*67e74705SXin Li   {}
6980*67e74705SXin Li 
6981*67e74705SXin Li   /// Returns the range of the bool type.
forBoolType__anona6c5d4490811::IntRange6982*67e74705SXin Li   static IntRange forBoolType() {
6983*67e74705SXin Li     return IntRange(1, true);
6984*67e74705SXin Li   }
6985*67e74705SXin Li 
6986*67e74705SXin Li   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anona6c5d4490811::IntRange6987*67e74705SXin Li   static IntRange forValueOfType(ASTContext &C, QualType T) {
6988*67e74705SXin Li     return forValueOfCanonicalType(C,
6989*67e74705SXin Li                           T->getCanonicalTypeInternal().getTypePtr());
6990*67e74705SXin Li   }
6991*67e74705SXin Li 
6992*67e74705SXin Li   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anona6c5d4490811::IntRange6993*67e74705SXin Li   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
6994*67e74705SXin Li     assert(T->isCanonicalUnqualified());
6995*67e74705SXin Li 
6996*67e74705SXin Li     if (const VectorType *VT = dyn_cast<VectorType>(T))
6997*67e74705SXin Li       T = VT->getElementType().getTypePtr();
6998*67e74705SXin Li     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
6999*67e74705SXin Li       T = CT->getElementType().getTypePtr();
7000*67e74705SXin Li     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
7001*67e74705SXin Li       T = AT->getValueType().getTypePtr();
7002*67e74705SXin Li 
7003*67e74705SXin Li     // For enum types, use the known bit width of the enumerators.
7004*67e74705SXin Li     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
7005*67e74705SXin Li       EnumDecl *Enum = ET->getDecl();
7006*67e74705SXin Li       if (!Enum->isCompleteDefinition())
7007*67e74705SXin Li         return IntRange(C.getIntWidth(QualType(T, 0)), false);
7008*67e74705SXin Li 
7009*67e74705SXin Li       unsigned NumPositive = Enum->getNumPositiveBits();
7010*67e74705SXin Li       unsigned NumNegative = Enum->getNumNegativeBits();
7011*67e74705SXin Li 
7012*67e74705SXin Li       if (NumNegative == 0)
7013*67e74705SXin Li         return IntRange(NumPositive, true/*NonNegative*/);
7014*67e74705SXin Li       else
7015*67e74705SXin Li         return IntRange(std::max(NumPositive + 1, NumNegative),
7016*67e74705SXin Li                         false/*NonNegative*/);
7017*67e74705SXin Li     }
7018*67e74705SXin Li 
7019*67e74705SXin Li     const BuiltinType *BT = cast<BuiltinType>(T);
7020*67e74705SXin Li     assert(BT->isInteger());
7021*67e74705SXin Li 
7022*67e74705SXin Li     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
7023*67e74705SXin Li   }
7024*67e74705SXin Li 
7025*67e74705SXin Li   /// Returns the "target" range of a canonical integral type, i.e.
7026*67e74705SXin Li   /// the range of values expressible in the type.
7027*67e74705SXin Li   ///
7028*67e74705SXin Li   /// This matches forValueOfCanonicalType except that enums have the
7029*67e74705SXin Li   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anona6c5d4490811::IntRange7030*67e74705SXin Li   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
7031*67e74705SXin Li     assert(T->isCanonicalUnqualified());
7032*67e74705SXin Li 
7033*67e74705SXin Li     if (const VectorType *VT = dyn_cast<VectorType>(T))
7034*67e74705SXin Li       T = VT->getElementType().getTypePtr();
7035*67e74705SXin Li     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
7036*67e74705SXin Li       T = CT->getElementType().getTypePtr();
7037*67e74705SXin Li     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
7038*67e74705SXin Li       T = AT->getValueType().getTypePtr();
7039*67e74705SXin Li     if (const EnumType *ET = dyn_cast<EnumType>(T))
7040*67e74705SXin Li       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
7041*67e74705SXin Li 
7042*67e74705SXin Li     const BuiltinType *BT = cast<BuiltinType>(T);
7043*67e74705SXin Li     assert(BT->isInteger());
7044*67e74705SXin Li 
7045*67e74705SXin Li     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
7046*67e74705SXin Li   }
7047*67e74705SXin Li 
7048*67e74705SXin Li   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anona6c5d4490811::IntRange7049*67e74705SXin Li   static IntRange join(IntRange L, IntRange R) {
7050*67e74705SXin Li     return IntRange(std::max(L.Width, R.Width),
7051*67e74705SXin Li                     L.NonNegative && R.NonNegative);
7052*67e74705SXin Li   }
7053*67e74705SXin Li 
7054*67e74705SXin Li   /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anona6c5d4490811::IntRange7055*67e74705SXin Li   static IntRange meet(IntRange L, IntRange R) {
7056*67e74705SXin Li     return IntRange(std::min(L.Width, R.Width),
7057*67e74705SXin Li                     L.NonNegative || R.NonNegative);
7058*67e74705SXin Li   }
7059*67e74705SXin Li };
7060*67e74705SXin Li 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)7061*67e74705SXin Li IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
7062*67e74705SXin Li   if (value.isSigned() && value.isNegative())
7063*67e74705SXin Li     return IntRange(value.getMinSignedBits(), false);
7064*67e74705SXin Li 
7065*67e74705SXin Li   if (value.getBitWidth() > MaxWidth)
7066*67e74705SXin Li     value = value.trunc(MaxWidth);
7067*67e74705SXin Li 
7068*67e74705SXin Li   // isNonNegative() just checks the sign bit without considering
7069*67e74705SXin Li   // signedness.
7070*67e74705SXin Li   return IntRange(value.getActiveBits(), true);
7071*67e74705SXin Li }
7072*67e74705SXin Li 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)7073*67e74705SXin Li IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
7074*67e74705SXin Li                        unsigned MaxWidth) {
7075*67e74705SXin Li   if (result.isInt())
7076*67e74705SXin Li     return GetValueRange(C, result.getInt(), MaxWidth);
7077*67e74705SXin Li 
7078*67e74705SXin Li   if (result.isVector()) {
7079*67e74705SXin Li     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
7080*67e74705SXin Li     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
7081*67e74705SXin Li       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
7082*67e74705SXin Li       R = IntRange::join(R, El);
7083*67e74705SXin Li     }
7084*67e74705SXin Li     return R;
7085*67e74705SXin Li   }
7086*67e74705SXin Li 
7087*67e74705SXin Li   if (result.isComplexInt()) {
7088*67e74705SXin Li     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
7089*67e74705SXin Li     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
7090*67e74705SXin Li     return IntRange::join(R, I);
7091*67e74705SXin Li   }
7092*67e74705SXin Li 
7093*67e74705SXin Li   // This can happen with lossless casts to intptr_t of "based" lvalues.
7094*67e74705SXin Li   // Assume it might use arbitrary bits.
7095*67e74705SXin Li   // FIXME: The only reason we need to pass the type in here is to get
7096*67e74705SXin Li   // the sign right on this one case.  It would be nice if APValue
7097*67e74705SXin Li   // preserved this.
7098*67e74705SXin Li   assert(result.isLValue() || result.isAddrLabelDiff());
7099*67e74705SXin Li   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
7100*67e74705SXin Li }
7101*67e74705SXin Li 
GetExprType(const Expr * E)7102*67e74705SXin Li QualType GetExprType(const Expr *E) {
7103*67e74705SXin Li   QualType Ty = E->getType();
7104*67e74705SXin Li   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
7105*67e74705SXin Li     Ty = AtomicRHS->getValueType();
7106*67e74705SXin Li   return Ty;
7107*67e74705SXin Li }
7108*67e74705SXin Li 
7109*67e74705SXin Li /// Pseudo-evaluate the given integer expression, estimating the
7110*67e74705SXin Li /// range of values it might take.
7111*67e74705SXin Li ///
7112*67e74705SXin Li /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,const Expr * E,unsigned MaxWidth)7113*67e74705SXin Li IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth) {
7114*67e74705SXin Li   E = E->IgnoreParens();
7115*67e74705SXin Li 
7116*67e74705SXin Li   // Try a full evaluation first.
7117*67e74705SXin Li   Expr::EvalResult result;
7118*67e74705SXin Li   if (E->EvaluateAsRValue(result, C))
7119*67e74705SXin Li     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
7120*67e74705SXin Li 
7121*67e74705SXin Li   // I think we only want to look through implicit casts here; if the
7122*67e74705SXin Li   // user has an explicit widening cast, we should treat the value as
7123*67e74705SXin Li   // being of the new, wider type.
7124*67e74705SXin Li   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
7125*67e74705SXin Li     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
7126*67e74705SXin Li       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
7127*67e74705SXin Li 
7128*67e74705SXin Li     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
7129*67e74705SXin Li 
7130*67e74705SXin Li     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
7131*67e74705SXin Li                          CE->getCastKind() == CK_BooleanToSignedIntegral;
7132*67e74705SXin Li 
7133*67e74705SXin Li     // Assume that non-integer casts can span the full range of the type.
7134*67e74705SXin Li     if (!isIntegerCast)
7135*67e74705SXin Li       return OutputTypeRange;
7136*67e74705SXin Li 
7137*67e74705SXin Li     IntRange SubRange
7138*67e74705SXin Li       = GetExprRange(C, CE->getSubExpr(),
7139*67e74705SXin Li                      std::min(MaxWidth, OutputTypeRange.Width));
7140*67e74705SXin Li 
7141*67e74705SXin Li     // Bail out if the subexpr's range is as wide as the cast type.
7142*67e74705SXin Li     if (SubRange.Width >= OutputTypeRange.Width)
7143*67e74705SXin Li       return OutputTypeRange;
7144*67e74705SXin Li 
7145*67e74705SXin Li     // Otherwise, we take the smaller width, and we're non-negative if
7146*67e74705SXin Li     // either the output type or the subexpr is.
7147*67e74705SXin Li     return IntRange(SubRange.Width,
7148*67e74705SXin Li                     SubRange.NonNegative || OutputTypeRange.NonNegative);
7149*67e74705SXin Li   }
7150*67e74705SXin Li 
7151*67e74705SXin Li   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
7152*67e74705SXin Li     // If we can fold the condition, just take that operand.
7153*67e74705SXin Li     bool CondResult;
7154*67e74705SXin Li     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
7155*67e74705SXin Li       return GetExprRange(C, CondResult ? CO->getTrueExpr()
7156*67e74705SXin Li                                         : CO->getFalseExpr(),
7157*67e74705SXin Li                           MaxWidth);
7158*67e74705SXin Li 
7159*67e74705SXin Li     // Otherwise, conservatively merge.
7160*67e74705SXin Li     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
7161*67e74705SXin Li     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
7162*67e74705SXin Li     return IntRange::join(L, R);
7163*67e74705SXin Li   }
7164*67e74705SXin Li 
7165*67e74705SXin Li   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
7166*67e74705SXin Li     switch (BO->getOpcode()) {
7167*67e74705SXin Li 
7168*67e74705SXin Li     // Boolean-valued operations are single-bit and positive.
7169*67e74705SXin Li     case BO_LAnd:
7170*67e74705SXin Li     case BO_LOr:
7171*67e74705SXin Li     case BO_LT:
7172*67e74705SXin Li     case BO_GT:
7173*67e74705SXin Li     case BO_LE:
7174*67e74705SXin Li     case BO_GE:
7175*67e74705SXin Li     case BO_EQ:
7176*67e74705SXin Li     case BO_NE:
7177*67e74705SXin Li       return IntRange::forBoolType();
7178*67e74705SXin Li 
7179*67e74705SXin Li     // The type of the assignments is the type of the LHS, so the RHS
7180*67e74705SXin Li     // is not necessarily the same type.
7181*67e74705SXin Li     case BO_MulAssign:
7182*67e74705SXin Li     case BO_DivAssign:
7183*67e74705SXin Li     case BO_RemAssign:
7184*67e74705SXin Li     case BO_AddAssign:
7185*67e74705SXin Li     case BO_SubAssign:
7186*67e74705SXin Li     case BO_XorAssign:
7187*67e74705SXin Li     case BO_OrAssign:
7188*67e74705SXin Li       // TODO: bitfields?
7189*67e74705SXin Li       return IntRange::forValueOfType(C, GetExprType(E));
7190*67e74705SXin Li 
7191*67e74705SXin Li     // Simple assignments just pass through the RHS, which will have
7192*67e74705SXin Li     // been coerced to the LHS type.
7193*67e74705SXin Li     case BO_Assign:
7194*67e74705SXin Li       // TODO: bitfields?
7195*67e74705SXin Li       return GetExprRange(C, BO->getRHS(), MaxWidth);
7196*67e74705SXin Li 
7197*67e74705SXin Li     // Operations with opaque sources are black-listed.
7198*67e74705SXin Li     case BO_PtrMemD:
7199*67e74705SXin Li     case BO_PtrMemI:
7200*67e74705SXin Li       return IntRange::forValueOfType(C, GetExprType(E));
7201*67e74705SXin Li 
7202*67e74705SXin Li     // Bitwise-and uses the *infinum* of the two source ranges.
7203*67e74705SXin Li     case BO_And:
7204*67e74705SXin Li     case BO_AndAssign:
7205*67e74705SXin Li       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
7206*67e74705SXin Li                             GetExprRange(C, BO->getRHS(), MaxWidth));
7207*67e74705SXin Li 
7208*67e74705SXin Li     // Left shift gets black-listed based on a judgement call.
7209*67e74705SXin Li     case BO_Shl:
7210*67e74705SXin Li       // ...except that we want to treat '1 << (blah)' as logically
7211*67e74705SXin Li       // positive.  It's an important idiom.
7212*67e74705SXin Li       if (IntegerLiteral *I
7213*67e74705SXin Li             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
7214*67e74705SXin Li         if (I->getValue() == 1) {
7215*67e74705SXin Li           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
7216*67e74705SXin Li           return IntRange(R.Width, /*NonNegative*/ true);
7217*67e74705SXin Li         }
7218*67e74705SXin Li       }
7219*67e74705SXin Li       // fallthrough
7220*67e74705SXin Li 
7221*67e74705SXin Li     case BO_ShlAssign:
7222*67e74705SXin Li       return IntRange::forValueOfType(C, GetExprType(E));
7223*67e74705SXin Li 
7224*67e74705SXin Li     // Right shift by a constant can narrow its left argument.
7225*67e74705SXin Li     case BO_Shr:
7226*67e74705SXin Li     case BO_ShrAssign: {
7227*67e74705SXin Li       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
7228*67e74705SXin Li 
7229*67e74705SXin Li       // If the shift amount is a positive constant, drop the width by
7230*67e74705SXin Li       // that much.
7231*67e74705SXin Li       llvm::APSInt shift;
7232*67e74705SXin Li       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
7233*67e74705SXin Li           shift.isNonNegative()) {
7234*67e74705SXin Li         unsigned zext = shift.getZExtValue();
7235*67e74705SXin Li         if (zext >= L.Width)
7236*67e74705SXin Li           L.Width = (L.NonNegative ? 0 : 1);
7237*67e74705SXin Li         else
7238*67e74705SXin Li           L.Width -= zext;
7239*67e74705SXin Li       }
7240*67e74705SXin Li 
7241*67e74705SXin Li       return L;
7242*67e74705SXin Li     }
7243*67e74705SXin Li 
7244*67e74705SXin Li     // Comma acts as its right operand.
7245*67e74705SXin Li     case BO_Comma:
7246*67e74705SXin Li       return GetExprRange(C, BO->getRHS(), MaxWidth);
7247*67e74705SXin Li 
7248*67e74705SXin Li     // Black-list pointer subtractions.
7249*67e74705SXin Li     case BO_Sub:
7250*67e74705SXin Li       if (BO->getLHS()->getType()->isPointerType())
7251*67e74705SXin Li         return IntRange::forValueOfType(C, GetExprType(E));
7252*67e74705SXin Li       break;
7253*67e74705SXin Li 
7254*67e74705SXin Li     // The width of a division result is mostly determined by the size
7255*67e74705SXin Li     // of the LHS.
7256*67e74705SXin Li     case BO_Div: {
7257*67e74705SXin Li       // Don't 'pre-truncate' the operands.
7258*67e74705SXin Li       unsigned opWidth = C.getIntWidth(GetExprType(E));
7259*67e74705SXin Li       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
7260*67e74705SXin Li 
7261*67e74705SXin Li       // If the divisor is constant, use that.
7262*67e74705SXin Li       llvm::APSInt divisor;
7263*67e74705SXin Li       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
7264*67e74705SXin Li         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
7265*67e74705SXin Li         if (log2 >= L.Width)
7266*67e74705SXin Li           L.Width = (L.NonNegative ? 0 : 1);
7267*67e74705SXin Li         else
7268*67e74705SXin Li           L.Width = std::min(L.Width - log2, MaxWidth);
7269*67e74705SXin Li         return L;
7270*67e74705SXin Li       }
7271*67e74705SXin Li 
7272*67e74705SXin Li       // Otherwise, just use the LHS's width.
7273*67e74705SXin Li       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
7274*67e74705SXin Li       return IntRange(L.Width, L.NonNegative && R.NonNegative);
7275*67e74705SXin Li     }
7276*67e74705SXin Li 
7277*67e74705SXin Li     // The result of a remainder can't be larger than the result of
7278*67e74705SXin Li     // either side.
7279*67e74705SXin Li     case BO_Rem: {
7280*67e74705SXin Li       // Don't 'pre-truncate' the operands.
7281*67e74705SXin Li       unsigned opWidth = C.getIntWidth(GetExprType(E));
7282*67e74705SXin Li       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
7283*67e74705SXin Li       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
7284*67e74705SXin Li 
7285*67e74705SXin Li       IntRange meet = IntRange::meet(L, R);
7286*67e74705SXin Li       meet.Width = std::min(meet.Width, MaxWidth);
7287*67e74705SXin Li       return meet;
7288*67e74705SXin Li     }
7289*67e74705SXin Li 
7290*67e74705SXin Li     // The default behavior is okay for these.
7291*67e74705SXin Li     case BO_Mul:
7292*67e74705SXin Li     case BO_Add:
7293*67e74705SXin Li     case BO_Xor:
7294*67e74705SXin Li     case BO_Or:
7295*67e74705SXin Li       break;
7296*67e74705SXin Li     }
7297*67e74705SXin Li 
7298*67e74705SXin Li     // The default case is to treat the operation as if it were closed
7299*67e74705SXin Li     // on the narrowest type that encompasses both operands.
7300*67e74705SXin Li     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
7301*67e74705SXin Li     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
7302*67e74705SXin Li     return IntRange::join(L, R);
7303*67e74705SXin Li   }
7304*67e74705SXin Li 
7305*67e74705SXin Li   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
7306*67e74705SXin Li     switch (UO->getOpcode()) {
7307*67e74705SXin Li     // Boolean-valued operations are white-listed.
7308*67e74705SXin Li     case UO_LNot:
7309*67e74705SXin Li       return IntRange::forBoolType();
7310*67e74705SXin Li 
7311*67e74705SXin Li     // Operations with opaque sources are black-listed.
7312*67e74705SXin Li     case UO_Deref:
7313*67e74705SXin Li     case UO_AddrOf: // should be impossible
7314*67e74705SXin Li       return IntRange::forValueOfType(C, GetExprType(E));
7315*67e74705SXin Li 
7316*67e74705SXin Li     default:
7317*67e74705SXin Li       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
7318*67e74705SXin Li     }
7319*67e74705SXin Li   }
7320*67e74705SXin Li 
7321*67e74705SXin Li   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
7322*67e74705SXin Li     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
7323*67e74705SXin Li 
7324*67e74705SXin Li   if (const auto *BitField = E->getSourceBitField())
7325*67e74705SXin Li     return IntRange(BitField->getBitWidthValue(C),
7326*67e74705SXin Li                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
7327*67e74705SXin Li 
7328*67e74705SXin Li   return IntRange::forValueOfType(C, GetExprType(E));
7329*67e74705SXin Li }
7330*67e74705SXin Li 
GetExprRange(ASTContext & C,const Expr * E)7331*67e74705SXin Li IntRange GetExprRange(ASTContext &C, const Expr *E) {
7332*67e74705SXin Li   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
7333*67e74705SXin Li }
7334*67e74705SXin Li 
7335*67e74705SXin Li /// Checks whether the given value, which currently has the given
7336*67e74705SXin Li /// source semantics, has the same value when coerced through the
7337*67e74705SXin Li /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)7338*67e74705SXin Li bool IsSameFloatAfterCast(const llvm::APFloat &value,
7339*67e74705SXin Li                           const llvm::fltSemantics &Src,
7340*67e74705SXin Li                           const llvm::fltSemantics &Tgt) {
7341*67e74705SXin Li   llvm::APFloat truncated = value;
7342*67e74705SXin Li 
7343*67e74705SXin Li   bool ignored;
7344*67e74705SXin Li   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
7345*67e74705SXin Li   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
7346*67e74705SXin Li 
7347*67e74705SXin Li   return truncated.bitwiseIsEqual(value);
7348*67e74705SXin Li }
7349*67e74705SXin Li 
7350*67e74705SXin Li /// Checks whether the given value, which currently has the given
7351*67e74705SXin Li /// source semantics, has the same value when coerced through the
7352*67e74705SXin Li /// target semantics.
7353*67e74705SXin Li ///
7354*67e74705SXin Li /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)7355*67e74705SXin Li bool IsSameFloatAfterCast(const APValue &value,
7356*67e74705SXin Li                           const llvm::fltSemantics &Src,
7357*67e74705SXin Li                           const llvm::fltSemantics &Tgt) {
7358*67e74705SXin Li   if (value.isFloat())
7359*67e74705SXin Li     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
7360*67e74705SXin Li 
7361*67e74705SXin Li   if (value.isVector()) {
7362*67e74705SXin Li     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
7363*67e74705SXin Li       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
7364*67e74705SXin Li         return false;
7365*67e74705SXin Li     return true;
7366*67e74705SXin Li   }
7367*67e74705SXin Li 
7368*67e74705SXin Li   assert(value.isComplexFloat());
7369*67e74705SXin Li   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
7370*67e74705SXin Li           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
7371*67e74705SXin Li }
7372*67e74705SXin Li 
7373*67e74705SXin Li void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
7374*67e74705SXin Li 
IsZero(Sema & S,Expr * E)7375*67e74705SXin Li bool IsZero(Sema &S, Expr *E) {
7376*67e74705SXin Li   // Suppress cases where we are comparing against an enum constant.
7377*67e74705SXin Li   if (const DeclRefExpr *DR =
7378*67e74705SXin Li       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
7379*67e74705SXin Li     if (isa<EnumConstantDecl>(DR->getDecl()))
7380*67e74705SXin Li       return false;
7381*67e74705SXin Li 
7382*67e74705SXin Li   // Suppress cases where the '0' value is expanded from a macro.
7383*67e74705SXin Li   if (E->getLocStart().isMacroID())
7384*67e74705SXin Li     return false;
7385*67e74705SXin Li 
7386*67e74705SXin Li   llvm::APSInt Value;
7387*67e74705SXin Li   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
7388*67e74705SXin Li }
7389*67e74705SXin Li 
HasEnumType(Expr * E)7390*67e74705SXin Li bool HasEnumType(Expr *E) {
7391*67e74705SXin Li   // Strip off implicit integral promotions.
7392*67e74705SXin Li   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7393*67e74705SXin Li     if (ICE->getCastKind() != CK_IntegralCast &&
7394*67e74705SXin Li         ICE->getCastKind() != CK_NoOp)
7395*67e74705SXin Li       break;
7396*67e74705SXin Li     E = ICE->getSubExpr();
7397*67e74705SXin Li   }
7398*67e74705SXin Li 
7399*67e74705SXin Li   return E->getType()->isEnumeralType();
7400*67e74705SXin Li }
7401*67e74705SXin Li 
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)7402*67e74705SXin Li void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
7403*67e74705SXin Li   // Disable warning in template instantiations.
7404*67e74705SXin Li   if (!S.ActiveTemplateInstantiations.empty())
7405*67e74705SXin Li     return;
7406*67e74705SXin Li 
7407*67e74705SXin Li   BinaryOperatorKind op = E->getOpcode();
7408*67e74705SXin Li   if (E->isValueDependent())
7409*67e74705SXin Li     return;
7410*67e74705SXin Li 
7411*67e74705SXin Li   if (op == BO_LT && IsZero(S, E->getRHS())) {
7412*67e74705SXin Li     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
7413*67e74705SXin Li       << "< 0" << "false" << HasEnumType(E->getLHS())
7414*67e74705SXin Li       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7415*67e74705SXin Li   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
7416*67e74705SXin Li     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
7417*67e74705SXin Li       << ">= 0" << "true" << HasEnumType(E->getLHS())
7418*67e74705SXin Li       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7419*67e74705SXin Li   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
7420*67e74705SXin Li     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
7421*67e74705SXin Li       << "0 >" << "false" << HasEnumType(E->getRHS())
7422*67e74705SXin Li       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7423*67e74705SXin Li   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
7424*67e74705SXin Li     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
7425*67e74705SXin Li       << "0 <=" << "true" << HasEnumType(E->getRHS())
7426*67e74705SXin Li       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
7427*67e74705SXin Li   }
7428*67e74705SXin Li }
7429*67e74705SXin Li 
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,const llvm::APSInt & Value,bool RhsConstant)7430*67e74705SXin Li void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E, Expr *Constant,
7431*67e74705SXin Li                                   Expr *Other, const llvm::APSInt &Value,
7432*67e74705SXin Li                                   bool RhsConstant) {
7433*67e74705SXin Li   // Disable warning in template instantiations.
7434*67e74705SXin Li   if (!S.ActiveTemplateInstantiations.empty())
7435*67e74705SXin Li     return;
7436*67e74705SXin Li 
7437*67e74705SXin Li   // TODO: Investigate using GetExprRange() to get tighter bounds
7438*67e74705SXin Li   // on the bit ranges.
7439*67e74705SXin Li   QualType OtherT = Other->getType();
7440*67e74705SXin Li   if (const auto *AT = OtherT->getAs<AtomicType>())
7441*67e74705SXin Li     OtherT = AT->getValueType();
7442*67e74705SXin Li   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
7443*67e74705SXin Li   unsigned OtherWidth = OtherRange.Width;
7444*67e74705SXin Li 
7445*67e74705SXin Li   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
7446*67e74705SXin Li 
7447*67e74705SXin Li   // 0 values are handled later by CheckTrivialUnsignedComparison().
7448*67e74705SXin Li   if ((Value == 0) && (!OtherIsBooleanType))
7449*67e74705SXin Li     return;
7450*67e74705SXin Li 
7451*67e74705SXin Li   BinaryOperatorKind op = E->getOpcode();
7452*67e74705SXin Li   bool IsTrue = true;
7453*67e74705SXin Li 
7454*67e74705SXin Li   // Used for diagnostic printout.
7455*67e74705SXin Li   enum {
7456*67e74705SXin Li     LiteralConstant = 0,
7457*67e74705SXin Li     CXXBoolLiteralTrue,
7458*67e74705SXin Li     CXXBoolLiteralFalse
7459*67e74705SXin Li   } LiteralOrBoolConstant = LiteralConstant;
7460*67e74705SXin Li 
7461*67e74705SXin Li   if (!OtherIsBooleanType) {
7462*67e74705SXin Li     QualType ConstantT = Constant->getType();
7463*67e74705SXin Li     QualType CommonT = E->getLHS()->getType();
7464*67e74705SXin Li 
7465*67e74705SXin Li     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
7466*67e74705SXin Li       return;
7467*67e74705SXin Li     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
7468*67e74705SXin Li            "comparison with non-integer type");
7469*67e74705SXin Li 
7470*67e74705SXin Li     bool ConstantSigned = ConstantT->isSignedIntegerType();
7471*67e74705SXin Li     bool CommonSigned = CommonT->isSignedIntegerType();
7472*67e74705SXin Li 
7473*67e74705SXin Li     bool EqualityOnly = false;
7474*67e74705SXin Li 
7475*67e74705SXin Li     if (CommonSigned) {
7476*67e74705SXin Li       // The common type is signed, therefore no signed to unsigned conversion.
7477*67e74705SXin Li       if (!OtherRange.NonNegative) {
7478*67e74705SXin Li         // Check that the constant is representable in type OtherT.
7479*67e74705SXin Li         if (ConstantSigned) {
7480*67e74705SXin Li           if (OtherWidth >= Value.getMinSignedBits())
7481*67e74705SXin Li             return;
7482*67e74705SXin Li         } else { // !ConstantSigned
7483*67e74705SXin Li           if (OtherWidth >= Value.getActiveBits() + 1)
7484*67e74705SXin Li             return;
7485*67e74705SXin Li         }
7486*67e74705SXin Li       } else { // !OtherSigned
7487*67e74705SXin Li                // Check that the constant is representable in type OtherT.
7488*67e74705SXin Li         // Negative values are out of range.
7489*67e74705SXin Li         if (ConstantSigned) {
7490*67e74705SXin Li           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
7491*67e74705SXin Li             return;
7492*67e74705SXin Li         } else { // !ConstantSigned
7493*67e74705SXin Li           if (OtherWidth >= Value.getActiveBits())
7494*67e74705SXin Li             return;
7495*67e74705SXin Li         }
7496*67e74705SXin Li       }
7497*67e74705SXin Li     } else { // !CommonSigned
7498*67e74705SXin Li       if (OtherRange.NonNegative) {
7499*67e74705SXin Li         if (OtherWidth >= Value.getActiveBits())
7500*67e74705SXin Li           return;
7501*67e74705SXin Li       } else { // OtherSigned
7502*67e74705SXin Li         assert(!ConstantSigned &&
7503*67e74705SXin Li                "Two signed types converted to unsigned types.");
7504*67e74705SXin Li         // Check to see if the constant is representable in OtherT.
7505*67e74705SXin Li         if (OtherWidth > Value.getActiveBits())
7506*67e74705SXin Li           return;
7507*67e74705SXin Li         // Check to see if the constant is equivalent to a negative value
7508*67e74705SXin Li         // cast to CommonT.
7509*67e74705SXin Li         if (S.Context.getIntWidth(ConstantT) ==
7510*67e74705SXin Li                 S.Context.getIntWidth(CommonT) &&
7511*67e74705SXin Li             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
7512*67e74705SXin Li           return;
7513*67e74705SXin Li         // The constant value rests between values that OtherT can represent
7514*67e74705SXin Li         // after conversion.  Relational comparison still works, but equality
7515*67e74705SXin Li         // comparisons will be tautological.
7516*67e74705SXin Li         EqualityOnly = true;
7517*67e74705SXin Li       }
7518*67e74705SXin Li     }
7519*67e74705SXin Li 
7520*67e74705SXin Li     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
7521*67e74705SXin Li 
7522*67e74705SXin Li     if (op == BO_EQ || op == BO_NE) {
7523*67e74705SXin Li       IsTrue = op == BO_NE;
7524*67e74705SXin Li     } else if (EqualityOnly) {
7525*67e74705SXin Li       return;
7526*67e74705SXin Li     } else if (RhsConstant) {
7527*67e74705SXin Li       if (op == BO_GT || op == BO_GE)
7528*67e74705SXin Li         IsTrue = !PositiveConstant;
7529*67e74705SXin Li       else // op == BO_LT || op == BO_LE
7530*67e74705SXin Li         IsTrue = PositiveConstant;
7531*67e74705SXin Li     } else {
7532*67e74705SXin Li       if (op == BO_LT || op == BO_LE)
7533*67e74705SXin Li         IsTrue = !PositiveConstant;
7534*67e74705SXin Li       else // op == BO_GT || op == BO_GE
7535*67e74705SXin Li         IsTrue = PositiveConstant;
7536*67e74705SXin Li     }
7537*67e74705SXin Li   } else {
7538*67e74705SXin Li     // Other isKnownToHaveBooleanValue
7539*67e74705SXin Li     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
7540*67e74705SXin Li     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
7541*67e74705SXin Li     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
7542*67e74705SXin Li 
7543*67e74705SXin Li     static const struct LinkedConditions {
7544*67e74705SXin Li       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
7545*67e74705SXin Li       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
7546*67e74705SXin Li       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
7547*67e74705SXin Li       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
7548*67e74705SXin Li       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
7549*67e74705SXin Li       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
7550*67e74705SXin Li 
7551*67e74705SXin Li     } TruthTable = {
7552*67e74705SXin Li         // Constant on LHS.              | Constant on RHS.              |
7553*67e74705SXin Li         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
7554*67e74705SXin Li         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
7555*67e74705SXin Li         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
7556*67e74705SXin Li         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
7557*67e74705SXin Li         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
7558*67e74705SXin Li         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
7559*67e74705SXin Li         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
7560*67e74705SXin Li       };
7561*67e74705SXin Li 
7562*67e74705SXin Li     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
7563*67e74705SXin Li 
7564*67e74705SXin Li     enum ConstantValue ConstVal = Zero;
7565*67e74705SXin Li     if (Value.isUnsigned() || Value.isNonNegative()) {
7566*67e74705SXin Li       if (Value == 0) {
7567*67e74705SXin Li         LiteralOrBoolConstant =
7568*67e74705SXin Li             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
7569*67e74705SXin Li         ConstVal = Zero;
7570*67e74705SXin Li       } else if (Value == 1) {
7571*67e74705SXin Li         LiteralOrBoolConstant =
7572*67e74705SXin Li             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
7573*67e74705SXin Li         ConstVal = One;
7574*67e74705SXin Li       } else {
7575*67e74705SXin Li         LiteralOrBoolConstant = LiteralConstant;
7576*67e74705SXin Li         ConstVal = GT_One;
7577*67e74705SXin Li       }
7578*67e74705SXin Li     } else {
7579*67e74705SXin Li       ConstVal = LT_Zero;
7580*67e74705SXin Li     }
7581*67e74705SXin Li 
7582*67e74705SXin Li     CompareBoolWithConstantResult CmpRes;
7583*67e74705SXin Li 
7584*67e74705SXin Li     switch (op) {
7585*67e74705SXin Li     case BO_LT:
7586*67e74705SXin Li       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
7587*67e74705SXin Li       break;
7588*67e74705SXin Li     case BO_GT:
7589*67e74705SXin Li       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
7590*67e74705SXin Li       break;
7591*67e74705SXin Li     case BO_LE:
7592*67e74705SXin Li       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
7593*67e74705SXin Li       break;
7594*67e74705SXin Li     case BO_GE:
7595*67e74705SXin Li       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
7596*67e74705SXin Li       break;
7597*67e74705SXin Li     case BO_EQ:
7598*67e74705SXin Li       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
7599*67e74705SXin Li       break;
7600*67e74705SXin Li     case BO_NE:
7601*67e74705SXin Li       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
7602*67e74705SXin Li       break;
7603*67e74705SXin Li     default:
7604*67e74705SXin Li       CmpRes = Unkwn;
7605*67e74705SXin Li       break;
7606*67e74705SXin Li     }
7607*67e74705SXin Li 
7608*67e74705SXin Li     if (CmpRes == AFals) {
7609*67e74705SXin Li       IsTrue = false;
7610*67e74705SXin Li     } else if (CmpRes == ATrue) {
7611*67e74705SXin Li       IsTrue = true;
7612*67e74705SXin Li     } else {
7613*67e74705SXin Li       return;
7614*67e74705SXin Li     }
7615*67e74705SXin Li   }
7616*67e74705SXin Li 
7617*67e74705SXin Li   // If this is a comparison to an enum constant, include that
7618*67e74705SXin Li   // constant in the diagnostic.
7619*67e74705SXin Li   const EnumConstantDecl *ED = nullptr;
7620*67e74705SXin Li   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
7621*67e74705SXin Li     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
7622*67e74705SXin Li 
7623*67e74705SXin Li   SmallString<64> PrettySourceValue;
7624*67e74705SXin Li   llvm::raw_svector_ostream OS(PrettySourceValue);
7625*67e74705SXin Li   if (ED)
7626*67e74705SXin Li     OS << '\'' << *ED << "' (" << Value << ")";
7627*67e74705SXin Li   else
7628*67e74705SXin Li     OS << Value;
7629*67e74705SXin Li 
7630*67e74705SXin Li   S.DiagRuntimeBehavior(
7631*67e74705SXin Li     E->getOperatorLoc(), E,
7632*67e74705SXin Li     S.PDiag(diag::warn_out_of_range_compare)
7633*67e74705SXin Li         << OS.str() << LiteralOrBoolConstant
7634*67e74705SXin Li         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
7635*67e74705SXin Li         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
7636*67e74705SXin Li }
7637*67e74705SXin Li 
7638*67e74705SXin Li /// Analyze the operands of the given comparison.  Implements the
7639*67e74705SXin Li /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)7640*67e74705SXin Li void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
7641*67e74705SXin Li   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
7642*67e74705SXin Li   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
7643*67e74705SXin Li }
7644*67e74705SXin Li 
7645*67e74705SXin Li /// \brief Implements -Wsign-compare.
7646*67e74705SXin Li ///
7647*67e74705SXin Li /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)7648*67e74705SXin Li void AnalyzeComparison(Sema &S, BinaryOperator *E) {
7649*67e74705SXin Li   // The type the comparison is being performed in.
7650*67e74705SXin Li   QualType T = E->getLHS()->getType();
7651*67e74705SXin Li 
7652*67e74705SXin Li   // Only analyze comparison operators where both sides have been converted to
7653*67e74705SXin Li   // the same type.
7654*67e74705SXin Li   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
7655*67e74705SXin Li     return AnalyzeImpConvsInComparison(S, E);
7656*67e74705SXin Li 
7657*67e74705SXin Li   // Don't analyze value-dependent comparisons directly.
7658*67e74705SXin Li   if (E->isValueDependent())
7659*67e74705SXin Li     return AnalyzeImpConvsInComparison(S, E);
7660*67e74705SXin Li 
7661*67e74705SXin Li   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
7662*67e74705SXin Li   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
7663*67e74705SXin Li 
7664*67e74705SXin Li   bool IsComparisonConstant = false;
7665*67e74705SXin Li 
7666*67e74705SXin Li   // Check whether an integer constant comparison results in a value
7667*67e74705SXin Li   // of 'true' or 'false'.
7668*67e74705SXin Li   if (T->isIntegralType(S.Context)) {
7669*67e74705SXin Li     llvm::APSInt RHSValue;
7670*67e74705SXin Li     bool IsRHSIntegralLiteral =
7671*67e74705SXin Li       RHS->isIntegerConstantExpr(RHSValue, S.Context);
7672*67e74705SXin Li     llvm::APSInt LHSValue;
7673*67e74705SXin Li     bool IsLHSIntegralLiteral =
7674*67e74705SXin Li       LHS->isIntegerConstantExpr(LHSValue, S.Context);
7675*67e74705SXin Li     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
7676*67e74705SXin Li         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
7677*67e74705SXin Li     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
7678*67e74705SXin Li       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
7679*67e74705SXin Li     else
7680*67e74705SXin Li       IsComparisonConstant =
7681*67e74705SXin Li         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
7682*67e74705SXin Li   } else if (!T->hasUnsignedIntegerRepresentation())
7683*67e74705SXin Li       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
7684*67e74705SXin Li 
7685*67e74705SXin Li   // We don't do anything special if this isn't an unsigned integral
7686*67e74705SXin Li   // comparison:  we're only interested in integral comparisons, and
7687*67e74705SXin Li   // signed comparisons only happen in cases we don't care to warn about.
7688*67e74705SXin Li   //
7689*67e74705SXin Li   // We also don't care about value-dependent expressions or expressions
7690*67e74705SXin Li   // whose result is a constant.
7691*67e74705SXin Li   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
7692*67e74705SXin Li     return AnalyzeImpConvsInComparison(S, E);
7693*67e74705SXin Li 
7694*67e74705SXin Li   // Check to see if one of the (unmodified) operands is of different
7695*67e74705SXin Li   // signedness.
7696*67e74705SXin Li   Expr *signedOperand, *unsignedOperand;
7697*67e74705SXin Li   if (LHS->getType()->hasSignedIntegerRepresentation()) {
7698*67e74705SXin Li     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
7699*67e74705SXin Li            "unsigned comparison between two signed integer expressions?");
7700*67e74705SXin Li     signedOperand = LHS;
7701*67e74705SXin Li     unsignedOperand = RHS;
7702*67e74705SXin Li   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
7703*67e74705SXin Li     signedOperand = RHS;
7704*67e74705SXin Li     unsignedOperand = LHS;
7705*67e74705SXin Li   } else {
7706*67e74705SXin Li     CheckTrivialUnsignedComparison(S, E);
7707*67e74705SXin Li     return AnalyzeImpConvsInComparison(S, E);
7708*67e74705SXin Li   }
7709*67e74705SXin Li 
7710*67e74705SXin Li   // Otherwise, calculate the effective range of the signed operand.
7711*67e74705SXin Li   IntRange signedRange = GetExprRange(S.Context, signedOperand);
7712*67e74705SXin Li 
7713*67e74705SXin Li   // Go ahead and analyze implicit conversions in the operands.  Note
7714*67e74705SXin Li   // that we skip the implicit conversions on both sides.
7715*67e74705SXin Li   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
7716*67e74705SXin Li   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
7717*67e74705SXin Li 
7718*67e74705SXin Li   // If the signed range is non-negative, -Wsign-compare won't fire,
7719*67e74705SXin Li   // but we should still check for comparisons which are always true
7720*67e74705SXin Li   // or false.
7721*67e74705SXin Li   if (signedRange.NonNegative)
7722*67e74705SXin Li     return CheckTrivialUnsignedComparison(S, E);
7723*67e74705SXin Li 
7724*67e74705SXin Li   // For (in)equality comparisons, if the unsigned operand is a
7725*67e74705SXin Li   // constant which cannot collide with a overflowed signed operand,
7726*67e74705SXin Li   // then reinterpreting the signed operand as unsigned will not
7727*67e74705SXin Li   // change the result of the comparison.
7728*67e74705SXin Li   if (E->isEqualityOp()) {
7729*67e74705SXin Li     unsigned comparisonWidth = S.Context.getIntWidth(T);
7730*67e74705SXin Li     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
7731*67e74705SXin Li 
7732*67e74705SXin Li     // We should never be unable to prove that the unsigned operand is
7733*67e74705SXin Li     // non-negative.
7734*67e74705SXin Li     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
7735*67e74705SXin Li 
7736*67e74705SXin Li     if (unsignedRange.Width < comparisonWidth)
7737*67e74705SXin Li       return;
7738*67e74705SXin Li   }
7739*67e74705SXin Li 
7740*67e74705SXin Li   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
7741*67e74705SXin Li     S.PDiag(diag::warn_mixed_sign_comparison)
7742*67e74705SXin Li       << LHS->getType() << RHS->getType()
7743*67e74705SXin Li       << LHS->getSourceRange() << RHS->getSourceRange());
7744*67e74705SXin Li }
7745*67e74705SXin Li 
7746*67e74705SXin Li /// Analyzes an attempt to assign the given value to a bitfield.
7747*67e74705SXin Li ///
7748*67e74705SXin Li /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)7749*67e74705SXin Li bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
7750*67e74705SXin Li                                SourceLocation InitLoc) {
7751*67e74705SXin Li   assert(Bitfield->isBitField());
7752*67e74705SXin Li   if (Bitfield->isInvalidDecl())
7753*67e74705SXin Li     return false;
7754*67e74705SXin Li 
7755*67e74705SXin Li   // White-list bool bitfields.
7756*67e74705SXin Li   if (Bitfield->getType()->isBooleanType())
7757*67e74705SXin Li     return false;
7758*67e74705SXin Li 
7759*67e74705SXin Li   // Ignore value- or type-dependent expressions.
7760*67e74705SXin Li   if (Bitfield->getBitWidth()->isValueDependent() ||
7761*67e74705SXin Li       Bitfield->getBitWidth()->isTypeDependent() ||
7762*67e74705SXin Li       Init->isValueDependent() ||
7763*67e74705SXin Li       Init->isTypeDependent())
7764*67e74705SXin Li     return false;
7765*67e74705SXin Li 
7766*67e74705SXin Li   Expr *OriginalInit = Init->IgnoreParenImpCasts();
7767*67e74705SXin Li 
7768*67e74705SXin Li   llvm::APSInt Value;
7769*67e74705SXin Li   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
7770*67e74705SXin Li     return false;
7771*67e74705SXin Li 
7772*67e74705SXin Li   unsigned OriginalWidth = Value.getBitWidth();
7773*67e74705SXin Li   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
7774*67e74705SXin Li 
7775*67e74705SXin Li   if (OriginalWidth <= FieldWidth)
7776*67e74705SXin Li     return false;
7777*67e74705SXin Li 
7778*67e74705SXin Li   // Compute the value which the bitfield will contain.
7779*67e74705SXin Li   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
7780*67e74705SXin Li   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
7781*67e74705SXin Li 
7782*67e74705SXin Li   // Check whether the stored value is equal to the original value.
7783*67e74705SXin Li   TruncatedValue = TruncatedValue.extend(OriginalWidth);
7784*67e74705SXin Li   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
7785*67e74705SXin Li     return false;
7786*67e74705SXin Li 
7787*67e74705SXin Li   // Special-case bitfields of width 1: booleans are naturally 0/1, and
7788*67e74705SXin Li   // therefore don't strictly fit into a signed bitfield of width 1.
7789*67e74705SXin Li   if (FieldWidth == 1 && Value == 1)
7790*67e74705SXin Li     return false;
7791*67e74705SXin Li 
7792*67e74705SXin Li   std::string PrettyValue = Value.toString(10);
7793*67e74705SXin Li   std::string PrettyTrunc = TruncatedValue.toString(10);
7794*67e74705SXin Li 
7795*67e74705SXin Li   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
7796*67e74705SXin Li     << PrettyValue << PrettyTrunc << OriginalInit->getType()
7797*67e74705SXin Li     << Init->getSourceRange();
7798*67e74705SXin Li 
7799*67e74705SXin Li   return true;
7800*67e74705SXin Li }
7801*67e74705SXin Li 
7802*67e74705SXin Li /// Analyze the given simple or compound assignment for warning-worthy
7803*67e74705SXin Li /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)7804*67e74705SXin Li void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
7805*67e74705SXin Li   // Just recurse on the LHS.
7806*67e74705SXin Li   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
7807*67e74705SXin Li 
7808*67e74705SXin Li   // We want to recurse on the RHS as normal unless we're assigning to
7809*67e74705SXin Li   // a bitfield.
7810*67e74705SXin Li   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
7811*67e74705SXin Li     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
7812*67e74705SXin Li                                   E->getOperatorLoc())) {
7813*67e74705SXin Li       // Recurse, ignoring any implicit conversions on the RHS.
7814*67e74705SXin Li       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
7815*67e74705SXin Li                                         E->getOperatorLoc());
7816*67e74705SXin Li     }
7817*67e74705SXin Li   }
7818*67e74705SXin Li 
7819*67e74705SXin Li   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
7820*67e74705SXin Li }
7821*67e74705SXin Li 
7822*67e74705SXin Li /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)7823*67e74705SXin Li void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
7824*67e74705SXin Li                      SourceLocation CContext, unsigned diag,
7825*67e74705SXin Li                      bool pruneControlFlow = false) {
7826*67e74705SXin Li   if (pruneControlFlow) {
7827*67e74705SXin Li     S.DiagRuntimeBehavior(E->getExprLoc(), E,
7828*67e74705SXin Li                           S.PDiag(diag)
7829*67e74705SXin Li                             << SourceType << T << E->getSourceRange()
7830*67e74705SXin Li                             << SourceRange(CContext));
7831*67e74705SXin Li     return;
7832*67e74705SXin Li   }
7833*67e74705SXin Li   S.Diag(E->getExprLoc(), diag)
7834*67e74705SXin Li     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
7835*67e74705SXin Li }
7836*67e74705SXin Li 
7837*67e74705SXin Li /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)7838*67e74705SXin Li void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
7839*67e74705SXin Li                      unsigned diag, bool pruneControlFlow = false) {
7840*67e74705SXin Li   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
7841*67e74705SXin Li }
7842*67e74705SXin Li 
7843*67e74705SXin Li 
7844*67e74705SXin Li /// Diagnose an implicit cast from a floating point value to an integer value.
DiagnoseFloatingImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext)7845*67e74705SXin Li void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
7846*67e74705SXin Li 
7847*67e74705SXin Li                              SourceLocation CContext) {
7848*67e74705SXin Li   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
7849*67e74705SXin Li   const bool PruneWarnings = !S.ActiveTemplateInstantiations.empty();
7850*67e74705SXin Li 
7851*67e74705SXin Li   Expr *InnerE = E->IgnoreParenImpCasts();
7852*67e74705SXin Li   // We also want to warn on, e.g., "int i = -1.234"
7853*67e74705SXin Li   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
7854*67e74705SXin Li     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
7855*67e74705SXin Li       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
7856*67e74705SXin Li 
7857*67e74705SXin Li   const bool IsLiteral =
7858*67e74705SXin Li       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
7859*67e74705SXin Li 
7860*67e74705SXin Li   llvm::APFloat Value(0.0);
7861*67e74705SXin Li   bool IsConstant =
7862*67e74705SXin Li     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
7863*67e74705SXin Li   if (!IsConstant) {
7864*67e74705SXin Li     return DiagnoseImpCast(S, E, T, CContext,
7865*67e74705SXin Li                            diag::warn_impcast_float_integer, PruneWarnings);
7866*67e74705SXin Li   }
7867*67e74705SXin Li 
7868*67e74705SXin Li   bool isExact = false;
7869*67e74705SXin Li 
7870*67e74705SXin Li   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
7871*67e74705SXin Li                             T->hasUnsignedIntegerRepresentation());
7872*67e74705SXin Li   if (Value.convertToInteger(IntegerValue, llvm::APFloat::rmTowardZero,
7873*67e74705SXin Li                              &isExact) == llvm::APFloat::opOK &&
7874*67e74705SXin Li       isExact) {
7875*67e74705SXin Li     if (IsLiteral) return;
7876*67e74705SXin Li     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
7877*67e74705SXin Li                            PruneWarnings);
7878*67e74705SXin Li   }
7879*67e74705SXin Li 
7880*67e74705SXin Li   unsigned DiagID = 0;
7881*67e74705SXin Li   if (IsLiteral) {
7882*67e74705SXin Li     // Warn on floating point literal to integer.
7883*67e74705SXin Li     DiagID = diag::warn_impcast_literal_float_to_integer;
7884*67e74705SXin Li   } else if (IntegerValue == 0) {
7885*67e74705SXin Li     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
7886*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CContext,
7887*67e74705SXin Li                              diag::warn_impcast_float_integer, PruneWarnings);
7888*67e74705SXin Li     }
7889*67e74705SXin Li     // Warn on non-zero to zero conversion.
7890*67e74705SXin Li     DiagID = diag::warn_impcast_float_to_integer_zero;
7891*67e74705SXin Li   } else {
7892*67e74705SXin Li     if (IntegerValue.isUnsigned()) {
7893*67e74705SXin Li       if (!IntegerValue.isMaxValue()) {
7894*67e74705SXin Li         return DiagnoseImpCast(S, E, T, CContext,
7895*67e74705SXin Li                                diag::warn_impcast_float_integer, PruneWarnings);
7896*67e74705SXin Li       }
7897*67e74705SXin Li     } else {  // IntegerValue.isSigned()
7898*67e74705SXin Li       if (!IntegerValue.isMaxSignedValue() &&
7899*67e74705SXin Li           !IntegerValue.isMinSignedValue()) {
7900*67e74705SXin Li         return DiagnoseImpCast(S, E, T, CContext,
7901*67e74705SXin Li                                diag::warn_impcast_float_integer, PruneWarnings);
7902*67e74705SXin Li       }
7903*67e74705SXin Li     }
7904*67e74705SXin Li     // Warn on evaluatable floating point expression to integer conversion.
7905*67e74705SXin Li     DiagID = diag::warn_impcast_float_to_integer;
7906*67e74705SXin Li   }
7907*67e74705SXin Li 
7908*67e74705SXin Li   // FIXME: Force the precision of the source value down so we don't print
7909*67e74705SXin Li   // digits which are usually useless (we don't really care here if we
7910*67e74705SXin Li   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
7911*67e74705SXin Li   // would automatically print the shortest representation, but it's a bit
7912*67e74705SXin Li   // tricky to implement.
7913*67e74705SXin Li   SmallString<16> PrettySourceValue;
7914*67e74705SXin Li   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
7915*67e74705SXin Li   precision = (precision * 59 + 195) / 196;
7916*67e74705SXin Li   Value.toString(PrettySourceValue, precision);
7917*67e74705SXin Li 
7918*67e74705SXin Li   SmallString<16> PrettyTargetValue;
7919*67e74705SXin Li   if (IsBool)
7920*67e74705SXin Li     PrettyTargetValue = Value.isZero() ? "false" : "true";
7921*67e74705SXin Li   else
7922*67e74705SXin Li     IntegerValue.toString(PrettyTargetValue);
7923*67e74705SXin Li 
7924*67e74705SXin Li   if (PruneWarnings) {
7925*67e74705SXin Li     S.DiagRuntimeBehavior(E->getExprLoc(), E,
7926*67e74705SXin Li                           S.PDiag(DiagID)
7927*67e74705SXin Li                               << E->getType() << T.getUnqualifiedType()
7928*67e74705SXin Li                               << PrettySourceValue << PrettyTargetValue
7929*67e74705SXin Li                               << E->getSourceRange() << SourceRange(CContext));
7930*67e74705SXin Li   } else {
7931*67e74705SXin Li     S.Diag(E->getExprLoc(), DiagID)
7932*67e74705SXin Li         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
7933*67e74705SXin Li         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
7934*67e74705SXin Li   }
7935*67e74705SXin Li }
7936*67e74705SXin Li 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)7937*67e74705SXin Li std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
7938*67e74705SXin Li   if (!Range.Width) return "0";
7939*67e74705SXin Li 
7940*67e74705SXin Li   llvm::APSInt ValueInRange = Value;
7941*67e74705SXin Li   ValueInRange.setIsSigned(!Range.NonNegative);
7942*67e74705SXin Li   ValueInRange = ValueInRange.trunc(Range.Width);
7943*67e74705SXin Li   return ValueInRange.toString(10);
7944*67e74705SXin Li }
7945*67e74705SXin Li 
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)7946*67e74705SXin Li bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
7947*67e74705SXin Li   if (!isa<ImplicitCastExpr>(Ex))
7948*67e74705SXin Li     return false;
7949*67e74705SXin Li 
7950*67e74705SXin Li   Expr *InnerE = Ex->IgnoreParenImpCasts();
7951*67e74705SXin Li   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
7952*67e74705SXin Li   const Type *Source =
7953*67e74705SXin Li     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
7954*67e74705SXin Li   if (Target->isDependentType())
7955*67e74705SXin Li     return false;
7956*67e74705SXin Li 
7957*67e74705SXin Li   const BuiltinType *FloatCandidateBT =
7958*67e74705SXin Li     dyn_cast<BuiltinType>(ToBool ? Source : Target);
7959*67e74705SXin Li   const Type *BoolCandidateType = ToBool ? Target : Source;
7960*67e74705SXin Li 
7961*67e74705SXin Li   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
7962*67e74705SXin Li           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
7963*67e74705SXin Li }
7964*67e74705SXin Li 
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)7965*67e74705SXin Li void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
7966*67e74705SXin Li                                       SourceLocation CC) {
7967*67e74705SXin Li   unsigned NumArgs = TheCall->getNumArgs();
7968*67e74705SXin Li   for (unsigned i = 0; i < NumArgs; ++i) {
7969*67e74705SXin Li     Expr *CurrA = TheCall->getArg(i);
7970*67e74705SXin Li     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
7971*67e74705SXin Li       continue;
7972*67e74705SXin Li 
7973*67e74705SXin Li     bool IsSwapped = ((i > 0) &&
7974*67e74705SXin Li         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
7975*67e74705SXin Li     IsSwapped |= ((i < (NumArgs - 1)) &&
7976*67e74705SXin Li         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
7977*67e74705SXin Li     if (IsSwapped) {
7978*67e74705SXin Li       // Warn on this floating-point to bool conversion.
7979*67e74705SXin Li       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
7980*67e74705SXin Li                       CurrA->getType(), CC,
7981*67e74705SXin Li                       diag::warn_impcast_floating_point_to_bool);
7982*67e74705SXin Li     }
7983*67e74705SXin Li   }
7984*67e74705SXin Li }
7985*67e74705SXin Li 
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)7986*67e74705SXin Li void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, SourceLocation CC) {
7987*67e74705SXin Li   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
7988*67e74705SXin Li                         E->getExprLoc()))
7989*67e74705SXin Li     return;
7990*67e74705SXin Li 
7991*67e74705SXin Li   // Don't warn on functions which have return type nullptr_t.
7992*67e74705SXin Li   if (isa<CallExpr>(E))
7993*67e74705SXin Li     return;
7994*67e74705SXin Li 
7995*67e74705SXin Li   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
7996*67e74705SXin Li   const Expr::NullPointerConstantKind NullKind =
7997*67e74705SXin Li       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
7998*67e74705SXin Li   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
7999*67e74705SXin Li     return;
8000*67e74705SXin Li 
8001*67e74705SXin Li   // Return if target type is a safe conversion.
8002*67e74705SXin Li   if (T->isAnyPointerType() || T->isBlockPointerType() ||
8003*67e74705SXin Li       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
8004*67e74705SXin Li     return;
8005*67e74705SXin Li 
8006*67e74705SXin Li   SourceLocation Loc = E->getSourceRange().getBegin();
8007*67e74705SXin Li 
8008*67e74705SXin Li   // Venture through the macro stacks to get to the source of macro arguments.
8009*67e74705SXin Li   // The new location is a better location than the complete location that was
8010*67e74705SXin Li   // passed in.
8011*67e74705SXin Li   while (S.SourceMgr.isMacroArgExpansion(Loc))
8012*67e74705SXin Li     Loc = S.SourceMgr.getImmediateMacroCallerLoc(Loc);
8013*67e74705SXin Li 
8014*67e74705SXin Li   while (S.SourceMgr.isMacroArgExpansion(CC))
8015*67e74705SXin Li     CC = S.SourceMgr.getImmediateMacroCallerLoc(CC);
8016*67e74705SXin Li 
8017*67e74705SXin Li   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
8018*67e74705SXin Li   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
8019*67e74705SXin Li     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
8020*67e74705SXin Li         Loc, S.SourceMgr, S.getLangOpts());
8021*67e74705SXin Li     if (MacroName == "NULL")
8022*67e74705SXin Li       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
8023*67e74705SXin Li   }
8024*67e74705SXin Li 
8025*67e74705SXin Li   // Only warn if the null and context location are in the same macro expansion.
8026*67e74705SXin Li   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
8027*67e74705SXin Li     return;
8028*67e74705SXin Li 
8029*67e74705SXin Li   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
8030*67e74705SXin Li       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
8031*67e74705SXin Li       << FixItHint::CreateReplacement(Loc,
8032*67e74705SXin Li                                       S.getFixItZeroLiteralForType(T, Loc));
8033*67e74705SXin Li }
8034*67e74705SXin Li 
8035*67e74705SXin Li void checkObjCArrayLiteral(Sema &S, QualType TargetType,
8036*67e74705SXin Li                            ObjCArrayLiteral *ArrayLiteral);
8037*67e74705SXin Li void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
8038*67e74705SXin Li                                 ObjCDictionaryLiteral *DictionaryLiteral);
8039*67e74705SXin Li 
8040*67e74705SXin Li /// Check a single element within a collection literal against the
8041*67e74705SXin Li /// target element type.
checkObjCCollectionLiteralElement(Sema & S,QualType TargetElementType,Expr * Element,unsigned ElementKind)8042*67e74705SXin Li void checkObjCCollectionLiteralElement(Sema &S, QualType TargetElementType,
8043*67e74705SXin Li                                        Expr *Element, unsigned ElementKind) {
8044*67e74705SXin Li   // Skip a bitcast to 'id' or qualified 'id'.
8045*67e74705SXin Li   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
8046*67e74705SXin Li     if (ICE->getCastKind() == CK_BitCast &&
8047*67e74705SXin Li         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
8048*67e74705SXin Li       Element = ICE->getSubExpr();
8049*67e74705SXin Li   }
8050*67e74705SXin Li 
8051*67e74705SXin Li   QualType ElementType = Element->getType();
8052*67e74705SXin Li   ExprResult ElementResult(Element);
8053*67e74705SXin Li   if (ElementType->getAs<ObjCObjectPointerType>() &&
8054*67e74705SXin Li       S.CheckSingleAssignmentConstraints(TargetElementType,
8055*67e74705SXin Li                                          ElementResult,
8056*67e74705SXin Li                                          false, false)
8057*67e74705SXin Li         != Sema::Compatible) {
8058*67e74705SXin Li     S.Diag(Element->getLocStart(),
8059*67e74705SXin Li            diag::warn_objc_collection_literal_element)
8060*67e74705SXin Li       << ElementType << ElementKind << TargetElementType
8061*67e74705SXin Li       << Element->getSourceRange();
8062*67e74705SXin Li   }
8063*67e74705SXin Li 
8064*67e74705SXin Li   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
8065*67e74705SXin Li     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
8066*67e74705SXin Li   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
8067*67e74705SXin Li     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
8068*67e74705SXin Li }
8069*67e74705SXin Li 
8070*67e74705SXin Li /// Check an Objective-C array literal being converted to the given
8071*67e74705SXin Li /// target type.
checkObjCArrayLiteral(Sema & S,QualType TargetType,ObjCArrayLiteral * ArrayLiteral)8072*67e74705SXin Li void checkObjCArrayLiteral(Sema &S, QualType TargetType,
8073*67e74705SXin Li                            ObjCArrayLiteral *ArrayLiteral) {
8074*67e74705SXin Li   if (!S.NSArrayDecl)
8075*67e74705SXin Li     return;
8076*67e74705SXin Li 
8077*67e74705SXin Li   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
8078*67e74705SXin Li   if (!TargetObjCPtr)
8079*67e74705SXin Li     return;
8080*67e74705SXin Li 
8081*67e74705SXin Li   if (TargetObjCPtr->isUnspecialized() ||
8082*67e74705SXin Li       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
8083*67e74705SXin Li         != S.NSArrayDecl->getCanonicalDecl())
8084*67e74705SXin Li     return;
8085*67e74705SXin Li 
8086*67e74705SXin Li   auto TypeArgs = TargetObjCPtr->getTypeArgs();
8087*67e74705SXin Li   if (TypeArgs.size() != 1)
8088*67e74705SXin Li     return;
8089*67e74705SXin Li 
8090*67e74705SXin Li   QualType TargetElementType = TypeArgs[0];
8091*67e74705SXin Li   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
8092*67e74705SXin Li     checkObjCCollectionLiteralElement(S, TargetElementType,
8093*67e74705SXin Li                                       ArrayLiteral->getElement(I),
8094*67e74705SXin Li                                       0);
8095*67e74705SXin Li   }
8096*67e74705SXin Li }
8097*67e74705SXin Li 
8098*67e74705SXin Li /// Check an Objective-C dictionary literal being converted to the given
8099*67e74705SXin Li /// target type.
checkObjCDictionaryLiteral(Sema & S,QualType TargetType,ObjCDictionaryLiteral * DictionaryLiteral)8100*67e74705SXin Li void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
8101*67e74705SXin Li                                 ObjCDictionaryLiteral *DictionaryLiteral) {
8102*67e74705SXin Li   if (!S.NSDictionaryDecl)
8103*67e74705SXin Li     return;
8104*67e74705SXin Li 
8105*67e74705SXin Li   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
8106*67e74705SXin Li   if (!TargetObjCPtr)
8107*67e74705SXin Li     return;
8108*67e74705SXin Li 
8109*67e74705SXin Li   if (TargetObjCPtr->isUnspecialized() ||
8110*67e74705SXin Li       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
8111*67e74705SXin Li         != S.NSDictionaryDecl->getCanonicalDecl())
8112*67e74705SXin Li     return;
8113*67e74705SXin Li 
8114*67e74705SXin Li   auto TypeArgs = TargetObjCPtr->getTypeArgs();
8115*67e74705SXin Li   if (TypeArgs.size() != 2)
8116*67e74705SXin Li     return;
8117*67e74705SXin Li 
8118*67e74705SXin Li   QualType TargetKeyType = TypeArgs[0];
8119*67e74705SXin Li   QualType TargetObjectType = TypeArgs[1];
8120*67e74705SXin Li   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
8121*67e74705SXin Li     auto Element = DictionaryLiteral->getKeyValueElement(I);
8122*67e74705SXin Li     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
8123*67e74705SXin Li     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
8124*67e74705SXin Li   }
8125*67e74705SXin Li }
8126*67e74705SXin Li 
8127*67e74705SXin Li // Helper function to filter out cases for constant width constant conversion.
8128*67e74705SXin Li // Don't warn on char array initialization or for non-decimal values.
isSameWidthConstantConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)8129*67e74705SXin Li bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
8130*67e74705SXin Li                                    SourceLocation CC) {
8131*67e74705SXin Li   // If initializing from a constant, and the constant starts with '0',
8132*67e74705SXin Li   // then it is a binary, octal, or hexadecimal.  Allow these constants
8133*67e74705SXin Li   // to fill all the bits, even if there is a sign change.
8134*67e74705SXin Li   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
8135*67e74705SXin Li     const char FirstLiteralCharacter =
8136*67e74705SXin Li         S.getSourceManager().getCharacterData(IntLit->getLocStart())[0];
8137*67e74705SXin Li     if (FirstLiteralCharacter == '0')
8138*67e74705SXin Li       return false;
8139*67e74705SXin Li   }
8140*67e74705SXin Li 
8141*67e74705SXin Li   // If the CC location points to a '{', and the type is char, then assume
8142*67e74705SXin Li   // assume it is an array initialization.
8143*67e74705SXin Li   if (CC.isValid() && T->isCharType()) {
8144*67e74705SXin Li     const char FirstContextCharacter =
8145*67e74705SXin Li         S.getSourceManager().getCharacterData(CC)[0];
8146*67e74705SXin Li     if (FirstContextCharacter == '{')
8147*67e74705SXin Li       return false;
8148*67e74705SXin Li   }
8149*67e74705SXin Li 
8150*67e74705SXin Li   return true;
8151*67e74705SXin Li }
8152*67e74705SXin Li 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr)8153*67e74705SXin Li void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
8154*67e74705SXin Li                              SourceLocation CC, bool *ICContext = nullptr) {
8155*67e74705SXin Li   if (E->isTypeDependent() || E->isValueDependent()) return;
8156*67e74705SXin Li 
8157*67e74705SXin Li   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
8158*67e74705SXin Li   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
8159*67e74705SXin Li   if (Source == Target) return;
8160*67e74705SXin Li   if (Target->isDependentType()) return;
8161*67e74705SXin Li 
8162*67e74705SXin Li   // If the conversion context location is invalid don't complain. We also
8163*67e74705SXin Li   // don't want to emit a warning if the issue occurs from the expansion of
8164*67e74705SXin Li   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
8165*67e74705SXin Li   // delay this check as long as possible. Once we detect we are in that
8166*67e74705SXin Li   // scenario, we just return.
8167*67e74705SXin Li   if (CC.isInvalid())
8168*67e74705SXin Li     return;
8169*67e74705SXin Li 
8170*67e74705SXin Li   // Diagnose implicit casts to bool.
8171*67e74705SXin Li   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
8172*67e74705SXin Li     if (isa<StringLiteral>(E))
8173*67e74705SXin Li       // Warn on string literal to bool.  Checks for string literals in logical
8174*67e74705SXin Li       // and expressions, for instance, assert(0 && "error here"), are
8175*67e74705SXin Li       // prevented by a check in AnalyzeImplicitConversions().
8176*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CC,
8177*67e74705SXin Li                              diag::warn_impcast_string_literal_to_bool);
8178*67e74705SXin Li     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
8179*67e74705SXin Li         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
8180*67e74705SXin Li       // This covers the literal expressions that evaluate to Objective-C
8181*67e74705SXin Li       // objects.
8182*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CC,
8183*67e74705SXin Li                              diag::warn_impcast_objective_c_literal_to_bool);
8184*67e74705SXin Li     }
8185*67e74705SXin Li     if (Source->isPointerType() || Source->canDecayToPointerType()) {
8186*67e74705SXin Li       // Warn on pointer to bool conversion that is always true.
8187*67e74705SXin Li       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
8188*67e74705SXin Li                                      SourceRange(CC));
8189*67e74705SXin Li     }
8190*67e74705SXin Li   }
8191*67e74705SXin Li 
8192*67e74705SXin Li   // Check implicit casts from Objective-C collection literals to specialized
8193*67e74705SXin Li   // collection types, e.g., NSArray<NSString *> *.
8194*67e74705SXin Li   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
8195*67e74705SXin Li     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
8196*67e74705SXin Li   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
8197*67e74705SXin Li     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
8198*67e74705SXin Li 
8199*67e74705SXin Li   // Strip vector types.
8200*67e74705SXin Li   if (isa<VectorType>(Source)) {
8201*67e74705SXin Li     if (!isa<VectorType>(Target)) {
8202*67e74705SXin Li       if (S.SourceMgr.isInSystemMacro(CC))
8203*67e74705SXin Li         return;
8204*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
8205*67e74705SXin Li     }
8206*67e74705SXin Li 
8207*67e74705SXin Li     // If the vector cast is cast between two vectors of the same size, it is
8208*67e74705SXin Li     // a bitcast, not a conversion.
8209*67e74705SXin Li     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
8210*67e74705SXin Li       return;
8211*67e74705SXin Li 
8212*67e74705SXin Li     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
8213*67e74705SXin Li     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
8214*67e74705SXin Li   }
8215*67e74705SXin Li   if (auto VecTy = dyn_cast<VectorType>(Target))
8216*67e74705SXin Li     Target = VecTy->getElementType().getTypePtr();
8217*67e74705SXin Li 
8218*67e74705SXin Li   // Strip complex types.
8219*67e74705SXin Li   if (isa<ComplexType>(Source)) {
8220*67e74705SXin Li     if (!isa<ComplexType>(Target)) {
8221*67e74705SXin Li       if (S.SourceMgr.isInSystemMacro(CC))
8222*67e74705SXin Li         return;
8223*67e74705SXin Li 
8224*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
8225*67e74705SXin Li     }
8226*67e74705SXin Li 
8227*67e74705SXin Li     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
8228*67e74705SXin Li     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
8229*67e74705SXin Li   }
8230*67e74705SXin Li 
8231*67e74705SXin Li   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
8232*67e74705SXin Li   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
8233*67e74705SXin Li 
8234*67e74705SXin Li   // If the source is floating point...
8235*67e74705SXin Li   if (SourceBT && SourceBT->isFloatingPoint()) {
8236*67e74705SXin Li     // ...and the target is floating point...
8237*67e74705SXin Li     if (TargetBT && TargetBT->isFloatingPoint()) {
8238*67e74705SXin Li       // ...then warn if we're dropping FP rank.
8239*67e74705SXin Li 
8240*67e74705SXin Li       // Builtin FP kinds are ordered by increasing FP rank.
8241*67e74705SXin Li       if (SourceBT->getKind() > TargetBT->getKind()) {
8242*67e74705SXin Li         // Don't warn about float constants that are precisely
8243*67e74705SXin Li         // representable in the target type.
8244*67e74705SXin Li         Expr::EvalResult result;
8245*67e74705SXin Li         if (E->EvaluateAsRValue(result, S.Context)) {
8246*67e74705SXin Li           // Value might be a float, a float vector, or a float complex.
8247*67e74705SXin Li           if (IsSameFloatAfterCast(result.Val,
8248*67e74705SXin Li                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
8249*67e74705SXin Li                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
8250*67e74705SXin Li             return;
8251*67e74705SXin Li         }
8252*67e74705SXin Li 
8253*67e74705SXin Li         if (S.SourceMgr.isInSystemMacro(CC))
8254*67e74705SXin Li           return;
8255*67e74705SXin Li 
8256*67e74705SXin Li         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
8257*67e74705SXin Li       }
8258*67e74705SXin Li       // ... or possibly if we're increasing rank, too
8259*67e74705SXin Li       else if (TargetBT->getKind() > SourceBT->getKind()) {
8260*67e74705SXin Li         if (S.SourceMgr.isInSystemMacro(CC))
8261*67e74705SXin Li           return;
8262*67e74705SXin Li 
8263*67e74705SXin Li         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
8264*67e74705SXin Li       }
8265*67e74705SXin Li       return;
8266*67e74705SXin Li     }
8267*67e74705SXin Li 
8268*67e74705SXin Li     // If the target is integral, always warn.
8269*67e74705SXin Li     if (TargetBT && TargetBT->isInteger()) {
8270*67e74705SXin Li       if (S.SourceMgr.isInSystemMacro(CC))
8271*67e74705SXin Li         return;
8272*67e74705SXin Li 
8273*67e74705SXin Li       DiagnoseFloatingImpCast(S, E, T, CC);
8274*67e74705SXin Li     }
8275*67e74705SXin Li 
8276*67e74705SXin Li     // Detect the case where a call result is converted from floating-point to
8277*67e74705SXin Li     // to bool, and the final argument to the call is converted from bool, to
8278*67e74705SXin Li     // discover this typo:
8279*67e74705SXin Li     //
8280*67e74705SXin Li     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
8281*67e74705SXin Li     //
8282*67e74705SXin Li     // FIXME: This is an incredibly special case; is there some more general
8283*67e74705SXin Li     // way to detect this class of misplaced-parentheses bug?
8284*67e74705SXin Li     if (Target->isBooleanType() && isa<CallExpr>(E)) {
8285*67e74705SXin Li       // Check last argument of function call to see if it is an
8286*67e74705SXin Li       // implicit cast from a type matching the type the result
8287*67e74705SXin Li       // is being cast to.
8288*67e74705SXin Li       CallExpr *CEx = cast<CallExpr>(E);
8289*67e74705SXin Li       if (unsigned NumArgs = CEx->getNumArgs()) {
8290*67e74705SXin Li         Expr *LastA = CEx->getArg(NumArgs - 1);
8291*67e74705SXin Li         Expr *InnerE = LastA->IgnoreParenImpCasts();
8292*67e74705SXin Li         if (isa<ImplicitCastExpr>(LastA) &&
8293*67e74705SXin Li             InnerE->getType()->isBooleanType()) {
8294*67e74705SXin Li           // Warn on this floating-point to bool conversion
8295*67e74705SXin Li           DiagnoseImpCast(S, E, T, CC,
8296*67e74705SXin Li                           diag::warn_impcast_floating_point_to_bool);
8297*67e74705SXin Li         }
8298*67e74705SXin Li       }
8299*67e74705SXin Li     }
8300*67e74705SXin Li     return;
8301*67e74705SXin Li   }
8302*67e74705SXin Li 
8303*67e74705SXin Li   DiagnoseNullConversion(S, E, T, CC);
8304*67e74705SXin Li 
8305*67e74705SXin Li   if (!Source->isIntegerType() || !Target->isIntegerType())
8306*67e74705SXin Li     return;
8307*67e74705SXin Li 
8308*67e74705SXin Li   // TODO: remove this early return once the false positives for constant->bool
8309*67e74705SXin Li   // in templates, macros, etc, are reduced or removed.
8310*67e74705SXin Li   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
8311*67e74705SXin Li     return;
8312*67e74705SXin Li 
8313*67e74705SXin Li   IntRange SourceRange = GetExprRange(S.Context, E);
8314*67e74705SXin Li   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
8315*67e74705SXin Li 
8316*67e74705SXin Li   if (SourceRange.Width > TargetRange.Width) {
8317*67e74705SXin Li     // If the source is a constant, use a default-on diagnostic.
8318*67e74705SXin Li     // TODO: this should happen for bitfield stores, too.
8319*67e74705SXin Li     llvm::APSInt Value(32);
8320*67e74705SXin Li     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects)) {
8321*67e74705SXin Li       if (S.SourceMgr.isInSystemMacro(CC))
8322*67e74705SXin Li         return;
8323*67e74705SXin Li 
8324*67e74705SXin Li       std::string PrettySourceValue = Value.toString(10);
8325*67e74705SXin Li       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
8326*67e74705SXin Li 
8327*67e74705SXin Li       S.DiagRuntimeBehavior(E->getExprLoc(), E,
8328*67e74705SXin Li         S.PDiag(diag::warn_impcast_integer_precision_constant)
8329*67e74705SXin Li             << PrettySourceValue << PrettyTargetValue
8330*67e74705SXin Li             << E->getType() << T << E->getSourceRange()
8331*67e74705SXin Li             << clang::SourceRange(CC));
8332*67e74705SXin Li       return;
8333*67e74705SXin Li     }
8334*67e74705SXin Li 
8335*67e74705SXin Li     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
8336*67e74705SXin Li     if (S.SourceMgr.isInSystemMacro(CC))
8337*67e74705SXin Li       return;
8338*67e74705SXin Li 
8339*67e74705SXin Li     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
8340*67e74705SXin Li       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
8341*67e74705SXin Li                              /* pruneControlFlow */ true);
8342*67e74705SXin Li     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
8343*67e74705SXin Li   }
8344*67e74705SXin Li 
8345*67e74705SXin Li   if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative &&
8346*67e74705SXin Li       SourceRange.NonNegative && Source->isSignedIntegerType()) {
8347*67e74705SXin Li     // Warn when doing a signed to signed conversion, warn if the positive
8348*67e74705SXin Li     // source value is exactly the width of the target type, which will
8349*67e74705SXin Li     // cause a negative value to be stored.
8350*67e74705SXin Li 
8351*67e74705SXin Li     llvm::APSInt Value;
8352*67e74705SXin Li     if (E->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects) &&
8353*67e74705SXin Li         !S.SourceMgr.isInSystemMacro(CC)) {
8354*67e74705SXin Li       if (isSameWidthConstantConversion(S, E, T, CC)) {
8355*67e74705SXin Li         std::string PrettySourceValue = Value.toString(10);
8356*67e74705SXin Li         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
8357*67e74705SXin Li 
8358*67e74705SXin Li         S.DiagRuntimeBehavior(
8359*67e74705SXin Li             E->getExprLoc(), E,
8360*67e74705SXin Li             S.PDiag(diag::warn_impcast_integer_precision_constant)
8361*67e74705SXin Li                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
8362*67e74705SXin Li                 << E->getSourceRange() << clang::SourceRange(CC));
8363*67e74705SXin Li         return;
8364*67e74705SXin Li       }
8365*67e74705SXin Li     }
8366*67e74705SXin Li 
8367*67e74705SXin Li     // Fall through for non-constants to give a sign conversion warning.
8368*67e74705SXin Li   }
8369*67e74705SXin Li 
8370*67e74705SXin Li   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
8371*67e74705SXin Li       (!TargetRange.NonNegative && SourceRange.NonNegative &&
8372*67e74705SXin Li        SourceRange.Width == TargetRange.Width)) {
8373*67e74705SXin Li     if (S.SourceMgr.isInSystemMacro(CC))
8374*67e74705SXin Li       return;
8375*67e74705SXin Li 
8376*67e74705SXin Li     unsigned DiagID = diag::warn_impcast_integer_sign;
8377*67e74705SXin Li 
8378*67e74705SXin Li     // Traditionally, gcc has warned about this under -Wsign-compare.
8379*67e74705SXin Li     // We also want to warn about it in -Wconversion.
8380*67e74705SXin Li     // So if -Wconversion is off, use a completely identical diagnostic
8381*67e74705SXin Li     // in the sign-compare group.
8382*67e74705SXin Li     // The conditional-checking code will
8383*67e74705SXin Li     if (ICContext) {
8384*67e74705SXin Li       DiagID = diag::warn_impcast_integer_sign_conditional;
8385*67e74705SXin Li       *ICContext = true;
8386*67e74705SXin Li     }
8387*67e74705SXin Li 
8388*67e74705SXin Li     return DiagnoseImpCast(S, E, T, CC, DiagID);
8389*67e74705SXin Li   }
8390*67e74705SXin Li 
8391*67e74705SXin Li   // Diagnose conversions between different enumeration types.
8392*67e74705SXin Li   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
8393*67e74705SXin Li   // type, to give us better diagnostics.
8394*67e74705SXin Li   QualType SourceType = E->getType();
8395*67e74705SXin Li   if (!S.getLangOpts().CPlusPlus) {
8396*67e74705SXin Li     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8397*67e74705SXin Li       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
8398*67e74705SXin Li         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
8399*67e74705SXin Li         SourceType = S.Context.getTypeDeclType(Enum);
8400*67e74705SXin Li         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
8401*67e74705SXin Li       }
8402*67e74705SXin Li   }
8403*67e74705SXin Li 
8404*67e74705SXin Li   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
8405*67e74705SXin Li     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
8406*67e74705SXin Li       if (SourceEnum->getDecl()->hasNameForLinkage() &&
8407*67e74705SXin Li           TargetEnum->getDecl()->hasNameForLinkage() &&
8408*67e74705SXin Li           SourceEnum != TargetEnum) {
8409*67e74705SXin Li         if (S.SourceMgr.isInSystemMacro(CC))
8410*67e74705SXin Li           return;
8411*67e74705SXin Li 
8412*67e74705SXin Li         return DiagnoseImpCast(S, E, SourceType, T, CC,
8413*67e74705SXin Li                                diag::warn_impcast_different_enum_types);
8414*67e74705SXin Li       }
8415*67e74705SXin Li }
8416*67e74705SXin Li 
8417*67e74705SXin Li void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
8418*67e74705SXin Li                               SourceLocation CC, QualType T);
8419*67e74705SXin Li 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)8420*67e74705SXin Li void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
8421*67e74705SXin Li                              SourceLocation CC, bool &ICContext) {
8422*67e74705SXin Li   E = E->IgnoreParenImpCasts();
8423*67e74705SXin Li 
8424*67e74705SXin Li   if (isa<ConditionalOperator>(E))
8425*67e74705SXin Li     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
8426*67e74705SXin Li 
8427*67e74705SXin Li   AnalyzeImplicitConversions(S, E, CC);
8428*67e74705SXin Li   if (E->getType() != T)
8429*67e74705SXin Li     return CheckImplicitConversion(S, E, T, CC, &ICContext);
8430*67e74705SXin Li }
8431*67e74705SXin Li 
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)8432*67e74705SXin Li void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
8433*67e74705SXin Li                               SourceLocation CC, QualType T) {
8434*67e74705SXin Li   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
8435*67e74705SXin Li 
8436*67e74705SXin Li   bool Suspicious = false;
8437*67e74705SXin Li   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
8438*67e74705SXin Li   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
8439*67e74705SXin Li 
8440*67e74705SXin Li   // If -Wconversion would have warned about either of the candidates
8441*67e74705SXin Li   // for a signedness conversion to the context type...
8442*67e74705SXin Li   if (!Suspicious) return;
8443*67e74705SXin Li 
8444*67e74705SXin Li   // ...but it's currently ignored...
8445*67e74705SXin Li   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
8446*67e74705SXin Li     return;
8447*67e74705SXin Li 
8448*67e74705SXin Li   // ...then check whether it would have warned about either of the
8449*67e74705SXin Li   // candidates for a signedness conversion to the condition type.
8450*67e74705SXin Li   if (E->getType() == T) return;
8451*67e74705SXin Li 
8452*67e74705SXin Li   Suspicious = false;
8453*67e74705SXin Li   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
8454*67e74705SXin Li                           E->getType(), CC, &Suspicious);
8455*67e74705SXin Li   if (!Suspicious)
8456*67e74705SXin Li     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
8457*67e74705SXin Li                             E->getType(), CC, &Suspicious);
8458*67e74705SXin Li }
8459*67e74705SXin Li 
8460*67e74705SXin Li /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
8461*67e74705SXin Li /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)8462*67e74705SXin Li void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
8463*67e74705SXin Li   if (S.getLangOpts().Bool)
8464*67e74705SXin Li     return;
8465*67e74705SXin Li   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
8466*67e74705SXin Li }
8467*67e74705SXin Li 
8468*67e74705SXin Li /// AnalyzeImplicitConversions - Find and report any interesting
8469*67e74705SXin Li /// implicit conversions in the given expression.  There are a couple
8470*67e74705SXin Li /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)8471*67e74705SXin Li void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
8472*67e74705SXin Li   QualType T = OrigE->getType();
8473*67e74705SXin Li   Expr *E = OrigE->IgnoreParenImpCasts();
8474*67e74705SXin Li 
8475*67e74705SXin Li   if (E->isTypeDependent() || E->isValueDependent())
8476*67e74705SXin Li     return;
8477*67e74705SXin Li 
8478*67e74705SXin Li   // For conditional operators, we analyze the arguments as if they
8479*67e74705SXin Li   // were being fed directly into the output.
8480*67e74705SXin Li   if (isa<ConditionalOperator>(E)) {
8481*67e74705SXin Li     ConditionalOperator *CO = cast<ConditionalOperator>(E);
8482*67e74705SXin Li     CheckConditionalOperator(S, CO, CC, T);
8483*67e74705SXin Li     return;
8484*67e74705SXin Li   }
8485*67e74705SXin Li 
8486*67e74705SXin Li   // Check implicit argument conversions for function calls.
8487*67e74705SXin Li   if (CallExpr *Call = dyn_cast<CallExpr>(E))
8488*67e74705SXin Li     CheckImplicitArgumentConversions(S, Call, CC);
8489*67e74705SXin Li 
8490*67e74705SXin Li   // Go ahead and check any implicit conversions we might have skipped.
8491*67e74705SXin Li   // The non-canonical typecheck is just an optimization;
8492*67e74705SXin Li   // CheckImplicitConversion will filter out dead implicit conversions.
8493*67e74705SXin Li   if (E->getType() != T)
8494*67e74705SXin Li     CheckImplicitConversion(S, E, T, CC);
8495*67e74705SXin Li 
8496*67e74705SXin Li   // Now continue drilling into this expression.
8497*67e74705SXin Li 
8498*67e74705SXin Li   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
8499*67e74705SXin Li     // The bound subexpressions in a PseudoObjectExpr are not reachable
8500*67e74705SXin Li     // as transitive children.
8501*67e74705SXin Li     // FIXME: Use a more uniform representation for this.
8502*67e74705SXin Li     for (auto *SE : POE->semantics())
8503*67e74705SXin Li       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
8504*67e74705SXin Li         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
8505*67e74705SXin Li   }
8506*67e74705SXin Li 
8507*67e74705SXin Li   // Skip past explicit casts.
8508*67e74705SXin Li   if (isa<ExplicitCastExpr>(E)) {
8509*67e74705SXin Li     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
8510*67e74705SXin Li     return AnalyzeImplicitConversions(S, E, CC);
8511*67e74705SXin Li   }
8512*67e74705SXin Li 
8513*67e74705SXin Li   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8514*67e74705SXin Li     // Do a somewhat different check with comparison operators.
8515*67e74705SXin Li     if (BO->isComparisonOp())
8516*67e74705SXin Li       return AnalyzeComparison(S, BO);
8517*67e74705SXin Li 
8518*67e74705SXin Li     // And with simple assignments.
8519*67e74705SXin Li     if (BO->getOpcode() == BO_Assign)
8520*67e74705SXin Li       return AnalyzeAssignment(S, BO);
8521*67e74705SXin Li   }
8522*67e74705SXin Li 
8523*67e74705SXin Li   // These break the otherwise-useful invariant below.  Fortunately,
8524*67e74705SXin Li   // we don't really need to recurse into them, because any internal
8525*67e74705SXin Li   // expressions should have been analyzed already when they were
8526*67e74705SXin Li   // built into statements.
8527*67e74705SXin Li   if (isa<StmtExpr>(E)) return;
8528*67e74705SXin Li 
8529*67e74705SXin Li   // Don't descend into unevaluated contexts.
8530*67e74705SXin Li   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
8531*67e74705SXin Li 
8532*67e74705SXin Li   // Now just recurse over the expression's children.
8533*67e74705SXin Li   CC = E->getExprLoc();
8534*67e74705SXin Li   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
8535*67e74705SXin Li   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
8536*67e74705SXin Li   for (Stmt *SubStmt : E->children()) {
8537*67e74705SXin Li     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
8538*67e74705SXin Li     if (!ChildExpr)
8539*67e74705SXin Li       continue;
8540*67e74705SXin Li 
8541*67e74705SXin Li     if (IsLogicalAndOperator &&
8542*67e74705SXin Li         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
8543*67e74705SXin Li       // Ignore checking string literals that are in logical and operators.
8544*67e74705SXin Li       // This is a common pattern for asserts.
8545*67e74705SXin Li       continue;
8546*67e74705SXin Li     AnalyzeImplicitConversions(S, ChildExpr, CC);
8547*67e74705SXin Li   }
8548*67e74705SXin Li 
8549*67e74705SXin Li   if (BO && BO->isLogicalOp()) {
8550*67e74705SXin Li     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
8551*67e74705SXin Li     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
8552*67e74705SXin Li       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
8553*67e74705SXin Li 
8554*67e74705SXin Li     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
8555*67e74705SXin Li     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
8556*67e74705SXin Li       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
8557*67e74705SXin Li   }
8558*67e74705SXin Li 
8559*67e74705SXin Li   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
8560*67e74705SXin Li     if (U->getOpcode() == UO_LNot)
8561*67e74705SXin Li       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
8562*67e74705SXin Li }
8563*67e74705SXin Li 
8564*67e74705SXin Li } // end anonymous namespace
8565*67e74705SXin Li 
checkOpenCLEnqueueLocalSizeArgs(Sema & S,CallExpr * TheCall,unsigned Start,unsigned End)8566*67e74705SXin Li static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
8567*67e74705SXin Li                                             unsigned Start, unsigned End) {
8568*67e74705SXin Li   bool IllegalParams = false;
8569*67e74705SXin Li   for (unsigned I = Start; I <= End; ++I) {
8570*67e74705SXin Li     QualType Ty = TheCall->getArg(I)->getType();
8571*67e74705SXin Li     // Taking into account implicit conversions,
8572*67e74705SXin Li     // allow any integer within 32 bits range
8573*67e74705SXin Li     if (!Ty->isIntegerType() ||
8574*67e74705SXin Li         S.Context.getTypeSizeInChars(Ty).getQuantity() > 4) {
8575*67e74705SXin Li       S.Diag(TheCall->getArg(I)->getLocStart(),
8576*67e74705SXin Li              diag::err_opencl_enqueue_kernel_invalid_local_size_type);
8577*67e74705SXin Li       IllegalParams = true;
8578*67e74705SXin Li     }
8579*67e74705SXin Li     // Potentially emit standard warnings for implicit conversions if enabled
8580*67e74705SXin Li     // using -Wconversion.
8581*67e74705SXin Li     CheckImplicitConversion(S, TheCall->getArg(I), S.Context.UnsignedIntTy,
8582*67e74705SXin Li                             TheCall->getArg(I)->getLocStart());
8583*67e74705SXin Li   }
8584*67e74705SXin Li   return IllegalParams;
8585*67e74705SXin Li }
8586*67e74705SXin Li 
8587*67e74705SXin Li // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
8588*67e74705SXin Li // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,const PartialDiagnostic & PD)8589*67e74705SXin Li static bool CheckForReference(Sema &SemaRef, const Expr *E,
8590*67e74705SXin Li                               const PartialDiagnostic &PD) {
8591*67e74705SXin Li   E = E->IgnoreParenImpCasts();
8592*67e74705SXin Li 
8593*67e74705SXin Li   const FunctionDecl *FD = nullptr;
8594*67e74705SXin Li 
8595*67e74705SXin Li   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
8596*67e74705SXin Li     if (!DRE->getDecl()->getType()->isReferenceType())
8597*67e74705SXin Li       return false;
8598*67e74705SXin Li   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
8599*67e74705SXin Li     if (!M->getMemberDecl()->getType()->isReferenceType())
8600*67e74705SXin Li       return false;
8601*67e74705SXin Li   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
8602*67e74705SXin Li     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
8603*67e74705SXin Li       return false;
8604*67e74705SXin Li     FD = Call->getDirectCallee();
8605*67e74705SXin Li   } else {
8606*67e74705SXin Li     return false;
8607*67e74705SXin Li   }
8608*67e74705SXin Li 
8609*67e74705SXin Li   SemaRef.Diag(E->getExprLoc(), PD);
8610*67e74705SXin Li 
8611*67e74705SXin Li   // If possible, point to location of function.
8612*67e74705SXin Li   if (FD) {
8613*67e74705SXin Li     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
8614*67e74705SXin Li   }
8615*67e74705SXin Li 
8616*67e74705SXin Li   return true;
8617*67e74705SXin Li }
8618*67e74705SXin Li 
8619*67e74705SXin Li // Returns true if the SourceLocation is expanded from any macro body.
8620*67e74705SXin Li // Returns false if the SourceLocation is invalid, is from not in a macro
8621*67e74705SXin Li // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)8622*67e74705SXin Li static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
8623*67e74705SXin Li   if (Loc.isInvalid())
8624*67e74705SXin Li     return false;
8625*67e74705SXin Li 
8626*67e74705SXin Li   while (Loc.isMacroID()) {
8627*67e74705SXin Li     if (SM.isMacroBodyExpansion(Loc))
8628*67e74705SXin Li       return true;
8629*67e74705SXin Li     Loc = SM.getImmediateMacroCallerLoc(Loc);
8630*67e74705SXin Li   }
8631*67e74705SXin Li 
8632*67e74705SXin Li   return false;
8633*67e74705SXin Li }
8634*67e74705SXin Li 
8635*67e74705SXin Li /// \brief Diagnose pointers that are always non-null.
8636*67e74705SXin Li /// \param E the expression containing the pointer
8637*67e74705SXin Li /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
8638*67e74705SXin Li /// compared to a null pointer
8639*67e74705SXin Li /// \param IsEqual True when the comparison is equal to a null pointer
8640*67e74705SXin Li /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)8641*67e74705SXin Li void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
8642*67e74705SXin Li                                         Expr::NullPointerConstantKind NullKind,
8643*67e74705SXin Li                                         bool IsEqual, SourceRange Range) {
8644*67e74705SXin Li   if (!E)
8645*67e74705SXin Li     return;
8646*67e74705SXin Li 
8647*67e74705SXin Li   // Don't warn inside macros.
8648*67e74705SXin Li   if (E->getExprLoc().isMacroID()) {
8649*67e74705SXin Li     const SourceManager &SM = getSourceManager();
8650*67e74705SXin Li     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
8651*67e74705SXin Li         IsInAnyMacroBody(SM, Range.getBegin()))
8652*67e74705SXin Li       return;
8653*67e74705SXin Li   }
8654*67e74705SXin Li   E = E->IgnoreImpCasts();
8655*67e74705SXin Li 
8656*67e74705SXin Li   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
8657*67e74705SXin Li 
8658*67e74705SXin Li   if (isa<CXXThisExpr>(E)) {
8659*67e74705SXin Li     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
8660*67e74705SXin Li                                 : diag::warn_this_bool_conversion;
8661*67e74705SXin Li     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
8662*67e74705SXin Li     return;
8663*67e74705SXin Li   }
8664*67e74705SXin Li 
8665*67e74705SXin Li   bool IsAddressOf = false;
8666*67e74705SXin Li 
8667*67e74705SXin Li   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8668*67e74705SXin Li     if (UO->getOpcode() != UO_AddrOf)
8669*67e74705SXin Li       return;
8670*67e74705SXin Li     IsAddressOf = true;
8671*67e74705SXin Li     E = UO->getSubExpr();
8672*67e74705SXin Li   }
8673*67e74705SXin Li 
8674*67e74705SXin Li   if (IsAddressOf) {
8675*67e74705SXin Li     unsigned DiagID = IsCompare
8676*67e74705SXin Li                           ? diag::warn_address_of_reference_null_compare
8677*67e74705SXin Li                           : diag::warn_address_of_reference_bool_conversion;
8678*67e74705SXin Li     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
8679*67e74705SXin Li                                          << IsEqual;
8680*67e74705SXin Li     if (CheckForReference(*this, E, PD)) {
8681*67e74705SXin Li       return;
8682*67e74705SXin Li     }
8683*67e74705SXin Li   }
8684*67e74705SXin Li 
8685*67e74705SXin Li   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
8686*67e74705SXin Li     bool IsParam = isa<NonNullAttr>(NonnullAttr);
8687*67e74705SXin Li     std::string Str;
8688*67e74705SXin Li     llvm::raw_string_ostream S(Str);
8689*67e74705SXin Li     E->printPretty(S, nullptr, getPrintingPolicy());
8690*67e74705SXin Li     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
8691*67e74705SXin Li                                 : diag::warn_cast_nonnull_to_bool;
8692*67e74705SXin Li     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
8693*67e74705SXin Li       << E->getSourceRange() << Range << IsEqual;
8694*67e74705SXin Li     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
8695*67e74705SXin Li   };
8696*67e74705SXin Li 
8697*67e74705SXin Li   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
8698*67e74705SXin Li   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
8699*67e74705SXin Li     if (auto *Callee = Call->getDirectCallee()) {
8700*67e74705SXin Li       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
8701*67e74705SXin Li         ComplainAboutNonnullParamOrCall(A);
8702*67e74705SXin Li         return;
8703*67e74705SXin Li       }
8704*67e74705SXin Li     }
8705*67e74705SXin Li   }
8706*67e74705SXin Li 
8707*67e74705SXin Li   // Expect to find a single Decl.  Skip anything more complicated.
8708*67e74705SXin Li   ValueDecl *D = nullptr;
8709*67e74705SXin Li   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
8710*67e74705SXin Li     D = R->getDecl();
8711*67e74705SXin Li   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
8712*67e74705SXin Li     D = M->getMemberDecl();
8713*67e74705SXin Li   }
8714*67e74705SXin Li 
8715*67e74705SXin Li   // Weak Decls can be null.
8716*67e74705SXin Li   if (!D || D->isWeak())
8717*67e74705SXin Li     return;
8718*67e74705SXin Li 
8719*67e74705SXin Li   // Check for parameter decl with nonnull attribute
8720*67e74705SXin Li   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
8721*67e74705SXin Li     if (getCurFunction() &&
8722*67e74705SXin Li         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
8723*67e74705SXin Li       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
8724*67e74705SXin Li         ComplainAboutNonnullParamOrCall(A);
8725*67e74705SXin Li         return;
8726*67e74705SXin Li       }
8727*67e74705SXin Li 
8728*67e74705SXin Li       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
8729*67e74705SXin Li         auto ParamIter = llvm::find(FD->parameters(), PV);
8730*67e74705SXin Li         assert(ParamIter != FD->param_end());
8731*67e74705SXin Li         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
8732*67e74705SXin Li 
8733*67e74705SXin Li         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
8734*67e74705SXin Li           if (!NonNull->args_size()) {
8735*67e74705SXin Li               ComplainAboutNonnullParamOrCall(NonNull);
8736*67e74705SXin Li               return;
8737*67e74705SXin Li           }
8738*67e74705SXin Li 
8739*67e74705SXin Li           for (unsigned ArgNo : NonNull->args()) {
8740*67e74705SXin Li             if (ArgNo == ParamNo) {
8741*67e74705SXin Li               ComplainAboutNonnullParamOrCall(NonNull);
8742*67e74705SXin Li               return;
8743*67e74705SXin Li             }
8744*67e74705SXin Li           }
8745*67e74705SXin Li         }
8746*67e74705SXin Li       }
8747*67e74705SXin Li     }
8748*67e74705SXin Li   }
8749*67e74705SXin Li 
8750*67e74705SXin Li   QualType T = D->getType();
8751*67e74705SXin Li   const bool IsArray = T->isArrayType();
8752*67e74705SXin Li   const bool IsFunction = T->isFunctionType();
8753*67e74705SXin Li 
8754*67e74705SXin Li   // Address of function is used to silence the function warning.
8755*67e74705SXin Li   if (IsAddressOf && IsFunction) {
8756*67e74705SXin Li     return;
8757*67e74705SXin Li   }
8758*67e74705SXin Li 
8759*67e74705SXin Li   // Found nothing.
8760*67e74705SXin Li   if (!IsAddressOf && !IsFunction && !IsArray)
8761*67e74705SXin Li     return;
8762*67e74705SXin Li 
8763*67e74705SXin Li   // Pretty print the expression for the diagnostic.
8764*67e74705SXin Li   std::string Str;
8765*67e74705SXin Li   llvm::raw_string_ostream S(Str);
8766*67e74705SXin Li   E->printPretty(S, nullptr, getPrintingPolicy());
8767*67e74705SXin Li 
8768*67e74705SXin Li   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
8769*67e74705SXin Li                               : diag::warn_impcast_pointer_to_bool;
8770*67e74705SXin Li   enum {
8771*67e74705SXin Li     AddressOf,
8772*67e74705SXin Li     FunctionPointer,
8773*67e74705SXin Li     ArrayPointer
8774*67e74705SXin Li   } DiagType;
8775*67e74705SXin Li   if (IsAddressOf)
8776*67e74705SXin Li     DiagType = AddressOf;
8777*67e74705SXin Li   else if (IsFunction)
8778*67e74705SXin Li     DiagType = FunctionPointer;
8779*67e74705SXin Li   else if (IsArray)
8780*67e74705SXin Li     DiagType = ArrayPointer;
8781*67e74705SXin Li   else
8782*67e74705SXin Li     llvm_unreachable("Could not determine diagnostic.");
8783*67e74705SXin Li   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
8784*67e74705SXin Li                                 << Range << IsEqual;
8785*67e74705SXin Li 
8786*67e74705SXin Li   if (!IsFunction)
8787*67e74705SXin Li     return;
8788*67e74705SXin Li 
8789*67e74705SXin Li   // Suggest '&' to silence the function warning.
8790*67e74705SXin Li   Diag(E->getExprLoc(), diag::note_function_warning_silence)
8791*67e74705SXin Li       << FixItHint::CreateInsertion(E->getLocStart(), "&");
8792*67e74705SXin Li 
8793*67e74705SXin Li   // Check to see if '()' fixit should be emitted.
8794*67e74705SXin Li   QualType ReturnType;
8795*67e74705SXin Li   UnresolvedSet<4> NonTemplateOverloads;
8796*67e74705SXin Li   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
8797*67e74705SXin Li   if (ReturnType.isNull())
8798*67e74705SXin Li     return;
8799*67e74705SXin Li 
8800*67e74705SXin Li   if (IsCompare) {
8801*67e74705SXin Li     // There are two cases here.  If there is null constant, the only suggest
8802*67e74705SXin Li     // for a pointer return type.  If the null is 0, then suggest if the return
8803*67e74705SXin Li     // type is a pointer or an integer type.
8804*67e74705SXin Li     if (!ReturnType->isPointerType()) {
8805*67e74705SXin Li       if (NullKind == Expr::NPCK_ZeroExpression ||
8806*67e74705SXin Li           NullKind == Expr::NPCK_ZeroLiteral) {
8807*67e74705SXin Li         if (!ReturnType->isIntegerType())
8808*67e74705SXin Li           return;
8809*67e74705SXin Li       } else {
8810*67e74705SXin Li         return;
8811*67e74705SXin Li       }
8812*67e74705SXin Li     }
8813*67e74705SXin Li   } else { // !IsCompare
8814*67e74705SXin Li     // For function to bool, only suggest if the function pointer has bool
8815*67e74705SXin Li     // return type.
8816*67e74705SXin Li     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
8817*67e74705SXin Li       return;
8818*67e74705SXin Li   }
8819*67e74705SXin Li   Diag(E->getExprLoc(), diag::note_function_to_function_call)
8820*67e74705SXin Li       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
8821*67e74705SXin Li }
8822*67e74705SXin Li 
8823*67e74705SXin Li /// Diagnoses "dangerous" implicit conversions within the given
8824*67e74705SXin Li /// expression (which is a full expression).  Implements -Wconversion
8825*67e74705SXin Li /// and -Wsign-compare.
8826*67e74705SXin Li ///
8827*67e74705SXin Li /// \param CC the "context" location of the implicit conversion, i.e.
8828*67e74705SXin Li ///   the most location of the syntactic entity requiring the implicit
8829*67e74705SXin Li ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)8830*67e74705SXin Li void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
8831*67e74705SXin Li   // Don't diagnose in unevaluated contexts.
8832*67e74705SXin Li   if (isUnevaluatedContext())
8833*67e74705SXin Li     return;
8834*67e74705SXin Li 
8835*67e74705SXin Li   // Don't diagnose for value- or type-dependent expressions.
8836*67e74705SXin Li   if (E->isTypeDependent() || E->isValueDependent())
8837*67e74705SXin Li     return;
8838*67e74705SXin Li 
8839*67e74705SXin Li   // Check for array bounds violations in cases where the check isn't triggered
8840*67e74705SXin Li   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
8841*67e74705SXin Li   // ArraySubscriptExpr is on the RHS of a variable initialization.
8842*67e74705SXin Li   CheckArrayAccess(E);
8843*67e74705SXin Li 
8844*67e74705SXin Li   // This is not the right CC for (e.g.) a variable initialization.
8845*67e74705SXin Li   AnalyzeImplicitConversions(*this, E, CC);
8846*67e74705SXin Li }
8847*67e74705SXin Li 
8848*67e74705SXin Li /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
8849*67e74705SXin Li /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)8850*67e74705SXin Li void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
8851*67e74705SXin Li   ::CheckBoolLikeConversion(*this, E, CC);
8852*67e74705SXin Li }
8853*67e74705SXin Li 
8854*67e74705SXin Li /// Diagnose when expression is an integer constant expression and its evaluation
8855*67e74705SXin Li /// results in integer overflow
CheckForIntOverflow(Expr * E)8856*67e74705SXin Li void Sema::CheckForIntOverflow (Expr *E) {
8857*67e74705SXin Li   // Use a work list to deal with nested struct initializers.
8858*67e74705SXin Li   SmallVector<Expr *, 2> Exprs(1, E);
8859*67e74705SXin Li 
8860*67e74705SXin Li   do {
8861*67e74705SXin Li     Expr *E = Exprs.pop_back_val();
8862*67e74705SXin Li 
8863*67e74705SXin Li     if (isa<BinaryOperator>(E->IgnoreParenCasts())) {
8864*67e74705SXin Li       E->IgnoreParenCasts()->EvaluateForOverflow(Context);
8865*67e74705SXin Li       continue;
8866*67e74705SXin Li     }
8867*67e74705SXin Li 
8868*67e74705SXin Li     if (auto InitList = dyn_cast<InitListExpr>(E))
8869*67e74705SXin Li       Exprs.append(InitList->inits().begin(), InitList->inits().end());
8870*67e74705SXin Li   } while (!Exprs.empty());
8871*67e74705SXin Li }
8872*67e74705SXin Li 
8873*67e74705SXin Li namespace {
8874*67e74705SXin Li /// \brief Visitor for expressions which looks for unsequenced operations on the
8875*67e74705SXin Li /// same object.
8876*67e74705SXin Li class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
8877*67e74705SXin Li   typedef EvaluatedExprVisitor<SequenceChecker> Base;
8878*67e74705SXin Li 
8879*67e74705SXin Li   /// \brief A tree of sequenced regions within an expression. Two regions are
8880*67e74705SXin Li   /// unsequenced if one is an ancestor or a descendent of the other. When we
8881*67e74705SXin Li   /// finish processing an expression with sequencing, such as a comma
8882*67e74705SXin Li   /// expression, we fold its tree nodes into its parent, since they are
8883*67e74705SXin Li   /// unsequenced with respect to nodes we will visit later.
8884*67e74705SXin Li   class SequenceTree {
8885*67e74705SXin Li     struct Value {
Value__anona6c5d4490c11::SequenceChecker::SequenceTree::Value8886*67e74705SXin Li       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
8887*67e74705SXin Li       unsigned Parent : 31;
8888*67e74705SXin Li       unsigned Merged : 1;
8889*67e74705SXin Li     };
8890*67e74705SXin Li     SmallVector<Value, 8> Values;
8891*67e74705SXin Li 
8892*67e74705SXin Li   public:
8893*67e74705SXin Li     /// \brief A region within an expression which may be sequenced with respect
8894*67e74705SXin Li     /// to some other region.
8895*67e74705SXin Li     class Seq {
Seq(unsigned N)8896*67e74705SXin Li       explicit Seq(unsigned N) : Index(N) {}
8897*67e74705SXin Li       unsigned Index;
8898*67e74705SXin Li       friend class SequenceTree;
8899*67e74705SXin Li     public:
Seq()8900*67e74705SXin Li       Seq() : Index(0) {}
8901*67e74705SXin Li     };
8902*67e74705SXin Li 
SequenceTree()8903*67e74705SXin Li     SequenceTree() { Values.push_back(Value(0)); }
root() const8904*67e74705SXin Li     Seq root() const { return Seq(0); }
8905*67e74705SXin Li 
8906*67e74705SXin Li     /// \brief Create a new sequence of operations, which is an unsequenced
8907*67e74705SXin Li     /// subset of \p Parent. This sequence of operations is sequenced with
8908*67e74705SXin Li     /// respect to other children of \p Parent.
allocate(Seq Parent)8909*67e74705SXin Li     Seq allocate(Seq Parent) {
8910*67e74705SXin Li       Values.push_back(Value(Parent.Index));
8911*67e74705SXin Li       return Seq(Values.size() - 1);
8912*67e74705SXin Li     }
8913*67e74705SXin Li 
8914*67e74705SXin Li     /// \brief Merge a sequence of operations into its parent.
merge(Seq S)8915*67e74705SXin Li     void merge(Seq S) {
8916*67e74705SXin Li       Values[S.Index].Merged = true;
8917*67e74705SXin Li     }
8918*67e74705SXin Li 
8919*67e74705SXin Li     /// \brief Determine whether two operations are unsequenced. This operation
8920*67e74705SXin Li     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
8921*67e74705SXin Li     /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)8922*67e74705SXin Li     bool isUnsequenced(Seq Cur, Seq Old) {
8923*67e74705SXin Li       unsigned C = representative(Cur.Index);
8924*67e74705SXin Li       unsigned Target = representative(Old.Index);
8925*67e74705SXin Li       while (C >= Target) {
8926*67e74705SXin Li         if (C == Target)
8927*67e74705SXin Li           return true;
8928*67e74705SXin Li         C = Values[C].Parent;
8929*67e74705SXin Li       }
8930*67e74705SXin Li       return false;
8931*67e74705SXin Li     }
8932*67e74705SXin Li 
8933*67e74705SXin Li   private:
8934*67e74705SXin Li     /// \brief Pick a representative for a sequence.
representative(unsigned K)8935*67e74705SXin Li     unsigned representative(unsigned K) {
8936*67e74705SXin Li       if (Values[K].Merged)
8937*67e74705SXin Li         // Perform path compression as we go.
8938*67e74705SXin Li         return Values[K].Parent = representative(Values[K].Parent);
8939*67e74705SXin Li       return K;
8940*67e74705SXin Li     }
8941*67e74705SXin Li   };
8942*67e74705SXin Li 
8943*67e74705SXin Li   /// An object for which we can track unsequenced uses.
8944*67e74705SXin Li   typedef NamedDecl *Object;
8945*67e74705SXin Li 
8946*67e74705SXin Li   /// Different flavors of object usage which we track. We only track the
8947*67e74705SXin Li   /// least-sequenced usage of each kind.
8948*67e74705SXin Li   enum UsageKind {
8949*67e74705SXin Li     /// A read of an object. Multiple unsequenced reads are OK.
8950*67e74705SXin Li     UK_Use,
8951*67e74705SXin Li     /// A modification of an object which is sequenced before the value
8952*67e74705SXin Li     /// computation of the expression, such as ++n in C++.
8953*67e74705SXin Li     UK_ModAsValue,
8954*67e74705SXin Li     /// A modification of an object which is not sequenced before the value
8955*67e74705SXin Li     /// computation of the expression, such as n++.
8956*67e74705SXin Li     UK_ModAsSideEffect,
8957*67e74705SXin Li 
8958*67e74705SXin Li     UK_Count = UK_ModAsSideEffect + 1
8959*67e74705SXin Li   };
8960*67e74705SXin Li 
8961*67e74705SXin Li   struct Usage {
Usage__anona6c5d4490c11::SequenceChecker::Usage8962*67e74705SXin Li     Usage() : Use(nullptr), Seq() {}
8963*67e74705SXin Li     Expr *Use;
8964*67e74705SXin Li     SequenceTree::Seq Seq;
8965*67e74705SXin Li   };
8966*67e74705SXin Li 
8967*67e74705SXin Li   struct UsageInfo {
UsageInfo__anona6c5d4490c11::SequenceChecker::UsageInfo8968*67e74705SXin Li     UsageInfo() : Diagnosed(false) {}
8969*67e74705SXin Li     Usage Uses[UK_Count];
8970*67e74705SXin Li     /// Have we issued a diagnostic for this variable already?
8971*67e74705SXin Li     bool Diagnosed;
8972*67e74705SXin Li   };
8973*67e74705SXin Li   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
8974*67e74705SXin Li 
8975*67e74705SXin Li   Sema &SemaRef;
8976*67e74705SXin Li   /// Sequenced regions within the expression.
8977*67e74705SXin Li   SequenceTree Tree;
8978*67e74705SXin Li   /// Declaration modifications and references which we have seen.
8979*67e74705SXin Li   UsageInfoMap UsageMap;
8980*67e74705SXin Li   /// The region we are currently within.
8981*67e74705SXin Li   SequenceTree::Seq Region;
8982*67e74705SXin Li   /// Filled in with declarations which were modified as a side-effect
8983*67e74705SXin Li   /// (that is, post-increment operations).
8984*67e74705SXin Li   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
8985*67e74705SXin Li   /// Expressions to check later. We defer checking these to reduce
8986*67e74705SXin Li   /// stack usage.
8987*67e74705SXin Li   SmallVectorImpl<Expr *> &WorkList;
8988*67e74705SXin Li 
8989*67e74705SXin Li   /// RAII object wrapping the visitation of a sequenced subexpression of an
8990*67e74705SXin Li   /// expression. At the end of this process, the side-effects of the evaluation
8991*67e74705SXin Li   /// become sequenced with respect to the value computation of the result, so
8992*67e74705SXin Li   /// we downgrade any UK_ModAsSideEffect within the evaluation to
8993*67e74705SXin Li   /// UK_ModAsValue.
8994*67e74705SXin Li   struct SequencedSubexpression {
SequencedSubexpression__anona6c5d4490c11::SequenceChecker::SequencedSubexpression8995*67e74705SXin Li     SequencedSubexpression(SequenceChecker &Self)
8996*67e74705SXin Li       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
8997*67e74705SXin Li       Self.ModAsSideEffect = &ModAsSideEffect;
8998*67e74705SXin Li     }
~SequencedSubexpression__anona6c5d4490c11::SequenceChecker::SequencedSubexpression8999*67e74705SXin Li     ~SequencedSubexpression() {
9000*67e74705SXin Li       for (auto &M : llvm::reverse(ModAsSideEffect)) {
9001*67e74705SXin Li         UsageInfo &U = Self.UsageMap[M.first];
9002*67e74705SXin Li         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
9003*67e74705SXin Li         Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue);
9004*67e74705SXin Li         SideEffectUsage = M.second;
9005*67e74705SXin Li       }
9006*67e74705SXin Li       Self.ModAsSideEffect = OldModAsSideEffect;
9007*67e74705SXin Li     }
9008*67e74705SXin Li 
9009*67e74705SXin Li     SequenceChecker &Self;
9010*67e74705SXin Li     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
9011*67e74705SXin Li     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
9012*67e74705SXin Li   };
9013*67e74705SXin Li 
9014*67e74705SXin Li   /// RAII object wrapping the visitation of a subexpression which we might
9015*67e74705SXin Li   /// choose to evaluate as a constant. If any subexpression is evaluated and
9016*67e74705SXin Li   /// found to be non-constant, this allows us to suppress the evaluation of
9017*67e74705SXin Li   /// the outer expression.
9018*67e74705SXin Li   class EvaluationTracker {
9019*67e74705SXin Li   public:
EvaluationTracker(SequenceChecker & Self)9020*67e74705SXin Li     EvaluationTracker(SequenceChecker &Self)
9021*67e74705SXin Li         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
9022*67e74705SXin Li       Self.EvalTracker = this;
9023*67e74705SXin Li     }
~EvaluationTracker()9024*67e74705SXin Li     ~EvaluationTracker() {
9025*67e74705SXin Li       Self.EvalTracker = Prev;
9026*67e74705SXin Li       if (Prev)
9027*67e74705SXin Li         Prev->EvalOK &= EvalOK;
9028*67e74705SXin Li     }
9029*67e74705SXin Li 
evaluate(const Expr * E,bool & Result)9030*67e74705SXin Li     bool evaluate(const Expr *E, bool &Result) {
9031*67e74705SXin Li       if (!EvalOK || E->isValueDependent())
9032*67e74705SXin Li         return false;
9033*67e74705SXin Li       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
9034*67e74705SXin Li       return EvalOK;
9035*67e74705SXin Li     }
9036*67e74705SXin Li 
9037*67e74705SXin Li   private:
9038*67e74705SXin Li     SequenceChecker &Self;
9039*67e74705SXin Li     EvaluationTracker *Prev;
9040*67e74705SXin Li     bool EvalOK;
9041*67e74705SXin Li   } *EvalTracker;
9042*67e74705SXin Li 
9043*67e74705SXin Li   /// \brief Find the object which is produced by the specified expression,
9044*67e74705SXin Li   /// if any.
getObject(Expr * E,bool Mod) const9045*67e74705SXin Li   Object getObject(Expr *E, bool Mod) const {
9046*67e74705SXin Li     E = E->IgnoreParenCasts();
9047*67e74705SXin Li     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
9048*67e74705SXin Li       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
9049*67e74705SXin Li         return getObject(UO->getSubExpr(), Mod);
9050*67e74705SXin Li     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
9051*67e74705SXin Li       if (BO->getOpcode() == BO_Comma)
9052*67e74705SXin Li         return getObject(BO->getRHS(), Mod);
9053*67e74705SXin Li       if (Mod && BO->isAssignmentOp())
9054*67e74705SXin Li         return getObject(BO->getLHS(), Mod);
9055*67e74705SXin Li     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
9056*67e74705SXin Li       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
9057*67e74705SXin Li       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
9058*67e74705SXin Li         return ME->getMemberDecl();
9059*67e74705SXin Li     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
9060*67e74705SXin Li       // FIXME: If this is a reference, map through to its value.
9061*67e74705SXin Li       return DRE->getDecl();
9062*67e74705SXin Li     return nullptr;
9063*67e74705SXin Li   }
9064*67e74705SXin Li 
9065*67e74705SXin Li   /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)9066*67e74705SXin Li   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
9067*67e74705SXin Li     Usage &U = UI.Uses[UK];
9068*67e74705SXin Li     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
9069*67e74705SXin Li       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
9070*67e74705SXin Li         ModAsSideEffect->push_back(std::make_pair(O, U));
9071*67e74705SXin Li       U.Use = Ref;
9072*67e74705SXin Li       U.Seq = Region;
9073*67e74705SXin Li     }
9074*67e74705SXin Li   }
9075*67e74705SXin Li   /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)9076*67e74705SXin Li   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
9077*67e74705SXin Li                   bool IsModMod) {
9078*67e74705SXin Li     if (UI.Diagnosed)
9079*67e74705SXin Li       return;
9080*67e74705SXin Li 
9081*67e74705SXin Li     const Usage &U = UI.Uses[OtherKind];
9082*67e74705SXin Li     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
9083*67e74705SXin Li       return;
9084*67e74705SXin Li 
9085*67e74705SXin Li     Expr *Mod = U.Use;
9086*67e74705SXin Li     Expr *ModOrUse = Ref;
9087*67e74705SXin Li     if (OtherKind == UK_Use)
9088*67e74705SXin Li       std::swap(Mod, ModOrUse);
9089*67e74705SXin Li 
9090*67e74705SXin Li     SemaRef.Diag(Mod->getExprLoc(),
9091*67e74705SXin Li                  IsModMod ? diag::warn_unsequenced_mod_mod
9092*67e74705SXin Li                           : diag::warn_unsequenced_mod_use)
9093*67e74705SXin Li       << O << SourceRange(ModOrUse->getExprLoc());
9094*67e74705SXin Li     UI.Diagnosed = true;
9095*67e74705SXin Li   }
9096*67e74705SXin Li 
notePreUse(Object O,Expr * Use)9097*67e74705SXin Li   void notePreUse(Object O, Expr *Use) {
9098*67e74705SXin Li     UsageInfo &U = UsageMap[O];
9099*67e74705SXin Li     // Uses conflict with other modifications.
9100*67e74705SXin Li     checkUsage(O, U, Use, UK_ModAsValue, false);
9101*67e74705SXin Li   }
notePostUse(Object O,Expr * Use)9102*67e74705SXin Li   void notePostUse(Object O, Expr *Use) {
9103*67e74705SXin Li     UsageInfo &U = UsageMap[O];
9104*67e74705SXin Li     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
9105*67e74705SXin Li     addUsage(U, O, Use, UK_Use);
9106*67e74705SXin Li   }
9107*67e74705SXin Li 
notePreMod(Object O,Expr * Mod)9108*67e74705SXin Li   void notePreMod(Object O, Expr *Mod) {
9109*67e74705SXin Li     UsageInfo &U = UsageMap[O];
9110*67e74705SXin Li     // Modifications conflict with other modifications and with uses.
9111*67e74705SXin Li     checkUsage(O, U, Mod, UK_ModAsValue, true);
9112*67e74705SXin Li     checkUsage(O, U, Mod, UK_Use, false);
9113*67e74705SXin Li   }
notePostMod(Object O,Expr * Use,UsageKind UK)9114*67e74705SXin Li   void notePostMod(Object O, Expr *Use, UsageKind UK) {
9115*67e74705SXin Li     UsageInfo &U = UsageMap[O];
9116*67e74705SXin Li     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
9117*67e74705SXin Li     addUsage(U, O, Use, UK);
9118*67e74705SXin Li   }
9119*67e74705SXin Li 
9120*67e74705SXin Li public:
SequenceChecker(Sema & S,Expr * E,SmallVectorImpl<Expr * > & WorkList)9121*67e74705SXin Li   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
9122*67e74705SXin Li       : Base(S.Context), SemaRef(S), Region(Tree.root()),
9123*67e74705SXin Li         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
9124*67e74705SXin Li     Visit(E);
9125*67e74705SXin Li   }
9126*67e74705SXin Li 
VisitStmt(Stmt * S)9127*67e74705SXin Li   void VisitStmt(Stmt *S) {
9128*67e74705SXin Li     // Skip all statements which aren't expressions for now.
9129*67e74705SXin Li   }
9130*67e74705SXin Li 
VisitExpr(Expr * E)9131*67e74705SXin Li   void VisitExpr(Expr *E) {
9132*67e74705SXin Li     // By default, just recurse to evaluated subexpressions.
9133*67e74705SXin Li     Base::VisitStmt(E);
9134*67e74705SXin Li   }
9135*67e74705SXin Li 
VisitCastExpr(CastExpr * E)9136*67e74705SXin Li   void VisitCastExpr(CastExpr *E) {
9137*67e74705SXin Li     Object O = Object();
9138*67e74705SXin Li     if (E->getCastKind() == CK_LValueToRValue)
9139*67e74705SXin Li       O = getObject(E->getSubExpr(), false);
9140*67e74705SXin Li 
9141*67e74705SXin Li     if (O)
9142*67e74705SXin Li       notePreUse(O, E);
9143*67e74705SXin Li     VisitExpr(E);
9144*67e74705SXin Li     if (O)
9145*67e74705SXin Li       notePostUse(O, E);
9146*67e74705SXin Li   }
9147*67e74705SXin Li 
VisitBinComma(BinaryOperator * BO)9148*67e74705SXin Li   void VisitBinComma(BinaryOperator *BO) {
9149*67e74705SXin Li     // C++11 [expr.comma]p1:
9150*67e74705SXin Li     //   Every value computation and side effect associated with the left
9151*67e74705SXin Li     //   expression is sequenced before every value computation and side
9152*67e74705SXin Li     //   effect associated with the right expression.
9153*67e74705SXin Li     SequenceTree::Seq LHS = Tree.allocate(Region);
9154*67e74705SXin Li     SequenceTree::Seq RHS = Tree.allocate(Region);
9155*67e74705SXin Li     SequenceTree::Seq OldRegion = Region;
9156*67e74705SXin Li 
9157*67e74705SXin Li     {
9158*67e74705SXin Li       SequencedSubexpression SeqLHS(*this);
9159*67e74705SXin Li       Region = LHS;
9160*67e74705SXin Li       Visit(BO->getLHS());
9161*67e74705SXin Li     }
9162*67e74705SXin Li 
9163*67e74705SXin Li     Region = RHS;
9164*67e74705SXin Li     Visit(BO->getRHS());
9165*67e74705SXin Li 
9166*67e74705SXin Li     Region = OldRegion;
9167*67e74705SXin Li 
9168*67e74705SXin Li     // Forget that LHS and RHS are sequenced. They are both unsequenced
9169*67e74705SXin Li     // with respect to other stuff.
9170*67e74705SXin Li     Tree.merge(LHS);
9171*67e74705SXin Li     Tree.merge(RHS);
9172*67e74705SXin Li   }
9173*67e74705SXin Li 
VisitBinAssign(BinaryOperator * BO)9174*67e74705SXin Li   void VisitBinAssign(BinaryOperator *BO) {
9175*67e74705SXin Li     // The modification is sequenced after the value computation of the LHS
9176*67e74705SXin Li     // and RHS, so check it before inspecting the operands and update the
9177*67e74705SXin Li     // map afterwards.
9178*67e74705SXin Li     Object O = getObject(BO->getLHS(), true);
9179*67e74705SXin Li     if (!O)
9180*67e74705SXin Li       return VisitExpr(BO);
9181*67e74705SXin Li 
9182*67e74705SXin Li     notePreMod(O, BO);
9183*67e74705SXin Li 
9184*67e74705SXin Li     // C++11 [expr.ass]p7:
9185*67e74705SXin Li     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
9186*67e74705SXin Li     //   only once.
9187*67e74705SXin Li     //
9188*67e74705SXin Li     // Therefore, for a compound assignment operator, O is considered used
9189*67e74705SXin Li     // everywhere except within the evaluation of E1 itself.
9190*67e74705SXin Li     if (isa<CompoundAssignOperator>(BO))
9191*67e74705SXin Li       notePreUse(O, BO);
9192*67e74705SXin Li 
9193*67e74705SXin Li     Visit(BO->getLHS());
9194*67e74705SXin Li 
9195*67e74705SXin Li     if (isa<CompoundAssignOperator>(BO))
9196*67e74705SXin Li       notePostUse(O, BO);
9197*67e74705SXin Li 
9198*67e74705SXin Li     Visit(BO->getRHS());
9199*67e74705SXin Li 
9200*67e74705SXin Li     // C++11 [expr.ass]p1:
9201*67e74705SXin Li     //   the assignment is sequenced [...] before the value computation of the
9202*67e74705SXin Li     //   assignment expression.
9203*67e74705SXin Li     // C11 6.5.16/3 has no such rule.
9204*67e74705SXin Li     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
9205*67e74705SXin Li                                                        : UK_ModAsSideEffect);
9206*67e74705SXin Li   }
9207*67e74705SXin Li 
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)9208*67e74705SXin Li   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
9209*67e74705SXin Li     VisitBinAssign(CAO);
9210*67e74705SXin Li   }
9211*67e74705SXin Li 
VisitUnaryPreInc(UnaryOperator * UO)9212*67e74705SXin Li   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)9213*67e74705SXin Li   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)9214*67e74705SXin Li   void VisitUnaryPreIncDec(UnaryOperator *UO) {
9215*67e74705SXin Li     Object O = getObject(UO->getSubExpr(), true);
9216*67e74705SXin Li     if (!O)
9217*67e74705SXin Li       return VisitExpr(UO);
9218*67e74705SXin Li 
9219*67e74705SXin Li     notePreMod(O, UO);
9220*67e74705SXin Li     Visit(UO->getSubExpr());
9221*67e74705SXin Li     // C++11 [expr.pre.incr]p1:
9222*67e74705SXin Li     //   the expression ++x is equivalent to x+=1
9223*67e74705SXin Li     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
9224*67e74705SXin Li                                                        : UK_ModAsSideEffect);
9225*67e74705SXin Li   }
9226*67e74705SXin Li 
VisitUnaryPostInc(UnaryOperator * UO)9227*67e74705SXin Li   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)9228*67e74705SXin Li   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)9229*67e74705SXin Li   void VisitUnaryPostIncDec(UnaryOperator *UO) {
9230*67e74705SXin Li     Object O = getObject(UO->getSubExpr(), true);
9231*67e74705SXin Li     if (!O)
9232*67e74705SXin Li       return VisitExpr(UO);
9233*67e74705SXin Li 
9234*67e74705SXin Li     notePreMod(O, UO);
9235*67e74705SXin Li     Visit(UO->getSubExpr());
9236*67e74705SXin Li     notePostMod(O, UO, UK_ModAsSideEffect);
9237*67e74705SXin Li   }
9238*67e74705SXin Li 
9239*67e74705SXin Li   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)9240*67e74705SXin Li   void VisitBinLOr(BinaryOperator *BO) {
9241*67e74705SXin Li     // The side-effects of the LHS of an '&&' are sequenced before the
9242*67e74705SXin Li     // value computation of the RHS, and hence before the value computation
9243*67e74705SXin Li     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
9244*67e74705SXin Li     // as if they were unconditionally sequenced.
9245*67e74705SXin Li     EvaluationTracker Eval(*this);
9246*67e74705SXin Li     {
9247*67e74705SXin Li       SequencedSubexpression Sequenced(*this);
9248*67e74705SXin Li       Visit(BO->getLHS());
9249*67e74705SXin Li     }
9250*67e74705SXin Li 
9251*67e74705SXin Li     bool Result;
9252*67e74705SXin Li     if (Eval.evaluate(BO->getLHS(), Result)) {
9253*67e74705SXin Li       if (!Result)
9254*67e74705SXin Li         Visit(BO->getRHS());
9255*67e74705SXin Li     } else {
9256*67e74705SXin Li       // Check for unsequenced operations in the RHS, treating it as an
9257*67e74705SXin Li       // entirely separate evaluation.
9258*67e74705SXin Li       //
9259*67e74705SXin Li       // FIXME: If there are operations in the RHS which are unsequenced
9260*67e74705SXin Li       // with respect to operations outside the RHS, and those operations
9261*67e74705SXin Li       // are unconditionally evaluated, diagnose them.
9262*67e74705SXin Li       WorkList.push_back(BO->getRHS());
9263*67e74705SXin Li     }
9264*67e74705SXin Li   }
VisitBinLAnd(BinaryOperator * BO)9265*67e74705SXin Li   void VisitBinLAnd(BinaryOperator *BO) {
9266*67e74705SXin Li     EvaluationTracker Eval(*this);
9267*67e74705SXin Li     {
9268*67e74705SXin Li       SequencedSubexpression Sequenced(*this);
9269*67e74705SXin Li       Visit(BO->getLHS());
9270*67e74705SXin Li     }
9271*67e74705SXin Li 
9272*67e74705SXin Li     bool Result;
9273*67e74705SXin Li     if (Eval.evaluate(BO->getLHS(), Result)) {
9274*67e74705SXin Li       if (Result)
9275*67e74705SXin Li         Visit(BO->getRHS());
9276*67e74705SXin Li     } else {
9277*67e74705SXin Li       WorkList.push_back(BO->getRHS());
9278*67e74705SXin Li     }
9279*67e74705SXin Li   }
9280*67e74705SXin Li 
9281*67e74705SXin Li   // Only visit the condition, unless we can be sure which subexpression will
9282*67e74705SXin Li   // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)9283*67e74705SXin Li   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
9284*67e74705SXin Li     EvaluationTracker Eval(*this);
9285*67e74705SXin Li     {
9286*67e74705SXin Li       SequencedSubexpression Sequenced(*this);
9287*67e74705SXin Li       Visit(CO->getCond());
9288*67e74705SXin Li     }
9289*67e74705SXin Li 
9290*67e74705SXin Li     bool Result;
9291*67e74705SXin Li     if (Eval.evaluate(CO->getCond(), Result))
9292*67e74705SXin Li       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
9293*67e74705SXin Li     else {
9294*67e74705SXin Li       WorkList.push_back(CO->getTrueExpr());
9295*67e74705SXin Li       WorkList.push_back(CO->getFalseExpr());
9296*67e74705SXin Li     }
9297*67e74705SXin Li   }
9298*67e74705SXin Li 
VisitCallExpr(CallExpr * CE)9299*67e74705SXin Li   void VisitCallExpr(CallExpr *CE) {
9300*67e74705SXin Li     // C++11 [intro.execution]p15:
9301*67e74705SXin Li     //   When calling a function [...], every value computation and side effect
9302*67e74705SXin Li     //   associated with any argument expression, or with the postfix expression
9303*67e74705SXin Li     //   designating the called function, is sequenced before execution of every
9304*67e74705SXin Li     //   expression or statement in the body of the function [and thus before
9305*67e74705SXin Li     //   the value computation of its result].
9306*67e74705SXin Li     SequencedSubexpression Sequenced(*this);
9307*67e74705SXin Li     Base::VisitCallExpr(CE);
9308*67e74705SXin Li 
9309*67e74705SXin Li     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
9310*67e74705SXin Li   }
9311*67e74705SXin Li 
VisitCXXConstructExpr(CXXConstructExpr * CCE)9312*67e74705SXin Li   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
9313*67e74705SXin Li     // This is a call, so all subexpressions are sequenced before the result.
9314*67e74705SXin Li     SequencedSubexpression Sequenced(*this);
9315*67e74705SXin Li 
9316*67e74705SXin Li     if (!CCE->isListInitialization())
9317*67e74705SXin Li       return VisitExpr(CCE);
9318*67e74705SXin Li 
9319*67e74705SXin Li     // In C++11, list initializations are sequenced.
9320*67e74705SXin Li     SmallVector<SequenceTree::Seq, 32> Elts;
9321*67e74705SXin Li     SequenceTree::Seq Parent = Region;
9322*67e74705SXin Li     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
9323*67e74705SXin Li                                         E = CCE->arg_end();
9324*67e74705SXin Li          I != E; ++I) {
9325*67e74705SXin Li       Region = Tree.allocate(Parent);
9326*67e74705SXin Li       Elts.push_back(Region);
9327*67e74705SXin Li       Visit(*I);
9328*67e74705SXin Li     }
9329*67e74705SXin Li 
9330*67e74705SXin Li     // Forget that the initializers are sequenced.
9331*67e74705SXin Li     Region = Parent;
9332*67e74705SXin Li     for (unsigned I = 0; I < Elts.size(); ++I)
9333*67e74705SXin Li       Tree.merge(Elts[I]);
9334*67e74705SXin Li   }
9335*67e74705SXin Li 
VisitInitListExpr(InitListExpr * ILE)9336*67e74705SXin Li   void VisitInitListExpr(InitListExpr *ILE) {
9337*67e74705SXin Li     if (!SemaRef.getLangOpts().CPlusPlus11)
9338*67e74705SXin Li       return VisitExpr(ILE);
9339*67e74705SXin Li 
9340*67e74705SXin Li     // In C++11, list initializations are sequenced.
9341*67e74705SXin Li     SmallVector<SequenceTree::Seq, 32> Elts;
9342*67e74705SXin Li     SequenceTree::Seq Parent = Region;
9343*67e74705SXin Li     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
9344*67e74705SXin Li       Expr *E = ILE->getInit(I);
9345*67e74705SXin Li       if (!E) continue;
9346*67e74705SXin Li       Region = Tree.allocate(Parent);
9347*67e74705SXin Li       Elts.push_back(Region);
9348*67e74705SXin Li       Visit(E);
9349*67e74705SXin Li     }
9350*67e74705SXin Li 
9351*67e74705SXin Li     // Forget that the initializers are sequenced.
9352*67e74705SXin Li     Region = Parent;
9353*67e74705SXin Li     for (unsigned I = 0; I < Elts.size(); ++I)
9354*67e74705SXin Li       Tree.merge(Elts[I]);
9355*67e74705SXin Li   }
9356*67e74705SXin Li };
9357*67e74705SXin Li } // end anonymous namespace
9358*67e74705SXin Li 
CheckUnsequencedOperations(Expr * E)9359*67e74705SXin Li void Sema::CheckUnsequencedOperations(Expr *E) {
9360*67e74705SXin Li   SmallVector<Expr *, 8> WorkList;
9361*67e74705SXin Li   WorkList.push_back(E);
9362*67e74705SXin Li   while (!WorkList.empty()) {
9363*67e74705SXin Li     Expr *Item = WorkList.pop_back_val();
9364*67e74705SXin Li     SequenceChecker(*this, Item, WorkList);
9365*67e74705SXin Li   }
9366*67e74705SXin Li }
9367*67e74705SXin Li 
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)9368*67e74705SXin Li void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
9369*67e74705SXin Li                               bool IsConstexpr) {
9370*67e74705SXin Li   CheckImplicitConversions(E, CheckLoc);
9371*67e74705SXin Li   CheckUnsequencedOperations(E);
9372*67e74705SXin Li   if (!IsConstexpr && !E->isValueDependent())
9373*67e74705SXin Li     CheckForIntOverflow(E);
9374*67e74705SXin Li }
9375*67e74705SXin Li 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)9376*67e74705SXin Li void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
9377*67e74705SXin Li                                        FieldDecl *BitField,
9378*67e74705SXin Li                                        Expr *Init) {
9379*67e74705SXin Li   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
9380*67e74705SXin Li }
9381*67e74705SXin Li 
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)9382*67e74705SXin Li static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
9383*67e74705SXin Li                                          SourceLocation Loc) {
9384*67e74705SXin Li   if (!PType->isVariablyModifiedType())
9385*67e74705SXin Li     return;
9386*67e74705SXin Li   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
9387*67e74705SXin Li     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
9388*67e74705SXin Li     return;
9389*67e74705SXin Li   }
9390*67e74705SXin Li   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
9391*67e74705SXin Li     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
9392*67e74705SXin Li     return;
9393*67e74705SXin Li   }
9394*67e74705SXin Li   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
9395*67e74705SXin Li     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
9396*67e74705SXin Li     return;
9397*67e74705SXin Li   }
9398*67e74705SXin Li 
9399*67e74705SXin Li   const ArrayType *AT = S.Context.getAsArrayType(PType);
9400*67e74705SXin Li   if (!AT)
9401*67e74705SXin Li     return;
9402*67e74705SXin Li 
9403*67e74705SXin Li   if (AT->getSizeModifier() != ArrayType::Star) {
9404*67e74705SXin Li     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
9405*67e74705SXin Li     return;
9406*67e74705SXin Li   }
9407*67e74705SXin Li 
9408*67e74705SXin Li   S.Diag(Loc, diag::err_array_star_in_function_definition);
9409*67e74705SXin Li }
9410*67e74705SXin Li 
9411*67e74705SXin Li /// CheckParmsForFunctionDef - Check that the parameters of the given
9412*67e74705SXin Li /// function are appropriate for the definition of a function. This
9413*67e74705SXin Li /// takes care of any checks that cannot be performed on the
9414*67e74705SXin Li /// declaration itself, e.g., that the types of each of the function
9415*67e74705SXin Li /// parameters are complete.
CheckParmsForFunctionDef(ArrayRef<ParmVarDecl * > Parameters,bool CheckParameterNames)9416*67e74705SXin Li bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
9417*67e74705SXin Li                                     bool CheckParameterNames) {
9418*67e74705SXin Li   bool HasInvalidParm = false;
9419*67e74705SXin Li   for (ParmVarDecl *Param : Parameters) {
9420*67e74705SXin Li     // C99 6.7.5.3p4: the parameters in a parameter type list in a
9421*67e74705SXin Li     // function declarator that is part of a function definition of
9422*67e74705SXin Li     // that function shall not have incomplete type.
9423*67e74705SXin Li     //
9424*67e74705SXin Li     // This is also C++ [dcl.fct]p6.
9425*67e74705SXin Li     if (!Param->isInvalidDecl() &&
9426*67e74705SXin Li         RequireCompleteType(Param->getLocation(), Param->getType(),
9427*67e74705SXin Li                             diag::err_typecheck_decl_incomplete_type)) {
9428*67e74705SXin Li       Param->setInvalidDecl();
9429*67e74705SXin Li       HasInvalidParm = true;
9430*67e74705SXin Li     }
9431*67e74705SXin Li 
9432*67e74705SXin Li     // C99 6.9.1p5: If the declarator includes a parameter type list, the
9433*67e74705SXin Li     // declaration of each parameter shall include an identifier.
9434*67e74705SXin Li     if (CheckParameterNames &&
9435*67e74705SXin Li         Param->getIdentifier() == nullptr &&
9436*67e74705SXin Li         !Param->isImplicit() &&
9437*67e74705SXin Li         !getLangOpts().CPlusPlus)
9438*67e74705SXin Li       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
9439*67e74705SXin Li 
9440*67e74705SXin Li     // C99 6.7.5.3p12:
9441*67e74705SXin Li     //   If the function declarator is not part of a definition of that
9442*67e74705SXin Li     //   function, parameters may have incomplete type and may use the [*]
9443*67e74705SXin Li     //   notation in their sequences of declarator specifiers to specify
9444*67e74705SXin Li     //   variable length array types.
9445*67e74705SXin Li     QualType PType = Param->getOriginalType();
9446*67e74705SXin Li     // FIXME: This diagnostic should point the '[*]' if source-location
9447*67e74705SXin Li     // information is added for it.
9448*67e74705SXin Li     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
9449*67e74705SXin Li 
9450*67e74705SXin Li     // MSVC destroys objects passed by value in the callee.  Therefore a
9451*67e74705SXin Li     // function definition which takes such a parameter must be able to call the
9452*67e74705SXin Li     // object's destructor.  However, we don't perform any direct access check
9453*67e74705SXin Li     // on the dtor.
9454*67e74705SXin Li     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
9455*67e74705SXin Li                                        .getCXXABI()
9456*67e74705SXin Li                                        .areArgsDestroyedLeftToRightInCallee()) {
9457*67e74705SXin Li       if (!Param->isInvalidDecl()) {
9458*67e74705SXin Li         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
9459*67e74705SXin Li           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
9460*67e74705SXin Li           if (!ClassDecl->isInvalidDecl() &&
9461*67e74705SXin Li               !ClassDecl->hasIrrelevantDestructor() &&
9462*67e74705SXin Li               !ClassDecl->isDependentContext()) {
9463*67e74705SXin Li             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9464*67e74705SXin Li             MarkFunctionReferenced(Param->getLocation(), Destructor);
9465*67e74705SXin Li             DiagnoseUseOfDecl(Destructor, Param->getLocation());
9466*67e74705SXin Li           }
9467*67e74705SXin Li         }
9468*67e74705SXin Li       }
9469*67e74705SXin Li     }
9470*67e74705SXin Li 
9471*67e74705SXin Li     // Parameters with the pass_object_size attribute only need to be marked
9472*67e74705SXin Li     // constant at function definitions. Because we lack information about
9473*67e74705SXin Li     // whether we're on a declaration or definition when we're instantiating the
9474*67e74705SXin Li     // attribute, we need to check for constness here.
9475*67e74705SXin Li     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
9476*67e74705SXin Li       if (!Param->getType().isConstQualified())
9477*67e74705SXin Li         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
9478*67e74705SXin Li             << Attr->getSpelling() << 1;
9479*67e74705SXin Li   }
9480*67e74705SXin Li 
9481*67e74705SXin Li   return HasInvalidParm;
9482*67e74705SXin Li }
9483*67e74705SXin Li 
9484*67e74705SXin Li /// CheckCastAlign - Implements -Wcast-align, which warns when a
9485*67e74705SXin Li /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)9486*67e74705SXin Li void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
9487*67e74705SXin Li   // This is actually a lot of work to potentially be doing on every
9488*67e74705SXin Li   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
9489*67e74705SXin Li   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
9490*67e74705SXin Li     return;
9491*67e74705SXin Li 
9492*67e74705SXin Li   // Ignore dependent types.
9493*67e74705SXin Li   if (T->isDependentType() || Op->getType()->isDependentType())
9494*67e74705SXin Li     return;
9495*67e74705SXin Li 
9496*67e74705SXin Li   // Require that the destination be a pointer type.
9497*67e74705SXin Li   const PointerType *DestPtr = T->getAs<PointerType>();
9498*67e74705SXin Li   if (!DestPtr) return;
9499*67e74705SXin Li 
9500*67e74705SXin Li   // If the destination has alignment 1, we're done.
9501*67e74705SXin Li   QualType DestPointee = DestPtr->getPointeeType();
9502*67e74705SXin Li   if (DestPointee->isIncompleteType()) return;
9503*67e74705SXin Li   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
9504*67e74705SXin Li   if (DestAlign.isOne()) return;
9505*67e74705SXin Li 
9506*67e74705SXin Li   // Require that the source be a pointer type.
9507*67e74705SXin Li   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
9508*67e74705SXin Li   if (!SrcPtr) return;
9509*67e74705SXin Li   QualType SrcPointee = SrcPtr->getPointeeType();
9510*67e74705SXin Li 
9511*67e74705SXin Li   // Whitelist casts from cv void*.  We already implicitly
9512*67e74705SXin Li   // whitelisted casts to cv void*, since they have alignment 1.
9513*67e74705SXin Li   // Also whitelist casts involving incomplete types, which implicitly
9514*67e74705SXin Li   // includes 'void'.
9515*67e74705SXin Li   if (SrcPointee->isIncompleteType()) return;
9516*67e74705SXin Li 
9517*67e74705SXin Li   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
9518*67e74705SXin Li   if (SrcAlign >= DestAlign) return;
9519*67e74705SXin Li 
9520*67e74705SXin Li   Diag(TRange.getBegin(), diag::warn_cast_align)
9521*67e74705SXin Li     << Op->getType() << T
9522*67e74705SXin Li     << static_cast<unsigned>(SrcAlign.getQuantity())
9523*67e74705SXin Li     << static_cast<unsigned>(DestAlign.getQuantity())
9524*67e74705SXin Li     << TRange << Op->getSourceRange();
9525*67e74705SXin Li }
9526*67e74705SXin Li 
9527*67e74705SXin Li /// \brief Check whether this array fits the idiom of a size-one tail padded
9528*67e74705SXin Li /// array member of a struct.
9529*67e74705SXin Li ///
9530*67e74705SXin Li /// We avoid emitting out-of-bounds access warnings for such arrays as they are
9531*67e74705SXin Li /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,const llvm::APInt & Size,const NamedDecl * ND)9532*67e74705SXin Li static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
9533*67e74705SXin Li                                     const NamedDecl *ND) {
9534*67e74705SXin Li   if (Size != 1 || !ND) return false;
9535*67e74705SXin Li 
9536*67e74705SXin Li   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
9537*67e74705SXin Li   if (!FD) return false;
9538*67e74705SXin Li 
9539*67e74705SXin Li   // Don't consider sizes resulting from macro expansions or template argument
9540*67e74705SXin Li   // substitution to form C89 tail-padded arrays.
9541*67e74705SXin Li 
9542*67e74705SXin Li   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
9543*67e74705SXin Li   while (TInfo) {
9544*67e74705SXin Li     TypeLoc TL = TInfo->getTypeLoc();
9545*67e74705SXin Li     // Look through typedefs.
9546*67e74705SXin Li     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
9547*67e74705SXin Li       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
9548*67e74705SXin Li       TInfo = TDL->getTypeSourceInfo();
9549*67e74705SXin Li       continue;
9550*67e74705SXin Li     }
9551*67e74705SXin Li     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
9552*67e74705SXin Li       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
9553*67e74705SXin Li       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
9554*67e74705SXin Li         return false;
9555*67e74705SXin Li     }
9556*67e74705SXin Li     break;
9557*67e74705SXin Li   }
9558*67e74705SXin Li 
9559*67e74705SXin Li   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
9560*67e74705SXin Li   if (!RD) return false;
9561*67e74705SXin Li   if (RD->isUnion()) return false;
9562*67e74705SXin Li   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
9563*67e74705SXin Li     if (!CRD->isStandardLayout()) return false;
9564*67e74705SXin Li   }
9565*67e74705SXin Li 
9566*67e74705SXin Li   // See if this is the last field decl in the record.
9567*67e74705SXin Li   const Decl *D = FD;
9568*67e74705SXin Li   while ((D = D->getNextDeclInContext()))
9569*67e74705SXin Li     if (isa<FieldDecl>(D))
9570*67e74705SXin Li       return false;
9571*67e74705SXin Li   return true;
9572*67e74705SXin Li }
9573*67e74705SXin Li 
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)9574*67e74705SXin Li void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
9575*67e74705SXin Li                             const ArraySubscriptExpr *ASE,
9576*67e74705SXin Li                             bool AllowOnePastEnd, bool IndexNegated) {
9577*67e74705SXin Li   IndexExpr = IndexExpr->IgnoreParenImpCasts();
9578*67e74705SXin Li   if (IndexExpr->isValueDependent())
9579*67e74705SXin Li     return;
9580*67e74705SXin Li 
9581*67e74705SXin Li   const Type *EffectiveType =
9582*67e74705SXin Li       BaseExpr->getType()->getPointeeOrArrayElementType();
9583*67e74705SXin Li   BaseExpr = BaseExpr->IgnoreParenCasts();
9584*67e74705SXin Li   const ConstantArrayType *ArrayTy =
9585*67e74705SXin Li     Context.getAsConstantArrayType(BaseExpr->getType());
9586*67e74705SXin Li   if (!ArrayTy)
9587*67e74705SXin Li     return;
9588*67e74705SXin Li 
9589*67e74705SXin Li   llvm::APSInt index;
9590*67e74705SXin Li   if (!IndexExpr->EvaluateAsInt(index, Context, Expr::SE_AllowSideEffects))
9591*67e74705SXin Li     return;
9592*67e74705SXin Li   if (IndexNegated)
9593*67e74705SXin Li     index = -index;
9594*67e74705SXin Li 
9595*67e74705SXin Li   const NamedDecl *ND = nullptr;
9596*67e74705SXin Li   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
9597*67e74705SXin Li     ND = dyn_cast<NamedDecl>(DRE->getDecl());
9598*67e74705SXin Li   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
9599*67e74705SXin Li     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
9600*67e74705SXin Li 
9601*67e74705SXin Li   if (index.isUnsigned() || !index.isNegative()) {
9602*67e74705SXin Li     llvm::APInt size = ArrayTy->getSize();
9603*67e74705SXin Li     if (!size.isStrictlyPositive())
9604*67e74705SXin Li       return;
9605*67e74705SXin Li 
9606*67e74705SXin Li     const Type *BaseType = BaseExpr->getType()->getPointeeOrArrayElementType();
9607*67e74705SXin Li     if (BaseType != EffectiveType) {
9608*67e74705SXin Li       // Make sure we're comparing apples to apples when comparing index to size
9609*67e74705SXin Li       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
9610*67e74705SXin Li       uint64_t array_typesize = Context.getTypeSize(BaseType);
9611*67e74705SXin Li       // Handle ptrarith_typesize being zero, such as when casting to void*
9612*67e74705SXin Li       if (!ptrarith_typesize) ptrarith_typesize = 1;
9613*67e74705SXin Li       if (ptrarith_typesize != array_typesize) {
9614*67e74705SXin Li         // There's a cast to a different size type involved
9615*67e74705SXin Li         uint64_t ratio = array_typesize / ptrarith_typesize;
9616*67e74705SXin Li         // TODO: Be smarter about handling cases where array_typesize is not a
9617*67e74705SXin Li         // multiple of ptrarith_typesize
9618*67e74705SXin Li         if (ptrarith_typesize * ratio == array_typesize)
9619*67e74705SXin Li           size *= llvm::APInt(size.getBitWidth(), ratio);
9620*67e74705SXin Li       }
9621*67e74705SXin Li     }
9622*67e74705SXin Li 
9623*67e74705SXin Li     if (size.getBitWidth() > index.getBitWidth())
9624*67e74705SXin Li       index = index.zext(size.getBitWidth());
9625*67e74705SXin Li     else if (size.getBitWidth() < index.getBitWidth())
9626*67e74705SXin Li       size = size.zext(index.getBitWidth());
9627*67e74705SXin Li 
9628*67e74705SXin Li     // For array subscripting the index must be less than size, but for pointer
9629*67e74705SXin Li     // arithmetic also allow the index (offset) to be equal to size since
9630*67e74705SXin Li     // computing the next address after the end of the array is legal and
9631*67e74705SXin Li     // commonly done e.g. in C++ iterators and range-based for loops.
9632*67e74705SXin Li     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
9633*67e74705SXin Li       return;
9634*67e74705SXin Li 
9635*67e74705SXin Li     // Also don't warn for arrays of size 1 which are members of some
9636*67e74705SXin Li     // structure. These are often used to approximate flexible arrays in C89
9637*67e74705SXin Li     // code.
9638*67e74705SXin Li     if (IsTailPaddedMemberArray(*this, size, ND))
9639*67e74705SXin Li       return;
9640*67e74705SXin Li 
9641*67e74705SXin Li     // Suppress the warning if the subscript expression (as identified by the
9642*67e74705SXin Li     // ']' location) and the index expression are both from macro expansions
9643*67e74705SXin Li     // within a system header.
9644*67e74705SXin Li     if (ASE) {
9645*67e74705SXin Li       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
9646*67e74705SXin Li           ASE->getRBracketLoc());
9647*67e74705SXin Li       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
9648*67e74705SXin Li         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
9649*67e74705SXin Li             IndexExpr->getLocStart());
9650*67e74705SXin Li         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
9651*67e74705SXin Li           return;
9652*67e74705SXin Li       }
9653*67e74705SXin Li     }
9654*67e74705SXin Li 
9655*67e74705SXin Li     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
9656*67e74705SXin Li     if (ASE)
9657*67e74705SXin Li       DiagID = diag::warn_array_index_exceeds_bounds;
9658*67e74705SXin Li 
9659*67e74705SXin Li     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
9660*67e74705SXin Li                         PDiag(DiagID) << index.toString(10, true)
9661*67e74705SXin Li                           << size.toString(10, true)
9662*67e74705SXin Li                           << (unsigned)size.getLimitedValue(~0U)
9663*67e74705SXin Li                           << IndexExpr->getSourceRange());
9664*67e74705SXin Li   } else {
9665*67e74705SXin Li     unsigned DiagID = diag::warn_array_index_precedes_bounds;
9666*67e74705SXin Li     if (!ASE) {
9667*67e74705SXin Li       DiagID = diag::warn_ptr_arith_precedes_bounds;
9668*67e74705SXin Li       if (index.isNegative()) index = -index;
9669*67e74705SXin Li     }
9670*67e74705SXin Li 
9671*67e74705SXin Li     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
9672*67e74705SXin Li                         PDiag(DiagID) << index.toString(10, true)
9673*67e74705SXin Li                           << IndexExpr->getSourceRange());
9674*67e74705SXin Li   }
9675*67e74705SXin Li 
9676*67e74705SXin Li   if (!ND) {
9677*67e74705SXin Li     // Try harder to find a NamedDecl to point at in the note.
9678*67e74705SXin Li     while (const ArraySubscriptExpr *ASE =
9679*67e74705SXin Li            dyn_cast<ArraySubscriptExpr>(BaseExpr))
9680*67e74705SXin Li       BaseExpr = ASE->getBase()->IgnoreParenCasts();
9681*67e74705SXin Li     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
9682*67e74705SXin Li       ND = dyn_cast<NamedDecl>(DRE->getDecl());
9683*67e74705SXin Li     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
9684*67e74705SXin Li       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
9685*67e74705SXin Li   }
9686*67e74705SXin Li 
9687*67e74705SXin Li   if (ND)
9688*67e74705SXin Li     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
9689*67e74705SXin Li                         PDiag(diag::note_array_index_out_of_bounds)
9690*67e74705SXin Li                           << ND->getDeclName());
9691*67e74705SXin Li }
9692*67e74705SXin Li 
CheckArrayAccess(const Expr * expr)9693*67e74705SXin Li void Sema::CheckArrayAccess(const Expr *expr) {
9694*67e74705SXin Li   int AllowOnePastEnd = 0;
9695*67e74705SXin Li   while (expr) {
9696*67e74705SXin Li     expr = expr->IgnoreParenImpCasts();
9697*67e74705SXin Li     switch (expr->getStmtClass()) {
9698*67e74705SXin Li       case Stmt::ArraySubscriptExprClass: {
9699*67e74705SXin Li         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
9700*67e74705SXin Li         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
9701*67e74705SXin Li                          AllowOnePastEnd > 0);
9702*67e74705SXin Li         return;
9703*67e74705SXin Li       }
9704*67e74705SXin Li       case Stmt::OMPArraySectionExprClass: {
9705*67e74705SXin Li         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
9706*67e74705SXin Li         if (ASE->getLowerBound())
9707*67e74705SXin Li           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
9708*67e74705SXin Li                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
9709*67e74705SXin Li         return;
9710*67e74705SXin Li       }
9711*67e74705SXin Li       case Stmt::UnaryOperatorClass: {
9712*67e74705SXin Li         // Only unwrap the * and & unary operators
9713*67e74705SXin Li         const UnaryOperator *UO = cast<UnaryOperator>(expr);
9714*67e74705SXin Li         expr = UO->getSubExpr();
9715*67e74705SXin Li         switch (UO->getOpcode()) {
9716*67e74705SXin Li           case UO_AddrOf:
9717*67e74705SXin Li             AllowOnePastEnd++;
9718*67e74705SXin Li             break;
9719*67e74705SXin Li           case UO_Deref:
9720*67e74705SXin Li             AllowOnePastEnd--;
9721*67e74705SXin Li             break;
9722*67e74705SXin Li           default:
9723*67e74705SXin Li             return;
9724*67e74705SXin Li         }
9725*67e74705SXin Li         break;
9726*67e74705SXin Li       }
9727*67e74705SXin Li       case Stmt::ConditionalOperatorClass: {
9728*67e74705SXin Li         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
9729*67e74705SXin Li         if (const Expr *lhs = cond->getLHS())
9730*67e74705SXin Li           CheckArrayAccess(lhs);
9731*67e74705SXin Li         if (const Expr *rhs = cond->getRHS())
9732*67e74705SXin Li           CheckArrayAccess(rhs);
9733*67e74705SXin Li         return;
9734*67e74705SXin Li       }
9735*67e74705SXin Li       default:
9736*67e74705SXin Li         return;
9737*67e74705SXin Li     }
9738*67e74705SXin Li   }
9739*67e74705SXin Li }
9740*67e74705SXin Li 
9741*67e74705SXin Li //===--- CHECK: Objective-C retain cycles ----------------------------------//
9742*67e74705SXin Li 
9743*67e74705SXin Li namespace {
9744*67e74705SXin Li   struct RetainCycleOwner {
RetainCycleOwner__anona6c5d4490d11::RetainCycleOwner9745*67e74705SXin Li     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
9746*67e74705SXin Li     VarDecl *Variable;
9747*67e74705SXin Li     SourceRange Range;
9748*67e74705SXin Li     SourceLocation Loc;
9749*67e74705SXin Li     bool Indirect;
9750*67e74705SXin Li 
setLocsFrom__anona6c5d4490d11::RetainCycleOwner9751*67e74705SXin Li     void setLocsFrom(Expr *e) {
9752*67e74705SXin Li       Loc = e->getExprLoc();
9753*67e74705SXin Li       Range = e->getSourceRange();
9754*67e74705SXin Li     }
9755*67e74705SXin Li   };
9756*67e74705SXin Li } // end anonymous namespace
9757*67e74705SXin Li 
9758*67e74705SXin Li /// Consider whether capturing the given variable can possibly lead to
9759*67e74705SXin Li /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)9760*67e74705SXin Li static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
9761*67e74705SXin Li   // In ARC, it's captured strongly iff the variable has __strong
9762*67e74705SXin Li   // lifetime.  In MRR, it's captured strongly if the variable is
9763*67e74705SXin Li   // __block and has an appropriate type.
9764*67e74705SXin Li   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
9765*67e74705SXin Li     return false;
9766*67e74705SXin Li 
9767*67e74705SXin Li   owner.Variable = var;
9768*67e74705SXin Li   if (ref)
9769*67e74705SXin Li     owner.setLocsFrom(ref);
9770*67e74705SXin Li   return true;
9771*67e74705SXin Li }
9772*67e74705SXin Li 
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)9773*67e74705SXin Li static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
9774*67e74705SXin Li   while (true) {
9775*67e74705SXin Li     e = e->IgnoreParens();
9776*67e74705SXin Li     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
9777*67e74705SXin Li       switch (cast->getCastKind()) {
9778*67e74705SXin Li       case CK_BitCast:
9779*67e74705SXin Li       case CK_LValueBitCast:
9780*67e74705SXin Li       case CK_LValueToRValue:
9781*67e74705SXin Li       case CK_ARCReclaimReturnedObject:
9782*67e74705SXin Li         e = cast->getSubExpr();
9783*67e74705SXin Li         continue;
9784*67e74705SXin Li 
9785*67e74705SXin Li       default:
9786*67e74705SXin Li         return false;
9787*67e74705SXin Li       }
9788*67e74705SXin Li     }
9789*67e74705SXin Li 
9790*67e74705SXin Li     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
9791*67e74705SXin Li       ObjCIvarDecl *ivar = ref->getDecl();
9792*67e74705SXin Li       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
9793*67e74705SXin Li         return false;
9794*67e74705SXin Li 
9795*67e74705SXin Li       // Try to find a retain cycle in the base.
9796*67e74705SXin Li       if (!findRetainCycleOwner(S, ref->getBase(), owner))
9797*67e74705SXin Li         return false;
9798*67e74705SXin Li 
9799*67e74705SXin Li       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
9800*67e74705SXin Li       owner.Indirect = true;
9801*67e74705SXin Li       return true;
9802*67e74705SXin Li     }
9803*67e74705SXin Li 
9804*67e74705SXin Li     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
9805*67e74705SXin Li       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
9806*67e74705SXin Li       if (!var) return false;
9807*67e74705SXin Li       return considerVariable(var, ref, owner);
9808*67e74705SXin Li     }
9809*67e74705SXin Li 
9810*67e74705SXin Li     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
9811*67e74705SXin Li       if (member->isArrow()) return false;
9812*67e74705SXin Li 
9813*67e74705SXin Li       // Don't count this as an indirect ownership.
9814*67e74705SXin Li       e = member->getBase();
9815*67e74705SXin Li       continue;
9816*67e74705SXin Li     }
9817*67e74705SXin Li 
9818*67e74705SXin Li     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
9819*67e74705SXin Li       // Only pay attention to pseudo-objects on property references.
9820*67e74705SXin Li       ObjCPropertyRefExpr *pre
9821*67e74705SXin Li         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
9822*67e74705SXin Li                                               ->IgnoreParens());
9823*67e74705SXin Li       if (!pre) return false;
9824*67e74705SXin Li       if (pre->isImplicitProperty()) return false;
9825*67e74705SXin Li       ObjCPropertyDecl *property = pre->getExplicitProperty();
9826*67e74705SXin Li       if (!property->isRetaining() &&
9827*67e74705SXin Li           !(property->getPropertyIvarDecl() &&
9828*67e74705SXin Li             property->getPropertyIvarDecl()->getType()
9829*67e74705SXin Li               .getObjCLifetime() == Qualifiers::OCL_Strong))
9830*67e74705SXin Li           return false;
9831*67e74705SXin Li 
9832*67e74705SXin Li       owner.Indirect = true;
9833*67e74705SXin Li       if (pre->isSuperReceiver()) {
9834*67e74705SXin Li         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
9835*67e74705SXin Li         if (!owner.Variable)
9836*67e74705SXin Li           return false;
9837*67e74705SXin Li         owner.Loc = pre->getLocation();
9838*67e74705SXin Li         owner.Range = pre->getSourceRange();
9839*67e74705SXin Li         return true;
9840*67e74705SXin Li       }
9841*67e74705SXin Li       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
9842*67e74705SXin Li                               ->getSourceExpr());
9843*67e74705SXin Li       continue;
9844*67e74705SXin Li     }
9845*67e74705SXin Li 
9846*67e74705SXin Li     // Array ivars?
9847*67e74705SXin Li 
9848*67e74705SXin Li     return false;
9849*67e74705SXin Li   }
9850*67e74705SXin Li }
9851*67e74705SXin Li 
9852*67e74705SXin Li namespace {
9853*67e74705SXin Li   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anona6c5d4490e11::FindCaptureVisitor9854*67e74705SXin Li     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
9855*67e74705SXin Li       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
9856*67e74705SXin Li         Context(Context), Variable(variable), Capturer(nullptr),
9857*67e74705SXin Li         VarWillBeReased(false) {}
9858*67e74705SXin Li     ASTContext &Context;
9859*67e74705SXin Li     VarDecl *Variable;
9860*67e74705SXin Li     Expr *Capturer;
9861*67e74705SXin Li     bool VarWillBeReased;
9862*67e74705SXin Li 
VisitDeclRefExpr__anona6c5d4490e11::FindCaptureVisitor9863*67e74705SXin Li     void VisitDeclRefExpr(DeclRefExpr *ref) {
9864*67e74705SXin Li       if (ref->getDecl() == Variable && !Capturer)
9865*67e74705SXin Li         Capturer = ref;
9866*67e74705SXin Li     }
9867*67e74705SXin Li 
VisitObjCIvarRefExpr__anona6c5d4490e11::FindCaptureVisitor9868*67e74705SXin Li     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
9869*67e74705SXin Li       if (Capturer) return;
9870*67e74705SXin Li       Visit(ref->getBase());
9871*67e74705SXin Li       if (Capturer && ref->isFreeIvar())
9872*67e74705SXin Li         Capturer = ref;
9873*67e74705SXin Li     }
9874*67e74705SXin Li 
VisitBlockExpr__anona6c5d4490e11::FindCaptureVisitor9875*67e74705SXin Li     void VisitBlockExpr(BlockExpr *block) {
9876*67e74705SXin Li       // Look inside nested blocks
9877*67e74705SXin Li       if (block->getBlockDecl()->capturesVariable(Variable))
9878*67e74705SXin Li         Visit(block->getBlockDecl()->getBody());
9879*67e74705SXin Li     }
9880*67e74705SXin Li 
VisitOpaqueValueExpr__anona6c5d4490e11::FindCaptureVisitor9881*67e74705SXin Li     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
9882*67e74705SXin Li       if (Capturer) return;
9883*67e74705SXin Li       if (OVE->getSourceExpr())
9884*67e74705SXin Li         Visit(OVE->getSourceExpr());
9885*67e74705SXin Li     }
VisitBinaryOperator__anona6c5d4490e11::FindCaptureVisitor9886*67e74705SXin Li     void VisitBinaryOperator(BinaryOperator *BinOp) {
9887*67e74705SXin Li       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
9888*67e74705SXin Li         return;
9889*67e74705SXin Li       Expr *LHS = BinOp->getLHS();
9890*67e74705SXin Li       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
9891*67e74705SXin Li         if (DRE->getDecl() != Variable)
9892*67e74705SXin Li           return;
9893*67e74705SXin Li         if (Expr *RHS = BinOp->getRHS()) {
9894*67e74705SXin Li           RHS = RHS->IgnoreParenCasts();
9895*67e74705SXin Li           llvm::APSInt Value;
9896*67e74705SXin Li           VarWillBeReased =
9897*67e74705SXin Li             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
9898*67e74705SXin Li         }
9899*67e74705SXin Li       }
9900*67e74705SXin Li     }
9901*67e74705SXin Li   };
9902*67e74705SXin Li } // end anonymous namespace
9903*67e74705SXin Li 
9904*67e74705SXin Li /// Check whether the given argument is a block which captures a
9905*67e74705SXin Li /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)9906*67e74705SXin Li static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
9907*67e74705SXin Li   assert(owner.Variable && owner.Loc.isValid());
9908*67e74705SXin Li 
9909*67e74705SXin Li   e = e->IgnoreParenCasts();
9910*67e74705SXin Li 
9911*67e74705SXin Li   // Look through [^{...} copy] and Block_copy(^{...}).
9912*67e74705SXin Li   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
9913*67e74705SXin Li     Selector Cmd = ME->getSelector();
9914*67e74705SXin Li     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
9915*67e74705SXin Li       e = ME->getInstanceReceiver();
9916*67e74705SXin Li       if (!e)
9917*67e74705SXin Li         return nullptr;
9918*67e74705SXin Li       e = e->IgnoreParenCasts();
9919*67e74705SXin Li     }
9920*67e74705SXin Li   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
9921*67e74705SXin Li     if (CE->getNumArgs() == 1) {
9922*67e74705SXin Li       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
9923*67e74705SXin Li       if (Fn) {
9924*67e74705SXin Li         const IdentifierInfo *FnI = Fn->getIdentifier();
9925*67e74705SXin Li         if (FnI && FnI->isStr("_Block_copy")) {
9926*67e74705SXin Li           e = CE->getArg(0)->IgnoreParenCasts();
9927*67e74705SXin Li         }
9928*67e74705SXin Li       }
9929*67e74705SXin Li     }
9930*67e74705SXin Li   }
9931*67e74705SXin Li 
9932*67e74705SXin Li   BlockExpr *block = dyn_cast<BlockExpr>(e);
9933*67e74705SXin Li   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
9934*67e74705SXin Li     return nullptr;
9935*67e74705SXin Li 
9936*67e74705SXin Li   FindCaptureVisitor visitor(S.Context, owner.Variable);
9937*67e74705SXin Li   visitor.Visit(block->getBlockDecl()->getBody());
9938*67e74705SXin Li   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
9939*67e74705SXin Li }
9940*67e74705SXin Li 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)9941*67e74705SXin Li static void diagnoseRetainCycle(Sema &S, Expr *capturer,
9942*67e74705SXin Li                                 RetainCycleOwner &owner) {
9943*67e74705SXin Li   assert(capturer);
9944*67e74705SXin Li   assert(owner.Variable && owner.Loc.isValid());
9945*67e74705SXin Li 
9946*67e74705SXin Li   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
9947*67e74705SXin Li     << owner.Variable << capturer->getSourceRange();
9948*67e74705SXin Li   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
9949*67e74705SXin Li     << owner.Indirect << owner.Range;
9950*67e74705SXin Li }
9951*67e74705SXin Li 
9952*67e74705SXin Li /// Check for a keyword selector that starts with the word 'add' or
9953*67e74705SXin Li /// 'set'.
isSetterLikeSelector(Selector sel)9954*67e74705SXin Li static bool isSetterLikeSelector(Selector sel) {
9955*67e74705SXin Li   if (sel.isUnarySelector()) return false;
9956*67e74705SXin Li 
9957*67e74705SXin Li   StringRef str = sel.getNameForSlot(0);
9958*67e74705SXin Li   while (!str.empty() && str.front() == '_') str = str.substr(1);
9959*67e74705SXin Li   if (str.startswith("set"))
9960*67e74705SXin Li     str = str.substr(3);
9961*67e74705SXin Li   else if (str.startswith("add")) {
9962*67e74705SXin Li     // Specially whitelist 'addOperationWithBlock:'.
9963*67e74705SXin Li     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
9964*67e74705SXin Li       return false;
9965*67e74705SXin Li     str = str.substr(3);
9966*67e74705SXin Li   }
9967*67e74705SXin Li   else
9968*67e74705SXin Li     return false;
9969*67e74705SXin Li 
9970*67e74705SXin Li   if (str.empty()) return true;
9971*67e74705SXin Li   return !isLowercase(str.front());
9972*67e74705SXin Li }
9973*67e74705SXin Li 
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)9974*67e74705SXin Li static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
9975*67e74705SXin Li                                                     ObjCMessageExpr *Message) {
9976*67e74705SXin Li   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
9977*67e74705SXin Li                                                 Message->getReceiverInterface(),
9978*67e74705SXin Li                                                 NSAPI::ClassId_NSMutableArray);
9979*67e74705SXin Li   if (!IsMutableArray) {
9980*67e74705SXin Li     return None;
9981*67e74705SXin Li   }
9982*67e74705SXin Li 
9983*67e74705SXin Li   Selector Sel = Message->getSelector();
9984*67e74705SXin Li 
9985*67e74705SXin Li   Optional<NSAPI::NSArrayMethodKind> MKOpt =
9986*67e74705SXin Li     S.NSAPIObj->getNSArrayMethodKind(Sel);
9987*67e74705SXin Li   if (!MKOpt) {
9988*67e74705SXin Li     return None;
9989*67e74705SXin Li   }
9990*67e74705SXin Li 
9991*67e74705SXin Li   NSAPI::NSArrayMethodKind MK = *MKOpt;
9992*67e74705SXin Li 
9993*67e74705SXin Li   switch (MK) {
9994*67e74705SXin Li     case NSAPI::NSMutableArr_addObject:
9995*67e74705SXin Li     case NSAPI::NSMutableArr_insertObjectAtIndex:
9996*67e74705SXin Li     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
9997*67e74705SXin Li       return 0;
9998*67e74705SXin Li     case NSAPI::NSMutableArr_replaceObjectAtIndex:
9999*67e74705SXin Li       return 1;
10000*67e74705SXin Li 
10001*67e74705SXin Li     default:
10002*67e74705SXin Li       return None;
10003*67e74705SXin Li   }
10004*67e74705SXin Li 
10005*67e74705SXin Li   return None;
10006*67e74705SXin Li }
10007*67e74705SXin Li 
10008*67e74705SXin Li static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)10009*67e74705SXin Li Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
10010*67e74705SXin Li                                                   ObjCMessageExpr *Message) {
10011*67e74705SXin Li   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
10012*67e74705SXin Li                                             Message->getReceiverInterface(),
10013*67e74705SXin Li                                             NSAPI::ClassId_NSMutableDictionary);
10014*67e74705SXin Li   if (!IsMutableDictionary) {
10015*67e74705SXin Li     return None;
10016*67e74705SXin Li   }
10017*67e74705SXin Li 
10018*67e74705SXin Li   Selector Sel = Message->getSelector();
10019*67e74705SXin Li 
10020*67e74705SXin Li   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
10021*67e74705SXin Li     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
10022*67e74705SXin Li   if (!MKOpt) {
10023*67e74705SXin Li     return None;
10024*67e74705SXin Li   }
10025*67e74705SXin Li 
10026*67e74705SXin Li   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
10027*67e74705SXin Li 
10028*67e74705SXin Li   switch (MK) {
10029*67e74705SXin Li     case NSAPI::NSMutableDict_setObjectForKey:
10030*67e74705SXin Li     case NSAPI::NSMutableDict_setValueForKey:
10031*67e74705SXin Li     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
10032*67e74705SXin Li       return 0;
10033*67e74705SXin Li 
10034*67e74705SXin Li     default:
10035*67e74705SXin Li       return None;
10036*67e74705SXin Li   }
10037*67e74705SXin Li 
10038*67e74705SXin Li   return None;
10039*67e74705SXin Li }
10040*67e74705SXin Li 
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)10041*67e74705SXin Li static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
10042*67e74705SXin Li   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
10043*67e74705SXin Li                                                 Message->getReceiverInterface(),
10044*67e74705SXin Li                                                 NSAPI::ClassId_NSMutableSet);
10045*67e74705SXin Li 
10046*67e74705SXin Li   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
10047*67e74705SXin Li                                             Message->getReceiverInterface(),
10048*67e74705SXin Li                                             NSAPI::ClassId_NSMutableOrderedSet);
10049*67e74705SXin Li   if (!IsMutableSet && !IsMutableOrderedSet) {
10050*67e74705SXin Li     return None;
10051*67e74705SXin Li   }
10052*67e74705SXin Li 
10053*67e74705SXin Li   Selector Sel = Message->getSelector();
10054*67e74705SXin Li 
10055*67e74705SXin Li   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
10056*67e74705SXin Li   if (!MKOpt) {
10057*67e74705SXin Li     return None;
10058*67e74705SXin Li   }
10059*67e74705SXin Li 
10060*67e74705SXin Li   NSAPI::NSSetMethodKind MK = *MKOpt;
10061*67e74705SXin Li 
10062*67e74705SXin Li   switch (MK) {
10063*67e74705SXin Li     case NSAPI::NSMutableSet_addObject:
10064*67e74705SXin Li     case NSAPI::NSOrderedSet_setObjectAtIndex:
10065*67e74705SXin Li     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
10066*67e74705SXin Li     case NSAPI::NSOrderedSet_insertObjectAtIndex:
10067*67e74705SXin Li       return 0;
10068*67e74705SXin Li     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
10069*67e74705SXin Li       return 1;
10070*67e74705SXin Li   }
10071*67e74705SXin Li 
10072*67e74705SXin Li   return None;
10073*67e74705SXin Li }
10074*67e74705SXin Li 
CheckObjCCircularContainer(ObjCMessageExpr * Message)10075*67e74705SXin Li void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
10076*67e74705SXin Li   if (!Message->isInstanceMessage()) {
10077*67e74705SXin Li     return;
10078*67e74705SXin Li   }
10079*67e74705SXin Li 
10080*67e74705SXin Li   Optional<int> ArgOpt;
10081*67e74705SXin Li 
10082*67e74705SXin Li   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
10083*67e74705SXin Li       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
10084*67e74705SXin Li       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
10085*67e74705SXin Li     return;
10086*67e74705SXin Li   }
10087*67e74705SXin Li 
10088*67e74705SXin Li   int ArgIndex = *ArgOpt;
10089*67e74705SXin Li 
10090*67e74705SXin Li   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
10091*67e74705SXin Li   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
10092*67e74705SXin Li     Arg = OE->getSourceExpr()->IgnoreImpCasts();
10093*67e74705SXin Li   }
10094*67e74705SXin Li 
10095*67e74705SXin Li   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
10096*67e74705SXin Li     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
10097*67e74705SXin Li       if (ArgRE->isObjCSelfExpr()) {
10098*67e74705SXin Li         Diag(Message->getSourceRange().getBegin(),
10099*67e74705SXin Li              diag::warn_objc_circular_container)
10100*67e74705SXin Li           << ArgRE->getDecl()->getName() << StringRef("super");
10101*67e74705SXin Li       }
10102*67e74705SXin Li     }
10103*67e74705SXin Li   } else {
10104*67e74705SXin Li     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
10105*67e74705SXin Li 
10106*67e74705SXin Li     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
10107*67e74705SXin Li       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
10108*67e74705SXin Li     }
10109*67e74705SXin Li 
10110*67e74705SXin Li     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
10111*67e74705SXin Li       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
10112*67e74705SXin Li         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
10113*67e74705SXin Li           ValueDecl *Decl = ReceiverRE->getDecl();
10114*67e74705SXin Li           Diag(Message->getSourceRange().getBegin(),
10115*67e74705SXin Li                diag::warn_objc_circular_container)
10116*67e74705SXin Li             << Decl->getName() << Decl->getName();
10117*67e74705SXin Li           if (!ArgRE->isObjCSelfExpr()) {
10118*67e74705SXin Li             Diag(Decl->getLocation(),
10119*67e74705SXin Li                  diag::note_objc_circular_container_declared_here)
10120*67e74705SXin Li               << Decl->getName();
10121*67e74705SXin Li           }
10122*67e74705SXin Li         }
10123*67e74705SXin Li       }
10124*67e74705SXin Li     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
10125*67e74705SXin Li       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
10126*67e74705SXin Li         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
10127*67e74705SXin Li           ObjCIvarDecl *Decl = IvarRE->getDecl();
10128*67e74705SXin Li           Diag(Message->getSourceRange().getBegin(),
10129*67e74705SXin Li                diag::warn_objc_circular_container)
10130*67e74705SXin Li             << Decl->getName() << Decl->getName();
10131*67e74705SXin Li           Diag(Decl->getLocation(),
10132*67e74705SXin Li                diag::note_objc_circular_container_declared_here)
10133*67e74705SXin Li             << Decl->getName();
10134*67e74705SXin Li         }
10135*67e74705SXin Li       }
10136*67e74705SXin Li     }
10137*67e74705SXin Li   }
10138*67e74705SXin Li }
10139*67e74705SXin Li 
10140*67e74705SXin Li /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)10141*67e74705SXin Li void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
10142*67e74705SXin Li   // Only check instance methods whose selector looks like a setter.
10143*67e74705SXin Li   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
10144*67e74705SXin Li     return;
10145*67e74705SXin Li 
10146*67e74705SXin Li   // Try to find a variable that the receiver is strongly owned by.
10147*67e74705SXin Li   RetainCycleOwner owner;
10148*67e74705SXin Li   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
10149*67e74705SXin Li     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
10150*67e74705SXin Li       return;
10151*67e74705SXin Li   } else {
10152*67e74705SXin Li     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
10153*67e74705SXin Li     owner.Variable = getCurMethodDecl()->getSelfDecl();
10154*67e74705SXin Li     owner.Loc = msg->getSuperLoc();
10155*67e74705SXin Li     owner.Range = msg->getSuperLoc();
10156*67e74705SXin Li   }
10157*67e74705SXin Li 
10158*67e74705SXin Li   // Check whether the receiver is captured by any of the arguments.
10159*67e74705SXin Li   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
10160*67e74705SXin Li     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
10161*67e74705SXin Li       return diagnoseRetainCycle(*this, capturer, owner);
10162*67e74705SXin Li }
10163*67e74705SXin Li 
10164*67e74705SXin Li /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)10165*67e74705SXin Li void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
10166*67e74705SXin Li   RetainCycleOwner owner;
10167*67e74705SXin Li   if (!findRetainCycleOwner(*this, receiver, owner))
10168*67e74705SXin Li     return;
10169*67e74705SXin Li 
10170*67e74705SXin Li   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
10171*67e74705SXin Li     diagnoseRetainCycle(*this, capturer, owner);
10172*67e74705SXin Li }
10173*67e74705SXin Li 
checkRetainCycles(VarDecl * Var,Expr * Init)10174*67e74705SXin Li void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
10175*67e74705SXin Li   RetainCycleOwner Owner;
10176*67e74705SXin Li   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
10177*67e74705SXin Li     return;
10178*67e74705SXin Li 
10179*67e74705SXin Li   // Because we don't have an expression for the variable, we have to set the
10180*67e74705SXin Li   // location explicitly here.
10181*67e74705SXin Li   Owner.Loc = Var->getLocation();
10182*67e74705SXin Li   Owner.Range = Var->getSourceRange();
10183*67e74705SXin Li 
10184*67e74705SXin Li   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
10185*67e74705SXin Li     diagnoseRetainCycle(*this, Capturer, Owner);
10186*67e74705SXin Li }
10187*67e74705SXin Li 
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)10188*67e74705SXin Li static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
10189*67e74705SXin Li                                      Expr *RHS, bool isProperty) {
10190*67e74705SXin Li   // Check if RHS is an Objective-C object literal, which also can get
10191*67e74705SXin Li   // immediately zapped in a weak reference.  Note that we explicitly
10192*67e74705SXin Li   // allow ObjCStringLiterals, since those are designed to never really die.
10193*67e74705SXin Li   RHS = RHS->IgnoreParenImpCasts();
10194*67e74705SXin Li 
10195*67e74705SXin Li   // This enum needs to match with the 'select' in
10196*67e74705SXin Li   // warn_objc_arc_literal_assign (off-by-1).
10197*67e74705SXin Li   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
10198*67e74705SXin Li   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
10199*67e74705SXin Li     return false;
10200*67e74705SXin Li 
10201*67e74705SXin Li   S.Diag(Loc, diag::warn_arc_literal_assign)
10202*67e74705SXin Li     << (unsigned) Kind
10203*67e74705SXin Li     << (isProperty ? 0 : 1)
10204*67e74705SXin Li     << RHS->getSourceRange();
10205*67e74705SXin Li 
10206*67e74705SXin Li   return true;
10207*67e74705SXin Li }
10208*67e74705SXin Li 
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)10209*67e74705SXin Li static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
10210*67e74705SXin Li                                     Qualifiers::ObjCLifetime LT,
10211*67e74705SXin Li                                     Expr *RHS, bool isProperty) {
10212*67e74705SXin Li   // Strip off any implicit cast added to get to the one ARC-specific.
10213*67e74705SXin Li   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
10214*67e74705SXin Li     if (cast->getCastKind() == CK_ARCConsumeObject) {
10215*67e74705SXin Li       S.Diag(Loc, diag::warn_arc_retained_assign)
10216*67e74705SXin Li         << (LT == Qualifiers::OCL_ExplicitNone)
10217*67e74705SXin Li         << (isProperty ? 0 : 1)
10218*67e74705SXin Li         << RHS->getSourceRange();
10219*67e74705SXin Li       return true;
10220*67e74705SXin Li     }
10221*67e74705SXin Li     RHS = cast->getSubExpr();
10222*67e74705SXin Li   }
10223*67e74705SXin Li 
10224*67e74705SXin Li   if (LT == Qualifiers::OCL_Weak &&
10225*67e74705SXin Li       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
10226*67e74705SXin Li     return true;
10227*67e74705SXin Li 
10228*67e74705SXin Li   return false;
10229*67e74705SXin Li }
10230*67e74705SXin Li 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)10231*67e74705SXin Li bool Sema::checkUnsafeAssigns(SourceLocation Loc,
10232*67e74705SXin Li                               QualType LHS, Expr *RHS) {
10233*67e74705SXin Li   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
10234*67e74705SXin Li 
10235*67e74705SXin Li   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
10236*67e74705SXin Li     return false;
10237*67e74705SXin Li 
10238*67e74705SXin Li   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
10239*67e74705SXin Li     return true;
10240*67e74705SXin Li 
10241*67e74705SXin Li   return false;
10242*67e74705SXin Li }
10243*67e74705SXin Li 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)10244*67e74705SXin Li void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
10245*67e74705SXin Li                               Expr *LHS, Expr *RHS) {
10246*67e74705SXin Li   QualType LHSType;
10247*67e74705SXin Li   // PropertyRef on LHS type need be directly obtained from
10248*67e74705SXin Li   // its declaration as it has a PseudoType.
10249*67e74705SXin Li   ObjCPropertyRefExpr *PRE
10250*67e74705SXin Li     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
10251*67e74705SXin Li   if (PRE && !PRE->isImplicitProperty()) {
10252*67e74705SXin Li     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
10253*67e74705SXin Li     if (PD)
10254*67e74705SXin Li       LHSType = PD->getType();
10255*67e74705SXin Li   }
10256*67e74705SXin Li 
10257*67e74705SXin Li   if (LHSType.isNull())
10258*67e74705SXin Li     LHSType = LHS->getType();
10259*67e74705SXin Li 
10260*67e74705SXin Li   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
10261*67e74705SXin Li 
10262*67e74705SXin Li   if (LT == Qualifiers::OCL_Weak) {
10263*67e74705SXin Li     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
10264*67e74705SXin Li       getCurFunction()->markSafeWeakUse(LHS);
10265*67e74705SXin Li   }
10266*67e74705SXin Li 
10267*67e74705SXin Li   if (checkUnsafeAssigns(Loc, LHSType, RHS))
10268*67e74705SXin Li     return;
10269*67e74705SXin Li 
10270*67e74705SXin Li   // FIXME. Check for other life times.
10271*67e74705SXin Li   if (LT != Qualifiers::OCL_None)
10272*67e74705SXin Li     return;
10273*67e74705SXin Li 
10274*67e74705SXin Li   if (PRE) {
10275*67e74705SXin Li     if (PRE->isImplicitProperty())
10276*67e74705SXin Li       return;
10277*67e74705SXin Li     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
10278*67e74705SXin Li     if (!PD)
10279*67e74705SXin Li       return;
10280*67e74705SXin Li 
10281*67e74705SXin Li     unsigned Attributes = PD->getPropertyAttributes();
10282*67e74705SXin Li     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
10283*67e74705SXin Li       // when 'assign' attribute was not explicitly specified
10284*67e74705SXin Li       // by user, ignore it and rely on property type itself
10285*67e74705SXin Li       // for lifetime info.
10286*67e74705SXin Li       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
10287*67e74705SXin Li       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
10288*67e74705SXin Li           LHSType->isObjCRetainableType())
10289*67e74705SXin Li         return;
10290*67e74705SXin Li 
10291*67e74705SXin Li       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
10292*67e74705SXin Li         if (cast->getCastKind() == CK_ARCConsumeObject) {
10293*67e74705SXin Li           Diag(Loc, diag::warn_arc_retained_property_assign)
10294*67e74705SXin Li           << RHS->getSourceRange();
10295*67e74705SXin Li           return;
10296*67e74705SXin Li         }
10297*67e74705SXin Li         RHS = cast->getSubExpr();
10298*67e74705SXin Li       }
10299*67e74705SXin Li     }
10300*67e74705SXin Li     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
10301*67e74705SXin Li       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
10302*67e74705SXin Li         return;
10303*67e74705SXin Li     }
10304*67e74705SXin Li   }
10305*67e74705SXin Li }
10306*67e74705SXin Li 
10307*67e74705SXin Li //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
10308*67e74705SXin Li 
10309*67e74705SXin Li namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)10310*67e74705SXin Li bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
10311*67e74705SXin Li                                  SourceLocation StmtLoc,
10312*67e74705SXin Li                                  const NullStmt *Body) {
10313*67e74705SXin Li   // Do not warn if the body is a macro that expands to nothing, e.g:
10314*67e74705SXin Li   //
10315*67e74705SXin Li   // #define CALL(x)
10316*67e74705SXin Li   // if (condition)
10317*67e74705SXin Li   //   CALL(0);
10318*67e74705SXin Li   //
10319*67e74705SXin Li   if (Body->hasLeadingEmptyMacro())
10320*67e74705SXin Li     return false;
10321*67e74705SXin Li 
10322*67e74705SXin Li   // Get line numbers of statement and body.
10323*67e74705SXin Li   bool StmtLineInvalid;
10324*67e74705SXin Li   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
10325*67e74705SXin Li                                                       &StmtLineInvalid);
10326*67e74705SXin Li   if (StmtLineInvalid)
10327*67e74705SXin Li     return false;
10328*67e74705SXin Li 
10329*67e74705SXin Li   bool BodyLineInvalid;
10330*67e74705SXin Li   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
10331*67e74705SXin Li                                                       &BodyLineInvalid);
10332*67e74705SXin Li   if (BodyLineInvalid)
10333*67e74705SXin Li     return false;
10334*67e74705SXin Li 
10335*67e74705SXin Li   // Warn if null statement and body are on the same line.
10336*67e74705SXin Li   if (StmtLine != BodyLine)
10337*67e74705SXin Li     return false;
10338*67e74705SXin Li 
10339*67e74705SXin Li   return true;
10340*67e74705SXin Li }
10341*67e74705SXin Li } // end anonymous namespace
10342*67e74705SXin Li 
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)10343*67e74705SXin Li void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
10344*67e74705SXin Li                                  const Stmt *Body,
10345*67e74705SXin Li                                  unsigned DiagID) {
10346*67e74705SXin Li   // Since this is a syntactic check, don't emit diagnostic for template
10347*67e74705SXin Li   // instantiations, this just adds noise.
10348*67e74705SXin Li   if (CurrentInstantiationScope)
10349*67e74705SXin Li     return;
10350*67e74705SXin Li 
10351*67e74705SXin Li   // The body should be a null statement.
10352*67e74705SXin Li   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
10353*67e74705SXin Li   if (!NBody)
10354*67e74705SXin Li     return;
10355*67e74705SXin Li 
10356*67e74705SXin Li   // Do the usual checks.
10357*67e74705SXin Li   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
10358*67e74705SXin Li     return;
10359*67e74705SXin Li 
10360*67e74705SXin Li   Diag(NBody->getSemiLoc(), DiagID);
10361*67e74705SXin Li   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
10362*67e74705SXin Li }
10363*67e74705SXin Li 
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)10364*67e74705SXin Li void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
10365*67e74705SXin Li                                  const Stmt *PossibleBody) {
10366*67e74705SXin Li   assert(!CurrentInstantiationScope); // Ensured by caller
10367*67e74705SXin Li 
10368*67e74705SXin Li   SourceLocation StmtLoc;
10369*67e74705SXin Li   const Stmt *Body;
10370*67e74705SXin Li   unsigned DiagID;
10371*67e74705SXin Li   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
10372*67e74705SXin Li     StmtLoc = FS->getRParenLoc();
10373*67e74705SXin Li     Body = FS->getBody();
10374*67e74705SXin Li     DiagID = diag::warn_empty_for_body;
10375*67e74705SXin Li   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
10376*67e74705SXin Li     StmtLoc = WS->getCond()->getSourceRange().getEnd();
10377*67e74705SXin Li     Body = WS->getBody();
10378*67e74705SXin Li     DiagID = diag::warn_empty_while_body;
10379*67e74705SXin Li   } else
10380*67e74705SXin Li     return; // Neither `for' nor `while'.
10381*67e74705SXin Li 
10382*67e74705SXin Li   // The body should be a null statement.
10383*67e74705SXin Li   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
10384*67e74705SXin Li   if (!NBody)
10385*67e74705SXin Li     return;
10386*67e74705SXin Li 
10387*67e74705SXin Li   // Skip expensive checks if diagnostic is disabled.
10388*67e74705SXin Li   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
10389*67e74705SXin Li     return;
10390*67e74705SXin Li 
10391*67e74705SXin Li   // Do the usual checks.
10392*67e74705SXin Li   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
10393*67e74705SXin Li     return;
10394*67e74705SXin Li 
10395*67e74705SXin Li   // `for(...);' and `while(...);' are popular idioms, so in order to keep
10396*67e74705SXin Li   // noise level low, emit diagnostics only if for/while is followed by a
10397*67e74705SXin Li   // CompoundStmt, e.g.:
10398*67e74705SXin Li   //    for (int i = 0; i < n; i++);
10399*67e74705SXin Li   //    {
10400*67e74705SXin Li   //      a(i);
10401*67e74705SXin Li   //    }
10402*67e74705SXin Li   // or if for/while is followed by a statement with more indentation
10403*67e74705SXin Li   // than for/while itself:
10404*67e74705SXin Li   //    for (int i = 0; i < n; i++);
10405*67e74705SXin Li   //      a(i);
10406*67e74705SXin Li   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
10407*67e74705SXin Li   if (!ProbableTypo) {
10408*67e74705SXin Li     bool BodyColInvalid;
10409*67e74705SXin Li     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
10410*67e74705SXin Li                              PossibleBody->getLocStart(),
10411*67e74705SXin Li                              &BodyColInvalid);
10412*67e74705SXin Li     if (BodyColInvalid)
10413*67e74705SXin Li       return;
10414*67e74705SXin Li 
10415*67e74705SXin Li     bool StmtColInvalid;
10416*67e74705SXin Li     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
10417*67e74705SXin Li                              S->getLocStart(),
10418*67e74705SXin Li                              &StmtColInvalid);
10419*67e74705SXin Li     if (StmtColInvalid)
10420*67e74705SXin Li       return;
10421*67e74705SXin Li 
10422*67e74705SXin Li     if (BodyCol > StmtCol)
10423*67e74705SXin Li       ProbableTypo = true;
10424*67e74705SXin Li   }
10425*67e74705SXin Li 
10426*67e74705SXin Li   if (ProbableTypo) {
10427*67e74705SXin Li     Diag(NBody->getSemiLoc(), DiagID);
10428*67e74705SXin Li     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
10429*67e74705SXin Li   }
10430*67e74705SXin Li }
10431*67e74705SXin Li 
10432*67e74705SXin Li //===--- CHECK: Warn on self move with std::move. -------------------------===//
10433*67e74705SXin Li 
10434*67e74705SXin Li /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)10435*67e74705SXin Li void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
10436*67e74705SXin Li                              SourceLocation OpLoc) {
10437*67e74705SXin Li   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
10438*67e74705SXin Li     return;
10439*67e74705SXin Li 
10440*67e74705SXin Li   if (!ActiveTemplateInstantiations.empty())
10441*67e74705SXin Li     return;
10442*67e74705SXin Li 
10443*67e74705SXin Li   // Strip parens and casts away.
10444*67e74705SXin Li   LHSExpr = LHSExpr->IgnoreParenImpCasts();
10445*67e74705SXin Li   RHSExpr = RHSExpr->IgnoreParenImpCasts();
10446*67e74705SXin Li 
10447*67e74705SXin Li   // Check for a call expression
10448*67e74705SXin Li   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
10449*67e74705SXin Li   if (!CE || CE->getNumArgs() != 1)
10450*67e74705SXin Li     return;
10451*67e74705SXin Li 
10452*67e74705SXin Li   // Check for a call to std::move
10453*67e74705SXin Li   const FunctionDecl *FD = CE->getDirectCallee();
10454*67e74705SXin Li   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
10455*67e74705SXin Li       !FD->getIdentifier()->isStr("move"))
10456*67e74705SXin Li     return;
10457*67e74705SXin Li 
10458*67e74705SXin Li   // Get argument from std::move
10459*67e74705SXin Li   RHSExpr = CE->getArg(0);
10460*67e74705SXin Li 
10461*67e74705SXin Li   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
10462*67e74705SXin Li   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
10463*67e74705SXin Li 
10464*67e74705SXin Li   // Two DeclRefExpr's, check that the decls are the same.
10465*67e74705SXin Li   if (LHSDeclRef && RHSDeclRef) {
10466*67e74705SXin Li     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
10467*67e74705SXin Li       return;
10468*67e74705SXin Li     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
10469*67e74705SXin Li         RHSDeclRef->getDecl()->getCanonicalDecl())
10470*67e74705SXin Li       return;
10471*67e74705SXin Li 
10472*67e74705SXin Li     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
10473*67e74705SXin Li                                         << LHSExpr->getSourceRange()
10474*67e74705SXin Li                                         << RHSExpr->getSourceRange();
10475*67e74705SXin Li     return;
10476*67e74705SXin Li   }
10477*67e74705SXin Li 
10478*67e74705SXin Li   // Member variables require a different approach to check for self moves.
10479*67e74705SXin Li   // MemberExpr's are the same if every nested MemberExpr refers to the same
10480*67e74705SXin Li   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
10481*67e74705SXin Li   // the base Expr's are CXXThisExpr's.
10482*67e74705SXin Li   const Expr *LHSBase = LHSExpr;
10483*67e74705SXin Li   const Expr *RHSBase = RHSExpr;
10484*67e74705SXin Li   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
10485*67e74705SXin Li   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
10486*67e74705SXin Li   if (!LHSME || !RHSME)
10487*67e74705SXin Li     return;
10488*67e74705SXin Li 
10489*67e74705SXin Li   while (LHSME && RHSME) {
10490*67e74705SXin Li     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
10491*67e74705SXin Li         RHSME->getMemberDecl()->getCanonicalDecl())
10492*67e74705SXin Li       return;
10493*67e74705SXin Li 
10494*67e74705SXin Li     LHSBase = LHSME->getBase();
10495*67e74705SXin Li     RHSBase = RHSME->getBase();
10496*67e74705SXin Li     LHSME = dyn_cast<MemberExpr>(LHSBase);
10497*67e74705SXin Li     RHSME = dyn_cast<MemberExpr>(RHSBase);
10498*67e74705SXin Li   }
10499*67e74705SXin Li 
10500*67e74705SXin Li   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
10501*67e74705SXin Li   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
10502*67e74705SXin Li   if (LHSDeclRef && RHSDeclRef) {
10503*67e74705SXin Li     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
10504*67e74705SXin Li       return;
10505*67e74705SXin Li     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
10506*67e74705SXin Li         RHSDeclRef->getDecl()->getCanonicalDecl())
10507*67e74705SXin Li       return;
10508*67e74705SXin Li 
10509*67e74705SXin Li     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
10510*67e74705SXin Li                                         << LHSExpr->getSourceRange()
10511*67e74705SXin Li                                         << RHSExpr->getSourceRange();
10512*67e74705SXin Li     return;
10513*67e74705SXin Li   }
10514*67e74705SXin Li 
10515*67e74705SXin Li   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
10516*67e74705SXin Li     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
10517*67e74705SXin Li                                         << LHSExpr->getSourceRange()
10518*67e74705SXin Li                                         << RHSExpr->getSourceRange();
10519*67e74705SXin Li }
10520*67e74705SXin Li 
10521*67e74705SXin Li //===--- Layout compatibility ----------------------------------------------//
10522*67e74705SXin Li 
10523*67e74705SXin Li namespace {
10524*67e74705SXin Li 
10525*67e74705SXin Li bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
10526*67e74705SXin Li 
10527*67e74705SXin Li /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)10528*67e74705SXin Li bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
10529*67e74705SXin Li   // C++11 [dcl.enum] p8:
10530*67e74705SXin Li   // Two enumeration types are layout-compatible if they have the same
10531*67e74705SXin Li   // underlying type.
10532*67e74705SXin Li   return ED1->isComplete() && ED2->isComplete() &&
10533*67e74705SXin Li          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
10534*67e74705SXin Li }
10535*67e74705SXin Li 
10536*67e74705SXin Li /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)10537*67e74705SXin Li bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
10538*67e74705SXin Li   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
10539*67e74705SXin Li     return false;
10540*67e74705SXin Li 
10541*67e74705SXin Li   if (Field1->isBitField() != Field2->isBitField())
10542*67e74705SXin Li     return false;
10543*67e74705SXin Li 
10544*67e74705SXin Li   if (Field1->isBitField()) {
10545*67e74705SXin Li     // Make sure that the bit-fields are the same length.
10546*67e74705SXin Li     unsigned Bits1 = Field1->getBitWidthValue(C);
10547*67e74705SXin Li     unsigned Bits2 = Field2->getBitWidthValue(C);
10548*67e74705SXin Li 
10549*67e74705SXin Li     if (Bits1 != Bits2)
10550*67e74705SXin Li       return false;
10551*67e74705SXin Li   }
10552*67e74705SXin Li 
10553*67e74705SXin Li   return true;
10554*67e74705SXin Li }
10555*67e74705SXin Li 
10556*67e74705SXin Li /// \brief Check if two standard-layout structs are layout-compatible.
10557*67e74705SXin Li /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)10558*67e74705SXin Li bool isLayoutCompatibleStruct(ASTContext &C,
10559*67e74705SXin Li                               RecordDecl *RD1,
10560*67e74705SXin Li                               RecordDecl *RD2) {
10561*67e74705SXin Li   // If both records are C++ classes, check that base classes match.
10562*67e74705SXin Li   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
10563*67e74705SXin Li     // If one of records is a CXXRecordDecl we are in C++ mode,
10564*67e74705SXin Li     // thus the other one is a CXXRecordDecl, too.
10565*67e74705SXin Li     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
10566*67e74705SXin Li     // Check number of base classes.
10567*67e74705SXin Li     if (D1CXX->getNumBases() != D2CXX->getNumBases())
10568*67e74705SXin Li       return false;
10569*67e74705SXin Li 
10570*67e74705SXin Li     // Check the base classes.
10571*67e74705SXin Li     for (CXXRecordDecl::base_class_const_iterator
10572*67e74705SXin Li                Base1 = D1CXX->bases_begin(),
10573*67e74705SXin Li            BaseEnd1 = D1CXX->bases_end(),
10574*67e74705SXin Li               Base2 = D2CXX->bases_begin();
10575*67e74705SXin Li          Base1 != BaseEnd1;
10576*67e74705SXin Li          ++Base1, ++Base2) {
10577*67e74705SXin Li       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
10578*67e74705SXin Li         return false;
10579*67e74705SXin Li     }
10580*67e74705SXin Li   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
10581*67e74705SXin Li     // If only RD2 is a C++ class, it should have zero base classes.
10582*67e74705SXin Li     if (D2CXX->getNumBases() > 0)
10583*67e74705SXin Li       return false;
10584*67e74705SXin Li   }
10585*67e74705SXin Li 
10586*67e74705SXin Li   // Check the fields.
10587*67e74705SXin Li   RecordDecl::field_iterator Field2 = RD2->field_begin(),
10588*67e74705SXin Li                              Field2End = RD2->field_end(),
10589*67e74705SXin Li                              Field1 = RD1->field_begin(),
10590*67e74705SXin Li                              Field1End = RD1->field_end();
10591*67e74705SXin Li   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
10592*67e74705SXin Li     if (!isLayoutCompatible(C, *Field1, *Field2))
10593*67e74705SXin Li       return false;
10594*67e74705SXin Li   }
10595*67e74705SXin Li   if (Field1 != Field1End || Field2 != Field2End)
10596*67e74705SXin Li     return false;
10597*67e74705SXin Li 
10598*67e74705SXin Li   return true;
10599*67e74705SXin Li }
10600*67e74705SXin Li 
10601*67e74705SXin Li /// \brief Check if two standard-layout unions are layout-compatible.
10602*67e74705SXin Li /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)10603*67e74705SXin Li bool isLayoutCompatibleUnion(ASTContext &C,
10604*67e74705SXin Li                              RecordDecl *RD1,
10605*67e74705SXin Li                              RecordDecl *RD2) {
10606*67e74705SXin Li   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
10607*67e74705SXin Li   for (auto *Field2 : RD2->fields())
10608*67e74705SXin Li     UnmatchedFields.insert(Field2);
10609*67e74705SXin Li 
10610*67e74705SXin Li   for (auto *Field1 : RD1->fields()) {
10611*67e74705SXin Li     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
10612*67e74705SXin Li         I = UnmatchedFields.begin(),
10613*67e74705SXin Li         E = UnmatchedFields.end();
10614*67e74705SXin Li 
10615*67e74705SXin Li     for ( ; I != E; ++I) {
10616*67e74705SXin Li       if (isLayoutCompatible(C, Field1, *I)) {
10617*67e74705SXin Li         bool Result = UnmatchedFields.erase(*I);
10618*67e74705SXin Li         (void) Result;
10619*67e74705SXin Li         assert(Result);
10620*67e74705SXin Li         break;
10621*67e74705SXin Li       }
10622*67e74705SXin Li     }
10623*67e74705SXin Li     if (I == E)
10624*67e74705SXin Li       return false;
10625*67e74705SXin Li   }
10626*67e74705SXin Li 
10627*67e74705SXin Li   return UnmatchedFields.empty();
10628*67e74705SXin Li }
10629*67e74705SXin Li 
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)10630*67e74705SXin Li bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
10631*67e74705SXin Li   if (RD1->isUnion() != RD2->isUnion())
10632*67e74705SXin Li     return false;
10633*67e74705SXin Li 
10634*67e74705SXin Li   if (RD1->isUnion())
10635*67e74705SXin Li     return isLayoutCompatibleUnion(C, RD1, RD2);
10636*67e74705SXin Li   else
10637*67e74705SXin Li     return isLayoutCompatibleStruct(C, RD1, RD2);
10638*67e74705SXin Li }
10639*67e74705SXin Li 
10640*67e74705SXin Li /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)10641*67e74705SXin Li bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
10642*67e74705SXin Li   if (T1.isNull() || T2.isNull())
10643*67e74705SXin Li     return false;
10644*67e74705SXin Li 
10645*67e74705SXin Li   // C++11 [basic.types] p11:
10646*67e74705SXin Li   // If two types T1 and T2 are the same type, then T1 and T2 are
10647*67e74705SXin Li   // layout-compatible types.
10648*67e74705SXin Li   if (C.hasSameType(T1, T2))
10649*67e74705SXin Li     return true;
10650*67e74705SXin Li 
10651*67e74705SXin Li   T1 = T1.getCanonicalType().getUnqualifiedType();
10652*67e74705SXin Li   T2 = T2.getCanonicalType().getUnqualifiedType();
10653*67e74705SXin Li 
10654*67e74705SXin Li   const Type::TypeClass TC1 = T1->getTypeClass();
10655*67e74705SXin Li   const Type::TypeClass TC2 = T2->getTypeClass();
10656*67e74705SXin Li 
10657*67e74705SXin Li   if (TC1 != TC2)
10658*67e74705SXin Li     return false;
10659*67e74705SXin Li 
10660*67e74705SXin Li   if (TC1 == Type::Enum) {
10661*67e74705SXin Li     return isLayoutCompatible(C,
10662*67e74705SXin Li                               cast<EnumType>(T1)->getDecl(),
10663*67e74705SXin Li                               cast<EnumType>(T2)->getDecl());
10664*67e74705SXin Li   } else if (TC1 == Type::Record) {
10665*67e74705SXin Li     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
10666*67e74705SXin Li       return false;
10667*67e74705SXin Li 
10668*67e74705SXin Li     return isLayoutCompatible(C,
10669*67e74705SXin Li                               cast<RecordType>(T1)->getDecl(),
10670*67e74705SXin Li                               cast<RecordType>(T2)->getDecl());
10671*67e74705SXin Li   }
10672*67e74705SXin Li 
10673*67e74705SXin Li   return false;
10674*67e74705SXin Li }
10675*67e74705SXin Li } // end anonymous namespace
10676*67e74705SXin Li 
10677*67e74705SXin Li //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
10678*67e74705SXin Li 
10679*67e74705SXin Li namespace {
10680*67e74705SXin Li /// \brief Given a type tag expression find the type tag itself.
10681*67e74705SXin Li ///
10682*67e74705SXin Li /// \param TypeExpr Type tag expression, as it appears in user's code.
10683*67e74705SXin Li ///
10684*67e74705SXin Li /// \param VD Declaration of an identifier that appears in a type tag.
10685*67e74705SXin Li ///
10686*67e74705SXin Li /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)10687*67e74705SXin Li bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
10688*67e74705SXin Li                      const ValueDecl **VD, uint64_t *MagicValue) {
10689*67e74705SXin Li   while(true) {
10690*67e74705SXin Li     if (!TypeExpr)
10691*67e74705SXin Li       return false;
10692*67e74705SXin Li 
10693*67e74705SXin Li     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
10694*67e74705SXin Li 
10695*67e74705SXin Li     switch (TypeExpr->getStmtClass()) {
10696*67e74705SXin Li     case Stmt::UnaryOperatorClass: {
10697*67e74705SXin Li       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
10698*67e74705SXin Li       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
10699*67e74705SXin Li         TypeExpr = UO->getSubExpr();
10700*67e74705SXin Li         continue;
10701*67e74705SXin Li       }
10702*67e74705SXin Li       return false;
10703*67e74705SXin Li     }
10704*67e74705SXin Li 
10705*67e74705SXin Li     case Stmt::DeclRefExprClass: {
10706*67e74705SXin Li       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
10707*67e74705SXin Li       *VD = DRE->getDecl();
10708*67e74705SXin Li       return true;
10709*67e74705SXin Li     }
10710*67e74705SXin Li 
10711*67e74705SXin Li     case Stmt::IntegerLiteralClass: {
10712*67e74705SXin Li       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
10713*67e74705SXin Li       llvm::APInt MagicValueAPInt = IL->getValue();
10714*67e74705SXin Li       if (MagicValueAPInt.getActiveBits() <= 64) {
10715*67e74705SXin Li         *MagicValue = MagicValueAPInt.getZExtValue();
10716*67e74705SXin Li         return true;
10717*67e74705SXin Li       } else
10718*67e74705SXin Li         return false;
10719*67e74705SXin Li     }
10720*67e74705SXin Li 
10721*67e74705SXin Li     case Stmt::BinaryConditionalOperatorClass:
10722*67e74705SXin Li     case Stmt::ConditionalOperatorClass: {
10723*67e74705SXin Li       const AbstractConditionalOperator *ACO =
10724*67e74705SXin Li           cast<AbstractConditionalOperator>(TypeExpr);
10725*67e74705SXin Li       bool Result;
10726*67e74705SXin Li       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
10727*67e74705SXin Li         if (Result)
10728*67e74705SXin Li           TypeExpr = ACO->getTrueExpr();
10729*67e74705SXin Li         else
10730*67e74705SXin Li           TypeExpr = ACO->getFalseExpr();
10731*67e74705SXin Li         continue;
10732*67e74705SXin Li       }
10733*67e74705SXin Li       return false;
10734*67e74705SXin Li     }
10735*67e74705SXin Li 
10736*67e74705SXin Li     case Stmt::BinaryOperatorClass: {
10737*67e74705SXin Li       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
10738*67e74705SXin Li       if (BO->getOpcode() == BO_Comma) {
10739*67e74705SXin Li         TypeExpr = BO->getRHS();
10740*67e74705SXin Li         continue;
10741*67e74705SXin Li       }
10742*67e74705SXin Li       return false;
10743*67e74705SXin Li     }
10744*67e74705SXin Li 
10745*67e74705SXin Li     default:
10746*67e74705SXin Li       return false;
10747*67e74705SXin Li     }
10748*67e74705SXin Li   }
10749*67e74705SXin Li }
10750*67e74705SXin Li 
10751*67e74705SXin Li /// \brief Retrieve the C type corresponding to type tag TypeExpr.
10752*67e74705SXin Li ///
10753*67e74705SXin Li /// \param TypeExpr Expression that specifies a type tag.
10754*67e74705SXin Li ///
10755*67e74705SXin Li /// \param MagicValues Registered magic values.
10756*67e74705SXin Li ///
10757*67e74705SXin Li /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
10758*67e74705SXin Li ///        kind.
10759*67e74705SXin Li ///
10760*67e74705SXin Li /// \param TypeInfo Information about the corresponding C type.
10761*67e74705SXin Li ///
10762*67e74705SXin Li /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)10763*67e74705SXin Li bool GetMatchingCType(
10764*67e74705SXin Li         const IdentifierInfo *ArgumentKind,
10765*67e74705SXin Li         const Expr *TypeExpr, const ASTContext &Ctx,
10766*67e74705SXin Li         const llvm::DenseMap<Sema::TypeTagMagicValue,
10767*67e74705SXin Li                              Sema::TypeTagData> *MagicValues,
10768*67e74705SXin Li         bool &FoundWrongKind,
10769*67e74705SXin Li         Sema::TypeTagData &TypeInfo) {
10770*67e74705SXin Li   FoundWrongKind = false;
10771*67e74705SXin Li 
10772*67e74705SXin Li   // Variable declaration that has type_tag_for_datatype attribute.
10773*67e74705SXin Li   const ValueDecl *VD = nullptr;
10774*67e74705SXin Li 
10775*67e74705SXin Li   uint64_t MagicValue;
10776*67e74705SXin Li 
10777*67e74705SXin Li   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
10778*67e74705SXin Li     return false;
10779*67e74705SXin Li 
10780*67e74705SXin Li   if (VD) {
10781*67e74705SXin Li     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
10782*67e74705SXin Li       if (I->getArgumentKind() != ArgumentKind) {
10783*67e74705SXin Li         FoundWrongKind = true;
10784*67e74705SXin Li         return false;
10785*67e74705SXin Li       }
10786*67e74705SXin Li       TypeInfo.Type = I->getMatchingCType();
10787*67e74705SXin Li       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
10788*67e74705SXin Li       TypeInfo.MustBeNull = I->getMustBeNull();
10789*67e74705SXin Li       return true;
10790*67e74705SXin Li     }
10791*67e74705SXin Li     return false;
10792*67e74705SXin Li   }
10793*67e74705SXin Li 
10794*67e74705SXin Li   if (!MagicValues)
10795*67e74705SXin Li     return false;
10796*67e74705SXin Li 
10797*67e74705SXin Li   llvm::DenseMap<Sema::TypeTagMagicValue,
10798*67e74705SXin Li                  Sema::TypeTagData>::const_iterator I =
10799*67e74705SXin Li       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
10800*67e74705SXin Li   if (I == MagicValues->end())
10801*67e74705SXin Li     return false;
10802*67e74705SXin Li 
10803*67e74705SXin Li   TypeInfo = I->second;
10804*67e74705SXin Li   return true;
10805*67e74705SXin Li }
10806*67e74705SXin Li } // end anonymous namespace
10807*67e74705SXin Li 
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)10808*67e74705SXin Li void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
10809*67e74705SXin Li                                       uint64_t MagicValue, QualType Type,
10810*67e74705SXin Li                                       bool LayoutCompatible,
10811*67e74705SXin Li                                       bool MustBeNull) {
10812*67e74705SXin Li   if (!TypeTagForDatatypeMagicValues)
10813*67e74705SXin Li     TypeTagForDatatypeMagicValues.reset(
10814*67e74705SXin Li         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
10815*67e74705SXin Li 
10816*67e74705SXin Li   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
10817*67e74705SXin Li   (*TypeTagForDatatypeMagicValues)[Magic] =
10818*67e74705SXin Li       TypeTagData(Type, LayoutCompatible, MustBeNull);
10819*67e74705SXin Li }
10820*67e74705SXin Li 
10821*67e74705SXin Li namespace {
IsSameCharType(QualType T1,QualType T2)10822*67e74705SXin Li bool IsSameCharType(QualType T1, QualType T2) {
10823*67e74705SXin Li   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
10824*67e74705SXin Li   if (!BT1)
10825*67e74705SXin Li     return false;
10826*67e74705SXin Li 
10827*67e74705SXin Li   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
10828*67e74705SXin Li   if (!BT2)
10829*67e74705SXin Li     return false;
10830*67e74705SXin Li 
10831*67e74705SXin Li   BuiltinType::Kind T1Kind = BT1->getKind();
10832*67e74705SXin Li   BuiltinType::Kind T2Kind = BT2->getKind();
10833*67e74705SXin Li 
10834*67e74705SXin Li   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
10835*67e74705SXin Li          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
10836*67e74705SXin Li          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
10837*67e74705SXin Li          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
10838*67e74705SXin Li }
10839*67e74705SXin Li } // end anonymous namespace
10840*67e74705SXin Li 
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)10841*67e74705SXin Li void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
10842*67e74705SXin Li                                     const Expr * const *ExprArgs) {
10843*67e74705SXin Li   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
10844*67e74705SXin Li   bool IsPointerAttr = Attr->getIsPointer();
10845*67e74705SXin Li 
10846*67e74705SXin Li   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
10847*67e74705SXin Li   bool FoundWrongKind;
10848*67e74705SXin Li   TypeTagData TypeInfo;
10849*67e74705SXin Li   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
10850*67e74705SXin Li                         TypeTagForDatatypeMagicValues.get(),
10851*67e74705SXin Li                         FoundWrongKind, TypeInfo)) {
10852*67e74705SXin Li     if (FoundWrongKind)
10853*67e74705SXin Li       Diag(TypeTagExpr->getExprLoc(),
10854*67e74705SXin Li            diag::warn_type_tag_for_datatype_wrong_kind)
10855*67e74705SXin Li         << TypeTagExpr->getSourceRange();
10856*67e74705SXin Li     return;
10857*67e74705SXin Li   }
10858*67e74705SXin Li 
10859*67e74705SXin Li   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
10860*67e74705SXin Li   if (IsPointerAttr) {
10861*67e74705SXin Li     // Skip implicit cast of pointer to `void *' (as a function argument).
10862*67e74705SXin Li     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
10863*67e74705SXin Li       if (ICE->getType()->isVoidPointerType() &&
10864*67e74705SXin Li           ICE->getCastKind() == CK_BitCast)
10865*67e74705SXin Li         ArgumentExpr = ICE->getSubExpr();
10866*67e74705SXin Li   }
10867*67e74705SXin Li   QualType ArgumentType = ArgumentExpr->getType();
10868*67e74705SXin Li 
10869*67e74705SXin Li   // Passing a `void*' pointer shouldn't trigger a warning.
10870*67e74705SXin Li   if (IsPointerAttr && ArgumentType->isVoidPointerType())
10871*67e74705SXin Li     return;
10872*67e74705SXin Li 
10873*67e74705SXin Li   if (TypeInfo.MustBeNull) {
10874*67e74705SXin Li     // Type tag with matching void type requires a null pointer.
10875*67e74705SXin Li     if (!ArgumentExpr->isNullPointerConstant(Context,
10876*67e74705SXin Li                                              Expr::NPC_ValueDependentIsNotNull)) {
10877*67e74705SXin Li       Diag(ArgumentExpr->getExprLoc(),
10878*67e74705SXin Li            diag::warn_type_safety_null_pointer_required)
10879*67e74705SXin Li           << ArgumentKind->getName()
10880*67e74705SXin Li           << ArgumentExpr->getSourceRange()
10881*67e74705SXin Li           << TypeTagExpr->getSourceRange();
10882*67e74705SXin Li     }
10883*67e74705SXin Li     return;
10884*67e74705SXin Li   }
10885*67e74705SXin Li 
10886*67e74705SXin Li   QualType RequiredType = TypeInfo.Type;
10887*67e74705SXin Li   if (IsPointerAttr)
10888*67e74705SXin Li     RequiredType = Context.getPointerType(RequiredType);
10889*67e74705SXin Li 
10890*67e74705SXin Li   bool mismatch = false;
10891*67e74705SXin Li   if (!TypeInfo.LayoutCompatible) {
10892*67e74705SXin Li     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
10893*67e74705SXin Li 
10894*67e74705SXin Li     // C++11 [basic.fundamental] p1:
10895*67e74705SXin Li     // Plain char, signed char, and unsigned char are three distinct types.
10896*67e74705SXin Li     //
10897*67e74705SXin Li     // But we treat plain `char' as equivalent to `signed char' or `unsigned
10898*67e74705SXin Li     // char' depending on the current char signedness mode.
10899*67e74705SXin Li     if (mismatch)
10900*67e74705SXin Li       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
10901*67e74705SXin Li                                            RequiredType->getPointeeType())) ||
10902*67e74705SXin Li           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
10903*67e74705SXin Li         mismatch = false;
10904*67e74705SXin Li   } else
10905*67e74705SXin Li     if (IsPointerAttr)
10906*67e74705SXin Li       mismatch = !isLayoutCompatible(Context,
10907*67e74705SXin Li                                      ArgumentType->getPointeeType(),
10908*67e74705SXin Li                                      RequiredType->getPointeeType());
10909*67e74705SXin Li     else
10910*67e74705SXin Li       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
10911*67e74705SXin Li 
10912*67e74705SXin Li   if (mismatch)
10913*67e74705SXin Li     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
10914*67e74705SXin Li         << ArgumentType << ArgumentKind
10915*67e74705SXin Li         << TypeInfo.LayoutCompatible << RequiredType
10916*67e74705SXin Li         << ArgumentExpr->getSourceRange()
10917*67e74705SXin Li         << TypeTagExpr->getSourceRange();
10918*67e74705SXin Li }
10919