1*67e74705SXin Li //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
2*67e74705SXin Li //
3*67e74705SXin Li // The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li // This file provides Sema routines for C++ overloading.
11*67e74705SXin Li //
12*67e74705SXin Li //===----------------------------------------------------------------------===//
13*67e74705SXin Li
14*67e74705SXin Li #include "clang/Sema/Overload.h"
15*67e74705SXin Li #include "clang/AST/ASTContext.h"
16*67e74705SXin Li #include "clang/AST/CXXInheritance.h"
17*67e74705SXin Li #include "clang/AST/DeclObjC.h"
18*67e74705SXin Li #include "clang/AST/Expr.h"
19*67e74705SXin Li #include "clang/AST/ExprCXX.h"
20*67e74705SXin Li #include "clang/AST/ExprObjC.h"
21*67e74705SXin Li #include "clang/AST/TypeOrdering.h"
22*67e74705SXin Li #include "clang/Basic/Diagnostic.h"
23*67e74705SXin Li #include "clang/Basic/DiagnosticOptions.h"
24*67e74705SXin Li #include "clang/Basic/PartialDiagnostic.h"
25*67e74705SXin Li #include "clang/Basic/TargetInfo.h"
26*67e74705SXin Li #include "clang/Sema/Initialization.h"
27*67e74705SXin Li #include "clang/Sema/Lookup.h"
28*67e74705SXin Li #include "clang/Sema/SemaInternal.h"
29*67e74705SXin Li #include "clang/Sema/Template.h"
30*67e74705SXin Li #include "clang/Sema/TemplateDeduction.h"
31*67e74705SXin Li #include "llvm/ADT/DenseSet.h"
32*67e74705SXin Li #include "llvm/ADT/STLExtras.h"
33*67e74705SXin Li #include "llvm/ADT/SmallPtrSet.h"
34*67e74705SXin Li #include "llvm/ADT/SmallString.h"
35*67e74705SXin Li #include <algorithm>
36*67e74705SXin Li #include <cstdlib>
37*67e74705SXin Li
38*67e74705SXin Li using namespace clang;
39*67e74705SXin Li using namespace sema;
40*67e74705SXin Li
functionHasPassObjectSizeParams(const FunctionDecl * FD)41*67e74705SXin Li static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
42*67e74705SXin Li return llvm::any_of(FD->parameters(),
43*67e74705SXin Li std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
44*67e74705SXin Li }
45*67e74705SXin Li
46*67e74705SXin Li /// A convenience routine for creating a decayed reference to a function.
47*67e74705SXin Li static ExprResult
CreateFunctionRefExpr(Sema & S,FunctionDecl * Fn,NamedDecl * FoundDecl,bool HadMultipleCandidates,SourceLocation Loc=SourceLocation (),const DeclarationNameLoc & LocInfo=DeclarationNameLoc ())48*67e74705SXin Li CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
49*67e74705SXin Li bool HadMultipleCandidates,
50*67e74705SXin Li SourceLocation Loc = SourceLocation(),
51*67e74705SXin Li const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
52*67e74705SXin Li if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
53*67e74705SXin Li return ExprError();
54*67e74705SXin Li // If FoundDecl is different from Fn (such as if one is a template
55*67e74705SXin Li // and the other a specialization), make sure DiagnoseUseOfDecl is
56*67e74705SXin Li // called on both.
57*67e74705SXin Li // FIXME: This would be more comprehensively addressed by modifying
58*67e74705SXin Li // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
59*67e74705SXin Li // being used.
60*67e74705SXin Li if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
61*67e74705SXin Li return ExprError();
62*67e74705SXin Li DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
63*67e74705SXin Li VK_LValue, Loc, LocInfo);
64*67e74705SXin Li if (HadMultipleCandidates)
65*67e74705SXin Li DRE->setHadMultipleCandidates(true);
66*67e74705SXin Li
67*67e74705SXin Li S.MarkDeclRefReferenced(DRE);
68*67e74705SXin Li return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
69*67e74705SXin Li CK_FunctionToPointerDecay);
70*67e74705SXin Li }
71*67e74705SXin Li
72*67e74705SXin Li static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
73*67e74705SXin Li bool InOverloadResolution,
74*67e74705SXin Li StandardConversionSequence &SCS,
75*67e74705SXin Li bool CStyle,
76*67e74705SXin Li bool AllowObjCWritebackConversion);
77*67e74705SXin Li
78*67e74705SXin Li static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
79*67e74705SXin Li QualType &ToType,
80*67e74705SXin Li bool InOverloadResolution,
81*67e74705SXin Li StandardConversionSequence &SCS,
82*67e74705SXin Li bool CStyle);
83*67e74705SXin Li static OverloadingResult
84*67e74705SXin Li IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
85*67e74705SXin Li UserDefinedConversionSequence& User,
86*67e74705SXin Li OverloadCandidateSet& Conversions,
87*67e74705SXin Li bool AllowExplicit,
88*67e74705SXin Li bool AllowObjCConversionOnExplicit);
89*67e74705SXin Li
90*67e74705SXin Li
91*67e74705SXin Li static ImplicitConversionSequence::CompareKind
92*67e74705SXin Li CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
93*67e74705SXin Li const StandardConversionSequence& SCS1,
94*67e74705SXin Li const StandardConversionSequence& SCS2);
95*67e74705SXin Li
96*67e74705SXin Li static ImplicitConversionSequence::CompareKind
97*67e74705SXin Li CompareQualificationConversions(Sema &S,
98*67e74705SXin Li const StandardConversionSequence& SCS1,
99*67e74705SXin Li const StandardConversionSequence& SCS2);
100*67e74705SXin Li
101*67e74705SXin Li static ImplicitConversionSequence::CompareKind
102*67e74705SXin Li CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
103*67e74705SXin Li const StandardConversionSequence& SCS1,
104*67e74705SXin Li const StandardConversionSequence& SCS2);
105*67e74705SXin Li
106*67e74705SXin Li /// GetConversionRank - Retrieve the implicit conversion rank
107*67e74705SXin Li /// corresponding to the given implicit conversion kind.
GetConversionRank(ImplicitConversionKind Kind)108*67e74705SXin Li ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
109*67e74705SXin Li static const ImplicitConversionRank
110*67e74705SXin Li Rank[(int)ICK_Num_Conversion_Kinds] = {
111*67e74705SXin Li ICR_Exact_Match,
112*67e74705SXin Li ICR_Exact_Match,
113*67e74705SXin Li ICR_Exact_Match,
114*67e74705SXin Li ICR_Exact_Match,
115*67e74705SXin Li ICR_Exact_Match,
116*67e74705SXin Li ICR_Exact_Match,
117*67e74705SXin Li ICR_Promotion,
118*67e74705SXin Li ICR_Promotion,
119*67e74705SXin Li ICR_Promotion,
120*67e74705SXin Li ICR_Conversion,
121*67e74705SXin Li ICR_Conversion,
122*67e74705SXin Li ICR_Conversion,
123*67e74705SXin Li ICR_Conversion,
124*67e74705SXin Li ICR_Conversion,
125*67e74705SXin Li ICR_Conversion,
126*67e74705SXin Li ICR_Conversion,
127*67e74705SXin Li ICR_Conversion,
128*67e74705SXin Li ICR_Conversion,
129*67e74705SXin Li ICR_Conversion,
130*67e74705SXin Li ICR_Conversion,
131*67e74705SXin Li ICR_Complex_Real_Conversion,
132*67e74705SXin Li ICR_Conversion,
133*67e74705SXin Li ICR_Conversion,
134*67e74705SXin Li ICR_Writeback_Conversion,
135*67e74705SXin Li ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
136*67e74705SXin Li // it was omitted by the patch that added
137*67e74705SXin Li // ICK_Zero_Event_Conversion
138*67e74705SXin Li ICR_C_Conversion
139*67e74705SXin Li };
140*67e74705SXin Li return Rank[(int)Kind];
141*67e74705SXin Li }
142*67e74705SXin Li
143*67e74705SXin Li /// GetImplicitConversionName - Return the name of this kind of
144*67e74705SXin Li /// implicit conversion.
GetImplicitConversionName(ImplicitConversionKind Kind)145*67e74705SXin Li static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
146*67e74705SXin Li static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
147*67e74705SXin Li "No conversion",
148*67e74705SXin Li "Lvalue-to-rvalue",
149*67e74705SXin Li "Array-to-pointer",
150*67e74705SXin Li "Function-to-pointer",
151*67e74705SXin Li "Noreturn adjustment",
152*67e74705SXin Li "Qualification",
153*67e74705SXin Li "Integral promotion",
154*67e74705SXin Li "Floating point promotion",
155*67e74705SXin Li "Complex promotion",
156*67e74705SXin Li "Integral conversion",
157*67e74705SXin Li "Floating conversion",
158*67e74705SXin Li "Complex conversion",
159*67e74705SXin Li "Floating-integral conversion",
160*67e74705SXin Li "Pointer conversion",
161*67e74705SXin Li "Pointer-to-member conversion",
162*67e74705SXin Li "Boolean conversion",
163*67e74705SXin Li "Compatible-types conversion",
164*67e74705SXin Li "Derived-to-base conversion",
165*67e74705SXin Li "Vector conversion",
166*67e74705SXin Li "Vector splat",
167*67e74705SXin Li "Complex-real conversion",
168*67e74705SXin Li "Block Pointer conversion",
169*67e74705SXin Li "Transparent Union Conversion",
170*67e74705SXin Li "Writeback conversion",
171*67e74705SXin Li "OpenCL Zero Event Conversion",
172*67e74705SXin Li "C specific type conversion"
173*67e74705SXin Li };
174*67e74705SXin Li return Name[Kind];
175*67e74705SXin Li }
176*67e74705SXin Li
177*67e74705SXin Li /// StandardConversionSequence - Set the standard conversion
178*67e74705SXin Li /// sequence to the identity conversion.
setAsIdentityConversion()179*67e74705SXin Li void StandardConversionSequence::setAsIdentityConversion() {
180*67e74705SXin Li First = ICK_Identity;
181*67e74705SXin Li Second = ICK_Identity;
182*67e74705SXin Li Third = ICK_Identity;
183*67e74705SXin Li DeprecatedStringLiteralToCharPtr = false;
184*67e74705SXin Li QualificationIncludesObjCLifetime = false;
185*67e74705SXin Li ReferenceBinding = false;
186*67e74705SXin Li DirectBinding = false;
187*67e74705SXin Li IsLvalueReference = true;
188*67e74705SXin Li BindsToFunctionLvalue = false;
189*67e74705SXin Li BindsToRvalue = false;
190*67e74705SXin Li BindsImplicitObjectArgumentWithoutRefQualifier = false;
191*67e74705SXin Li ObjCLifetimeConversionBinding = false;
192*67e74705SXin Li CopyConstructor = nullptr;
193*67e74705SXin Li }
194*67e74705SXin Li
195*67e74705SXin Li /// getRank - Retrieve the rank of this standard conversion sequence
196*67e74705SXin Li /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
197*67e74705SXin Li /// implicit conversions.
getRank() const198*67e74705SXin Li ImplicitConversionRank StandardConversionSequence::getRank() const {
199*67e74705SXin Li ImplicitConversionRank Rank = ICR_Exact_Match;
200*67e74705SXin Li if (GetConversionRank(First) > Rank)
201*67e74705SXin Li Rank = GetConversionRank(First);
202*67e74705SXin Li if (GetConversionRank(Second) > Rank)
203*67e74705SXin Li Rank = GetConversionRank(Second);
204*67e74705SXin Li if (GetConversionRank(Third) > Rank)
205*67e74705SXin Li Rank = GetConversionRank(Third);
206*67e74705SXin Li return Rank;
207*67e74705SXin Li }
208*67e74705SXin Li
209*67e74705SXin Li /// isPointerConversionToBool - Determines whether this conversion is
210*67e74705SXin Li /// a conversion of a pointer or pointer-to-member to bool. This is
211*67e74705SXin Li /// used as part of the ranking of standard conversion sequences
212*67e74705SXin Li /// (C++ 13.3.3.2p4).
isPointerConversionToBool() const213*67e74705SXin Li bool StandardConversionSequence::isPointerConversionToBool() const {
214*67e74705SXin Li // Note that FromType has not necessarily been transformed by the
215*67e74705SXin Li // array-to-pointer or function-to-pointer implicit conversions, so
216*67e74705SXin Li // check for their presence as well as checking whether FromType is
217*67e74705SXin Li // a pointer.
218*67e74705SXin Li if (getToType(1)->isBooleanType() &&
219*67e74705SXin Li (getFromType()->isPointerType() ||
220*67e74705SXin Li getFromType()->isObjCObjectPointerType() ||
221*67e74705SXin Li getFromType()->isBlockPointerType() ||
222*67e74705SXin Li getFromType()->isNullPtrType() ||
223*67e74705SXin Li First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
224*67e74705SXin Li return true;
225*67e74705SXin Li
226*67e74705SXin Li return false;
227*67e74705SXin Li }
228*67e74705SXin Li
229*67e74705SXin Li /// isPointerConversionToVoidPointer - Determines whether this
230*67e74705SXin Li /// conversion is a conversion of a pointer to a void pointer. This is
231*67e74705SXin Li /// used as part of the ranking of standard conversion sequences (C++
232*67e74705SXin Li /// 13.3.3.2p4).
233*67e74705SXin Li bool
234*67e74705SXin Li StandardConversionSequence::
isPointerConversionToVoidPointer(ASTContext & Context) const235*67e74705SXin Li isPointerConversionToVoidPointer(ASTContext& Context) const {
236*67e74705SXin Li QualType FromType = getFromType();
237*67e74705SXin Li QualType ToType = getToType(1);
238*67e74705SXin Li
239*67e74705SXin Li // Note that FromType has not necessarily been transformed by the
240*67e74705SXin Li // array-to-pointer implicit conversion, so check for its presence
241*67e74705SXin Li // and redo the conversion to get a pointer.
242*67e74705SXin Li if (First == ICK_Array_To_Pointer)
243*67e74705SXin Li FromType = Context.getArrayDecayedType(FromType);
244*67e74705SXin Li
245*67e74705SXin Li if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
246*67e74705SXin Li if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
247*67e74705SXin Li return ToPtrType->getPointeeType()->isVoidType();
248*67e74705SXin Li
249*67e74705SXin Li return false;
250*67e74705SXin Li }
251*67e74705SXin Li
252*67e74705SXin Li /// Skip any implicit casts which could be either part of a narrowing conversion
253*67e74705SXin Li /// or after one in an implicit conversion.
IgnoreNarrowingConversion(const Expr * Converted)254*67e74705SXin Li static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
255*67e74705SXin Li while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
256*67e74705SXin Li switch (ICE->getCastKind()) {
257*67e74705SXin Li case CK_NoOp:
258*67e74705SXin Li case CK_IntegralCast:
259*67e74705SXin Li case CK_IntegralToBoolean:
260*67e74705SXin Li case CK_IntegralToFloating:
261*67e74705SXin Li case CK_BooleanToSignedIntegral:
262*67e74705SXin Li case CK_FloatingToIntegral:
263*67e74705SXin Li case CK_FloatingToBoolean:
264*67e74705SXin Li case CK_FloatingCast:
265*67e74705SXin Li Converted = ICE->getSubExpr();
266*67e74705SXin Li continue;
267*67e74705SXin Li
268*67e74705SXin Li default:
269*67e74705SXin Li return Converted;
270*67e74705SXin Li }
271*67e74705SXin Li }
272*67e74705SXin Li
273*67e74705SXin Li return Converted;
274*67e74705SXin Li }
275*67e74705SXin Li
276*67e74705SXin Li /// Check if this standard conversion sequence represents a narrowing
277*67e74705SXin Li /// conversion, according to C++11 [dcl.init.list]p7.
278*67e74705SXin Li ///
279*67e74705SXin Li /// \param Ctx The AST context.
280*67e74705SXin Li /// \param Converted The result of applying this standard conversion sequence.
281*67e74705SXin Li /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
282*67e74705SXin Li /// value of the expression prior to the narrowing conversion.
283*67e74705SXin Li /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
284*67e74705SXin Li /// type of the expression prior to the narrowing conversion.
285*67e74705SXin Li NarrowingKind
getNarrowingKind(ASTContext & Ctx,const Expr * Converted,APValue & ConstantValue,QualType & ConstantType) const286*67e74705SXin Li StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
287*67e74705SXin Li const Expr *Converted,
288*67e74705SXin Li APValue &ConstantValue,
289*67e74705SXin Li QualType &ConstantType) const {
290*67e74705SXin Li assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
291*67e74705SXin Li
292*67e74705SXin Li // C++11 [dcl.init.list]p7:
293*67e74705SXin Li // A narrowing conversion is an implicit conversion ...
294*67e74705SXin Li QualType FromType = getToType(0);
295*67e74705SXin Li QualType ToType = getToType(1);
296*67e74705SXin Li
297*67e74705SXin Li // A conversion to an enumeration type is narrowing if the conversion to
298*67e74705SXin Li // the underlying type is narrowing. This only arises for expressions of
299*67e74705SXin Li // the form 'Enum{init}'.
300*67e74705SXin Li if (auto *ET = ToType->getAs<EnumType>())
301*67e74705SXin Li ToType = ET->getDecl()->getIntegerType();
302*67e74705SXin Li
303*67e74705SXin Li switch (Second) {
304*67e74705SXin Li // 'bool' is an integral type; dispatch to the right place to handle it.
305*67e74705SXin Li case ICK_Boolean_Conversion:
306*67e74705SXin Li if (FromType->isRealFloatingType())
307*67e74705SXin Li goto FloatingIntegralConversion;
308*67e74705SXin Li if (FromType->isIntegralOrUnscopedEnumerationType())
309*67e74705SXin Li goto IntegralConversion;
310*67e74705SXin Li // Boolean conversions can be from pointers and pointers to members
311*67e74705SXin Li // [conv.bool], and those aren't considered narrowing conversions.
312*67e74705SXin Li return NK_Not_Narrowing;
313*67e74705SXin Li
314*67e74705SXin Li // -- from a floating-point type to an integer type, or
315*67e74705SXin Li //
316*67e74705SXin Li // -- from an integer type or unscoped enumeration type to a floating-point
317*67e74705SXin Li // type, except where the source is a constant expression and the actual
318*67e74705SXin Li // value after conversion will fit into the target type and will produce
319*67e74705SXin Li // the original value when converted back to the original type, or
320*67e74705SXin Li case ICK_Floating_Integral:
321*67e74705SXin Li FloatingIntegralConversion:
322*67e74705SXin Li if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
323*67e74705SXin Li return NK_Type_Narrowing;
324*67e74705SXin Li } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
325*67e74705SXin Li llvm::APSInt IntConstantValue;
326*67e74705SXin Li const Expr *Initializer = IgnoreNarrowingConversion(Converted);
327*67e74705SXin Li if (Initializer &&
328*67e74705SXin Li Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
329*67e74705SXin Li // Convert the integer to the floating type.
330*67e74705SXin Li llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
331*67e74705SXin Li Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
332*67e74705SXin Li llvm::APFloat::rmNearestTiesToEven);
333*67e74705SXin Li // And back.
334*67e74705SXin Li llvm::APSInt ConvertedValue = IntConstantValue;
335*67e74705SXin Li bool ignored;
336*67e74705SXin Li Result.convertToInteger(ConvertedValue,
337*67e74705SXin Li llvm::APFloat::rmTowardZero, &ignored);
338*67e74705SXin Li // If the resulting value is different, this was a narrowing conversion.
339*67e74705SXin Li if (IntConstantValue != ConvertedValue) {
340*67e74705SXin Li ConstantValue = APValue(IntConstantValue);
341*67e74705SXin Li ConstantType = Initializer->getType();
342*67e74705SXin Li return NK_Constant_Narrowing;
343*67e74705SXin Li }
344*67e74705SXin Li } else {
345*67e74705SXin Li // Variables are always narrowings.
346*67e74705SXin Li return NK_Variable_Narrowing;
347*67e74705SXin Li }
348*67e74705SXin Li }
349*67e74705SXin Li return NK_Not_Narrowing;
350*67e74705SXin Li
351*67e74705SXin Li // -- from long double to double or float, or from double to float, except
352*67e74705SXin Li // where the source is a constant expression and the actual value after
353*67e74705SXin Li // conversion is within the range of values that can be represented (even
354*67e74705SXin Li // if it cannot be represented exactly), or
355*67e74705SXin Li case ICK_Floating_Conversion:
356*67e74705SXin Li if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
357*67e74705SXin Li Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
358*67e74705SXin Li // FromType is larger than ToType.
359*67e74705SXin Li const Expr *Initializer = IgnoreNarrowingConversion(Converted);
360*67e74705SXin Li if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
361*67e74705SXin Li // Constant!
362*67e74705SXin Li assert(ConstantValue.isFloat());
363*67e74705SXin Li llvm::APFloat FloatVal = ConstantValue.getFloat();
364*67e74705SXin Li // Convert the source value into the target type.
365*67e74705SXin Li bool ignored;
366*67e74705SXin Li llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
367*67e74705SXin Li Ctx.getFloatTypeSemantics(ToType),
368*67e74705SXin Li llvm::APFloat::rmNearestTiesToEven, &ignored);
369*67e74705SXin Li // If there was no overflow, the source value is within the range of
370*67e74705SXin Li // values that can be represented.
371*67e74705SXin Li if (ConvertStatus & llvm::APFloat::opOverflow) {
372*67e74705SXin Li ConstantType = Initializer->getType();
373*67e74705SXin Li return NK_Constant_Narrowing;
374*67e74705SXin Li }
375*67e74705SXin Li } else {
376*67e74705SXin Li return NK_Variable_Narrowing;
377*67e74705SXin Li }
378*67e74705SXin Li }
379*67e74705SXin Li return NK_Not_Narrowing;
380*67e74705SXin Li
381*67e74705SXin Li // -- from an integer type or unscoped enumeration type to an integer type
382*67e74705SXin Li // that cannot represent all the values of the original type, except where
383*67e74705SXin Li // the source is a constant expression and the actual value after
384*67e74705SXin Li // conversion will fit into the target type and will produce the original
385*67e74705SXin Li // value when converted back to the original type.
386*67e74705SXin Li case ICK_Integral_Conversion:
387*67e74705SXin Li IntegralConversion: {
388*67e74705SXin Li assert(FromType->isIntegralOrUnscopedEnumerationType());
389*67e74705SXin Li assert(ToType->isIntegralOrUnscopedEnumerationType());
390*67e74705SXin Li const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
391*67e74705SXin Li const unsigned FromWidth = Ctx.getIntWidth(FromType);
392*67e74705SXin Li const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
393*67e74705SXin Li const unsigned ToWidth = Ctx.getIntWidth(ToType);
394*67e74705SXin Li
395*67e74705SXin Li if (FromWidth > ToWidth ||
396*67e74705SXin Li (FromWidth == ToWidth && FromSigned != ToSigned) ||
397*67e74705SXin Li (FromSigned && !ToSigned)) {
398*67e74705SXin Li // Not all values of FromType can be represented in ToType.
399*67e74705SXin Li llvm::APSInt InitializerValue;
400*67e74705SXin Li const Expr *Initializer = IgnoreNarrowingConversion(Converted);
401*67e74705SXin Li if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
402*67e74705SXin Li // Such conversions on variables are always narrowing.
403*67e74705SXin Li return NK_Variable_Narrowing;
404*67e74705SXin Li }
405*67e74705SXin Li bool Narrowing = false;
406*67e74705SXin Li if (FromWidth < ToWidth) {
407*67e74705SXin Li // Negative -> unsigned is narrowing. Otherwise, more bits is never
408*67e74705SXin Li // narrowing.
409*67e74705SXin Li if (InitializerValue.isSigned() && InitializerValue.isNegative())
410*67e74705SXin Li Narrowing = true;
411*67e74705SXin Li } else {
412*67e74705SXin Li // Add a bit to the InitializerValue so we don't have to worry about
413*67e74705SXin Li // signed vs. unsigned comparisons.
414*67e74705SXin Li InitializerValue = InitializerValue.extend(
415*67e74705SXin Li InitializerValue.getBitWidth() + 1);
416*67e74705SXin Li // Convert the initializer to and from the target width and signed-ness.
417*67e74705SXin Li llvm::APSInt ConvertedValue = InitializerValue;
418*67e74705SXin Li ConvertedValue = ConvertedValue.trunc(ToWidth);
419*67e74705SXin Li ConvertedValue.setIsSigned(ToSigned);
420*67e74705SXin Li ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
421*67e74705SXin Li ConvertedValue.setIsSigned(InitializerValue.isSigned());
422*67e74705SXin Li // If the result is different, this was a narrowing conversion.
423*67e74705SXin Li if (ConvertedValue != InitializerValue)
424*67e74705SXin Li Narrowing = true;
425*67e74705SXin Li }
426*67e74705SXin Li if (Narrowing) {
427*67e74705SXin Li ConstantType = Initializer->getType();
428*67e74705SXin Li ConstantValue = APValue(InitializerValue);
429*67e74705SXin Li return NK_Constant_Narrowing;
430*67e74705SXin Li }
431*67e74705SXin Li }
432*67e74705SXin Li return NK_Not_Narrowing;
433*67e74705SXin Li }
434*67e74705SXin Li
435*67e74705SXin Li default:
436*67e74705SXin Li // Other kinds of conversions are not narrowings.
437*67e74705SXin Li return NK_Not_Narrowing;
438*67e74705SXin Li }
439*67e74705SXin Li }
440*67e74705SXin Li
441*67e74705SXin Li /// dump - Print this standard conversion sequence to standard
442*67e74705SXin Li /// error. Useful for debugging overloading issues.
dump() const443*67e74705SXin Li LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
444*67e74705SXin Li raw_ostream &OS = llvm::errs();
445*67e74705SXin Li bool PrintedSomething = false;
446*67e74705SXin Li if (First != ICK_Identity) {
447*67e74705SXin Li OS << GetImplicitConversionName(First);
448*67e74705SXin Li PrintedSomething = true;
449*67e74705SXin Li }
450*67e74705SXin Li
451*67e74705SXin Li if (Second != ICK_Identity) {
452*67e74705SXin Li if (PrintedSomething) {
453*67e74705SXin Li OS << " -> ";
454*67e74705SXin Li }
455*67e74705SXin Li OS << GetImplicitConversionName(Second);
456*67e74705SXin Li
457*67e74705SXin Li if (CopyConstructor) {
458*67e74705SXin Li OS << " (by copy constructor)";
459*67e74705SXin Li } else if (DirectBinding) {
460*67e74705SXin Li OS << " (direct reference binding)";
461*67e74705SXin Li } else if (ReferenceBinding) {
462*67e74705SXin Li OS << " (reference binding)";
463*67e74705SXin Li }
464*67e74705SXin Li PrintedSomething = true;
465*67e74705SXin Li }
466*67e74705SXin Li
467*67e74705SXin Li if (Third != ICK_Identity) {
468*67e74705SXin Li if (PrintedSomething) {
469*67e74705SXin Li OS << " -> ";
470*67e74705SXin Li }
471*67e74705SXin Li OS << GetImplicitConversionName(Third);
472*67e74705SXin Li PrintedSomething = true;
473*67e74705SXin Li }
474*67e74705SXin Li
475*67e74705SXin Li if (!PrintedSomething) {
476*67e74705SXin Li OS << "No conversions required";
477*67e74705SXin Li }
478*67e74705SXin Li }
479*67e74705SXin Li
480*67e74705SXin Li /// dump - Print this user-defined conversion sequence to standard
481*67e74705SXin Li /// error. Useful for debugging overloading issues.
dump() const482*67e74705SXin Li void UserDefinedConversionSequence::dump() const {
483*67e74705SXin Li raw_ostream &OS = llvm::errs();
484*67e74705SXin Li if (Before.First || Before.Second || Before.Third) {
485*67e74705SXin Li Before.dump();
486*67e74705SXin Li OS << " -> ";
487*67e74705SXin Li }
488*67e74705SXin Li if (ConversionFunction)
489*67e74705SXin Li OS << '\'' << *ConversionFunction << '\'';
490*67e74705SXin Li else
491*67e74705SXin Li OS << "aggregate initialization";
492*67e74705SXin Li if (After.First || After.Second || After.Third) {
493*67e74705SXin Li OS << " -> ";
494*67e74705SXin Li After.dump();
495*67e74705SXin Li }
496*67e74705SXin Li }
497*67e74705SXin Li
498*67e74705SXin Li /// dump - Print this implicit conversion sequence to standard
499*67e74705SXin Li /// error. Useful for debugging overloading issues.
dump() const500*67e74705SXin Li void ImplicitConversionSequence::dump() const {
501*67e74705SXin Li raw_ostream &OS = llvm::errs();
502*67e74705SXin Li if (isStdInitializerListElement())
503*67e74705SXin Li OS << "Worst std::initializer_list element conversion: ";
504*67e74705SXin Li switch (ConversionKind) {
505*67e74705SXin Li case StandardConversion:
506*67e74705SXin Li OS << "Standard conversion: ";
507*67e74705SXin Li Standard.dump();
508*67e74705SXin Li break;
509*67e74705SXin Li case UserDefinedConversion:
510*67e74705SXin Li OS << "User-defined conversion: ";
511*67e74705SXin Li UserDefined.dump();
512*67e74705SXin Li break;
513*67e74705SXin Li case EllipsisConversion:
514*67e74705SXin Li OS << "Ellipsis conversion";
515*67e74705SXin Li break;
516*67e74705SXin Li case AmbiguousConversion:
517*67e74705SXin Li OS << "Ambiguous conversion";
518*67e74705SXin Li break;
519*67e74705SXin Li case BadConversion:
520*67e74705SXin Li OS << "Bad conversion";
521*67e74705SXin Li break;
522*67e74705SXin Li }
523*67e74705SXin Li
524*67e74705SXin Li OS << "\n";
525*67e74705SXin Li }
526*67e74705SXin Li
construct()527*67e74705SXin Li void AmbiguousConversionSequence::construct() {
528*67e74705SXin Li new (&conversions()) ConversionSet();
529*67e74705SXin Li }
530*67e74705SXin Li
destruct()531*67e74705SXin Li void AmbiguousConversionSequence::destruct() {
532*67e74705SXin Li conversions().~ConversionSet();
533*67e74705SXin Li }
534*67e74705SXin Li
535*67e74705SXin Li void
copyFrom(const AmbiguousConversionSequence & O)536*67e74705SXin Li AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
537*67e74705SXin Li FromTypePtr = O.FromTypePtr;
538*67e74705SXin Li ToTypePtr = O.ToTypePtr;
539*67e74705SXin Li new (&conversions()) ConversionSet(O.conversions());
540*67e74705SXin Li }
541*67e74705SXin Li
542*67e74705SXin Li namespace {
543*67e74705SXin Li // Structure used by DeductionFailureInfo to store
544*67e74705SXin Li // template argument information.
545*67e74705SXin Li struct DFIArguments {
546*67e74705SXin Li TemplateArgument FirstArg;
547*67e74705SXin Li TemplateArgument SecondArg;
548*67e74705SXin Li };
549*67e74705SXin Li // Structure used by DeductionFailureInfo to store
550*67e74705SXin Li // template parameter and template argument information.
551*67e74705SXin Li struct DFIParamWithArguments : DFIArguments {
552*67e74705SXin Li TemplateParameter Param;
553*67e74705SXin Li };
554*67e74705SXin Li // Structure used by DeductionFailureInfo to store template argument
555*67e74705SXin Li // information and the index of the problematic call argument.
556*67e74705SXin Li struct DFIDeducedMismatchArgs : DFIArguments {
557*67e74705SXin Li TemplateArgumentList *TemplateArgs;
558*67e74705SXin Li unsigned CallArgIndex;
559*67e74705SXin Li };
560*67e74705SXin Li }
561*67e74705SXin Li
562*67e74705SXin Li /// \brief Convert from Sema's representation of template deduction information
563*67e74705SXin Li /// to the form used in overload-candidate information.
564*67e74705SXin Li DeductionFailureInfo
MakeDeductionFailureInfo(ASTContext & Context,Sema::TemplateDeductionResult TDK,TemplateDeductionInfo & Info)565*67e74705SXin Li clang::MakeDeductionFailureInfo(ASTContext &Context,
566*67e74705SXin Li Sema::TemplateDeductionResult TDK,
567*67e74705SXin Li TemplateDeductionInfo &Info) {
568*67e74705SXin Li DeductionFailureInfo Result;
569*67e74705SXin Li Result.Result = static_cast<unsigned>(TDK);
570*67e74705SXin Li Result.HasDiagnostic = false;
571*67e74705SXin Li switch (TDK) {
572*67e74705SXin Li case Sema::TDK_Success:
573*67e74705SXin Li case Sema::TDK_Invalid:
574*67e74705SXin Li case Sema::TDK_InstantiationDepth:
575*67e74705SXin Li case Sema::TDK_TooManyArguments:
576*67e74705SXin Li case Sema::TDK_TooFewArguments:
577*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
578*67e74705SXin Li Result.Data = nullptr;
579*67e74705SXin Li break;
580*67e74705SXin Li
581*67e74705SXin Li case Sema::TDK_Incomplete:
582*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
583*67e74705SXin Li Result.Data = Info.Param.getOpaqueValue();
584*67e74705SXin Li break;
585*67e74705SXin Li
586*67e74705SXin Li case Sema::TDK_DeducedMismatch: {
587*67e74705SXin Li // FIXME: Should allocate from normal heap so that we can free this later.
588*67e74705SXin Li auto *Saved = new (Context) DFIDeducedMismatchArgs;
589*67e74705SXin Li Saved->FirstArg = Info.FirstArg;
590*67e74705SXin Li Saved->SecondArg = Info.SecondArg;
591*67e74705SXin Li Saved->TemplateArgs = Info.take();
592*67e74705SXin Li Saved->CallArgIndex = Info.CallArgIndex;
593*67e74705SXin Li Result.Data = Saved;
594*67e74705SXin Li break;
595*67e74705SXin Li }
596*67e74705SXin Li
597*67e74705SXin Li case Sema::TDK_NonDeducedMismatch: {
598*67e74705SXin Li // FIXME: Should allocate from normal heap so that we can free this later.
599*67e74705SXin Li DFIArguments *Saved = new (Context) DFIArguments;
600*67e74705SXin Li Saved->FirstArg = Info.FirstArg;
601*67e74705SXin Li Saved->SecondArg = Info.SecondArg;
602*67e74705SXin Li Result.Data = Saved;
603*67e74705SXin Li break;
604*67e74705SXin Li }
605*67e74705SXin Li
606*67e74705SXin Li case Sema::TDK_Inconsistent:
607*67e74705SXin Li case Sema::TDK_Underqualified: {
608*67e74705SXin Li // FIXME: Should allocate from normal heap so that we can free this later.
609*67e74705SXin Li DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
610*67e74705SXin Li Saved->Param = Info.Param;
611*67e74705SXin Li Saved->FirstArg = Info.FirstArg;
612*67e74705SXin Li Saved->SecondArg = Info.SecondArg;
613*67e74705SXin Li Result.Data = Saved;
614*67e74705SXin Li break;
615*67e74705SXin Li }
616*67e74705SXin Li
617*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
618*67e74705SXin Li Result.Data = Info.take();
619*67e74705SXin Li if (Info.hasSFINAEDiagnostic()) {
620*67e74705SXin Li PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
621*67e74705SXin Li SourceLocation(), PartialDiagnostic::NullDiagnostic());
622*67e74705SXin Li Info.takeSFINAEDiagnostic(*Diag);
623*67e74705SXin Li Result.HasDiagnostic = true;
624*67e74705SXin Li }
625*67e74705SXin Li break;
626*67e74705SXin Li
627*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
628*67e74705SXin Li Result.Data = Info.Expression;
629*67e74705SXin Li break;
630*67e74705SXin Li }
631*67e74705SXin Li
632*67e74705SXin Li return Result;
633*67e74705SXin Li }
634*67e74705SXin Li
Destroy()635*67e74705SXin Li void DeductionFailureInfo::Destroy() {
636*67e74705SXin Li switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
637*67e74705SXin Li case Sema::TDK_Success:
638*67e74705SXin Li case Sema::TDK_Invalid:
639*67e74705SXin Li case Sema::TDK_InstantiationDepth:
640*67e74705SXin Li case Sema::TDK_Incomplete:
641*67e74705SXin Li case Sema::TDK_TooManyArguments:
642*67e74705SXin Li case Sema::TDK_TooFewArguments:
643*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
644*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
645*67e74705SXin Li break;
646*67e74705SXin Li
647*67e74705SXin Li case Sema::TDK_Inconsistent:
648*67e74705SXin Li case Sema::TDK_Underqualified:
649*67e74705SXin Li case Sema::TDK_DeducedMismatch:
650*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
651*67e74705SXin Li // FIXME: Destroy the data?
652*67e74705SXin Li Data = nullptr;
653*67e74705SXin Li break;
654*67e74705SXin Li
655*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
656*67e74705SXin Li // FIXME: Destroy the template argument list?
657*67e74705SXin Li Data = nullptr;
658*67e74705SXin Li if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
659*67e74705SXin Li Diag->~PartialDiagnosticAt();
660*67e74705SXin Li HasDiagnostic = false;
661*67e74705SXin Li }
662*67e74705SXin Li break;
663*67e74705SXin Li
664*67e74705SXin Li // Unhandled
665*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
666*67e74705SXin Li break;
667*67e74705SXin Li }
668*67e74705SXin Li }
669*67e74705SXin Li
getSFINAEDiagnostic()670*67e74705SXin Li PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
671*67e74705SXin Li if (HasDiagnostic)
672*67e74705SXin Li return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
673*67e74705SXin Li return nullptr;
674*67e74705SXin Li }
675*67e74705SXin Li
getTemplateParameter()676*67e74705SXin Li TemplateParameter DeductionFailureInfo::getTemplateParameter() {
677*67e74705SXin Li switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
678*67e74705SXin Li case Sema::TDK_Success:
679*67e74705SXin Li case Sema::TDK_Invalid:
680*67e74705SXin Li case Sema::TDK_InstantiationDepth:
681*67e74705SXin Li case Sema::TDK_TooManyArguments:
682*67e74705SXin Li case Sema::TDK_TooFewArguments:
683*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
684*67e74705SXin Li case Sema::TDK_DeducedMismatch:
685*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
686*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
687*67e74705SXin Li return TemplateParameter();
688*67e74705SXin Li
689*67e74705SXin Li case Sema::TDK_Incomplete:
690*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
691*67e74705SXin Li return TemplateParameter::getFromOpaqueValue(Data);
692*67e74705SXin Li
693*67e74705SXin Li case Sema::TDK_Inconsistent:
694*67e74705SXin Li case Sema::TDK_Underqualified:
695*67e74705SXin Li return static_cast<DFIParamWithArguments*>(Data)->Param;
696*67e74705SXin Li
697*67e74705SXin Li // Unhandled
698*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
699*67e74705SXin Li break;
700*67e74705SXin Li }
701*67e74705SXin Li
702*67e74705SXin Li return TemplateParameter();
703*67e74705SXin Li }
704*67e74705SXin Li
getTemplateArgumentList()705*67e74705SXin Li TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
706*67e74705SXin Li switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
707*67e74705SXin Li case Sema::TDK_Success:
708*67e74705SXin Li case Sema::TDK_Invalid:
709*67e74705SXin Li case Sema::TDK_InstantiationDepth:
710*67e74705SXin Li case Sema::TDK_TooManyArguments:
711*67e74705SXin Li case Sema::TDK_TooFewArguments:
712*67e74705SXin Li case Sema::TDK_Incomplete:
713*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
714*67e74705SXin Li case Sema::TDK_Inconsistent:
715*67e74705SXin Li case Sema::TDK_Underqualified:
716*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
717*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
718*67e74705SXin Li return nullptr;
719*67e74705SXin Li
720*67e74705SXin Li case Sema::TDK_DeducedMismatch:
721*67e74705SXin Li return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
722*67e74705SXin Li
723*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
724*67e74705SXin Li return static_cast<TemplateArgumentList*>(Data);
725*67e74705SXin Li
726*67e74705SXin Li // Unhandled
727*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
728*67e74705SXin Li break;
729*67e74705SXin Li }
730*67e74705SXin Li
731*67e74705SXin Li return nullptr;
732*67e74705SXin Li }
733*67e74705SXin Li
getFirstArg()734*67e74705SXin Li const TemplateArgument *DeductionFailureInfo::getFirstArg() {
735*67e74705SXin Li switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
736*67e74705SXin Li case Sema::TDK_Success:
737*67e74705SXin Li case Sema::TDK_Invalid:
738*67e74705SXin Li case Sema::TDK_InstantiationDepth:
739*67e74705SXin Li case Sema::TDK_Incomplete:
740*67e74705SXin Li case Sema::TDK_TooManyArguments:
741*67e74705SXin Li case Sema::TDK_TooFewArguments:
742*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
743*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
744*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
745*67e74705SXin Li return nullptr;
746*67e74705SXin Li
747*67e74705SXin Li case Sema::TDK_Inconsistent:
748*67e74705SXin Li case Sema::TDK_Underqualified:
749*67e74705SXin Li case Sema::TDK_DeducedMismatch:
750*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
751*67e74705SXin Li return &static_cast<DFIArguments*>(Data)->FirstArg;
752*67e74705SXin Li
753*67e74705SXin Li // Unhandled
754*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
755*67e74705SXin Li break;
756*67e74705SXin Li }
757*67e74705SXin Li
758*67e74705SXin Li return nullptr;
759*67e74705SXin Li }
760*67e74705SXin Li
getSecondArg()761*67e74705SXin Li const TemplateArgument *DeductionFailureInfo::getSecondArg() {
762*67e74705SXin Li switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
763*67e74705SXin Li case Sema::TDK_Success:
764*67e74705SXin Li case Sema::TDK_Invalid:
765*67e74705SXin Li case Sema::TDK_InstantiationDepth:
766*67e74705SXin Li case Sema::TDK_Incomplete:
767*67e74705SXin Li case Sema::TDK_TooManyArguments:
768*67e74705SXin Li case Sema::TDK_TooFewArguments:
769*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
770*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
771*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
772*67e74705SXin Li return nullptr;
773*67e74705SXin Li
774*67e74705SXin Li case Sema::TDK_Inconsistent:
775*67e74705SXin Li case Sema::TDK_Underqualified:
776*67e74705SXin Li case Sema::TDK_DeducedMismatch:
777*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
778*67e74705SXin Li return &static_cast<DFIArguments*>(Data)->SecondArg;
779*67e74705SXin Li
780*67e74705SXin Li // Unhandled
781*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
782*67e74705SXin Li break;
783*67e74705SXin Li }
784*67e74705SXin Li
785*67e74705SXin Li return nullptr;
786*67e74705SXin Li }
787*67e74705SXin Li
getExpr()788*67e74705SXin Li Expr *DeductionFailureInfo::getExpr() {
789*67e74705SXin Li if (static_cast<Sema::TemplateDeductionResult>(Result) ==
790*67e74705SXin Li Sema::TDK_FailedOverloadResolution)
791*67e74705SXin Li return static_cast<Expr*>(Data);
792*67e74705SXin Li
793*67e74705SXin Li return nullptr;
794*67e74705SXin Li }
795*67e74705SXin Li
getCallArgIndex()796*67e74705SXin Li llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
797*67e74705SXin Li if (static_cast<Sema::TemplateDeductionResult>(Result) ==
798*67e74705SXin Li Sema::TDK_DeducedMismatch)
799*67e74705SXin Li return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
800*67e74705SXin Li
801*67e74705SXin Li return llvm::None;
802*67e74705SXin Li }
803*67e74705SXin Li
destroyCandidates()804*67e74705SXin Li void OverloadCandidateSet::destroyCandidates() {
805*67e74705SXin Li for (iterator i = begin(), e = end(); i != e; ++i) {
806*67e74705SXin Li for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
807*67e74705SXin Li i->Conversions[ii].~ImplicitConversionSequence();
808*67e74705SXin Li if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
809*67e74705SXin Li i->DeductionFailure.Destroy();
810*67e74705SXin Li }
811*67e74705SXin Li }
812*67e74705SXin Li
clear()813*67e74705SXin Li void OverloadCandidateSet::clear() {
814*67e74705SXin Li destroyCandidates();
815*67e74705SXin Li NumInlineSequences = 0;
816*67e74705SXin Li Candidates.clear();
817*67e74705SXin Li Functions.clear();
818*67e74705SXin Li }
819*67e74705SXin Li
820*67e74705SXin Li namespace {
821*67e74705SXin Li class UnbridgedCastsSet {
822*67e74705SXin Li struct Entry {
823*67e74705SXin Li Expr **Addr;
824*67e74705SXin Li Expr *Saved;
825*67e74705SXin Li };
826*67e74705SXin Li SmallVector<Entry, 2> Entries;
827*67e74705SXin Li
828*67e74705SXin Li public:
save(Sema & S,Expr * & E)829*67e74705SXin Li void save(Sema &S, Expr *&E) {
830*67e74705SXin Li assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
831*67e74705SXin Li Entry entry = { &E, E };
832*67e74705SXin Li Entries.push_back(entry);
833*67e74705SXin Li E = S.stripARCUnbridgedCast(E);
834*67e74705SXin Li }
835*67e74705SXin Li
restore()836*67e74705SXin Li void restore() {
837*67e74705SXin Li for (SmallVectorImpl<Entry>::iterator
838*67e74705SXin Li i = Entries.begin(), e = Entries.end(); i != e; ++i)
839*67e74705SXin Li *i->Addr = i->Saved;
840*67e74705SXin Li }
841*67e74705SXin Li };
842*67e74705SXin Li }
843*67e74705SXin Li
844*67e74705SXin Li /// checkPlaceholderForOverload - Do any interesting placeholder-like
845*67e74705SXin Li /// preprocessing on the given expression.
846*67e74705SXin Li ///
847*67e74705SXin Li /// \param unbridgedCasts a collection to which to add unbridged casts;
848*67e74705SXin Li /// without this, they will be immediately diagnosed as errors
849*67e74705SXin Li ///
850*67e74705SXin Li /// Return true on unrecoverable error.
851*67e74705SXin Li static bool
checkPlaceholderForOverload(Sema & S,Expr * & E,UnbridgedCastsSet * unbridgedCasts=nullptr)852*67e74705SXin Li checkPlaceholderForOverload(Sema &S, Expr *&E,
853*67e74705SXin Li UnbridgedCastsSet *unbridgedCasts = nullptr) {
854*67e74705SXin Li if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
855*67e74705SXin Li // We can't handle overloaded expressions here because overload
856*67e74705SXin Li // resolution might reasonably tweak them.
857*67e74705SXin Li if (placeholder->getKind() == BuiltinType::Overload) return false;
858*67e74705SXin Li
859*67e74705SXin Li // If the context potentially accepts unbridged ARC casts, strip
860*67e74705SXin Li // the unbridged cast and add it to the collection for later restoration.
861*67e74705SXin Li if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
862*67e74705SXin Li unbridgedCasts) {
863*67e74705SXin Li unbridgedCasts->save(S, E);
864*67e74705SXin Li return false;
865*67e74705SXin Li }
866*67e74705SXin Li
867*67e74705SXin Li // Go ahead and check everything else.
868*67e74705SXin Li ExprResult result = S.CheckPlaceholderExpr(E);
869*67e74705SXin Li if (result.isInvalid())
870*67e74705SXin Li return true;
871*67e74705SXin Li
872*67e74705SXin Li E = result.get();
873*67e74705SXin Li return false;
874*67e74705SXin Li }
875*67e74705SXin Li
876*67e74705SXin Li // Nothing to do.
877*67e74705SXin Li return false;
878*67e74705SXin Li }
879*67e74705SXin Li
880*67e74705SXin Li /// checkArgPlaceholdersForOverload - Check a set of call operands for
881*67e74705SXin Li /// placeholders.
checkArgPlaceholdersForOverload(Sema & S,MultiExprArg Args,UnbridgedCastsSet & unbridged)882*67e74705SXin Li static bool checkArgPlaceholdersForOverload(Sema &S,
883*67e74705SXin Li MultiExprArg Args,
884*67e74705SXin Li UnbridgedCastsSet &unbridged) {
885*67e74705SXin Li for (unsigned i = 0, e = Args.size(); i != e; ++i)
886*67e74705SXin Li if (checkPlaceholderForOverload(S, Args[i], &unbridged))
887*67e74705SXin Li return true;
888*67e74705SXin Li
889*67e74705SXin Li return false;
890*67e74705SXin Li }
891*67e74705SXin Li
892*67e74705SXin Li // IsOverload - Determine whether the given New declaration is an
893*67e74705SXin Li // overload of the declarations in Old. This routine returns false if
894*67e74705SXin Li // New and Old cannot be overloaded, e.g., if New has the same
895*67e74705SXin Li // signature as some function in Old (C++ 1.3.10) or if the Old
896*67e74705SXin Li // declarations aren't functions (or function templates) at all. When
897*67e74705SXin Li // it does return false, MatchedDecl will point to the decl that New
898*67e74705SXin Li // cannot be overloaded with. This decl may be a UsingShadowDecl on
899*67e74705SXin Li // top of the underlying declaration.
900*67e74705SXin Li //
901*67e74705SXin Li // Example: Given the following input:
902*67e74705SXin Li //
903*67e74705SXin Li // void f(int, float); // #1
904*67e74705SXin Li // void f(int, int); // #2
905*67e74705SXin Li // int f(int, int); // #3
906*67e74705SXin Li //
907*67e74705SXin Li // When we process #1, there is no previous declaration of "f",
908*67e74705SXin Li // so IsOverload will not be used.
909*67e74705SXin Li //
910*67e74705SXin Li // When we process #2, Old contains only the FunctionDecl for #1. By
911*67e74705SXin Li // comparing the parameter types, we see that #1 and #2 are overloaded
912*67e74705SXin Li // (since they have different signatures), so this routine returns
913*67e74705SXin Li // false; MatchedDecl is unchanged.
914*67e74705SXin Li //
915*67e74705SXin Li // When we process #3, Old is an overload set containing #1 and #2. We
916*67e74705SXin Li // compare the signatures of #3 to #1 (they're overloaded, so we do
917*67e74705SXin Li // nothing) and then #3 to #2. Since the signatures of #3 and #2 are
918*67e74705SXin Li // identical (return types of functions are not part of the
919*67e74705SXin Li // signature), IsOverload returns false and MatchedDecl will be set to
920*67e74705SXin Li // point to the FunctionDecl for #2.
921*67e74705SXin Li //
922*67e74705SXin Li // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
923*67e74705SXin Li // into a class by a using declaration. The rules for whether to hide
924*67e74705SXin Li // shadow declarations ignore some properties which otherwise figure
925*67e74705SXin Li // into a function template's signature.
926*67e74705SXin Li Sema::OverloadKind
CheckOverload(Scope * S,FunctionDecl * New,const LookupResult & Old,NamedDecl * & Match,bool NewIsUsingDecl)927*67e74705SXin Li Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
928*67e74705SXin Li NamedDecl *&Match, bool NewIsUsingDecl) {
929*67e74705SXin Li for (LookupResult::iterator I = Old.begin(), E = Old.end();
930*67e74705SXin Li I != E; ++I) {
931*67e74705SXin Li NamedDecl *OldD = *I;
932*67e74705SXin Li
933*67e74705SXin Li bool OldIsUsingDecl = false;
934*67e74705SXin Li if (isa<UsingShadowDecl>(OldD)) {
935*67e74705SXin Li OldIsUsingDecl = true;
936*67e74705SXin Li
937*67e74705SXin Li // We can always introduce two using declarations into the same
938*67e74705SXin Li // context, even if they have identical signatures.
939*67e74705SXin Li if (NewIsUsingDecl) continue;
940*67e74705SXin Li
941*67e74705SXin Li OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
942*67e74705SXin Li }
943*67e74705SXin Li
944*67e74705SXin Li // A using-declaration does not conflict with another declaration
945*67e74705SXin Li // if one of them is hidden.
946*67e74705SXin Li if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
947*67e74705SXin Li continue;
948*67e74705SXin Li
949*67e74705SXin Li // If either declaration was introduced by a using declaration,
950*67e74705SXin Li // we'll need to use slightly different rules for matching.
951*67e74705SXin Li // Essentially, these rules are the normal rules, except that
952*67e74705SXin Li // function templates hide function templates with different
953*67e74705SXin Li // return types or template parameter lists.
954*67e74705SXin Li bool UseMemberUsingDeclRules =
955*67e74705SXin Li (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
956*67e74705SXin Li !New->getFriendObjectKind();
957*67e74705SXin Li
958*67e74705SXin Li if (FunctionDecl *OldF = OldD->getAsFunction()) {
959*67e74705SXin Li if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
960*67e74705SXin Li if (UseMemberUsingDeclRules && OldIsUsingDecl) {
961*67e74705SXin Li HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
962*67e74705SXin Li continue;
963*67e74705SXin Li }
964*67e74705SXin Li
965*67e74705SXin Li if (!isa<FunctionTemplateDecl>(OldD) &&
966*67e74705SXin Li !shouldLinkPossiblyHiddenDecl(*I, New))
967*67e74705SXin Li continue;
968*67e74705SXin Li
969*67e74705SXin Li Match = *I;
970*67e74705SXin Li return Ovl_Match;
971*67e74705SXin Li }
972*67e74705SXin Li } else if (isa<UsingDecl>(OldD)) {
973*67e74705SXin Li // We can overload with these, which can show up when doing
974*67e74705SXin Li // redeclaration checks for UsingDecls.
975*67e74705SXin Li assert(Old.getLookupKind() == LookupUsingDeclName);
976*67e74705SXin Li } else if (isa<TagDecl>(OldD)) {
977*67e74705SXin Li // We can always overload with tags by hiding them.
978*67e74705SXin Li } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
979*67e74705SXin Li // Optimistically assume that an unresolved using decl will
980*67e74705SXin Li // overload; if it doesn't, we'll have to diagnose during
981*67e74705SXin Li // template instantiation.
982*67e74705SXin Li } else {
983*67e74705SXin Li // (C++ 13p1):
984*67e74705SXin Li // Only function declarations can be overloaded; object and type
985*67e74705SXin Li // declarations cannot be overloaded.
986*67e74705SXin Li Match = *I;
987*67e74705SXin Li return Ovl_NonFunction;
988*67e74705SXin Li }
989*67e74705SXin Li }
990*67e74705SXin Li
991*67e74705SXin Li return Ovl_Overload;
992*67e74705SXin Li }
993*67e74705SXin Li
IsOverload(FunctionDecl * New,FunctionDecl * Old,bool UseMemberUsingDeclRules,bool ConsiderCudaAttrs)994*67e74705SXin Li bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
995*67e74705SXin Li bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
996*67e74705SXin Li // C++ [basic.start.main]p2: This function shall not be overloaded.
997*67e74705SXin Li if (New->isMain())
998*67e74705SXin Li return false;
999*67e74705SXin Li
1000*67e74705SXin Li // MSVCRT user defined entry points cannot be overloaded.
1001*67e74705SXin Li if (New->isMSVCRTEntryPoint())
1002*67e74705SXin Li return false;
1003*67e74705SXin Li
1004*67e74705SXin Li FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
1005*67e74705SXin Li FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
1006*67e74705SXin Li
1007*67e74705SXin Li // C++ [temp.fct]p2:
1008*67e74705SXin Li // A function template can be overloaded with other function templates
1009*67e74705SXin Li // and with normal (non-template) functions.
1010*67e74705SXin Li if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
1011*67e74705SXin Li return true;
1012*67e74705SXin Li
1013*67e74705SXin Li // Is the function New an overload of the function Old?
1014*67e74705SXin Li QualType OldQType = Context.getCanonicalType(Old->getType());
1015*67e74705SXin Li QualType NewQType = Context.getCanonicalType(New->getType());
1016*67e74705SXin Li
1017*67e74705SXin Li // Compare the signatures (C++ 1.3.10) of the two functions to
1018*67e74705SXin Li // determine whether they are overloads. If we find any mismatch
1019*67e74705SXin Li // in the signature, they are overloads.
1020*67e74705SXin Li
1021*67e74705SXin Li // If either of these functions is a K&R-style function (no
1022*67e74705SXin Li // prototype), then we consider them to have matching signatures.
1023*67e74705SXin Li if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
1024*67e74705SXin Li isa<FunctionNoProtoType>(NewQType.getTypePtr()))
1025*67e74705SXin Li return false;
1026*67e74705SXin Li
1027*67e74705SXin Li const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
1028*67e74705SXin Li const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
1029*67e74705SXin Li
1030*67e74705SXin Li // The signature of a function includes the types of its
1031*67e74705SXin Li // parameters (C++ 1.3.10), which includes the presence or absence
1032*67e74705SXin Li // of the ellipsis; see C++ DR 357).
1033*67e74705SXin Li if (OldQType != NewQType &&
1034*67e74705SXin Li (OldType->getNumParams() != NewType->getNumParams() ||
1035*67e74705SXin Li OldType->isVariadic() != NewType->isVariadic() ||
1036*67e74705SXin Li !FunctionParamTypesAreEqual(OldType, NewType)))
1037*67e74705SXin Li return true;
1038*67e74705SXin Li
1039*67e74705SXin Li // C++ [temp.over.link]p4:
1040*67e74705SXin Li // The signature of a function template consists of its function
1041*67e74705SXin Li // signature, its return type and its template parameter list. The names
1042*67e74705SXin Li // of the template parameters are significant only for establishing the
1043*67e74705SXin Li // relationship between the template parameters and the rest of the
1044*67e74705SXin Li // signature.
1045*67e74705SXin Li //
1046*67e74705SXin Li // We check the return type and template parameter lists for function
1047*67e74705SXin Li // templates first; the remaining checks follow.
1048*67e74705SXin Li //
1049*67e74705SXin Li // However, we don't consider either of these when deciding whether
1050*67e74705SXin Li // a member introduced by a shadow declaration is hidden.
1051*67e74705SXin Li if (!UseMemberUsingDeclRules && NewTemplate &&
1052*67e74705SXin Li (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
1053*67e74705SXin Li OldTemplate->getTemplateParameters(),
1054*67e74705SXin Li false, TPL_TemplateMatch) ||
1055*67e74705SXin Li OldType->getReturnType() != NewType->getReturnType()))
1056*67e74705SXin Li return true;
1057*67e74705SXin Li
1058*67e74705SXin Li // If the function is a class member, its signature includes the
1059*67e74705SXin Li // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
1060*67e74705SXin Li //
1061*67e74705SXin Li // As part of this, also check whether one of the member functions
1062*67e74705SXin Li // is static, in which case they are not overloads (C++
1063*67e74705SXin Li // 13.1p2). While not part of the definition of the signature,
1064*67e74705SXin Li // this check is important to determine whether these functions
1065*67e74705SXin Li // can be overloaded.
1066*67e74705SXin Li CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
1067*67e74705SXin Li CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
1068*67e74705SXin Li if (OldMethod && NewMethod &&
1069*67e74705SXin Li !OldMethod->isStatic() && !NewMethod->isStatic()) {
1070*67e74705SXin Li if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
1071*67e74705SXin Li if (!UseMemberUsingDeclRules &&
1072*67e74705SXin Li (OldMethod->getRefQualifier() == RQ_None ||
1073*67e74705SXin Li NewMethod->getRefQualifier() == RQ_None)) {
1074*67e74705SXin Li // C++0x [over.load]p2:
1075*67e74705SXin Li // - Member function declarations with the same name and the same
1076*67e74705SXin Li // parameter-type-list as well as member function template
1077*67e74705SXin Li // declarations with the same name, the same parameter-type-list, and
1078*67e74705SXin Li // the same template parameter lists cannot be overloaded if any of
1079*67e74705SXin Li // them, but not all, have a ref-qualifier (8.3.5).
1080*67e74705SXin Li Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
1081*67e74705SXin Li << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
1082*67e74705SXin Li Diag(OldMethod->getLocation(), diag::note_previous_declaration);
1083*67e74705SXin Li }
1084*67e74705SXin Li return true;
1085*67e74705SXin Li }
1086*67e74705SXin Li
1087*67e74705SXin Li // We may not have applied the implicit const for a constexpr member
1088*67e74705SXin Li // function yet (because we haven't yet resolved whether this is a static
1089*67e74705SXin Li // or non-static member function). Add it now, on the assumption that this
1090*67e74705SXin Li // is a redeclaration of OldMethod.
1091*67e74705SXin Li unsigned OldQuals = OldMethod->getTypeQualifiers();
1092*67e74705SXin Li unsigned NewQuals = NewMethod->getTypeQualifiers();
1093*67e74705SXin Li if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
1094*67e74705SXin Li !isa<CXXConstructorDecl>(NewMethod))
1095*67e74705SXin Li NewQuals |= Qualifiers::Const;
1096*67e74705SXin Li
1097*67e74705SXin Li // We do not allow overloading based off of '__restrict'.
1098*67e74705SXin Li OldQuals &= ~Qualifiers::Restrict;
1099*67e74705SXin Li NewQuals &= ~Qualifiers::Restrict;
1100*67e74705SXin Li if (OldQuals != NewQuals)
1101*67e74705SXin Li return true;
1102*67e74705SXin Li }
1103*67e74705SXin Li
1104*67e74705SXin Li // Though pass_object_size is placed on parameters and takes an argument, we
1105*67e74705SXin Li // consider it to be a function-level modifier for the sake of function
1106*67e74705SXin Li // identity. Either the function has one or more parameters with
1107*67e74705SXin Li // pass_object_size or it doesn't.
1108*67e74705SXin Li if (functionHasPassObjectSizeParams(New) !=
1109*67e74705SXin Li functionHasPassObjectSizeParams(Old))
1110*67e74705SXin Li return true;
1111*67e74705SXin Li
1112*67e74705SXin Li // enable_if attributes are an order-sensitive part of the signature.
1113*67e74705SXin Li for (specific_attr_iterator<EnableIfAttr>
1114*67e74705SXin Li NewI = New->specific_attr_begin<EnableIfAttr>(),
1115*67e74705SXin Li NewE = New->specific_attr_end<EnableIfAttr>(),
1116*67e74705SXin Li OldI = Old->specific_attr_begin<EnableIfAttr>(),
1117*67e74705SXin Li OldE = Old->specific_attr_end<EnableIfAttr>();
1118*67e74705SXin Li NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
1119*67e74705SXin Li if (NewI == NewE || OldI == OldE)
1120*67e74705SXin Li return true;
1121*67e74705SXin Li llvm::FoldingSetNodeID NewID, OldID;
1122*67e74705SXin Li NewI->getCond()->Profile(NewID, Context, true);
1123*67e74705SXin Li OldI->getCond()->Profile(OldID, Context, true);
1124*67e74705SXin Li if (NewID != OldID)
1125*67e74705SXin Li return true;
1126*67e74705SXin Li }
1127*67e74705SXin Li
1128*67e74705SXin Li if (getLangOpts().CUDA && ConsiderCudaAttrs) {
1129*67e74705SXin Li CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
1130*67e74705SXin Li OldTarget = IdentifyCUDATarget(Old);
1131*67e74705SXin Li if (NewTarget == CFT_InvalidTarget || NewTarget == CFT_Global)
1132*67e74705SXin Li return false;
1133*67e74705SXin Li
1134*67e74705SXin Li assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
1135*67e74705SXin Li
1136*67e74705SXin Li // Don't allow mixing of HD with other kinds. This guarantees that
1137*67e74705SXin Li // we have only one viable function with this signature on any
1138*67e74705SXin Li // side of CUDA compilation .
1139*67e74705SXin Li // __global__ functions can't be overloaded based on attribute
1140*67e74705SXin Li // difference because, like HD, they also exist on both sides.
1141*67e74705SXin Li if ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
1142*67e74705SXin Li (NewTarget == CFT_Global) || (OldTarget == CFT_Global))
1143*67e74705SXin Li return false;
1144*67e74705SXin Li
1145*67e74705SXin Li // Allow overloading of functions with same signature, but
1146*67e74705SXin Li // different CUDA target attributes.
1147*67e74705SXin Li return NewTarget != OldTarget;
1148*67e74705SXin Li }
1149*67e74705SXin Li
1150*67e74705SXin Li // The signatures match; this is not an overload.
1151*67e74705SXin Li return false;
1152*67e74705SXin Li }
1153*67e74705SXin Li
1154*67e74705SXin Li /// \brief Checks availability of the function depending on the current
1155*67e74705SXin Li /// function context. Inside an unavailable function, unavailability is ignored.
1156*67e74705SXin Li ///
1157*67e74705SXin Li /// \returns true if \arg FD is unavailable and current context is inside
1158*67e74705SXin Li /// an available function, false otherwise.
isFunctionConsideredUnavailable(FunctionDecl * FD)1159*67e74705SXin Li bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
1160*67e74705SXin Li if (!FD->isUnavailable())
1161*67e74705SXin Li return false;
1162*67e74705SXin Li
1163*67e74705SXin Li // Walk up the context of the caller.
1164*67e74705SXin Li Decl *C = cast<Decl>(CurContext);
1165*67e74705SXin Li do {
1166*67e74705SXin Li if (C->isUnavailable())
1167*67e74705SXin Li return false;
1168*67e74705SXin Li } while ((C = cast_or_null<Decl>(C->getDeclContext())));
1169*67e74705SXin Li return true;
1170*67e74705SXin Li }
1171*67e74705SXin Li
1172*67e74705SXin Li /// \brief Tries a user-defined conversion from From to ToType.
1173*67e74705SXin Li ///
1174*67e74705SXin Li /// Produces an implicit conversion sequence for when a standard conversion
1175*67e74705SXin Li /// is not an option. See TryImplicitConversion for more information.
1176*67e74705SXin Li static ImplicitConversionSequence
TryUserDefinedConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1177*67e74705SXin Li TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
1178*67e74705SXin Li bool SuppressUserConversions,
1179*67e74705SXin Li bool AllowExplicit,
1180*67e74705SXin Li bool InOverloadResolution,
1181*67e74705SXin Li bool CStyle,
1182*67e74705SXin Li bool AllowObjCWritebackConversion,
1183*67e74705SXin Li bool AllowObjCConversionOnExplicit) {
1184*67e74705SXin Li ImplicitConversionSequence ICS;
1185*67e74705SXin Li
1186*67e74705SXin Li if (SuppressUserConversions) {
1187*67e74705SXin Li // We're not in the case above, so there is no conversion that
1188*67e74705SXin Li // we can perform.
1189*67e74705SXin Li ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1190*67e74705SXin Li return ICS;
1191*67e74705SXin Li }
1192*67e74705SXin Li
1193*67e74705SXin Li // Attempt user-defined conversion.
1194*67e74705SXin Li OverloadCandidateSet Conversions(From->getExprLoc(),
1195*67e74705SXin Li OverloadCandidateSet::CSK_Normal);
1196*67e74705SXin Li switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
1197*67e74705SXin Li Conversions, AllowExplicit,
1198*67e74705SXin Li AllowObjCConversionOnExplicit)) {
1199*67e74705SXin Li case OR_Success:
1200*67e74705SXin Li case OR_Deleted:
1201*67e74705SXin Li ICS.setUserDefined();
1202*67e74705SXin Li ICS.UserDefined.Before.setAsIdentityConversion();
1203*67e74705SXin Li // C++ [over.ics.user]p4:
1204*67e74705SXin Li // A conversion of an expression of class type to the same class
1205*67e74705SXin Li // type is given Exact Match rank, and a conversion of an
1206*67e74705SXin Li // expression of class type to a base class of that type is
1207*67e74705SXin Li // given Conversion rank, in spite of the fact that a copy
1208*67e74705SXin Li // constructor (i.e., a user-defined conversion function) is
1209*67e74705SXin Li // called for those cases.
1210*67e74705SXin Li if (CXXConstructorDecl *Constructor
1211*67e74705SXin Li = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
1212*67e74705SXin Li QualType FromCanon
1213*67e74705SXin Li = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
1214*67e74705SXin Li QualType ToCanon
1215*67e74705SXin Li = S.Context.getCanonicalType(ToType).getUnqualifiedType();
1216*67e74705SXin Li if (Constructor->isCopyConstructor() &&
1217*67e74705SXin Li (FromCanon == ToCanon ||
1218*67e74705SXin Li S.IsDerivedFrom(From->getLocStart(), FromCanon, ToCanon))) {
1219*67e74705SXin Li // Turn this into a "standard" conversion sequence, so that it
1220*67e74705SXin Li // gets ranked with standard conversion sequences.
1221*67e74705SXin Li DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
1222*67e74705SXin Li ICS.setStandard();
1223*67e74705SXin Li ICS.Standard.setAsIdentityConversion();
1224*67e74705SXin Li ICS.Standard.setFromType(From->getType());
1225*67e74705SXin Li ICS.Standard.setAllToTypes(ToType);
1226*67e74705SXin Li ICS.Standard.CopyConstructor = Constructor;
1227*67e74705SXin Li ICS.Standard.FoundCopyConstructor = Found;
1228*67e74705SXin Li if (ToCanon != FromCanon)
1229*67e74705SXin Li ICS.Standard.Second = ICK_Derived_To_Base;
1230*67e74705SXin Li }
1231*67e74705SXin Li }
1232*67e74705SXin Li break;
1233*67e74705SXin Li
1234*67e74705SXin Li case OR_Ambiguous:
1235*67e74705SXin Li ICS.setAmbiguous();
1236*67e74705SXin Li ICS.Ambiguous.setFromType(From->getType());
1237*67e74705SXin Li ICS.Ambiguous.setToType(ToType);
1238*67e74705SXin Li for (OverloadCandidateSet::iterator Cand = Conversions.begin();
1239*67e74705SXin Li Cand != Conversions.end(); ++Cand)
1240*67e74705SXin Li if (Cand->Viable)
1241*67e74705SXin Li ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
1242*67e74705SXin Li break;
1243*67e74705SXin Li
1244*67e74705SXin Li // Fall through.
1245*67e74705SXin Li case OR_No_Viable_Function:
1246*67e74705SXin Li ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1247*67e74705SXin Li break;
1248*67e74705SXin Li }
1249*67e74705SXin Li
1250*67e74705SXin Li return ICS;
1251*67e74705SXin Li }
1252*67e74705SXin Li
1253*67e74705SXin Li /// TryImplicitConversion - Attempt to perform an implicit conversion
1254*67e74705SXin Li /// from the given expression (Expr) to the given type (ToType). This
1255*67e74705SXin Li /// function returns an implicit conversion sequence that can be used
1256*67e74705SXin Li /// to perform the initialization. Given
1257*67e74705SXin Li ///
1258*67e74705SXin Li /// void f(float f);
1259*67e74705SXin Li /// void g(int i) { f(i); }
1260*67e74705SXin Li ///
1261*67e74705SXin Li /// this routine would produce an implicit conversion sequence to
1262*67e74705SXin Li /// describe the initialization of f from i, which will be a standard
1263*67e74705SXin Li /// conversion sequence containing an lvalue-to-rvalue conversion (C++
1264*67e74705SXin Li /// 4.1) followed by a floating-integral conversion (C++ 4.9).
1265*67e74705SXin Li //
1266*67e74705SXin Li /// Note that this routine only determines how the conversion can be
1267*67e74705SXin Li /// performed; it does not actually perform the conversion. As such,
1268*67e74705SXin Li /// it will not produce any diagnostics if no conversion is available,
1269*67e74705SXin Li /// but will instead return an implicit conversion sequence of kind
1270*67e74705SXin Li /// "BadConversion".
1271*67e74705SXin Li ///
1272*67e74705SXin Li /// If @p SuppressUserConversions, then user-defined conversions are
1273*67e74705SXin Li /// not permitted.
1274*67e74705SXin Li /// If @p AllowExplicit, then explicit user-defined conversions are
1275*67e74705SXin Li /// permitted.
1276*67e74705SXin Li ///
1277*67e74705SXin Li /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
1278*67e74705SXin Li /// writeback conversion, which allows __autoreleasing id* parameters to
1279*67e74705SXin Li /// be initialized with __strong id* or __weak id* arguments.
1280*67e74705SXin Li static ImplicitConversionSequence
TryImplicitConversion(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion,bool AllowObjCConversionOnExplicit)1281*67e74705SXin Li TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
1282*67e74705SXin Li bool SuppressUserConversions,
1283*67e74705SXin Li bool AllowExplicit,
1284*67e74705SXin Li bool InOverloadResolution,
1285*67e74705SXin Li bool CStyle,
1286*67e74705SXin Li bool AllowObjCWritebackConversion,
1287*67e74705SXin Li bool AllowObjCConversionOnExplicit) {
1288*67e74705SXin Li ImplicitConversionSequence ICS;
1289*67e74705SXin Li if (IsStandardConversion(S, From, ToType, InOverloadResolution,
1290*67e74705SXin Li ICS.Standard, CStyle, AllowObjCWritebackConversion)){
1291*67e74705SXin Li ICS.setStandard();
1292*67e74705SXin Li return ICS;
1293*67e74705SXin Li }
1294*67e74705SXin Li
1295*67e74705SXin Li if (!S.getLangOpts().CPlusPlus) {
1296*67e74705SXin Li ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
1297*67e74705SXin Li return ICS;
1298*67e74705SXin Li }
1299*67e74705SXin Li
1300*67e74705SXin Li // C++ [over.ics.user]p4:
1301*67e74705SXin Li // A conversion of an expression of class type to the same class
1302*67e74705SXin Li // type is given Exact Match rank, and a conversion of an
1303*67e74705SXin Li // expression of class type to a base class of that type is
1304*67e74705SXin Li // given Conversion rank, in spite of the fact that a copy/move
1305*67e74705SXin Li // constructor (i.e., a user-defined conversion function) is
1306*67e74705SXin Li // called for those cases.
1307*67e74705SXin Li QualType FromType = From->getType();
1308*67e74705SXin Li if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
1309*67e74705SXin Li (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
1310*67e74705SXin Li S.IsDerivedFrom(From->getLocStart(), FromType, ToType))) {
1311*67e74705SXin Li ICS.setStandard();
1312*67e74705SXin Li ICS.Standard.setAsIdentityConversion();
1313*67e74705SXin Li ICS.Standard.setFromType(FromType);
1314*67e74705SXin Li ICS.Standard.setAllToTypes(ToType);
1315*67e74705SXin Li
1316*67e74705SXin Li // We don't actually check at this point whether there is a valid
1317*67e74705SXin Li // copy/move constructor, since overloading just assumes that it
1318*67e74705SXin Li // exists. When we actually perform initialization, we'll find the
1319*67e74705SXin Li // appropriate constructor to copy the returned object, if needed.
1320*67e74705SXin Li ICS.Standard.CopyConstructor = nullptr;
1321*67e74705SXin Li
1322*67e74705SXin Li // Determine whether this is considered a derived-to-base conversion.
1323*67e74705SXin Li if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
1324*67e74705SXin Li ICS.Standard.Second = ICK_Derived_To_Base;
1325*67e74705SXin Li
1326*67e74705SXin Li return ICS;
1327*67e74705SXin Li }
1328*67e74705SXin Li
1329*67e74705SXin Li return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
1330*67e74705SXin Li AllowExplicit, InOverloadResolution, CStyle,
1331*67e74705SXin Li AllowObjCWritebackConversion,
1332*67e74705SXin Li AllowObjCConversionOnExplicit);
1333*67e74705SXin Li }
1334*67e74705SXin Li
1335*67e74705SXin Li ImplicitConversionSequence
TryImplicitConversion(Expr * From,QualType ToType,bool SuppressUserConversions,bool AllowExplicit,bool InOverloadResolution,bool CStyle,bool AllowObjCWritebackConversion)1336*67e74705SXin Li Sema::TryImplicitConversion(Expr *From, QualType ToType,
1337*67e74705SXin Li bool SuppressUserConversions,
1338*67e74705SXin Li bool AllowExplicit,
1339*67e74705SXin Li bool InOverloadResolution,
1340*67e74705SXin Li bool CStyle,
1341*67e74705SXin Li bool AllowObjCWritebackConversion) {
1342*67e74705SXin Li return ::TryImplicitConversion(*this, From, ToType,
1343*67e74705SXin Li SuppressUserConversions, AllowExplicit,
1344*67e74705SXin Li InOverloadResolution, CStyle,
1345*67e74705SXin Li AllowObjCWritebackConversion,
1346*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
1347*67e74705SXin Li }
1348*67e74705SXin Li
1349*67e74705SXin Li /// PerformImplicitConversion - Perform an implicit conversion of the
1350*67e74705SXin Li /// expression From to the type ToType. Returns the
1351*67e74705SXin Li /// converted expression. Flavor is the kind of conversion we're
1352*67e74705SXin Li /// performing, used in the error message. If @p AllowExplicit,
1353*67e74705SXin Li /// explicit user-defined conversions are permitted.
1354*67e74705SXin Li ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit)1355*67e74705SXin Li Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1356*67e74705SXin Li AssignmentAction Action, bool AllowExplicit) {
1357*67e74705SXin Li ImplicitConversionSequence ICS;
1358*67e74705SXin Li return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
1359*67e74705SXin Li }
1360*67e74705SXin Li
1361*67e74705SXin Li ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,AssignmentAction Action,bool AllowExplicit,ImplicitConversionSequence & ICS)1362*67e74705SXin Li Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1363*67e74705SXin Li AssignmentAction Action, bool AllowExplicit,
1364*67e74705SXin Li ImplicitConversionSequence& ICS) {
1365*67e74705SXin Li if (checkPlaceholderForOverload(*this, From))
1366*67e74705SXin Li return ExprError();
1367*67e74705SXin Li
1368*67e74705SXin Li // Objective-C ARC: Determine whether we will allow the writeback conversion.
1369*67e74705SXin Li bool AllowObjCWritebackConversion
1370*67e74705SXin Li = getLangOpts().ObjCAutoRefCount &&
1371*67e74705SXin Li (Action == AA_Passing || Action == AA_Sending);
1372*67e74705SXin Li if (getLangOpts().ObjC1)
1373*67e74705SXin Li CheckObjCBridgeRelatedConversions(From->getLocStart(),
1374*67e74705SXin Li ToType, From->getType(), From);
1375*67e74705SXin Li ICS = ::TryImplicitConversion(*this, From, ToType,
1376*67e74705SXin Li /*SuppressUserConversions=*/false,
1377*67e74705SXin Li AllowExplicit,
1378*67e74705SXin Li /*InOverloadResolution=*/false,
1379*67e74705SXin Li /*CStyle=*/false,
1380*67e74705SXin Li AllowObjCWritebackConversion,
1381*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
1382*67e74705SXin Li return PerformImplicitConversion(From, ToType, ICS, Action);
1383*67e74705SXin Li }
1384*67e74705SXin Li
1385*67e74705SXin Li /// \brief Determine whether the conversion from FromType to ToType is a valid
1386*67e74705SXin Li /// conversion that strips "noreturn" off the nested function type.
IsNoReturnConversion(QualType FromType,QualType ToType,QualType & ResultTy)1387*67e74705SXin Li bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1388*67e74705SXin Li QualType &ResultTy) {
1389*67e74705SXin Li if (Context.hasSameUnqualifiedType(FromType, ToType))
1390*67e74705SXin Li return false;
1391*67e74705SXin Li
1392*67e74705SXin Li // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1393*67e74705SXin Li // where F adds one of the following at most once:
1394*67e74705SXin Li // - a pointer
1395*67e74705SXin Li // - a member pointer
1396*67e74705SXin Li // - a block pointer
1397*67e74705SXin Li CanQualType CanTo = Context.getCanonicalType(ToType);
1398*67e74705SXin Li CanQualType CanFrom = Context.getCanonicalType(FromType);
1399*67e74705SXin Li Type::TypeClass TyClass = CanTo->getTypeClass();
1400*67e74705SXin Li if (TyClass != CanFrom->getTypeClass()) return false;
1401*67e74705SXin Li if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1402*67e74705SXin Li if (TyClass == Type::Pointer) {
1403*67e74705SXin Li CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1404*67e74705SXin Li CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1405*67e74705SXin Li } else if (TyClass == Type::BlockPointer) {
1406*67e74705SXin Li CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1407*67e74705SXin Li CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1408*67e74705SXin Li } else if (TyClass == Type::MemberPointer) {
1409*67e74705SXin Li CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1410*67e74705SXin Li CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1411*67e74705SXin Li } else {
1412*67e74705SXin Li return false;
1413*67e74705SXin Li }
1414*67e74705SXin Li
1415*67e74705SXin Li TyClass = CanTo->getTypeClass();
1416*67e74705SXin Li if (TyClass != CanFrom->getTypeClass()) return false;
1417*67e74705SXin Li if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1418*67e74705SXin Li return false;
1419*67e74705SXin Li }
1420*67e74705SXin Li
1421*67e74705SXin Li const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1422*67e74705SXin Li FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1423*67e74705SXin Li if (!EInfo.getNoReturn()) return false;
1424*67e74705SXin Li
1425*67e74705SXin Li FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1426*67e74705SXin Li assert(QualType(FromFn, 0).isCanonical());
1427*67e74705SXin Li if (QualType(FromFn, 0) != CanTo) return false;
1428*67e74705SXin Li
1429*67e74705SXin Li ResultTy = ToType;
1430*67e74705SXin Li return true;
1431*67e74705SXin Li }
1432*67e74705SXin Li
1433*67e74705SXin Li /// \brief Determine whether the conversion from FromType to ToType is a valid
1434*67e74705SXin Li /// vector conversion.
1435*67e74705SXin Li ///
1436*67e74705SXin Li /// \param ICK Will be set to the vector conversion kind, if this is a vector
1437*67e74705SXin Li /// conversion.
IsVectorConversion(Sema & S,QualType FromType,QualType ToType,ImplicitConversionKind & ICK)1438*67e74705SXin Li static bool IsVectorConversion(Sema &S, QualType FromType,
1439*67e74705SXin Li QualType ToType, ImplicitConversionKind &ICK) {
1440*67e74705SXin Li // We need at least one of these types to be a vector type to have a vector
1441*67e74705SXin Li // conversion.
1442*67e74705SXin Li if (!ToType->isVectorType() && !FromType->isVectorType())
1443*67e74705SXin Li return false;
1444*67e74705SXin Li
1445*67e74705SXin Li // Identical types require no conversions.
1446*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(FromType, ToType))
1447*67e74705SXin Li return false;
1448*67e74705SXin Li
1449*67e74705SXin Li // There are no conversions between extended vector types, only identity.
1450*67e74705SXin Li if (ToType->isExtVectorType()) {
1451*67e74705SXin Li // There are no conversions between extended vector types other than the
1452*67e74705SXin Li // identity conversion.
1453*67e74705SXin Li if (FromType->isExtVectorType())
1454*67e74705SXin Li return false;
1455*67e74705SXin Li
1456*67e74705SXin Li // Vector splat from any arithmetic type to a vector.
1457*67e74705SXin Li if (FromType->isArithmeticType()) {
1458*67e74705SXin Li ICK = ICK_Vector_Splat;
1459*67e74705SXin Li return true;
1460*67e74705SXin Li }
1461*67e74705SXin Li }
1462*67e74705SXin Li
1463*67e74705SXin Li // We can perform the conversion between vector types in the following cases:
1464*67e74705SXin Li // 1)vector types are equivalent AltiVec and GCC vector types
1465*67e74705SXin Li // 2)lax vector conversions are permitted and the vector types are of the
1466*67e74705SXin Li // same size
1467*67e74705SXin Li if (ToType->isVectorType() && FromType->isVectorType()) {
1468*67e74705SXin Li if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
1469*67e74705SXin Li S.isLaxVectorConversion(FromType, ToType)) {
1470*67e74705SXin Li ICK = ICK_Vector_Conversion;
1471*67e74705SXin Li return true;
1472*67e74705SXin Li }
1473*67e74705SXin Li }
1474*67e74705SXin Li
1475*67e74705SXin Li return false;
1476*67e74705SXin Li }
1477*67e74705SXin Li
1478*67e74705SXin Li static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
1479*67e74705SXin Li bool InOverloadResolution,
1480*67e74705SXin Li StandardConversionSequence &SCS,
1481*67e74705SXin Li bool CStyle);
1482*67e74705SXin Li
1483*67e74705SXin Li /// IsStandardConversion - Determines whether there is a standard
1484*67e74705SXin Li /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1485*67e74705SXin Li /// expression From to the type ToType. Standard conversion sequences
1486*67e74705SXin Li /// only consider non-class types; for conversions that involve class
1487*67e74705SXin Li /// types, use TryImplicitConversion. If a conversion exists, SCS will
1488*67e74705SXin Li /// contain the standard conversion sequence required to perform this
1489*67e74705SXin Li /// conversion and this routine will return true. Otherwise, this
1490*67e74705SXin Li /// routine will return false and the value of SCS is unspecified.
IsStandardConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle,bool AllowObjCWritebackConversion)1491*67e74705SXin Li static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1492*67e74705SXin Li bool InOverloadResolution,
1493*67e74705SXin Li StandardConversionSequence &SCS,
1494*67e74705SXin Li bool CStyle,
1495*67e74705SXin Li bool AllowObjCWritebackConversion) {
1496*67e74705SXin Li QualType FromType = From->getType();
1497*67e74705SXin Li
1498*67e74705SXin Li // Standard conversions (C++ [conv])
1499*67e74705SXin Li SCS.setAsIdentityConversion();
1500*67e74705SXin Li SCS.IncompatibleObjC = false;
1501*67e74705SXin Li SCS.setFromType(FromType);
1502*67e74705SXin Li SCS.CopyConstructor = nullptr;
1503*67e74705SXin Li
1504*67e74705SXin Li // There are no standard conversions for class types in C++, so
1505*67e74705SXin Li // abort early. When overloading in C, however, we do permit them.
1506*67e74705SXin Li if (S.getLangOpts().CPlusPlus &&
1507*67e74705SXin Li (FromType->isRecordType() || ToType->isRecordType()))
1508*67e74705SXin Li return false;
1509*67e74705SXin Li
1510*67e74705SXin Li // The first conversion can be an lvalue-to-rvalue conversion,
1511*67e74705SXin Li // array-to-pointer conversion, or function-to-pointer conversion
1512*67e74705SXin Li // (C++ 4p1).
1513*67e74705SXin Li
1514*67e74705SXin Li if (FromType == S.Context.OverloadTy) {
1515*67e74705SXin Li DeclAccessPair AccessPair;
1516*67e74705SXin Li if (FunctionDecl *Fn
1517*67e74705SXin Li = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1518*67e74705SXin Li AccessPair)) {
1519*67e74705SXin Li // We were able to resolve the address of the overloaded function,
1520*67e74705SXin Li // so we can convert to the type of that function.
1521*67e74705SXin Li FromType = Fn->getType();
1522*67e74705SXin Li SCS.setFromType(FromType);
1523*67e74705SXin Li
1524*67e74705SXin Li // we can sometimes resolve &foo<int> regardless of ToType, so check
1525*67e74705SXin Li // if the type matches (identity) or we are converting to bool
1526*67e74705SXin Li if (!S.Context.hasSameUnqualifiedType(
1527*67e74705SXin Li S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1528*67e74705SXin Li QualType resultTy;
1529*67e74705SXin Li // if the function type matches except for [[noreturn]], it's ok
1530*67e74705SXin Li if (!S.IsNoReturnConversion(FromType,
1531*67e74705SXin Li S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1532*67e74705SXin Li // otherwise, only a boolean conversion is standard
1533*67e74705SXin Li if (!ToType->isBooleanType())
1534*67e74705SXin Li return false;
1535*67e74705SXin Li }
1536*67e74705SXin Li
1537*67e74705SXin Li // Check if the "from" expression is taking the address of an overloaded
1538*67e74705SXin Li // function and recompute the FromType accordingly. Take advantage of the
1539*67e74705SXin Li // fact that non-static member functions *must* have such an address-of
1540*67e74705SXin Li // expression.
1541*67e74705SXin Li CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1542*67e74705SXin Li if (Method && !Method->isStatic()) {
1543*67e74705SXin Li assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1544*67e74705SXin Li "Non-unary operator on non-static member address");
1545*67e74705SXin Li assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1546*67e74705SXin Li == UO_AddrOf &&
1547*67e74705SXin Li "Non-address-of operator on non-static member address");
1548*67e74705SXin Li const Type *ClassType
1549*67e74705SXin Li = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1550*67e74705SXin Li FromType = S.Context.getMemberPointerType(FromType, ClassType);
1551*67e74705SXin Li } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1552*67e74705SXin Li assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1553*67e74705SXin Li UO_AddrOf &&
1554*67e74705SXin Li "Non-address-of operator for overloaded function expression");
1555*67e74705SXin Li FromType = S.Context.getPointerType(FromType);
1556*67e74705SXin Li }
1557*67e74705SXin Li
1558*67e74705SXin Li // Check that we've computed the proper type after overload resolution.
1559*67e74705SXin Li assert(S.Context.hasSameType(
1560*67e74705SXin Li FromType,
1561*67e74705SXin Li S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1562*67e74705SXin Li } else {
1563*67e74705SXin Li return false;
1564*67e74705SXin Li }
1565*67e74705SXin Li }
1566*67e74705SXin Li // Lvalue-to-rvalue conversion (C++11 4.1):
1567*67e74705SXin Li // A glvalue (3.10) of a non-function, non-array type T can
1568*67e74705SXin Li // be converted to a prvalue.
1569*67e74705SXin Li bool argIsLValue = From->isGLValue();
1570*67e74705SXin Li if (argIsLValue &&
1571*67e74705SXin Li !FromType->isFunctionType() && !FromType->isArrayType() &&
1572*67e74705SXin Li S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1573*67e74705SXin Li SCS.First = ICK_Lvalue_To_Rvalue;
1574*67e74705SXin Li
1575*67e74705SXin Li // C11 6.3.2.1p2:
1576*67e74705SXin Li // ... if the lvalue has atomic type, the value has the non-atomic version
1577*67e74705SXin Li // of the type of the lvalue ...
1578*67e74705SXin Li if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
1579*67e74705SXin Li FromType = Atomic->getValueType();
1580*67e74705SXin Li
1581*67e74705SXin Li // If T is a non-class type, the type of the rvalue is the
1582*67e74705SXin Li // cv-unqualified version of T. Otherwise, the type of the rvalue
1583*67e74705SXin Li // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1584*67e74705SXin Li // just strip the qualifiers because they don't matter.
1585*67e74705SXin Li FromType = FromType.getUnqualifiedType();
1586*67e74705SXin Li } else if (FromType->isArrayType()) {
1587*67e74705SXin Li // Array-to-pointer conversion (C++ 4.2)
1588*67e74705SXin Li SCS.First = ICK_Array_To_Pointer;
1589*67e74705SXin Li
1590*67e74705SXin Li // An lvalue or rvalue of type "array of N T" or "array of unknown
1591*67e74705SXin Li // bound of T" can be converted to an rvalue of type "pointer to
1592*67e74705SXin Li // T" (C++ 4.2p1).
1593*67e74705SXin Li FromType = S.Context.getArrayDecayedType(FromType);
1594*67e74705SXin Li
1595*67e74705SXin Li if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1596*67e74705SXin Li // This conversion is deprecated in C++03 (D.4)
1597*67e74705SXin Li SCS.DeprecatedStringLiteralToCharPtr = true;
1598*67e74705SXin Li
1599*67e74705SXin Li // For the purpose of ranking in overload resolution
1600*67e74705SXin Li // (13.3.3.1.1), this conversion is considered an
1601*67e74705SXin Li // array-to-pointer conversion followed by a qualification
1602*67e74705SXin Li // conversion (4.4). (C++ 4.2p2)
1603*67e74705SXin Li SCS.Second = ICK_Identity;
1604*67e74705SXin Li SCS.Third = ICK_Qualification;
1605*67e74705SXin Li SCS.QualificationIncludesObjCLifetime = false;
1606*67e74705SXin Li SCS.setAllToTypes(FromType);
1607*67e74705SXin Li return true;
1608*67e74705SXin Li }
1609*67e74705SXin Li } else if (FromType->isFunctionType() && argIsLValue) {
1610*67e74705SXin Li // Function-to-pointer conversion (C++ 4.3).
1611*67e74705SXin Li SCS.First = ICK_Function_To_Pointer;
1612*67e74705SXin Li
1613*67e74705SXin Li if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
1614*67e74705SXin Li if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
1615*67e74705SXin Li if (!S.checkAddressOfFunctionIsAvailable(FD))
1616*67e74705SXin Li return false;
1617*67e74705SXin Li
1618*67e74705SXin Li // An lvalue of function type T can be converted to an rvalue of
1619*67e74705SXin Li // type "pointer to T." The result is a pointer to the
1620*67e74705SXin Li // function. (C++ 4.3p1).
1621*67e74705SXin Li FromType = S.Context.getPointerType(FromType);
1622*67e74705SXin Li } else {
1623*67e74705SXin Li // We don't require any conversions for the first step.
1624*67e74705SXin Li SCS.First = ICK_Identity;
1625*67e74705SXin Li }
1626*67e74705SXin Li SCS.setToType(0, FromType);
1627*67e74705SXin Li
1628*67e74705SXin Li // The second conversion can be an integral promotion, floating
1629*67e74705SXin Li // point promotion, integral conversion, floating point conversion,
1630*67e74705SXin Li // floating-integral conversion, pointer conversion,
1631*67e74705SXin Li // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1632*67e74705SXin Li // For overloading in C, this can also be a "compatible-type"
1633*67e74705SXin Li // conversion.
1634*67e74705SXin Li bool IncompatibleObjC = false;
1635*67e74705SXin Li ImplicitConversionKind SecondICK = ICK_Identity;
1636*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1637*67e74705SXin Li // The unqualified versions of the types are the same: there's no
1638*67e74705SXin Li // conversion to do.
1639*67e74705SXin Li SCS.Second = ICK_Identity;
1640*67e74705SXin Li } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1641*67e74705SXin Li // Integral promotion (C++ 4.5).
1642*67e74705SXin Li SCS.Second = ICK_Integral_Promotion;
1643*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1644*67e74705SXin Li } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1645*67e74705SXin Li // Floating point promotion (C++ 4.6).
1646*67e74705SXin Li SCS.Second = ICK_Floating_Promotion;
1647*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1648*67e74705SXin Li } else if (S.IsComplexPromotion(FromType, ToType)) {
1649*67e74705SXin Li // Complex promotion (Clang extension)
1650*67e74705SXin Li SCS.Second = ICK_Complex_Promotion;
1651*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1652*67e74705SXin Li } else if (ToType->isBooleanType() &&
1653*67e74705SXin Li (FromType->isArithmeticType() ||
1654*67e74705SXin Li FromType->isAnyPointerType() ||
1655*67e74705SXin Li FromType->isBlockPointerType() ||
1656*67e74705SXin Li FromType->isMemberPointerType() ||
1657*67e74705SXin Li FromType->isNullPtrType())) {
1658*67e74705SXin Li // Boolean conversions (C++ 4.12).
1659*67e74705SXin Li SCS.Second = ICK_Boolean_Conversion;
1660*67e74705SXin Li FromType = S.Context.BoolTy;
1661*67e74705SXin Li } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1662*67e74705SXin Li ToType->isIntegralType(S.Context)) {
1663*67e74705SXin Li // Integral conversions (C++ 4.7).
1664*67e74705SXin Li SCS.Second = ICK_Integral_Conversion;
1665*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1666*67e74705SXin Li } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
1667*67e74705SXin Li // Complex conversions (C99 6.3.1.6)
1668*67e74705SXin Li SCS.Second = ICK_Complex_Conversion;
1669*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1670*67e74705SXin Li } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1671*67e74705SXin Li (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1672*67e74705SXin Li // Complex-real conversions (C99 6.3.1.7)
1673*67e74705SXin Li SCS.Second = ICK_Complex_Real;
1674*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1675*67e74705SXin Li } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1676*67e74705SXin Li // FIXME: disable conversions between long double and __float128 if
1677*67e74705SXin Li // their representation is different until there is back end support
1678*67e74705SXin Li // We of course allow this conversion if long double is really double.
1679*67e74705SXin Li if (&S.Context.getFloatTypeSemantics(FromType) !=
1680*67e74705SXin Li &S.Context.getFloatTypeSemantics(ToType)) {
1681*67e74705SXin Li bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
1682*67e74705SXin Li ToType == S.Context.LongDoubleTy) ||
1683*67e74705SXin Li (FromType == S.Context.LongDoubleTy &&
1684*67e74705SXin Li ToType == S.Context.Float128Ty));
1685*67e74705SXin Li if (Float128AndLongDouble &&
1686*67e74705SXin Li (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) !=
1687*67e74705SXin Li &llvm::APFloat::IEEEdouble))
1688*67e74705SXin Li return false;
1689*67e74705SXin Li }
1690*67e74705SXin Li // Floating point conversions (C++ 4.8).
1691*67e74705SXin Li SCS.Second = ICK_Floating_Conversion;
1692*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1693*67e74705SXin Li } else if ((FromType->isRealFloatingType() &&
1694*67e74705SXin Li ToType->isIntegralType(S.Context)) ||
1695*67e74705SXin Li (FromType->isIntegralOrUnscopedEnumerationType() &&
1696*67e74705SXin Li ToType->isRealFloatingType())) {
1697*67e74705SXin Li // Floating-integral conversions (C++ 4.9).
1698*67e74705SXin Li SCS.Second = ICK_Floating_Integral;
1699*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1700*67e74705SXin Li } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1701*67e74705SXin Li SCS.Second = ICK_Block_Pointer_Conversion;
1702*67e74705SXin Li } else if (AllowObjCWritebackConversion &&
1703*67e74705SXin Li S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1704*67e74705SXin Li SCS.Second = ICK_Writeback_Conversion;
1705*67e74705SXin Li } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1706*67e74705SXin Li FromType, IncompatibleObjC)) {
1707*67e74705SXin Li // Pointer conversions (C++ 4.10).
1708*67e74705SXin Li SCS.Second = ICK_Pointer_Conversion;
1709*67e74705SXin Li SCS.IncompatibleObjC = IncompatibleObjC;
1710*67e74705SXin Li FromType = FromType.getUnqualifiedType();
1711*67e74705SXin Li } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1712*67e74705SXin Li InOverloadResolution, FromType)) {
1713*67e74705SXin Li // Pointer to member conversions (4.11).
1714*67e74705SXin Li SCS.Second = ICK_Pointer_Member;
1715*67e74705SXin Li } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
1716*67e74705SXin Li SCS.Second = SecondICK;
1717*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1718*67e74705SXin Li } else if (!S.getLangOpts().CPlusPlus &&
1719*67e74705SXin Li S.Context.typesAreCompatible(ToType, FromType)) {
1720*67e74705SXin Li // Compatible conversions (Clang extension for C function overloading)
1721*67e74705SXin Li SCS.Second = ICK_Compatible_Conversion;
1722*67e74705SXin Li FromType = ToType.getUnqualifiedType();
1723*67e74705SXin Li } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1724*67e74705SXin Li // Treat a conversion that strips "noreturn" as an identity conversion.
1725*67e74705SXin Li SCS.Second = ICK_NoReturn_Adjustment;
1726*67e74705SXin Li } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1727*67e74705SXin Li InOverloadResolution,
1728*67e74705SXin Li SCS, CStyle)) {
1729*67e74705SXin Li SCS.Second = ICK_TransparentUnionConversion;
1730*67e74705SXin Li FromType = ToType;
1731*67e74705SXin Li } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
1732*67e74705SXin Li CStyle)) {
1733*67e74705SXin Li // tryAtomicConversion has updated the standard conversion sequence
1734*67e74705SXin Li // appropriately.
1735*67e74705SXin Li return true;
1736*67e74705SXin Li } else if (ToType->isEventT() &&
1737*67e74705SXin Li From->isIntegerConstantExpr(S.getASTContext()) &&
1738*67e74705SXin Li From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
1739*67e74705SXin Li SCS.Second = ICK_Zero_Event_Conversion;
1740*67e74705SXin Li FromType = ToType;
1741*67e74705SXin Li } else {
1742*67e74705SXin Li // No second conversion required.
1743*67e74705SXin Li SCS.Second = ICK_Identity;
1744*67e74705SXin Li }
1745*67e74705SXin Li SCS.setToType(1, FromType);
1746*67e74705SXin Li
1747*67e74705SXin Li QualType CanonFrom;
1748*67e74705SXin Li QualType CanonTo;
1749*67e74705SXin Li // The third conversion can be a qualification conversion (C++ 4p1).
1750*67e74705SXin Li bool ObjCLifetimeConversion;
1751*67e74705SXin Li if (S.IsQualificationConversion(FromType, ToType, CStyle,
1752*67e74705SXin Li ObjCLifetimeConversion)) {
1753*67e74705SXin Li SCS.Third = ICK_Qualification;
1754*67e74705SXin Li SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1755*67e74705SXin Li FromType = ToType;
1756*67e74705SXin Li CanonFrom = S.Context.getCanonicalType(FromType);
1757*67e74705SXin Li CanonTo = S.Context.getCanonicalType(ToType);
1758*67e74705SXin Li } else {
1759*67e74705SXin Li // No conversion required
1760*67e74705SXin Li SCS.Third = ICK_Identity;
1761*67e74705SXin Li
1762*67e74705SXin Li // C++ [over.best.ics]p6:
1763*67e74705SXin Li // [...] Any difference in top-level cv-qualification is
1764*67e74705SXin Li // subsumed by the initialization itself and does not constitute
1765*67e74705SXin Li // a conversion. [...]
1766*67e74705SXin Li CanonFrom = S.Context.getCanonicalType(FromType);
1767*67e74705SXin Li CanonTo = S.Context.getCanonicalType(ToType);
1768*67e74705SXin Li if (CanonFrom.getLocalUnqualifiedType()
1769*67e74705SXin Li == CanonTo.getLocalUnqualifiedType() &&
1770*67e74705SXin Li CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
1771*67e74705SXin Li FromType = ToType;
1772*67e74705SXin Li CanonFrom = CanonTo;
1773*67e74705SXin Li }
1774*67e74705SXin Li }
1775*67e74705SXin Li SCS.setToType(2, FromType);
1776*67e74705SXin Li
1777*67e74705SXin Li if (CanonFrom == CanonTo)
1778*67e74705SXin Li return true;
1779*67e74705SXin Li
1780*67e74705SXin Li // If we have not converted the argument type to the parameter type,
1781*67e74705SXin Li // this is a bad conversion sequence, unless we're resolving an overload in C.
1782*67e74705SXin Li if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
1783*67e74705SXin Li return false;
1784*67e74705SXin Li
1785*67e74705SXin Li ExprResult ER = ExprResult{From};
1786*67e74705SXin Li auto Conv = S.CheckSingleAssignmentConstraints(ToType, ER,
1787*67e74705SXin Li /*Diagnose=*/false,
1788*67e74705SXin Li /*DiagnoseCFAudited=*/false,
1789*67e74705SXin Li /*ConvertRHS=*/false);
1790*67e74705SXin Li if (Conv != Sema::Compatible)
1791*67e74705SXin Li return false;
1792*67e74705SXin Li
1793*67e74705SXin Li SCS.setAllToTypes(ToType);
1794*67e74705SXin Li // We need to set all three because we want this conversion to rank terribly,
1795*67e74705SXin Li // and we don't know what conversions it may overlap with.
1796*67e74705SXin Li SCS.First = ICK_C_Only_Conversion;
1797*67e74705SXin Li SCS.Second = ICK_C_Only_Conversion;
1798*67e74705SXin Li SCS.Third = ICK_C_Only_Conversion;
1799*67e74705SXin Li return true;
1800*67e74705SXin Li }
1801*67e74705SXin Li
1802*67e74705SXin Li static bool
IsTransparentUnionStandardConversion(Sema & S,Expr * From,QualType & ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)1803*67e74705SXin Li IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1804*67e74705SXin Li QualType &ToType,
1805*67e74705SXin Li bool InOverloadResolution,
1806*67e74705SXin Li StandardConversionSequence &SCS,
1807*67e74705SXin Li bool CStyle) {
1808*67e74705SXin Li
1809*67e74705SXin Li const RecordType *UT = ToType->getAsUnionType();
1810*67e74705SXin Li if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1811*67e74705SXin Li return false;
1812*67e74705SXin Li // The field to initialize within the transparent union.
1813*67e74705SXin Li RecordDecl *UD = UT->getDecl();
1814*67e74705SXin Li // It's compatible if the expression matches any of the fields.
1815*67e74705SXin Li for (const auto *it : UD->fields()) {
1816*67e74705SXin Li if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1817*67e74705SXin Li CStyle, /*ObjCWritebackConversion=*/false)) {
1818*67e74705SXin Li ToType = it->getType();
1819*67e74705SXin Li return true;
1820*67e74705SXin Li }
1821*67e74705SXin Li }
1822*67e74705SXin Li return false;
1823*67e74705SXin Li }
1824*67e74705SXin Li
1825*67e74705SXin Li /// IsIntegralPromotion - Determines whether the conversion from the
1826*67e74705SXin Li /// expression From (whose potentially-adjusted type is FromType) to
1827*67e74705SXin Li /// ToType is an integral promotion (C++ 4.5). If so, returns true and
1828*67e74705SXin Li /// sets PromotedType to the promoted type.
IsIntegralPromotion(Expr * From,QualType FromType,QualType ToType)1829*67e74705SXin Li bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1830*67e74705SXin Li const BuiltinType *To = ToType->getAs<BuiltinType>();
1831*67e74705SXin Li // All integers are built-in.
1832*67e74705SXin Li if (!To) {
1833*67e74705SXin Li return false;
1834*67e74705SXin Li }
1835*67e74705SXin Li
1836*67e74705SXin Li // An rvalue of type char, signed char, unsigned char, short int, or
1837*67e74705SXin Li // unsigned short int can be converted to an rvalue of type int if
1838*67e74705SXin Li // int can represent all the values of the source type; otherwise,
1839*67e74705SXin Li // the source rvalue can be converted to an rvalue of type unsigned
1840*67e74705SXin Li // int (C++ 4.5p1).
1841*67e74705SXin Li if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1842*67e74705SXin Li !FromType->isEnumeralType()) {
1843*67e74705SXin Li if (// We can promote any signed, promotable integer type to an int
1844*67e74705SXin Li (FromType->isSignedIntegerType() ||
1845*67e74705SXin Li // We can promote any unsigned integer type whose size is
1846*67e74705SXin Li // less than int to an int.
1847*67e74705SXin Li Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
1848*67e74705SXin Li return To->getKind() == BuiltinType::Int;
1849*67e74705SXin Li }
1850*67e74705SXin Li
1851*67e74705SXin Li return To->getKind() == BuiltinType::UInt;
1852*67e74705SXin Li }
1853*67e74705SXin Li
1854*67e74705SXin Li // C++11 [conv.prom]p3:
1855*67e74705SXin Li // A prvalue of an unscoped enumeration type whose underlying type is not
1856*67e74705SXin Li // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1857*67e74705SXin Li // following types that can represent all the values of the enumeration
1858*67e74705SXin Li // (i.e., the values in the range bmin to bmax as described in 7.2): int,
1859*67e74705SXin Li // unsigned int, long int, unsigned long int, long long int, or unsigned
1860*67e74705SXin Li // long long int. If none of the types in that list can represent all the
1861*67e74705SXin Li // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1862*67e74705SXin Li // type can be converted to an rvalue a prvalue of the extended integer type
1863*67e74705SXin Li // with lowest integer conversion rank (4.13) greater than the rank of long
1864*67e74705SXin Li // long in which all the values of the enumeration can be represented. If
1865*67e74705SXin Li // there are two such extended types, the signed one is chosen.
1866*67e74705SXin Li // C++11 [conv.prom]p4:
1867*67e74705SXin Li // A prvalue of an unscoped enumeration type whose underlying type is fixed
1868*67e74705SXin Li // can be converted to a prvalue of its underlying type. Moreover, if
1869*67e74705SXin Li // integral promotion can be applied to its underlying type, a prvalue of an
1870*67e74705SXin Li // unscoped enumeration type whose underlying type is fixed can also be
1871*67e74705SXin Li // converted to a prvalue of the promoted underlying type.
1872*67e74705SXin Li if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1873*67e74705SXin Li // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1874*67e74705SXin Li // provided for a scoped enumeration.
1875*67e74705SXin Li if (FromEnumType->getDecl()->isScoped())
1876*67e74705SXin Li return false;
1877*67e74705SXin Li
1878*67e74705SXin Li // We can perform an integral promotion to the underlying type of the enum,
1879*67e74705SXin Li // even if that's not the promoted type. Note that the check for promoting
1880*67e74705SXin Li // the underlying type is based on the type alone, and does not consider
1881*67e74705SXin Li // the bitfield-ness of the actual source expression.
1882*67e74705SXin Li if (FromEnumType->getDecl()->isFixed()) {
1883*67e74705SXin Li QualType Underlying = FromEnumType->getDecl()->getIntegerType();
1884*67e74705SXin Li return Context.hasSameUnqualifiedType(Underlying, ToType) ||
1885*67e74705SXin Li IsIntegralPromotion(nullptr, Underlying, ToType);
1886*67e74705SXin Li }
1887*67e74705SXin Li
1888*67e74705SXin Li // We have already pre-calculated the promotion type, so this is trivial.
1889*67e74705SXin Li if (ToType->isIntegerType() &&
1890*67e74705SXin Li isCompleteType(From->getLocStart(), FromType))
1891*67e74705SXin Li return Context.hasSameUnqualifiedType(
1892*67e74705SXin Li ToType, FromEnumType->getDecl()->getPromotionType());
1893*67e74705SXin Li }
1894*67e74705SXin Li
1895*67e74705SXin Li // C++0x [conv.prom]p2:
1896*67e74705SXin Li // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1897*67e74705SXin Li // to an rvalue a prvalue of the first of the following types that can
1898*67e74705SXin Li // represent all the values of its underlying type: int, unsigned int,
1899*67e74705SXin Li // long int, unsigned long int, long long int, or unsigned long long int.
1900*67e74705SXin Li // If none of the types in that list can represent all the values of its
1901*67e74705SXin Li // underlying type, an rvalue a prvalue of type char16_t, char32_t,
1902*67e74705SXin Li // or wchar_t can be converted to an rvalue a prvalue of its underlying
1903*67e74705SXin Li // type.
1904*67e74705SXin Li if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1905*67e74705SXin Li ToType->isIntegerType()) {
1906*67e74705SXin Li // Determine whether the type we're converting from is signed or
1907*67e74705SXin Li // unsigned.
1908*67e74705SXin Li bool FromIsSigned = FromType->isSignedIntegerType();
1909*67e74705SXin Li uint64_t FromSize = Context.getTypeSize(FromType);
1910*67e74705SXin Li
1911*67e74705SXin Li // The types we'll try to promote to, in the appropriate
1912*67e74705SXin Li // order. Try each of these types.
1913*67e74705SXin Li QualType PromoteTypes[6] = {
1914*67e74705SXin Li Context.IntTy, Context.UnsignedIntTy,
1915*67e74705SXin Li Context.LongTy, Context.UnsignedLongTy ,
1916*67e74705SXin Li Context.LongLongTy, Context.UnsignedLongLongTy
1917*67e74705SXin Li };
1918*67e74705SXin Li for (int Idx = 0; Idx < 6; ++Idx) {
1919*67e74705SXin Li uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1920*67e74705SXin Li if (FromSize < ToSize ||
1921*67e74705SXin Li (FromSize == ToSize &&
1922*67e74705SXin Li FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1923*67e74705SXin Li // We found the type that we can promote to. If this is the
1924*67e74705SXin Li // type we wanted, we have a promotion. Otherwise, no
1925*67e74705SXin Li // promotion.
1926*67e74705SXin Li return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1927*67e74705SXin Li }
1928*67e74705SXin Li }
1929*67e74705SXin Li }
1930*67e74705SXin Li
1931*67e74705SXin Li // An rvalue for an integral bit-field (9.6) can be converted to an
1932*67e74705SXin Li // rvalue of type int if int can represent all the values of the
1933*67e74705SXin Li // bit-field; otherwise, it can be converted to unsigned int if
1934*67e74705SXin Li // unsigned int can represent all the values of the bit-field. If
1935*67e74705SXin Li // the bit-field is larger yet, no integral promotion applies to
1936*67e74705SXin Li // it. If the bit-field has an enumerated type, it is treated as any
1937*67e74705SXin Li // other value of that type for promotion purposes (C++ 4.5p3).
1938*67e74705SXin Li // FIXME: We should delay checking of bit-fields until we actually perform the
1939*67e74705SXin Li // conversion.
1940*67e74705SXin Li if (From) {
1941*67e74705SXin Li if (FieldDecl *MemberDecl = From->getSourceBitField()) {
1942*67e74705SXin Li llvm::APSInt BitWidth;
1943*67e74705SXin Li if (FromType->isIntegralType(Context) &&
1944*67e74705SXin Li MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1945*67e74705SXin Li llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1946*67e74705SXin Li ToSize = Context.getTypeSize(ToType);
1947*67e74705SXin Li
1948*67e74705SXin Li // Are we promoting to an int from a bitfield that fits in an int?
1949*67e74705SXin Li if (BitWidth < ToSize ||
1950*67e74705SXin Li (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1951*67e74705SXin Li return To->getKind() == BuiltinType::Int;
1952*67e74705SXin Li }
1953*67e74705SXin Li
1954*67e74705SXin Li // Are we promoting to an unsigned int from an unsigned bitfield
1955*67e74705SXin Li // that fits into an unsigned int?
1956*67e74705SXin Li if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1957*67e74705SXin Li return To->getKind() == BuiltinType::UInt;
1958*67e74705SXin Li }
1959*67e74705SXin Li
1960*67e74705SXin Li return false;
1961*67e74705SXin Li }
1962*67e74705SXin Li }
1963*67e74705SXin Li }
1964*67e74705SXin Li
1965*67e74705SXin Li // An rvalue of type bool can be converted to an rvalue of type int,
1966*67e74705SXin Li // with false becoming zero and true becoming one (C++ 4.5p4).
1967*67e74705SXin Li if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1968*67e74705SXin Li return true;
1969*67e74705SXin Li }
1970*67e74705SXin Li
1971*67e74705SXin Li return false;
1972*67e74705SXin Li }
1973*67e74705SXin Li
1974*67e74705SXin Li /// IsFloatingPointPromotion - Determines whether the conversion from
1975*67e74705SXin Li /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1976*67e74705SXin Li /// returns true and sets PromotedType to the promoted type.
IsFloatingPointPromotion(QualType FromType,QualType ToType)1977*67e74705SXin Li bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1978*67e74705SXin Li if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1979*67e74705SXin Li if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1980*67e74705SXin Li /// An rvalue of type float can be converted to an rvalue of type
1981*67e74705SXin Li /// double. (C++ 4.6p1).
1982*67e74705SXin Li if (FromBuiltin->getKind() == BuiltinType::Float &&
1983*67e74705SXin Li ToBuiltin->getKind() == BuiltinType::Double)
1984*67e74705SXin Li return true;
1985*67e74705SXin Li
1986*67e74705SXin Li // C99 6.3.1.5p1:
1987*67e74705SXin Li // When a float is promoted to double or long double, or a
1988*67e74705SXin Li // double is promoted to long double [...].
1989*67e74705SXin Li if (!getLangOpts().CPlusPlus &&
1990*67e74705SXin Li (FromBuiltin->getKind() == BuiltinType::Float ||
1991*67e74705SXin Li FromBuiltin->getKind() == BuiltinType::Double) &&
1992*67e74705SXin Li (ToBuiltin->getKind() == BuiltinType::LongDouble ||
1993*67e74705SXin Li ToBuiltin->getKind() == BuiltinType::Float128))
1994*67e74705SXin Li return true;
1995*67e74705SXin Li
1996*67e74705SXin Li // Half can be promoted to float.
1997*67e74705SXin Li if (!getLangOpts().NativeHalfType &&
1998*67e74705SXin Li FromBuiltin->getKind() == BuiltinType::Half &&
1999*67e74705SXin Li ToBuiltin->getKind() == BuiltinType::Float)
2000*67e74705SXin Li return true;
2001*67e74705SXin Li }
2002*67e74705SXin Li
2003*67e74705SXin Li return false;
2004*67e74705SXin Li }
2005*67e74705SXin Li
2006*67e74705SXin Li /// \brief Determine if a conversion is a complex promotion.
2007*67e74705SXin Li ///
2008*67e74705SXin Li /// A complex promotion is defined as a complex -> complex conversion
2009*67e74705SXin Li /// where the conversion between the underlying real types is a
2010*67e74705SXin Li /// floating-point or integral promotion.
IsComplexPromotion(QualType FromType,QualType ToType)2011*67e74705SXin Li bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
2012*67e74705SXin Li const ComplexType *FromComplex = FromType->getAs<ComplexType>();
2013*67e74705SXin Li if (!FromComplex)
2014*67e74705SXin Li return false;
2015*67e74705SXin Li
2016*67e74705SXin Li const ComplexType *ToComplex = ToType->getAs<ComplexType>();
2017*67e74705SXin Li if (!ToComplex)
2018*67e74705SXin Li return false;
2019*67e74705SXin Li
2020*67e74705SXin Li return IsFloatingPointPromotion(FromComplex->getElementType(),
2021*67e74705SXin Li ToComplex->getElementType()) ||
2022*67e74705SXin Li IsIntegralPromotion(nullptr, FromComplex->getElementType(),
2023*67e74705SXin Li ToComplex->getElementType());
2024*67e74705SXin Li }
2025*67e74705SXin Li
2026*67e74705SXin Li /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
2027*67e74705SXin Li /// the pointer type FromPtr to a pointer to type ToPointee, with the
2028*67e74705SXin Li /// same type qualifiers as FromPtr has on its pointee type. ToType,
2029*67e74705SXin Li /// if non-empty, will be a pointer to ToType that may or may not have
2030*67e74705SXin Li /// the right set of qualifiers on its pointee.
2031*67e74705SXin Li ///
2032*67e74705SXin Li static QualType
BuildSimilarlyQualifiedPointerType(const Type * FromPtr,QualType ToPointee,QualType ToType,ASTContext & Context,bool StripObjCLifetime=false)2033*67e74705SXin Li BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
2034*67e74705SXin Li QualType ToPointee, QualType ToType,
2035*67e74705SXin Li ASTContext &Context,
2036*67e74705SXin Li bool StripObjCLifetime = false) {
2037*67e74705SXin Li assert((FromPtr->getTypeClass() == Type::Pointer ||
2038*67e74705SXin Li FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
2039*67e74705SXin Li "Invalid similarly-qualified pointer type");
2040*67e74705SXin Li
2041*67e74705SXin Li /// Conversions to 'id' subsume cv-qualifier conversions.
2042*67e74705SXin Li if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
2043*67e74705SXin Li return ToType.getUnqualifiedType();
2044*67e74705SXin Li
2045*67e74705SXin Li QualType CanonFromPointee
2046*67e74705SXin Li = Context.getCanonicalType(FromPtr->getPointeeType());
2047*67e74705SXin Li QualType CanonToPointee = Context.getCanonicalType(ToPointee);
2048*67e74705SXin Li Qualifiers Quals = CanonFromPointee.getQualifiers();
2049*67e74705SXin Li
2050*67e74705SXin Li if (StripObjCLifetime)
2051*67e74705SXin Li Quals.removeObjCLifetime();
2052*67e74705SXin Li
2053*67e74705SXin Li // Exact qualifier match -> return the pointer type we're converting to.
2054*67e74705SXin Li if (CanonToPointee.getLocalQualifiers() == Quals) {
2055*67e74705SXin Li // ToType is exactly what we need. Return it.
2056*67e74705SXin Li if (!ToType.isNull())
2057*67e74705SXin Li return ToType.getUnqualifiedType();
2058*67e74705SXin Li
2059*67e74705SXin Li // Build a pointer to ToPointee. It has the right qualifiers
2060*67e74705SXin Li // already.
2061*67e74705SXin Li if (isa<ObjCObjectPointerType>(ToType))
2062*67e74705SXin Li return Context.getObjCObjectPointerType(ToPointee);
2063*67e74705SXin Li return Context.getPointerType(ToPointee);
2064*67e74705SXin Li }
2065*67e74705SXin Li
2066*67e74705SXin Li // Just build a canonical type that has the right qualifiers.
2067*67e74705SXin Li QualType QualifiedCanonToPointee
2068*67e74705SXin Li = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
2069*67e74705SXin Li
2070*67e74705SXin Li if (isa<ObjCObjectPointerType>(ToType))
2071*67e74705SXin Li return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
2072*67e74705SXin Li return Context.getPointerType(QualifiedCanonToPointee);
2073*67e74705SXin Li }
2074*67e74705SXin Li
isNullPointerConstantForConversion(Expr * Expr,bool InOverloadResolution,ASTContext & Context)2075*67e74705SXin Li static bool isNullPointerConstantForConversion(Expr *Expr,
2076*67e74705SXin Li bool InOverloadResolution,
2077*67e74705SXin Li ASTContext &Context) {
2078*67e74705SXin Li // Handle value-dependent integral null pointer constants correctly.
2079*67e74705SXin Li // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
2080*67e74705SXin Li if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
2081*67e74705SXin Li Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
2082*67e74705SXin Li return !InOverloadResolution;
2083*67e74705SXin Li
2084*67e74705SXin Li return Expr->isNullPointerConstant(Context,
2085*67e74705SXin Li InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2086*67e74705SXin Li : Expr::NPC_ValueDependentIsNull);
2087*67e74705SXin Li }
2088*67e74705SXin Li
2089*67e74705SXin Li /// IsPointerConversion - Determines whether the conversion of the
2090*67e74705SXin Li /// expression From, which has the (possibly adjusted) type FromType,
2091*67e74705SXin Li /// can be converted to the type ToType via a pointer conversion (C++
2092*67e74705SXin Li /// 4.10). If so, returns true and places the converted type (that
2093*67e74705SXin Li /// might differ from ToType in its cv-qualifiers at some level) into
2094*67e74705SXin Li /// ConvertedType.
2095*67e74705SXin Li ///
2096*67e74705SXin Li /// This routine also supports conversions to and from block pointers
2097*67e74705SXin Li /// and conversions with Objective-C's 'id', 'id<protocols...>', and
2098*67e74705SXin Li /// pointers to interfaces. FIXME: Once we've determined the
2099*67e74705SXin Li /// appropriate overloading rules for Objective-C, we may want to
2100*67e74705SXin Li /// split the Objective-C checks into a different routine; however,
2101*67e74705SXin Li /// GCC seems to consider all of these conversions to be pointer
2102*67e74705SXin Li /// conversions, so for now they live here. IncompatibleObjC will be
2103*67e74705SXin Li /// set if the conversion is an allowed Objective-C conversion that
2104*67e74705SXin Li /// should result in a warning.
IsPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType,bool & IncompatibleObjC)2105*67e74705SXin Li bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
2106*67e74705SXin Li bool InOverloadResolution,
2107*67e74705SXin Li QualType& ConvertedType,
2108*67e74705SXin Li bool &IncompatibleObjC) {
2109*67e74705SXin Li IncompatibleObjC = false;
2110*67e74705SXin Li if (isObjCPointerConversion(FromType, ToType, ConvertedType,
2111*67e74705SXin Li IncompatibleObjC))
2112*67e74705SXin Li return true;
2113*67e74705SXin Li
2114*67e74705SXin Li // Conversion from a null pointer constant to any Objective-C pointer type.
2115*67e74705SXin Li if (ToType->isObjCObjectPointerType() &&
2116*67e74705SXin Li isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2117*67e74705SXin Li ConvertedType = ToType;
2118*67e74705SXin Li return true;
2119*67e74705SXin Li }
2120*67e74705SXin Li
2121*67e74705SXin Li // Blocks: Block pointers can be converted to void*.
2122*67e74705SXin Li if (FromType->isBlockPointerType() && ToType->isPointerType() &&
2123*67e74705SXin Li ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
2124*67e74705SXin Li ConvertedType = ToType;
2125*67e74705SXin Li return true;
2126*67e74705SXin Li }
2127*67e74705SXin Li // Blocks: A null pointer constant can be converted to a block
2128*67e74705SXin Li // pointer type.
2129*67e74705SXin Li if (ToType->isBlockPointerType() &&
2130*67e74705SXin Li isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2131*67e74705SXin Li ConvertedType = ToType;
2132*67e74705SXin Li return true;
2133*67e74705SXin Li }
2134*67e74705SXin Li
2135*67e74705SXin Li // If the left-hand-side is nullptr_t, the right side can be a null
2136*67e74705SXin Li // pointer constant.
2137*67e74705SXin Li if (ToType->isNullPtrType() &&
2138*67e74705SXin Li isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2139*67e74705SXin Li ConvertedType = ToType;
2140*67e74705SXin Li return true;
2141*67e74705SXin Li }
2142*67e74705SXin Li
2143*67e74705SXin Li const PointerType* ToTypePtr = ToType->getAs<PointerType>();
2144*67e74705SXin Li if (!ToTypePtr)
2145*67e74705SXin Li return false;
2146*67e74705SXin Li
2147*67e74705SXin Li // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
2148*67e74705SXin Li if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
2149*67e74705SXin Li ConvertedType = ToType;
2150*67e74705SXin Li return true;
2151*67e74705SXin Li }
2152*67e74705SXin Li
2153*67e74705SXin Li // Beyond this point, both types need to be pointers
2154*67e74705SXin Li // , including objective-c pointers.
2155*67e74705SXin Li QualType ToPointeeType = ToTypePtr->getPointeeType();
2156*67e74705SXin Li if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
2157*67e74705SXin Li !getLangOpts().ObjCAutoRefCount) {
2158*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(
2159*67e74705SXin Li FromType->getAs<ObjCObjectPointerType>(),
2160*67e74705SXin Li ToPointeeType,
2161*67e74705SXin Li ToType, Context);
2162*67e74705SXin Li return true;
2163*67e74705SXin Li }
2164*67e74705SXin Li const PointerType *FromTypePtr = FromType->getAs<PointerType>();
2165*67e74705SXin Li if (!FromTypePtr)
2166*67e74705SXin Li return false;
2167*67e74705SXin Li
2168*67e74705SXin Li QualType FromPointeeType = FromTypePtr->getPointeeType();
2169*67e74705SXin Li
2170*67e74705SXin Li // If the unqualified pointee types are the same, this can't be a
2171*67e74705SXin Li // pointer conversion, so don't do all of the work below.
2172*67e74705SXin Li if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
2173*67e74705SXin Li return false;
2174*67e74705SXin Li
2175*67e74705SXin Li // An rvalue of type "pointer to cv T," where T is an object type,
2176*67e74705SXin Li // can be converted to an rvalue of type "pointer to cv void" (C++
2177*67e74705SXin Li // 4.10p2).
2178*67e74705SXin Li if (FromPointeeType->isIncompleteOrObjectType() &&
2179*67e74705SXin Li ToPointeeType->isVoidType()) {
2180*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2181*67e74705SXin Li ToPointeeType,
2182*67e74705SXin Li ToType, Context,
2183*67e74705SXin Li /*StripObjCLifetime=*/true);
2184*67e74705SXin Li return true;
2185*67e74705SXin Li }
2186*67e74705SXin Li
2187*67e74705SXin Li // MSVC allows implicit function to void* type conversion.
2188*67e74705SXin Li if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
2189*67e74705SXin Li ToPointeeType->isVoidType()) {
2190*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2191*67e74705SXin Li ToPointeeType,
2192*67e74705SXin Li ToType, Context);
2193*67e74705SXin Li return true;
2194*67e74705SXin Li }
2195*67e74705SXin Li
2196*67e74705SXin Li // When we're overloading in C, we allow a special kind of pointer
2197*67e74705SXin Li // conversion for compatible-but-not-identical pointee types.
2198*67e74705SXin Li if (!getLangOpts().CPlusPlus &&
2199*67e74705SXin Li Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
2200*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2201*67e74705SXin Li ToPointeeType,
2202*67e74705SXin Li ToType, Context);
2203*67e74705SXin Li return true;
2204*67e74705SXin Li }
2205*67e74705SXin Li
2206*67e74705SXin Li // C++ [conv.ptr]p3:
2207*67e74705SXin Li //
2208*67e74705SXin Li // An rvalue of type "pointer to cv D," where D is a class type,
2209*67e74705SXin Li // can be converted to an rvalue of type "pointer to cv B," where
2210*67e74705SXin Li // B is a base class (clause 10) of D. If B is an inaccessible
2211*67e74705SXin Li // (clause 11) or ambiguous (10.2) base class of D, a program that
2212*67e74705SXin Li // necessitates this conversion is ill-formed. The result of the
2213*67e74705SXin Li // conversion is a pointer to the base class sub-object of the
2214*67e74705SXin Li // derived class object. The null pointer value is converted to
2215*67e74705SXin Li // the null pointer value of the destination type.
2216*67e74705SXin Li //
2217*67e74705SXin Li // Note that we do not check for ambiguity or inaccessibility
2218*67e74705SXin Li // here. That is handled by CheckPointerConversion.
2219*67e74705SXin Li if (getLangOpts().CPlusPlus &&
2220*67e74705SXin Li FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2221*67e74705SXin Li !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
2222*67e74705SXin Li IsDerivedFrom(From->getLocStart(), FromPointeeType, ToPointeeType)) {
2223*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2224*67e74705SXin Li ToPointeeType,
2225*67e74705SXin Li ToType, Context);
2226*67e74705SXin Li return true;
2227*67e74705SXin Li }
2228*67e74705SXin Li
2229*67e74705SXin Li if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
2230*67e74705SXin Li Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
2231*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
2232*67e74705SXin Li ToPointeeType,
2233*67e74705SXin Li ToType, Context);
2234*67e74705SXin Li return true;
2235*67e74705SXin Li }
2236*67e74705SXin Li
2237*67e74705SXin Li return false;
2238*67e74705SXin Li }
2239*67e74705SXin Li
2240*67e74705SXin Li /// \brief Adopt the given qualifiers for the given type.
AdoptQualifiers(ASTContext & Context,QualType T,Qualifiers Qs)2241*67e74705SXin Li static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
2242*67e74705SXin Li Qualifiers TQs = T.getQualifiers();
2243*67e74705SXin Li
2244*67e74705SXin Li // Check whether qualifiers already match.
2245*67e74705SXin Li if (TQs == Qs)
2246*67e74705SXin Li return T;
2247*67e74705SXin Li
2248*67e74705SXin Li if (Qs.compatiblyIncludes(TQs))
2249*67e74705SXin Li return Context.getQualifiedType(T, Qs);
2250*67e74705SXin Li
2251*67e74705SXin Li return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
2252*67e74705SXin Li }
2253*67e74705SXin Li
2254*67e74705SXin Li /// isObjCPointerConversion - Determines whether this is an
2255*67e74705SXin Li /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
2256*67e74705SXin Li /// with the same arguments and return values.
isObjCPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType,bool & IncompatibleObjC)2257*67e74705SXin Li bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
2258*67e74705SXin Li QualType& ConvertedType,
2259*67e74705SXin Li bool &IncompatibleObjC) {
2260*67e74705SXin Li if (!getLangOpts().ObjC1)
2261*67e74705SXin Li return false;
2262*67e74705SXin Li
2263*67e74705SXin Li // The set of qualifiers on the type we're converting from.
2264*67e74705SXin Li Qualifiers FromQualifiers = FromType.getQualifiers();
2265*67e74705SXin Li
2266*67e74705SXin Li // First, we handle all conversions on ObjC object pointer types.
2267*67e74705SXin Li const ObjCObjectPointerType* ToObjCPtr =
2268*67e74705SXin Li ToType->getAs<ObjCObjectPointerType>();
2269*67e74705SXin Li const ObjCObjectPointerType *FromObjCPtr =
2270*67e74705SXin Li FromType->getAs<ObjCObjectPointerType>();
2271*67e74705SXin Li
2272*67e74705SXin Li if (ToObjCPtr && FromObjCPtr) {
2273*67e74705SXin Li // If the pointee types are the same (ignoring qualifications),
2274*67e74705SXin Li // then this is not a pointer conversion.
2275*67e74705SXin Li if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
2276*67e74705SXin Li FromObjCPtr->getPointeeType()))
2277*67e74705SXin Li return false;
2278*67e74705SXin Li
2279*67e74705SXin Li // Conversion between Objective-C pointers.
2280*67e74705SXin Li if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
2281*67e74705SXin Li const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
2282*67e74705SXin Li const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
2283*67e74705SXin Li if (getLangOpts().CPlusPlus && LHS && RHS &&
2284*67e74705SXin Li !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
2285*67e74705SXin Li FromObjCPtr->getPointeeType()))
2286*67e74705SXin Li return false;
2287*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2288*67e74705SXin Li ToObjCPtr->getPointeeType(),
2289*67e74705SXin Li ToType, Context);
2290*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2291*67e74705SXin Li return true;
2292*67e74705SXin Li }
2293*67e74705SXin Li
2294*67e74705SXin Li if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
2295*67e74705SXin Li // Okay: this is some kind of implicit downcast of Objective-C
2296*67e74705SXin Li // interfaces, which is permitted. However, we're going to
2297*67e74705SXin Li // complain about it.
2298*67e74705SXin Li IncompatibleObjC = true;
2299*67e74705SXin Li ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
2300*67e74705SXin Li ToObjCPtr->getPointeeType(),
2301*67e74705SXin Li ToType, Context);
2302*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2303*67e74705SXin Li return true;
2304*67e74705SXin Li }
2305*67e74705SXin Li }
2306*67e74705SXin Li // Beyond this point, both types need to be C pointers or block pointers.
2307*67e74705SXin Li QualType ToPointeeType;
2308*67e74705SXin Li if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
2309*67e74705SXin Li ToPointeeType = ToCPtr->getPointeeType();
2310*67e74705SXin Li else if (const BlockPointerType *ToBlockPtr =
2311*67e74705SXin Li ToType->getAs<BlockPointerType>()) {
2312*67e74705SXin Li // Objective C++: We're able to convert from a pointer to any object
2313*67e74705SXin Li // to a block pointer type.
2314*67e74705SXin Li if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
2315*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2316*67e74705SXin Li return true;
2317*67e74705SXin Li }
2318*67e74705SXin Li ToPointeeType = ToBlockPtr->getPointeeType();
2319*67e74705SXin Li }
2320*67e74705SXin Li else if (FromType->getAs<BlockPointerType>() &&
2321*67e74705SXin Li ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
2322*67e74705SXin Li // Objective C++: We're able to convert from a block pointer type to a
2323*67e74705SXin Li // pointer to any object.
2324*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2325*67e74705SXin Li return true;
2326*67e74705SXin Li }
2327*67e74705SXin Li else
2328*67e74705SXin Li return false;
2329*67e74705SXin Li
2330*67e74705SXin Li QualType FromPointeeType;
2331*67e74705SXin Li if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
2332*67e74705SXin Li FromPointeeType = FromCPtr->getPointeeType();
2333*67e74705SXin Li else if (const BlockPointerType *FromBlockPtr =
2334*67e74705SXin Li FromType->getAs<BlockPointerType>())
2335*67e74705SXin Li FromPointeeType = FromBlockPtr->getPointeeType();
2336*67e74705SXin Li else
2337*67e74705SXin Li return false;
2338*67e74705SXin Li
2339*67e74705SXin Li // If we have pointers to pointers, recursively check whether this
2340*67e74705SXin Li // is an Objective-C conversion.
2341*67e74705SXin Li if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
2342*67e74705SXin Li isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2343*67e74705SXin Li IncompatibleObjC)) {
2344*67e74705SXin Li // We always complain about this conversion.
2345*67e74705SXin Li IncompatibleObjC = true;
2346*67e74705SXin Li ConvertedType = Context.getPointerType(ConvertedType);
2347*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2348*67e74705SXin Li return true;
2349*67e74705SXin Li }
2350*67e74705SXin Li // Allow conversion of pointee being objective-c pointer to another one;
2351*67e74705SXin Li // as in I* to id.
2352*67e74705SXin Li if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
2353*67e74705SXin Li ToPointeeType->getAs<ObjCObjectPointerType>() &&
2354*67e74705SXin Li isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
2355*67e74705SXin Li IncompatibleObjC)) {
2356*67e74705SXin Li
2357*67e74705SXin Li ConvertedType = Context.getPointerType(ConvertedType);
2358*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
2359*67e74705SXin Li return true;
2360*67e74705SXin Li }
2361*67e74705SXin Li
2362*67e74705SXin Li // If we have pointers to functions or blocks, check whether the only
2363*67e74705SXin Li // differences in the argument and result types are in Objective-C
2364*67e74705SXin Li // pointer conversions. If so, we permit the conversion (but
2365*67e74705SXin Li // complain about it).
2366*67e74705SXin Li const FunctionProtoType *FromFunctionType
2367*67e74705SXin Li = FromPointeeType->getAs<FunctionProtoType>();
2368*67e74705SXin Li const FunctionProtoType *ToFunctionType
2369*67e74705SXin Li = ToPointeeType->getAs<FunctionProtoType>();
2370*67e74705SXin Li if (FromFunctionType && ToFunctionType) {
2371*67e74705SXin Li // If the function types are exactly the same, this isn't an
2372*67e74705SXin Li // Objective-C pointer conversion.
2373*67e74705SXin Li if (Context.getCanonicalType(FromPointeeType)
2374*67e74705SXin Li == Context.getCanonicalType(ToPointeeType))
2375*67e74705SXin Li return false;
2376*67e74705SXin Li
2377*67e74705SXin Li // Perform the quick checks that will tell us whether these
2378*67e74705SXin Li // function types are obviously different.
2379*67e74705SXin Li if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2380*67e74705SXin Li FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
2381*67e74705SXin Li FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
2382*67e74705SXin Li return false;
2383*67e74705SXin Li
2384*67e74705SXin Li bool HasObjCConversion = false;
2385*67e74705SXin Li if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
2386*67e74705SXin Li Context.getCanonicalType(ToFunctionType->getReturnType())) {
2387*67e74705SXin Li // Okay, the types match exactly. Nothing to do.
2388*67e74705SXin Li } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
2389*67e74705SXin Li ToFunctionType->getReturnType(),
2390*67e74705SXin Li ConvertedType, IncompatibleObjC)) {
2391*67e74705SXin Li // Okay, we have an Objective-C pointer conversion.
2392*67e74705SXin Li HasObjCConversion = true;
2393*67e74705SXin Li } else {
2394*67e74705SXin Li // Function types are too different. Abort.
2395*67e74705SXin Li return false;
2396*67e74705SXin Li }
2397*67e74705SXin Li
2398*67e74705SXin Li // Check argument types.
2399*67e74705SXin Li for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2400*67e74705SXin Li ArgIdx != NumArgs; ++ArgIdx) {
2401*67e74705SXin Li QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2402*67e74705SXin Li QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2403*67e74705SXin Li if (Context.getCanonicalType(FromArgType)
2404*67e74705SXin Li == Context.getCanonicalType(ToArgType)) {
2405*67e74705SXin Li // Okay, the types match exactly. Nothing to do.
2406*67e74705SXin Li } else if (isObjCPointerConversion(FromArgType, ToArgType,
2407*67e74705SXin Li ConvertedType, IncompatibleObjC)) {
2408*67e74705SXin Li // Okay, we have an Objective-C pointer conversion.
2409*67e74705SXin Li HasObjCConversion = true;
2410*67e74705SXin Li } else {
2411*67e74705SXin Li // Argument types are too different. Abort.
2412*67e74705SXin Li return false;
2413*67e74705SXin Li }
2414*67e74705SXin Li }
2415*67e74705SXin Li
2416*67e74705SXin Li if (HasObjCConversion) {
2417*67e74705SXin Li // We had an Objective-C conversion. Allow this pointer
2418*67e74705SXin Li // conversion, but complain about it.
2419*67e74705SXin Li ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2420*67e74705SXin Li IncompatibleObjC = true;
2421*67e74705SXin Li return true;
2422*67e74705SXin Li }
2423*67e74705SXin Li }
2424*67e74705SXin Li
2425*67e74705SXin Li return false;
2426*67e74705SXin Li }
2427*67e74705SXin Li
2428*67e74705SXin Li /// \brief Determine whether this is an Objective-C writeback conversion,
2429*67e74705SXin Li /// used for parameter passing when performing automatic reference counting.
2430*67e74705SXin Li ///
2431*67e74705SXin Li /// \param FromType The type we're converting form.
2432*67e74705SXin Li ///
2433*67e74705SXin Li /// \param ToType The type we're converting to.
2434*67e74705SXin Li ///
2435*67e74705SXin Li /// \param ConvertedType The type that will be produced after applying
2436*67e74705SXin Li /// this conversion.
isObjCWritebackConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2437*67e74705SXin Li bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2438*67e74705SXin Li QualType &ConvertedType) {
2439*67e74705SXin Li if (!getLangOpts().ObjCAutoRefCount ||
2440*67e74705SXin Li Context.hasSameUnqualifiedType(FromType, ToType))
2441*67e74705SXin Li return false;
2442*67e74705SXin Li
2443*67e74705SXin Li // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2444*67e74705SXin Li QualType ToPointee;
2445*67e74705SXin Li if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2446*67e74705SXin Li ToPointee = ToPointer->getPointeeType();
2447*67e74705SXin Li else
2448*67e74705SXin Li return false;
2449*67e74705SXin Li
2450*67e74705SXin Li Qualifiers ToQuals = ToPointee.getQualifiers();
2451*67e74705SXin Li if (!ToPointee->isObjCLifetimeType() ||
2452*67e74705SXin Li ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2453*67e74705SXin Li !ToQuals.withoutObjCLifetime().empty())
2454*67e74705SXin Li return false;
2455*67e74705SXin Li
2456*67e74705SXin Li // Argument must be a pointer to __strong to __weak.
2457*67e74705SXin Li QualType FromPointee;
2458*67e74705SXin Li if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2459*67e74705SXin Li FromPointee = FromPointer->getPointeeType();
2460*67e74705SXin Li else
2461*67e74705SXin Li return false;
2462*67e74705SXin Li
2463*67e74705SXin Li Qualifiers FromQuals = FromPointee.getQualifiers();
2464*67e74705SXin Li if (!FromPointee->isObjCLifetimeType() ||
2465*67e74705SXin Li (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2466*67e74705SXin Li FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2467*67e74705SXin Li return false;
2468*67e74705SXin Li
2469*67e74705SXin Li // Make sure that we have compatible qualifiers.
2470*67e74705SXin Li FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2471*67e74705SXin Li if (!ToQuals.compatiblyIncludes(FromQuals))
2472*67e74705SXin Li return false;
2473*67e74705SXin Li
2474*67e74705SXin Li // Remove qualifiers from the pointee type we're converting from; they
2475*67e74705SXin Li // aren't used in the compatibility check belong, and we'll be adding back
2476*67e74705SXin Li // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2477*67e74705SXin Li FromPointee = FromPointee.getUnqualifiedType();
2478*67e74705SXin Li
2479*67e74705SXin Li // The unqualified form of the pointee types must be compatible.
2480*67e74705SXin Li ToPointee = ToPointee.getUnqualifiedType();
2481*67e74705SXin Li bool IncompatibleObjC;
2482*67e74705SXin Li if (Context.typesAreCompatible(FromPointee, ToPointee))
2483*67e74705SXin Li FromPointee = ToPointee;
2484*67e74705SXin Li else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2485*67e74705SXin Li IncompatibleObjC))
2486*67e74705SXin Li return false;
2487*67e74705SXin Li
2488*67e74705SXin Li /// \brief Construct the type we're converting to, which is a pointer to
2489*67e74705SXin Li /// __autoreleasing pointee.
2490*67e74705SXin Li FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2491*67e74705SXin Li ConvertedType = Context.getPointerType(FromPointee);
2492*67e74705SXin Li return true;
2493*67e74705SXin Li }
2494*67e74705SXin Li
IsBlockPointerConversion(QualType FromType,QualType ToType,QualType & ConvertedType)2495*67e74705SXin Li bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2496*67e74705SXin Li QualType& ConvertedType) {
2497*67e74705SXin Li QualType ToPointeeType;
2498*67e74705SXin Li if (const BlockPointerType *ToBlockPtr =
2499*67e74705SXin Li ToType->getAs<BlockPointerType>())
2500*67e74705SXin Li ToPointeeType = ToBlockPtr->getPointeeType();
2501*67e74705SXin Li else
2502*67e74705SXin Li return false;
2503*67e74705SXin Li
2504*67e74705SXin Li QualType FromPointeeType;
2505*67e74705SXin Li if (const BlockPointerType *FromBlockPtr =
2506*67e74705SXin Li FromType->getAs<BlockPointerType>())
2507*67e74705SXin Li FromPointeeType = FromBlockPtr->getPointeeType();
2508*67e74705SXin Li else
2509*67e74705SXin Li return false;
2510*67e74705SXin Li // We have pointer to blocks, check whether the only
2511*67e74705SXin Li // differences in the argument and result types are in Objective-C
2512*67e74705SXin Li // pointer conversions. If so, we permit the conversion.
2513*67e74705SXin Li
2514*67e74705SXin Li const FunctionProtoType *FromFunctionType
2515*67e74705SXin Li = FromPointeeType->getAs<FunctionProtoType>();
2516*67e74705SXin Li const FunctionProtoType *ToFunctionType
2517*67e74705SXin Li = ToPointeeType->getAs<FunctionProtoType>();
2518*67e74705SXin Li
2519*67e74705SXin Li if (!FromFunctionType || !ToFunctionType)
2520*67e74705SXin Li return false;
2521*67e74705SXin Li
2522*67e74705SXin Li if (Context.hasSameType(FromPointeeType, ToPointeeType))
2523*67e74705SXin Li return true;
2524*67e74705SXin Li
2525*67e74705SXin Li // Perform the quick checks that will tell us whether these
2526*67e74705SXin Li // function types are obviously different.
2527*67e74705SXin Li if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
2528*67e74705SXin Li FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2529*67e74705SXin Li return false;
2530*67e74705SXin Li
2531*67e74705SXin Li FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2532*67e74705SXin Li FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2533*67e74705SXin Li if (FromEInfo != ToEInfo)
2534*67e74705SXin Li return false;
2535*67e74705SXin Li
2536*67e74705SXin Li bool IncompatibleObjC = false;
2537*67e74705SXin Li if (Context.hasSameType(FromFunctionType->getReturnType(),
2538*67e74705SXin Li ToFunctionType->getReturnType())) {
2539*67e74705SXin Li // Okay, the types match exactly. Nothing to do.
2540*67e74705SXin Li } else {
2541*67e74705SXin Li QualType RHS = FromFunctionType->getReturnType();
2542*67e74705SXin Li QualType LHS = ToFunctionType->getReturnType();
2543*67e74705SXin Li if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
2544*67e74705SXin Li !RHS.hasQualifiers() && LHS.hasQualifiers())
2545*67e74705SXin Li LHS = LHS.getUnqualifiedType();
2546*67e74705SXin Li
2547*67e74705SXin Li if (Context.hasSameType(RHS,LHS)) {
2548*67e74705SXin Li // OK exact match.
2549*67e74705SXin Li } else if (isObjCPointerConversion(RHS, LHS,
2550*67e74705SXin Li ConvertedType, IncompatibleObjC)) {
2551*67e74705SXin Li if (IncompatibleObjC)
2552*67e74705SXin Li return false;
2553*67e74705SXin Li // Okay, we have an Objective-C pointer conversion.
2554*67e74705SXin Li }
2555*67e74705SXin Li else
2556*67e74705SXin Li return false;
2557*67e74705SXin Li }
2558*67e74705SXin Li
2559*67e74705SXin Li // Check argument types.
2560*67e74705SXin Li for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
2561*67e74705SXin Li ArgIdx != NumArgs; ++ArgIdx) {
2562*67e74705SXin Li IncompatibleObjC = false;
2563*67e74705SXin Li QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
2564*67e74705SXin Li QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
2565*67e74705SXin Li if (Context.hasSameType(FromArgType, ToArgType)) {
2566*67e74705SXin Li // Okay, the types match exactly. Nothing to do.
2567*67e74705SXin Li } else if (isObjCPointerConversion(ToArgType, FromArgType,
2568*67e74705SXin Li ConvertedType, IncompatibleObjC)) {
2569*67e74705SXin Li if (IncompatibleObjC)
2570*67e74705SXin Li return false;
2571*67e74705SXin Li // Okay, we have an Objective-C pointer conversion.
2572*67e74705SXin Li } else
2573*67e74705SXin Li // Argument types are too different. Abort.
2574*67e74705SXin Li return false;
2575*67e74705SXin Li }
2576*67e74705SXin Li if (!Context.doFunctionTypesMatchOnExtParameterInfos(FromFunctionType,
2577*67e74705SXin Li ToFunctionType))
2578*67e74705SXin Li return false;
2579*67e74705SXin Li
2580*67e74705SXin Li ConvertedType = ToType;
2581*67e74705SXin Li return true;
2582*67e74705SXin Li }
2583*67e74705SXin Li
2584*67e74705SXin Li enum {
2585*67e74705SXin Li ft_default,
2586*67e74705SXin Li ft_different_class,
2587*67e74705SXin Li ft_parameter_arity,
2588*67e74705SXin Li ft_parameter_mismatch,
2589*67e74705SXin Li ft_return_type,
2590*67e74705SXin Li ft_qualifer_mismatch
2591*67e74705SXin Li };
2592*67e74705SXin Li
2593*67e74705SXin Li /// Attempts to get the FunctionProtoType from a Type. Handles
2594*67e74705SXin Li /// MemberFunctionPointers properly.
tryGetFunctionProtoType(QualType FromType)2595*67e74705SXin Li static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
2596*67e74705SXin Li if (auto *FPT = FromType->getAs<FunctionProtoType>())
2597*67e74705SXin Li return FPT;
2598*67e74705SXin Li
2599*67e74705SXin Li if (auto *MPT = FromType->getAs<MemberPointerType>())
2600*67e74705SXin Li return MPT->getPointeeType()->getAs<FunctionProtoType>();
2601*67e74705SXin Li
2602*67e74705SXin Li return nullptr;
2603*67e74705SXin Li }
2604*67e74705SXin Li
2605*67e74705SXin Li /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
2606*67e74705SXin Li /// function types. Catches different number of parameter, mismatch in
2607*67e74705SXin Li /// parameter types, and different return types.
HandleFunctionTypeMismatch(PartialDiagnostic & PDiag,QualType FromType,QualType ToType)2608*67e74705SXin Li void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
2609*67e74705SXin Li QualType FromType, QualType ToType) {
2610*67e74705SXin Li // If either type is not valid, include no extra info.
2611*67e74705SXin Li if (FromType.isNull() || ToType.isNull()) {
2612*67e74705SXin Li PDiag << ft_default;
2613*67e74705SXin Li return;
2614*67e74705SXin Li }
2615*67e74705SXin Li
2616*67e74705SXin Li // Get the function type from the pointers.
2617*67e74705SXin Li if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
2618*67e74705SXin Li const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
2619*67e74705SXin Li *ToMember = ToType->getAs<MemberPointerType>();
2620*67e74705SXin Li if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
2621*67e74705SXin Li PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
2622*67e74705SXin Li << QualType(FromMember->getClass(), 0);
2623*67e74705SXin Li return;
2624*67e74705SXin Li }
2625*67e74705SXin Li FromType = FromMember->getPointeeType();
2626*67e74705SXin Li ToType = ToMember->getPointeeType();
2627*67e74705SXin Li }
2628*67e74705SXin Li
2629*67e74705SXin Li if (FromType->isPointerType())
2630*67e74705SXin Li FromType = FromType->getPointeeType();
2631*67e74705SXin Li if (ToType->isPointerType())
2632*67e74705SXin Li ToType = ToType->getPointeeType();
2633*67e74705SXin Li
2634*67e74705SXin Li // Remove references.
2635*67e74705SXin Li FromType = FromType.getNonReferenceType();
2636*67e74705SXin Li ToType = ToType.getNonReferenceType();
2637*67e74705SXin Li
2638*67e74705SXin Li // Don't print extra info for non-specialized template functions.
2639*67e74705SXin Li if (FromType->isInstantiationDependentType() &&
2640*67e74705SXin Li !FromType->getAs<TemplateSpecializationType>()) {
2641*67e74705SXin Li PDiag << ft_default;
2642*67e74705SXin Li return;
2643*67e74705SXin Li }
2644*67e74705SXin Li
2645*67e74705SXin Li // No extra info for same types.
2646*67e74705SXin Li if (Context.hasSameType(FromType, ToType)) {
2647*67e74705SXin Li PDiag << ft_default;
2648*67e74705SXin Li return;
2649*67e74705SXin Li }
2650*67e74705SXin Li
2651*67e74705SXin Li const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
2652*67e74705SXin Li *ToFunction = tryGetFunctionProtoType(ToType);
2653*67e74705SXin Li
2654*67e74705SXin Li // Both types need to be function types.
2655*67e74705SXin Li if (!FromFunction || !ToFunction) {
2656*67e74705SXin Li PDiag << ft_default;
2657*67e74705SXin Li return;
2658*67e74705SXin Li }
2659*67e74705SXin Li
2660*67e74705SXin Li if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
2661*67e74705SXin Li PDiag << ft_parameter_arity << ToFunction->getNumParams()
2662*67e74705SXin Li << FromFunction->getNumParams();
2663*67e74705SXin Li return;
2664*67e74705SXin Li }
2665*67e74705SXin Li
2666*67e74705SXin Li // Handle different parameter types.
2667*67e74705SXin Li unsigned ArgPos;
2668*67e74705SXin Li if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
2669*67e74705SXin Li PDiag << ft_parameter_mismatch << ArgPos + 1
2670*67e74705SXin Li << ToFunction->getParamType(ArgPos)
2671*67e74705SXin Li << FromFunction->getParamType(ArgPos);
2672*67e74705SXin Li return;
2673*67e74705SXin Li }
2674*67e74705SXin Li
2675*67e74705SXin Li // Handle different return type.
2676*67e74705SXin Li if (!Context.hasSameType(FromFunction->getReturnType(),
2677*67e74705SXin Li ToFunction->getReturnType())) {
2678*67e74705SXin Li PDiag << ft_return_type << ToFunction->getReturnType()
2679*67e74705SXin Li << FromFunction->getReturnType();
2680*67e74705SXin Li return;
2681*67e74705SXin Li }
2682*67e74705SXin Li
2683*67e74705SXin Li unsigned FromQuals = FromFunction->getTypeQuals(),
2684*67e74705SXin Li ToQuals = ToFunction->getTypeQuals();
2685*67e74705SXin Li if (FromQuals != ToQuals) {
2686*67e74705SXin Li PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
2687*67e74705SXin Li return;
2688*67e74705SXin Li }
2689*67e74705SXin Li
2690*67e74705SXin Li // Unable to find a difference, so add no extra info.
2691*67e74705SXin Li PDiag << ft_default;
2692*67e74705SXin Li }
2693*67e74705SXin Li
2694*67e74705SXin Li /// FunctionParamTypesAreEqual - This routine checks two function proto types
2695*67e74705SXin Li /// for equality of their argument types. Caller has already checked that
2696*67e74705SXin Li /// they have same number of arguments. If the parameters are different,
2697*67e74705SXin Li /// ArgPos will have the parameter index of the first different parameter.
FunctionParamTypesAreEqual(const FunctionProtoType * OldType,const FunctionProtoType * NewType,unsigned * ArgPos)2698*67e74705SXin Li bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
2699*67e74705SXin Li const FunctionProtoType *NewType,
2700*67e74705SXin Li unsigned *ArgPos) {
2701*67e74705SXin Li for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
2702*67e74705SXin Li N = NewType->param_type_begin(),
2703*67e74705SXin Li E = OldType->param_type_end();
2704*67e74705SXin Li O && (O != E); ++O, ++N) {
2705*67e74705SXin Li if (!Context.hasSameType(O->getUnqualifiedType(),
2706*67e74705SXin Li N->getUnqualifiedType())) {
2707*67e74705SXin Li if (ArgPos)
2708*67e74705SXin Li *ArgPos = O - OldType->param_type_begin();
2709*67e74705SXin Li return false;
2710*67e74705SXin Li }
2711*67e74705SXin Li }
2712*67e74705SXin Li return true;
2713*67e74705SXin Li }
2714*67e74705SXin Li
2715*67e74705SXin Li /// CheckPointerConversion - Check the pointer conversion from the
2716*67e74705SXin Li /// expression From to the type ToType. This routine checks for
2717*67e74705SXin Li /// ambiguous or inaccessible derived-to-base pointer
2718*67e74705SXin Li /// conversions for which IsPointerConversion has already returned
2719*67e74705SXin Li /// true. It returns true and produces a diagnostic if there was an
2720*67e74705SXin Li /// error, or returns false otherwise.
CheckPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess,bool Diagnose)2721*67e74705SXin Li bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2722*67e74705SXin Li CastKind &Kind,
2723*67e74705SXin Li CXXCastPath& BasePath,
2724*67e74705SXin Li bool IgnoreBaseAccess,
2725*67e74705SXin Li bool Diagnose) {
2726*67e74705SXin Li QualType FromType = From->getType();
2727*67e74705SXin Li bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2728*67e74705SXin Li
2729*67e74705SXin Li Kind = CK_BitCast;
2730*67e74705SXin Li
2731*67e74705SXin Li if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
2732*67e74705SXin Li From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
2733*67e74705SXin Li Expr::NPCK_ZeroExpression) {
2734*67e74705SXin Li if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
2735*67e74705SXin Li DiagRuntimeBehavior(From->getExprLoc(), From,
2736*67e74705SXin Li PDiag(diag::warn_impcast_bool_to_null_pointer)
2737*67e74705SXin Li << ToType << From->getSourceRange());
2738*67e74705SXin Li else if (!isUnevaluatedContext())
2739*67e74705SXin Li Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
2740*67e74705SXin Li << ToType << From->getSourceRange();
2741*67e74705SXin Li }
2742*67e74705SXin Li if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2743*67e74705SXin Li if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2744*67e74705SXin Li QualType FromPointeeType = FromPtrType->getPointeeType(),
2745*67e74705SXin Li ToPointeeType = ToPtrType->getPointeeType();
2746*67e74705SXin Li
2747*67e74705SXin Li if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2748*67e74705SXin Li !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2749*67e74705SXin Li // We must have a derived-to-base conversion. Check an
2750*67e74705SXin Li // ambiguous or inaccessible conversion.
2751*67e74705SXin Li unsigned InaccessibleID = 0;
2752*67e74705SXin Li unsigned AmbigiousID = 0;
2753*67e74705SXin Li if (Diagnose) {
2754*67e74705SXin Li InaccessibleID = diag::err_upcast_to_inaccessible_base;
2755*67e74705SXin Li AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
2756*67e74705SXin Li }
2757*67e74705SXin Li if (CheckDerivedToBaseConversion(
2758*67e74705SXin Li FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
2759*67e74705SXin Li From->getExprLoc(), From->getSourceRange(), DeclarationName(),
2760*67e74705SXin Li &BasePath, IgnoreBaseAccess))
2761*67e74705SXin Li return true;
2762*67e74705SXin Li
2763*67e74705SXin Li // The conversion was successful.
2764*67e74705SXin Li Kind = CK_DerivedToBase;
2765*67e74705SXin Li }
2766*67e74705SXin Li
2767*67e74705SXin Li if (Diagnose && !IsCStyleOrFunctionalCast &&
2768*67e74705SXin Li FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
2769*67e74705SXin Li assert(getLangOpts().MSVCCompat &&
2770*67e74705SXin Li "this should only be possible with MSVCCompat!");
2771*67e74705SXin Li Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
2772*67e74705SXin Li << From->getSourceRange();
2773*67e74705SXin Li }
2774*67e74705SXin Li }
2775*67e74705SXin Li } else if (const ObjCObjectPointerType *ToPtrType =
2776*67e74705SXin Li ToType->getAs<ObjCObjectPointerType>()) {
2777*67e74705SXin Li if (const ObjCObjectPointerType *FromPtrType =
2778*67e74705SXin Li FromType->getAs<ObjCObjectPointerType>()) {
2779*67e74705SXin Li // Objective-C++ conversions are always okay.
2780*67e74705SXin Li // FIXME: We should have a different class of conversions for the
2781*67e74705SXin Li // Objective-C++ implicit conversions.
2782*67e74705SXin Li if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2783*67e74705SXin Li return false;
2784*67e74705SXin Li } else if (FromType->isBlockPointerType()) {
2785*67e74705SXin Li Kind = CK_BlockPointerToObjCPointerCast;
2786*67e74705SXin Li } else {
2787*67e74705SXin Li Kind = CK_CPointerToObjCPointerCast;
2788*67e74705SXin Li }
2789*67e74705SXin Li } else if (ToType->isBlockPointerType()) {
2790*67e74705SXin Li if (!FromType->isBlockPointerType())
2791*67e74705SXin Li Kind = CK_AnyPointerToBlockPointerCast;
2792*67e74705SXin Li }
2793*67e74705SXin Li
2794*67e74705SXin Li // We shouldn't fall into this case unless it's valid for other
2795*67e74705SXin Li // reasons.
2796*67e74705SXin Li if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2797*67e74705SXin Li Kind = CK_NullToPointer;
2798*67e74705SXin Li
2799*67e74705SXin Li return false;
2800*67e74705SXin Li }
2801*67e74705SXin Li
2802*67e74705SXin Li /// IsMemberPointerConversion - Determines whether the conversion of the
2803*67e74705SXin Li /// expression From, which has the (possibly adjusted) type FromType, can be
2804*67e74705SXin Li /// converted to the type ToType via a member pointer conversion (C++ 4.11).
2805*67e74705SXin Li /// If so, returns true and places the converted type (that might differ from
2806*67e74705SXin Li /// ToType in its cv-qualifiers at some level) into ConvertedType.
IsMemberPointerConversion(Expr * From,QualType FromType,QualType ToType,bool InOverloadResolution,QualType & ConvertedType)2807*67e74705SXin Li bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2808*67e74705SXin Li QualType ToType,
2809*67e74705SXin Li bool InOverloadResolution,
2810*67e74705SXin Li QualType &ConvertedType) {
2811*67e74705SXin Li const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2812*67e74705SXin Li if (!ToTypePtr)
2813*67e74705SXin Li return false;
2814*67e74705SXin Li
2815*67e74705SXin Li // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2816*67e74705SXin Li if (From->isNullPointerConstant(Context,
2817*67e74705SXin Li InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2818*67e74705SXin Li : Expr::NPC_ValueDependentIsNull)) {
2819*67e74705SXin Li ConvertedType = ToType;
2820*67e74705SXin Li return true;
2821*67e74705SXin Li }
2822*67e74705SXin Li
2823*67e74705SXin Li // Otherwise, both types have to be member pointers.
2824*67e74705SXin Li const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2825*67e74705SXin Li if (!FromTypePtr)
2826*67e74705SXin Li return false;
2827*67e74705SXin Li
2828*67e74705SXin Li // A pointer to member of B can be converted to a pointer to member of D,
2829*67e74705SXin Li // where D is derived from B (C++ 4.11p2).
2830*67e74705SXin Li QualType FromClass(FromTypePtr->getClass(), 0);
2831*67e74705SXin Li QualType ToClass(ToTypePtr->getClass(), 0);
2832*67e74705SXin Li
2833*67e74705SXin Li if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2834*67e74705SXin Li IsDerivedFrom(From->getLocStart(), ToClass, FromClass)) {
2835*67e74705SXin Li ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2836*67e74705SXin Li ToClass.getTypePtr());
2837*67e74705SXin Li return true;
2838*67e74705SXin Li }
2839*67e74705SXin Li
2840*67e74705SXin Li return false;
2841*67e74705SXin Li }
2842*67e74705SXin Li
2843*67e74705SXin Li /// CheckMemberPointerConversion - Check the member pointer conversion from the
2844*67e74705SXin Li /// expression From to the type ToType. This routine checks for ambiguous or
2845*67e74705SXin Li /// virtual or inaccessible base-to-derived member pointer conversions
2846*67e74705SXin Li /// for which IsMemberPointerConversion has already returned true. It returns
2847*67e74705SXin Li /// true and produces a diagnostic if there was an error, or returns false
2848*67e74705SXin Li /// otherwise.
CheckMemberPointerConversion(Expr * From,QualType ToType,CastKind & Kind,CXXCastPath & BasePath,bool IgnoreBaseAccess)2849*67e74705SXin Li bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2850*67e74705SXin Li CastKind &Kind,
2851*67e74705SXin Li CXXCastPath &BasePath,
2852*67e74705SXin Li bool IgnoreBaseAccess) {
2853*67e74705SXin Li QualType FromType = From->getType();
2854*67e74705SXin Li const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2855*67e74705SXin Li if (!FromPtrType) {
2856*67e74705SXin Li // This must be a null pointer to member pointer conversion
2857*67e74705SXin Li assert(From->isNullPointerConstant(Context,
2858*67e74705SXin Li Expr::NPC_ValueDependentIsNull) &&
2859*67e74705SXin Li "Expr must be null pointer constant!");
2860*67e74705SXin Li Kind = CK_NullToMemberPointer;
2861*67e74705SXin Li return false;
2862*67e74705SXin Li }
2863*67e74705SXin Li
2864*67e74705SXin Li const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2865*67e74705SXin Li assert(ToPtrType && "No member pointer cast has a target type "
2866*67e74705SXin Li "that is not a member pointer.");
2867*67e74705SXin Li
2868*67e74705SXin Li QualType FromClass = QualType(FromPtrType->getClass(), 0);
2869*67e74705SXin Li QualType ToClass = QualType(ToPtrType->getClass(), 0);
2870*67e74705SXin Li
2871*67e74705SXin Li // FIXME: What about dependent types?
2872*67e74705SXin Li assert(FromClass->isRecordType() && "Pointer into non-class.");
2873*67e74705SXin Li assert(ToClass->isRecordType() && "Pointer into non-class.");
2874*67e74705SXin Li
2875*67e74705SXin Li CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2876*67e74705SXin Li /*DetectVirtual=*/true);
2877*67e74705SXin Li bool DerivationOkay =
2878*67e74705SXin Li IsDerivedFrom(From->getLocStart(), ToClass, FromClass, Paths);
2879*67e74705SXin Li assert(DerivationOkay &&
2880*67e74705SXin Li "Should not have been called if derivation isn't OK.");
2881*67e74705SXin Li (void)DerivationOkay;
2882*67e74705SXin Li
2883*67e74705SXin Li if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2884*67e74705SXin Li getUnqualifiedType())) {
2885*67e74705SXin Li std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2886*67e74705SXin Li Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2887*67e74705SXin Li << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2888*67e74705SXin Li return true;
2889*67e74705SXin Li }
2890*67e74705SXin Li
2891*67e74705SXin Li if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2892*67e74705SXin Li Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2893*67e74705SXin Li << FromClass << ToClass << QualType(VBase, 0)
2894*67e74705SXin Li << From->getSourceRange();
2895*67e74705SXin Li return true;
2896*67e74705SXin Li }
2897*67e74705SXin Li
2898*67e74705SXin Li if (!IgnoreBaseAccess)
2899*67e74705SXin Li CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2900*67e74705SXin Li Paths.front(),
2901*67e74705SXin Li diag::err_downcast_from_inaccessible_base);
2902*67e74705SXin Li
2903*67e74705SXin Li // Must be a base to derived member conversion.
2904*67e74705SXin Li BuildBasePathArray(Paths, BasePath);
2905*67e74705SXin Li Kind = CK_BaseToDerivedMemberPointer;
2906*67e74705SXin Li return false;
2907*67e74705SXin Li }
2908*67e74705SXin Li
2909*67e74705SXin Li /// Determine whether the lifetime conversion between the two given
2910*67e74705SXin Li /// qualifiers sets is nontrivial.
isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,Qualifiers ToQuals)2911*67e74705SXin Li static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
2912*67e74705SXin Li Qualifiers ToQuals) {
2913*67e74705SXin Li // Converting anything to const __unsafe_unretained is trivial.
2914*67e74705SXin Li if (ToQuals.hasConst() &&
2915*67e74705SXin Li ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
2916*67e74705SXin Li return false;
2917*67e74705SXin Li
2918*67e74705SXin Li return true;
2919*67e74705SXin Li }
2920*67e74705SXin Li
2921*67e74705SXin Li /// IsQualificationConversion - Determines whether the conversion from
2922*67e74705SXin Li /// an rvalue of type FromType to ToType is a qualification conversion
2923*67e74705SXin Li /// (C++ 4.4).
2924*67e74705SXin Li ///
2925*67e74705SXin Li /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2926*67e74705SXin Li /// when the qualification conversion involves a change in the Objective-C
2927*67e74705SXin Li /// object lifetime.
2928*67e74705SXin Li bool
IsQualificationConversion(QualType FromType,QualType ToType,bool CStyle,bool & ObjCLifetimeConversion)2929*67e74705SXin Li Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2930*67e74705SXin Li bool CStyle, bool &ObjCLifetimeConversion) {
2931*67e74705SXin Li FromType = Context.getCanonicalType(FromType);
2932*67e74705SXin Li ToType = Context.getCanonicalType(ToType);
2933*67e74705SXin Li ObjCLifetimeConversion = false;
2934*67e74705SXin Li
2935*67e74705SXin Li // If FromType and ToType are the same type, this is not a
2936*67e74705SXin Li // qualification conversion.
2937*67e74705SXin Li if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2938*67e74705SXin Li return false;
2939*67e74705SXin Li
2940*67e74705SXin Li // (C++ 4.4p4):
2941*67e74705SXin Li // A conversion can add cv-qualifiers at levels other than the first
2942*67e74705SXin Li // in multi-level pointers, subject to the following rules: [...]
2943*67e74705SXin Li bool PreviousToQualsIncludeConst = true;
2944*67e74705SXin Li bool UnwrappedAnyPointer = false;
2945*67e74705SXin Li while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2946*67e74705SXin Li // Within each iteration of the loop, we check the qualifiers to
2947*67e74705SXin Li // determine if this still looks like a qualification
2948*67e74705SXin Li // conversion. Then, if all is well, we unwrap one more level of
2949*67e74705SXin Li // pointers or pointers-to-members and do it all again
2950*67e74705SXin Li // until there are no more pointers or pointers-to-members left to
2951*67e74705SXin Li // unwrap.
2952*67e74705SXin Li UnwrappedAnyPointer = true;
2953*67e74705SXin Li
2954*67e74705SXin Li Qualifiers FromQuals = FromType.getQualifiers();
2955*67e74705SXin Li Qualifiers ToQuals = ToType.getQualifiers();
2956*67e74705SXin Li
2957*67e74705SXin Li // Ignore __unaligned qualifier if this type is void.
2958*67e74705SXin Li if (ToType.getUnqualifiedType()->isVoidType())
2959*67e74705SXin Li FromQuals.removeUnaligned();
2960*67e74705SXin Li
2961*67e74705SXin Li // Objective-C ARC:
2962*67e74705SXin Li // Check Objective-C lifetime conversions.
2963*67e74705SXin Li if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2964*67e74705SXin Li UnwrappedAnyPointer) {
2965*67e74705SXin Li if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2966*67e74705SXin Li if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
2967*67e74705SXin Li ObjCLifetimeConversion = true;
2968*67e74705SXin Li FromQuals.removeObjCLifetime();
2969*67e74705SXin Li ToQuals.removeObjCLifetime();
2970*67e74705SXin Li } else {
2971*67e74705SXin Li // Qualification conversions cannot cast between different
2972*67e74705SXin Li // Objective-C lifetime qualifiers.
2973*67e74705SXin Li return false;
2974*67e74705SXin Li }
2975*67e74705SXin Li }
2976*67e74705SXin Li
2977*67e74705SXin Li // Allow addition/removal of GC attributes but not changing GC attributes.
2978*67e74705SXin Li if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2979*67e74705SXin Li (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2980*67e74705SXin Li FromQuals.removeObjCGCAttr();
2981*67e74705SXin Li ToQuals.removeObjCGCAttr();
2982*67e74705SXin Li }
2983*67e74705SXin Li
2984*67e74705SXin Li // -- for every j > 0, if const is in cv 1,j then const is in cv
2985*67e74705SXin Li // 2,j, and similarly for volatile.
2986*67e74705SXin Li if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2987*67e74705SXin Li return false;
2988*67e74705SXin Li
2989*67e74705SXin Li // -- if the cv 1,j and cv 2,j are different, then const is in
2990*67e74705SXin Li // every cv for 0 < k < j.
2991*67e74705SXin Li if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2992*67e74705SXin Li && !PreviousToQualsIncludeConst)
2993*67e74705SXin Li return false;
2994*67e74705SXin Li
2995*67e74705SXin Li // Keep track of whether all prior cv-qualifiers in the "to" type
2996*67e74705SXin Li // include const.
2997*67e74705SXin Li PreviousToQualsIncludeConst
2998*67e74705SXin Li = PreviousToQualsIncludeConst && ToQuals.hasConst();
2999*67e74705SXin Li }
3000*67e74705SXin Li
3001*67e74705SXin Li // We are left with FromType and ToType being the pointee types
3002*67e74705SXin Li // after unwrapping the original FromType and ToType the same number
3003*67e74705SXin Li // of types. If we unwrapped any pointers, and if FromType and
3004*67e74705SXin Li // ToType have the same unqualified type (since we checked
3005*67e74705SXin Li // qualifiers above), then this is a qualification conversion.
3006*67e74705SXin Li return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
3007*67e74705SXin Li }
3008*67e74705SXin Li
3009*67e74705SXin Li /// \brief - Determine whether this is a conversion from a scalar type to an
3010*67e74705SXin Li /// atomic type.
3011*67e74705SXin Li ///
3012*67e74705SXin Li /// If successful, updates \c SCS's second and third steps in the conversion
3013*67e74705SXin Li /// sequence to finish the conversion.
tryAtomicConversion(Sema & S,Expr * From,QualType ToType,bool InOverloadResolution,StandardConversionSequence & SCS,bool CStyle)3014*67e74705SXin Li static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
3015*67e74705SXin Li bool InOverloadResolution,
3016*67e74705SXin Li StandardConversionSequence &SCS,
3017*67e74705SXin Li bool CStyle) {
3018*67e74705SXin Li const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
3019*67e74705SXin Li if (!ToAtomic)
3020*67e74705SXin Li return false;
3021*67e74705SXin Li
3022*67e74705SXin Li StandardConversionSequence InnerSCS;
3023*67e74705SXin Li if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
3024*67e74705SXin Li InOverloadResolution, InnerSCS,
3025*67e74705SXin Li CStyle, /*AllowObjCWritebackConversion=*/false))
3026*67e74705SXin Li return false;
3027*67e74705SXin Li
3028*67e74705SXin Li SCS.Second = InnerSCS.Second;
3029*67e74705SXin Li SCS.setToType(1, InnerSCS.getToType(1));
3030*67e74705SXin Li SCS.Third = InnerSCS.Third;
3031*67e74705SXin Li SCS.QualificationIncludesObjCLifetime
3032*67e74705SXin Li = InnerSCS.QualificationIncludesObjCLifetime;
3033*67e74705SXin Li SCS.setToType(2, InnerSCS.getToType(2));
3034*67e74705SXin Li return true;
3035*67e74705SXin Li }
3036*67e74705SXin Li
isFirstArgumentCompatibleWithType(ASTContext & Context,CXXConstructorDecl * Constructor,QualType Type)3037*67e74705SXin Li static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
3038*67e74705SXin Li CXXConstructorDecl *Constructor,
3039*67e74705SXin Li QualType Type) {
3040*67e74705SXin Li const FunctionProtoType *CtorType =
3041*67e74705SXin Li Constructor->getType()->getAs<FunctionProtoType>();
3042*67e74705SXin Li if (CtorType->getNumParams() > 0) {
3043*67e74705SXin Li QualType FirstArg = CtorType->getParamType(0);
3044*67e74705SXin Li if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
3045*67e74705SXin Li return true;
3046*67e74705SXin Li }
3047*67e74705SXin Li return false;
3048*67e74705SXin Li }
3049*67e74705SXin Li
3050*67e74705SXin Li static OverloadingResult
IsInitializerListConstructorConversion(Sema & S,Expr * From,QualType ToType,CXXRecordDecl * To,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit)3051*67e74705SXin Li IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
3052*67e74705SXin Li CXXRecordDecl *To,
3053*67e74705SXin Li UserDefinedConversionSequence &User,
3054*67e74705SXin Li OverloadCandidateSet &CandidateSet,
3055*67e74705SXin Li bool AllowExplicit) {
3056*67e74705SXin Li for (auto *D : S.LookupConstructors(To)) {
3057*67e74705SXin Li auto Info = getConstructorInfo(D);
3058*67e74705SXin Li if (!Info)
3059*67e74705SXin Li continue;
3060*67e74705SXin Li
3061*67e74705SXin Li bool Usable = !Info.Constructor->isInvalidDecl() &&
3062*67e74705SXin Li S.isInitListConstructor(Info.Constructor) &&
3063*67e74705SXin Li (AllowExplicit || !Info.Constructor->isExplicit());
3064*67e74705SXin Li if (Usable) {
3065*67e74705SXin Li // If the first argument is (a reference to) the target type,
3066*67e74705SXin Li // suppress conversions.
3067*67e74705SXin Li bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
3068*67e74705SXin Li S.Context, Info.Constructor, ToType);
3069*67e74705SXin Li if (Info.ConstructorTmpl)
3070*67e74705SXin Li S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3071*67e74705SXin Li /*ExplicitArgs*/ nullptr, From,
3072*67e74705SXin Li CandidateSet, SuppressUserConversions);
3073*67e74705SXin Li else
3074*67e74705SXin Li S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
3075*67e74705SXin Li CandidateSet, SuppressUserConversions);
3076*67e74705SXin Li }
3077*67e74705SXin Li }
3078*67e74705SXin Li
3079*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
3080*67e74705SXin Li
3081*67e74705SXin Li OverloadCandidateSet::iterator Best;
3082*67e74705SXin Li switch (auto Result =
3083*67e74705SXin Li CandidateSet.BestViableFunction(S, From->getLocStart(),
3084*67e74705SXin Li Best, true)) {
3085*67e74705SXin Li case OR_Deleted:
3086*67e74705SXin Li case OR_Success: {
3087*67e74705SXin Li // Record the standard conversion we used and the conversion function.
3088*67e74705SXin Li CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3089*67e74705SXin Li QualType ThisType = Constructor->getThisType(S.Context);
3090*67e74705SXin Li // Initializer lists don't have conversions as such.
3091*67e74705SXin Li User.Before.setAsIdentityConversion();
3092*67e74705SXin Li User.HadMultipleCandidates = HadMultipleCandidates;
3093*67e74705SXin Li User.ConversionFunction = Constructor;
3094*67e74705SXin Li User.FoundConversionFunction = Best->FoundDecl;
3095*67e74705SXin Li User.After.setAsIdentityConversion();
3096*67e74705SXin Li User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3097*67e74705SXin Li User.After.setAllToTypes(ToType);
3098*67e74705SXin Li return Result;
3099*67e74705SXin Li }
3100*67e74705SXin Li
3101*67e74705SXin Li case OR_No_Viable_Function:
3102*67e74705SXin Li return OR_No_Viable_Function;
3103*67e74705SXin Li case OR_Ambiguous:
3104*67e74705SXin Li return OR_Ambiguous;
3105*67e74705SXin Li }
3106*67e74705SXin Li
3107*67e74705SXin Li llvm_unreachable("Invalid OverloadResult!");
3108*67e74705SXin Li }
3109*67e74705SXin Li
3110*67e74705SXin Li /// Determines whether there is a user-defined conversion sequence
3111*67e74705SXin Li /// (C++ [over.ics.user]) that converts expression From to the type
3112*67e74705SXin Li /// ToType. If such a conversion exists, User will contain the
3113*67e74705SXin Li /// user-defined conversion sequence that performs such a conversion
3114*67e74705SXin Li /// and this routine will return true. Otherwise, this routine returns
3115*67e74705SXin Li /// false and User is unspecified.
3116*67e74705SXin Li ///
3117*67e74705SXin Li /// \param AllowExplicit true if the conversion should consider C++0x
3118*67e74705SXin Li /// "explicit" conversion functions as well as non-explicit conversion
3119*67e74705SXin Li /// functions (C++0x [class.conv.fct]p2).
3120*67e74705SXin Li ///
3121*67e74705SXin Li /// \param AllowObjCConversionOnExplicit true if the conversion should
3122*67e74705SXin Li /// allow an extra Objective-C pointer conversion on uses of explicit
3123*67e74705SXin Li /// constructors. Requires \c AllowExplicit to also be set.
3124*67e74705SXin Li static OverloadingResult
IsUserDefinedConversion(Sema & S,Expr * From,QualType ToType,UserDefinedConversionSequence & User,OverloadCandidateSet & CandidateSet,bool AllowExplicit,bool AllowObjCConversionOnExplicit)3125*67e74705SXin Li IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
3126*67e74705SXin Li UserDefinedConversionSequence &User,
3127*67e74705SXin Li OverloadCandidateSet &CandidateSet,
3128*67e74705SXin Li bool AllowExplicit,
3129*67e74705SXin Li bool AllowObjCConversionOnExplicit) {
3130*67e74705SXin Li assert(AllowExplicit || !AllowObjCConversionOnExplicit);
3131*67e74705SXin Li
3132*67e74705SXin Li // Whether we will only visit constructors.
3133*67e74705SXin Li bool ConstructorsOnly = false;
3134*67e74705SXin Li
3135*67e74705SXin Li // If the type we are conversion to is a class type, enumerate its
3136*67e74705SXin Li // constructors.
3137*67e74705SXin Li if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
3138*67e74705SXin Li // C++ [over.match.ctor]p1:
3139*67e74705SXin Li // When objects of class type are direct-initialized (8.5), or
3140*67e74705SXin Li // copy-initialized from an expression of the same or a
3141*67e74705SXin Li // derived class type (8.5), overload resolution selects the
3142*67e74705SXin Li // constructor. [...] For copy-initialization, the candidate
3143*67e74705SXin Li // functions are all the converting constructors (12.3.1) of
3144*67e74705SXin Li // that class. The argument list is the expression-list within
3145*67e74705SXin Li // the parentheses of the initializer.
3146*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
3147*67e74705SXin Li (From->getType()->getAs<RecordType>() &&
3148*67e74705SXin Li S.IsDerivedFrom(From->getLocStart(), From->getType(), ToType)))
3149*67e74705SXin Li ConstructorsOnly = true;
3150*67e74705SXin Li
3151*67e74705SXin Li if (!S.isCompleteType(From->getExprLoc(), ToType)) {
3152*67e74705SXin Li // We're not going to find any constructors.
3153*67e74705SXin Li } else if (CXXRecordDecl *ToRecordDecl
3154*67e74705SXin Li = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
3155*67e74705SXin Li
3156*67e74705SXin Li Expr **Args = &From;
3157*67e74705SXin Li unsigned NumArgs = 1;
3158*67e74705SXin Li bool ListInitializing = false;
3159*67e74705SXin Li if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
3160*67e74705SXin Li // But first, see if there is an init-list-constructor that will work.
3161*67e74705SXin Li OverloadingResult Result = IsInitializerListConstructorConversion(
3162*67e74705SXin Li S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
3163*67e74705SXin Li if (Result != OR_No_Viable_Function)
3164*67e74705SXin Li return Result;
3165*67e74705SXin Li // Never mind.
3166*67e74705SXin Li CandidateSet.clear();
3167*67e74705SXin Li
3168*67e74705SXin Li // If we're list-initializing, we pass the individual elements as
3169*67e74705SXin Li // arguments, not the entire list.
3170*67e74705SXin Li Args = InitList->getInits();
3171*67e74705SXin Li NumArgs = InitList->getNumInits();
3172*67e74705SXin Li ListInitializing = true;
3173*67e74705SXin Li }
3174*67e74705SXin Li
3175*67e74705SXin Li for (auto *D : S.LookupConstructors(ToRecordDecl)) {
3176*67e74705SXin Li auto Info = getConstructorInfo(D);
3177*67e74705SXin Li if (!Info)
3178*67e74705SXin Li continue;
3179*67e74705SXin Li
3180*67e74705SXin Li bool Usable = !Info.Constructor->isInvalidDecl();
3181*67e74705SXin Li if (ListInitializing)
3182*67e74705SXin Li Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
3183*67e74705SXin Li else
3184*67e74705SXin Li Usable = Usable &&
3185*67e74705SXin Li Info.Constructor->isConvertingConstructor(AllowExplicit);
3186*67e74705SXin Li if (Usable) {
3187*67e74705SXin Li bool SuppressUserConversions = !ConstructorsOnly;
3188*67e74705SXin Li if (SuppressUserConversions && ListInitializing) {
3189*67e74705SXin Li SuppressUserConversions = false;
3190*67e74705SXin Li if (NumArgs == 1) {
3191*67e74705SXin Li // If the first argument is (a reference to) the target type,
3192*67e74705SXin Li // suppress conversions.
3193*67e74705SXin Li SuppressUserConversions = isFirstArgumentCompatibleWithType(
3194*67e74705SXin Li S.Context, Info.Constructor, ToType);
3195*67e74705SXin Li }
3196*67e74705SXin Li }
3197*67e74705SXin Li if (Info.ConstructorTmpl)
3198*67e74705SXin Li S.AddTemplateOverloadCandidate(
3199*67e74705SXin Li Info.ConstructorTmpl, Info.FoundDecl,
3200*67e74705SXin Li /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
3201*67e74705SXin Li CandidateSet, SuppressUserConversions);
3202*67e74705SXin Li else
3203*67e74705SXin Li // Allow one user-defined conversion when user specifies a
3204*67e74705SXin Li // From->ToType conversion via an static cast (c-style, etc).
3205*67e74705SXin Li S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
3206*67e74705SXin Li llvm::makeArrayRef(Args, NumArgs),
3207*67e74705SXin Li CandidateSet, SuppressUserConversions);
3208*67e74705SXin Li }
3209*67e74705SXin Li }
3210*67e74705SXin Li }
3211*67e74705SXin Li }
3212*67e74705SXin Li
3213*67e74705SXin Li // Enumerate conversion functions, if we're allowed to.
3214*67e74705SXin Li if (ConstructorsOnly || isa<InitListExpr>(From)) {
3215*67e74705SXin Li } else if (!S.isCompleteType(From->getLocStart(), From->getType())) {
3216*67e74705SXin Li // No conversion functions from incomplete types.
3217*67e74705SXin Li } else if (const RecordType *FromRecordType
3218*67e74705SXin Li = From->getType()->getAs<RecordType>()) {
3219*67e74705SXin Li if (CXXRecordDecl *FromRecordDecl
3220*67e74705SXin Li = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
3221*67e74705SXin Li // Add all of the conversion functions as candidates.
3222*67e74705SXin Li const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
3223*67e74705SXin Li for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3224*67e74705SXin Li DeclAccessPair FoundDecl = I.getPair();
3225*67e74705SXin Li NamedDecl *D = FoundDecl.getDecl();
3226*67e74705SXin Li CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
3227*67e74705SXin Li if (isa<UsingShadowDecl>(D))
3228*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
3229*67e74705SXin Li
3230*67e74705SXin Li CXXConversionDecl *Conv;
3231*67e74705SXin Li FunctionTemplateDecl *ConvTemplate;
3232*67e74705SXin Li if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
3233*67e74705SXin Li Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3234*67e74705SXin Li else
3235*67e74705SXin Li Conv = cast<CXXConversionDecl>(D);
3236*67e74705SXin Li
3237*67e74705SXin Li if (AllowExplicit || !Conv->isExplicit()) {
3238*67e74705SXin Li if (ConvTemplate)
3239*67e74705SXin Li S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
3240*67e74705SXin Li ActingContext, From, ToType,
3241*67e74705SXin Li CandidateSet,
3242*67e74705SXin Li AllowObjCConversionOnExplicit);
3243*67e74705SXin Li else
3244*67e74705SXin Li S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
3245*67e74705SXin Li From, ToType, CandidateSet,
3246*67e74705SXin Li AllowObjCConversionOnExplicit);
3247*67e74705SXin Li }
3248*67e74705SXin Li }
3249*67e74705SXin Li }
3250*67e74705SXin Li }
3251*67e74705SXin Li
3252*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
3253*67e74705SXin Li
3254*67e74705SXin Li OverloadCandidateSet::iterator Best;
3255*67e74705SXin Li switch (auto Result = CandidateSet.BestViableFunction(S, From->getLocStart(),
3256*67e74705SXin Li Best, true)) {
3257*67e74705SXin Li case OR_Success:
3258*67e74705SXin Li case OR_Deleted:
3259*67e74705SXin Li // Record the standard conversion we used and the conversion function.
3260*67e74705SXin Li if (CXXConstructorDecl *Constructor
3261*67e74705SXin Li = dyn_cast<CXXConstructorDecl>(Best->Function)) {
3262*67e74705SXin Li // C++ [over.ics.user]p1:
3263*67e74705SXin Li // If the user-defined conversion is specified by a
3264*67e74705SXin Li // constructor (12.3.1), the initial standard conversion
3265*67e74705SXin Li // sequence converts the source type to the type required by
3266*67e74705SXin Li // the argument of the constructor.
3267*67e74705SXin Li //
3268*67e74705SXin Li QualType ThisType = Constructor->getThisType(S.Context);
3269*67e74705SXin Li if (isa<InitListExpr>(From)) {
3270*67e74705SXin Li // Initializer lists don't have conversions as such.
3271*67e74705SXin Li User.Before.setAsIdentityConversion();
3272*67e74705SXin Li } else {
3273*67e74705SXin Li if (Best->Conversions[0].isEllipsis())
3274*67e74705SXin Li User.EllipsisConversion = true;
3275*67e74705SXin Li else {
3276*67e74705SXin Li User.Before = Best->Conversions[0].Standard;
3277*67e74705SXin Li User.EllipsisConversion = false;
3278*67e74705SXin Li }
3279*67e74705SXin Li }
3280*67e74705SXin Li User.HadMultipleCandidates = HadMultipleCandidates;
3281*67e74705SXin Li User.ConversionFunction = Constructor;
3282*67e74705SXin Li User.FoundConversionFunction = Best->FoundDecl;
3283*67e74705SXin Li User.After.setAsIdentityConversion();
3284*67e74705SXin Li User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
3285*67e74705SXin Li User.After.setAllToTypes(ToType);
3286*67e74705SXin Li return Result;
3287*67e74705SXin Li }
3288*67e74705SXin Li if (CXXConversionDecl *Conversion
3289*67e74705SXin Li = dyn_cast<CXXConversionDecl>(Best->Function)) {
3290*67e74705SXin Li // C++ [over.ics.user]p1:
3291*67e74705SXin Li //
3292*67e74705SXin Li // [...] If the user-defined conversion is specified by a
3293*67e74705SXin Li // conversion function (12.3.2), the initial standard
3294*67e74705SXin Li // conversion sequence converts the source type to the
3295*67e74705SXin Li // implicit object parameter of the conversion function.
3296*67e74705SXin Li User.Before = Best->Conversions[0].Standard;
3297*67e74705SXin Li User.HadMultipleCandidates = HadMultipleCandidates;
3298*67e74705SXin Li User.ConversionFunction = Conversion;
3299*67e74705SXin Li User.FoundConversionFunction = Best->FoundDecl;
3300*67e74705SXin Li User.EllipsisConversion = false;
3301*67e74705SXin Li
3302*67e74705SXin Li // C++ [over.ics.user]p2:
3303*67e74705SXin Li // The second standard conversion sequence converts the
3304*67e74705SXin Li // result of the user-defined conversion to the target type
3305*67e74705SXin Li // for the sequence. Since an implicit conversion sequence
3306*67e74705SXin Li // is an initialization, the special rules for
3307*67e74705SXin Li // initialization by user-defined conversion apply when
3308*67e74705SXin Li // selecting the best user-defined conversion for a
3309*67e74705SXin Li // user-defined conversion sequence (see 13.3.3 and
3310*67e74705SXin Li // 13.3.3.1).
3311*67e74705SXin Li User.After = Best->FinalConversion;
3312*67e74705SXin Li return Result;
3313*67e74705SXin Li }
3314*67e74705SXin Li llvm_unreachable("Not a constructor or conversion function?");
3315*67e74705SXin Li
3316*67e74705SXin Li case OR_No_Viable_Function:
3317*67e74705SXin Li return OR_No_Viable_Function;
3318*67e74705SXin Li
3319*67e74705SXin Li case OR_Ambiguous:
3320*67e74705SXin Li return OR_Ambiguous;
3321*67e74705SXin Li }
3322*67e74705SXin Li
3323*67e74705SXin Li llvm_unreachable("Invalid OverloadResult!");
3324*67e74705SXin Li }
3325*67e74705SXin Li
3326*67e74705SXin Li bool
DiagnoseMultipleUserDefinedConversion(Expr * From,QualType ToType)3327*67e74705SXin Li Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
3328*67e74705SXin Li ImplicitConversionSequence ICS;
3329*67e74705SXin Li OverloadCandidateSet CandidateSet(From->getExprLoc(),
3330*67e74705SXin Li OverloadCandidateSet::CSK_Normal);
3331*67e74705SXin Li OverloadingResult OvResult =
3332*67e74705SXin Li IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
3333*67e74705SXin Li CandidateSet, false, false);
3334*67e74705SXin Li if (OvResult == OR_Ambiguous)
3335*67e74705SXin Li Diag(From->getLocStart(), diag::err_typecheck_ambiguous_condition)
3336*67e74705SXin Li << From->getType() << ToType << From->getSourceRange();
3337*67e74705SXin Li else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) {
3338*67e74705SXin Li if (!RequireCompleteType(From->getLocStart(), ToType,
3339*67e74705SXin Li diag::err_typecheck_nonviable_condition_incomplete,
3340*67e74705SXin Li From->getType(), From->getSourceRange()))
3341*67e74705SXin Li Diag(From->getLocStart(), diag::err_typecheck_nonviable_condition)
3342*67e74705SXin Li << false << From->getType() << From->getSourceRange() << ToType;
3343*67e74705SXin Li } else
3344*67e74705SXin Li return false;
3345*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
3346*67e74705SXin Li return true;
3347*67e74705SXin Li }
3348*67e74705SXin Li
3349*67e74705SXin Li /// \brief Compare the user-defined conversion functions or constructors
3350*67e74705SXin Li /// of two user-defined conversion sequences to determine whether any ordering
3351*67e74705SXin Li /// is possible.
3352*67e74705SXin Li static ImplicitConversionSequence::CompareKind
compareConversionFunctions(Sema & S,FunctionDecl * Function1,FunctionDecl * Function2)3353*67e74705SXin Li compareConversionFunctions(Sema &S, FunctionDecl *Function1,
3354*67e74705SXin Li FunctionDecl *Function2) {
3355*67e74705SXin Li if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus11)
3356*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3357*67e74705SXin Li
3358*67e74705SXin Li // Objective-C++:
3359*67e74705SXin Li // If both conversion functions are implicitly-declared conversions from
3360*67e74705SXin Li // a lambda closure type to a function pointer and a block pointer,
3361*67e74705SXin Li // respectively, always prefer the conversion to a function pointer,
3362*67e74705SXin Li // because the function pointer is more lightweight and is more likely
3363*67e74705SXin Li // to keep code working.
3364*67e74705SXin Li CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
3365*67e74705SXin Li if (!Conv1)
3366*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3367*67e74705SXin Li
3368*67e74705SXin Li CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
3369*67e74705SXin Li if (!Conv2)
3370*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3371*67e74705SXin Li
3372*67e74705SXin Li if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
3373*67e74705SXin Li bool Block1 = Conv1->getConversionType()->isBlockPointerType();
3374*67e74705SXin Li bool Block2 = Conv2->getConversionType()->isBlockPointerType();
3375*67e74705SXin Li if (Block1 != Block2)
3376*67e74705SXin Li return Block1 ? ImplicitConversionSequence::Worse
3377*67e74705SXin Li : ImplicitConversionSequence::Better;
3378*67e74705SXin Li }
3379*67e74705SXin Li
3380*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3381*67e74705SXin Li }
3382*67e74705SXin Li
hasDeprecatedStringLiteralToCharPtrConversion(const ImplicitConversionSequence & ICS)3383*67e74705SXin Li static bool hasDeprecatedStringLiteralToCharPtrConversion(
3384*67e74705SXin Li const ImplicitConversionSequence &ICS) {
3385*67e74705SXin Li return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
3386*67e74705SXin Li (ICS.isUserDefined() &&
3387*67e74705SXin Li ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
3388*67e74705SXin Li }
3389*67e74705SXin Li
3390*67e74705SXin Li /// CompareImplicitConversionSequences - Compare two implicit
3391*67e74705SXin Li /// conversion sequences to determine whether one is better than the
3392*67e74705SXin Li /// other or if they are indistinguishable (C++ 13.3.3.2).
3393*67e74705SXin Li static ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(Sema & S,SourceLocation Loc,const ImplicitConversionSequence & ICS1,const ImplicitConversionSequence & ICS2)3394*67e74705SXin Li CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
3395*67e74705SXin Li const ImplicitConversionSequence& ICS1,
3396*67e74705SXin Li const ImplicitConversionSequence& ICS2)
3397*67e74705SXin Li {
3398*67e74705SXin Li // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
3399*67e74705SXin Li // conversion sequences (as defined in 13.3.3.1)
3400*67e74705SXin Li // -- a standard conversion sequence (13.3.3.1.1) is a better
3401*67e74705SXin Li // conversion sequence than a user-defined conversion sequence or
3402*67e74705SXin Li // an ellipsis conversion sequence, and
3403*67e74705SXin Li // -- a user-defined conversion sequence (13.3.3.1.2) is a better
3404*67e74705SXin Li // conversion sequence than an ellipsis conversion sequence
3405*67e74705SXin Li // (13.3.3.1.3).
3406*67e74705SXin Li //
3407*67e74705SXin Li // C++0x [over.best.ics]p10:
3408*67e74705SXin Li // For the purpose of ranking implicit conversion sequences as
3409*67e74705SXin Li // described in 13.3.3.2, the ambiguous conversion sequence is
3410*67e74705SXin Li // treated as a user-defined sequence that is indistinguishable
3411*67e74705SXin Li // from any other user-defined conversion sequence.
3412*67e74705SXin Li
3413*67e74705SXin Li // String literal to 'char *' conversion has been deprecated in C++03. It has
3414*67e74705SXin Li // been removed from C++11. We still accept this conversion, if it happens at
3415*67e74705SXin Li // the best viable function. Otherwise, this conversion is considered worse
3416*67e74705SXin Li // than ellipsis conversion. Consider this as an extension; this is not in the
3417*67e74705SXin Li // standard. For example:
3418*67e74705SXin Li //
3419*67e74705SXin Li // int &f(...); // #1
3420*67e74705SXin Li // void f(char*); // #2
3421*67e74705SXin Li // void g() { int &r = f("foo"); }
3422*67e74705SXin Li //
3423*67e74705SXin Li // In C++03, we pick #2 as the best viable function.
3424*67e74705SXin Li // In C++11, we pick #1 as the best viable function, because ellipsis
3425*67e74705SXin Li // conversion is better than string-literal to char* conversion (since there
3426*67e74705SXin Li // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
3427*67e74705SXin Li // convert arguments, #2 would be the best viable function in C++11.
3428*67e74705SXin Li // If the best viable function has this conversion, a warning will be issued
3429*67e74705SXin Li // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
3430*67e74705SXin Li
3431*67e74705SXin Li if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
3432*67e74705SXin Li hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
3433*67e74705SXin Li hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
3434*67e74705SXin Li return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
3435*67e74705SXin Li ? ImplicitConversionSequence::Worse
3436*67e74705SXin Li : ImplicitConversionSequence::Better;
3437*67e74705SXin Li
3438*67e74705SXin Li if (ICS1.getKindRank() < ICS2.getKindRank())
3439*67e74705SXin Li return ImplicitConversionSequence::Better;
3440*67e74705SXin Li if (ICS2.getKindRank() < ICS1.getKindRank())
3441*67e74705SXin Li return ImplicitConversionSequence::Worse;
3442*67e74705SXin Li
3443*67e74705SXin Li // The following checks require both conversion sequences to be of
3444*67e74705SXin Li // the same kind.
3445*67e74705SXin Li if (ICS1.getKind() != ICS2.getKind())
3446*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3447*67e74705SXin Li
3448*67e74705SXin Li ImplicitConversionSequence::CompareKind Result =
3449*67e74705SXin Li ImplicitConversionSequence::Indistinguishable;
3450*67e74705SXin Li
3451*67e74705SXin Li // Two implicit conversion sequences of the same form are
3452*67e74705SXin Li // indistinguishable conversion sequences unless one of the
3453*67e74705SXin Li // following rules apply: (C++ 13.3.3.2p3):
3454*67e74705SXin Li
3455*67e74705SXin Li // List-initialization sequence L1 is a better conversion sequence than
3456*67e74705SXin Li // list-initialization sequence L2 if:
3457*67e74705SXin Li // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
3458*67e74705SXin Li // if not that,
3459*67e74705SXin Li // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
3460*67e74705SXin Li // and N1 is smaller than N2.,
3461*67e74705SXin Li // even if one of the other rules in this paragraph would otherwise apply.
3462*67e74705SXin Li if (!ICS1.isBad()) {
3463*67e74705SXin Li if (ICS1.isStdInitializerListElement() &&
3464*67e74705SXin Li !ICS2.isStdInitializerListElement())
3465*67e74705SXin Li return ImplicitConversionSequence::Better;
3466*67e74705SXin Li if (!ICS1.isStdInitializerListElement() &&
3467*67e74705SXin Li ICS2.isStdInitializerListElement())
3468*67e74705SXin Li return ImplicitConversionSequence::Worse;
3469*67e74705SXin Li }
3470*67e74705SXin Li
3471*67e74705SXin Li if (ICS1.isStandard())
3472*67e74705SXin Li // Standard conversion sequence S1 is a better conversion sequence than
3473*67e74705SXin Li // standard conversion sequence S2 if [...]
3474*67e74705SXin Li Result = CompareStandardConversionSequences(S, Loc,
3475*67e74705SXin Li ICS1.Standard, ICS2.Standard);
3476*67e74705SXin Li else if (ICS1.isUserDefined()) {
3477*67e74705SXin Li // User-defined conversion sequence U1 is a better conversion
3478*67e74705SXin Li // sequence than another user-defined conversion sequence U2 if
3479*67e74705SXin Li // they contain the same user-defined conversion function or
3480*67e74705SXin Li // constructor and if the second standard conversion sequence of
3481*67e74705SXin Li // U1 is better than the second standard conversion sequence of
3482*67e74705SXin Li // U2 (C++ 13.3.3.2p3).
3483*67e74705SXin Li if (ICS1.UserDefined.ConversionFunction ==
3484*67e74705SXin Li ICS2.UserDefined.ConversionFunction)
3485*67e74705SXin Li Result = CompareStandardConversionSequences(S, Loc,
3486*67e74705SXin Li ICS1.UserDefined.After,
3487*67e74705SXin Li ICS2.UserDefined.After);
3488*67e74705SXin Li else
3489*67e74705SXin Li Result = compareConversionFunctions(S,
3490*67e74705SXin Li ICS1.UserDefined.ConversionFunction,
3491*67e74705SXin Li ICS2.UserDefined.ConversionFunction);
3492*67e74705SXin Li }
3493*67e74705SXin Li
3494*67e74705SXin Li return Result;
3495*67e74705SXin Li }
3496*67e74705SXin Li
hasSimilarType(ASTContext & Context,QualType T1,QualType T2)3497*67e74705SXin Li static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
3498*67e74705SXin Li while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
3499*67e74705SXin Li Qualifiers Quals;
3500*67e74705SXin Li T1 = Context.getUnqualifiedArrayType(T1, Quals);
3501*67e74705SXin Li T2 = Context.getUnqualifiedArrayType(T2, Quals);
3502*67e74705SXin Li }
3503*67e74705SXin Li
3504*67e74705SXin Li return Context.hasSameUnqualifiedType(T1, T2);
3505*67e74705SXin Li }
3506*67e74705SXin Li
3507*67e74705SXin Li // Per 13.3.3.2p3, compare the given standard conversion sequences to
3508*67e74705SXin Li // determine if one is a proper subset of the other.
3509*67e74705SXin Li static ImplicitConversionSequence::CompareKind
compareStandardConversionSubsets(ASTContext & Context,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3510*67e74705SXin Li compareStandardConversionSubsets(ASTContext &Context,
3511*67e74705SXin Li const StandardConversionSequence& SCS1,
3512*67e74705SXin Li const StandardConversionSequence& SCS2) {
3513*67e74705SXin Li ImplicitConversionSequence::CompareKind Result
3514*67e74705SXin Li = ImplicitConversionSequence::Indistinguishable;
3515*67e74705SXin Li
3516*67e74705SXin Li // the identity conversion sequence is considered to be a subsequence of
3517*67e74705SXin Li // any non-identity conversion sequence
3518*67e74705SXin Li if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
3519*67e74705SXin Li return ImplicitConversionSequence::Better;
3520*67e74705SXin Li else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
3521*67e74705SXin Li return ImplicitConversionSequence::Worse;
3522*67e74705SXin Li
3523*67e74705SXin Li if (SCS1.Second != SCS2.Second) {
3524*67e74705SXin Li if (SCS1.Second == ICK_Identity)
3525*67e74705SXin Li Result = ImplicitConversionSequence::Better;
3526*67e74705SXin Li else if (SCS2.Second == ICK_Identity)
3527*67e74705SXin Li Result = ImplicitConversionSequence::Worse;
3528*67e74705SXin Li else
3529*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3530*67e74705SXin Li } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
3531*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3532*67e74705SXin Li
3533*67e74705SXin Li if (SCS1.Third == SCS2.Third) {
3534*67e74705SXin Li return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
3535*67e74705SXin Li : ImplicitConversionSequence::Indistinguishable;
3536*67e74705SXin Li }
3537*67e74705SXin Li
3538*67e74705SXin Li if (SCS1.Third == ICK_Identity)
3539*67e74705SXin Li return Result == ImplicitConversionSequence::Worse
3540*67e74705SXin Li ? ImplicitConversionSequence::Indistinguishable
3541*67e74705SXin Li : ImplicitConversionSequence::Better;
3542*67e74705SXin Li
3543*67e74705SXin Li if (SCS2.Third == ICK_Identity)
3544*67e74705SXin Li return Result == ImplicitConversionSequence::Better
3545*67e74705SXin Li ? ImplicitConversionSequence::Indistinguishable
3546*67e74705SXin Li : ImplicitConversionSequence::Worse;
3547*67e74705SXin Li
3548*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3549*67e74705SXin Li }
3550*67e74705SXin Li
3551*67e74705SXin Li /// \brief Determine whether one of the given reference bindings is better
3552*67e74705SXin Li /// than the other based on what kind of bindings they are.
3553*67e74705SXin Li static bool
isBetterReferenceBindingKind(const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3554*67e74705SXin Li isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
3555*67e74705SXin Li const StandardConversionSequence &SCS2) {
3556*67e74705SXin Li // C++0x [over.ics.rank]p3b4:
3557*67e74705SXin Li // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
3558*67e74705SXin Li // implicit object parameter of a non-static member function declared
3559*67e74705SXin Li // without a ref-qualifier, and *either* S1 binds an rvalue reference
3560*67e74705SXin Li // to an rvalue and S2 binds an lvalue reference *or S1 binds an
3561*67e74705SXin Li // lvalue reference to a function lvalue and S2 binds an rvalue
3562*67e74705SXin Li // reference*.
3563*67e74705SXin Li //
3564*67e74705SXin Li // FIXME: Rvalue references. We're going rogue with the above edits,
3565*67e74705SXin Li // because the semantics in the current C++0x working paper (N3225 at the
3566*67e74705SXin Li // time of this writing) break the standard definition of std::forward
3567*67e74705SXin Li // and std::reference_wrapper when dealing with references to functions.
3568*67e74705SXin Li // Proposed wording changes submitted to CWG for consideration.
3569*67e74705SXin Li if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
3570*67e74705SXin Li SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
3571*67e74705SXin Li return false;
3572*67e74705SXin Li
3573*67e74705SXin Li return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
3574*67e74705SXin Li SCS2.IsLvalueReference) ||
3575*67e74705SXin Li (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
3576*67e74705SXin Li !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
3577*67e74705SXin Li }
3578*67e74705SXin Li
3579*67e74705SXin Li /// CompareStandardConversionSequences - Compare two standard
3580*67e74705SXin Li /// conversion sequences to determine whether one is better than the
3581*67e74705SXin Li /// other or if they are indistinguishable (C++ 13.3.3.2p3).
3582*67e74705SXin Li static ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3583*67e74705SXin Li CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
3584*67e74705SXin Li const StandardConversionSequence& SCS1,
3585*67e74705SXin Li const StandardConversionSequence& SCS2)
3586*67e74705SXin Li {
3587*67e74705SXin Li // Standard conversion sequence S1 is a better conversion sequence
3588*67e74705SXin Li // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
3589*67e74705SXin Li
3590*67e74705SXin Li // -- S1 is a proper subsequence of S2 (comparing the conversion
3591*67e74705SXin Li // sequences in the canonical form defined by 13.3.3.1.1,
3592*67e74705SXin Li // excluding any Lvalue Transformation; the identity conversion
3593*67e74705SXin Li // sequence is considered to be a subsequence of any
3594*67e74705SXin Li // non-identity conversion sequence) or, if not that,
3595*67e74705SXin Li if (ImplicitConversionSequence::CompareKind CK
3596*67e74705SXin Li = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
3597*67e74705SXin Li return CK;
3598*67e74705SXin Li
3599*67e74705SXin Li // -- the rank of S1 is better than the rank of S2 (by the rules
3600*67e74705SXin Li // defined below), or, if not that,
3601*67e74705SXin Li ImplicitConversionRank Rank1 = SCS1.getRank();
3602*67e74705SXin Li ImplicitConversionRank Rank2 = SCS2.getRank();
3603*67e74705SXin Li if (Rank1 < Rank2)
3604*67e74705SXin Li return ImplicitConversionSequence::Better;
3605*67e74705SXin Li else if (Rank2 < Rank1)
3606*67e74705SXin Li return ImplicitConversionSequence::Worse;
3607*67e74705SXin Li
3608*67e74705SXin Li // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
3609*67e74705SXin Li // are indistinguishable unless one of the following rules
3610*67e74705SXin Li // applies:
3611*67e74705SXin Li
3612*67e74705SXin Li // A conversion that is not a conversion of a pointer, or
3613*67e74705SXin Li // pointer to member, to bool is better than another conversion
3614*67e74705SXin Li // that is such a conversion.
3615*67e74705SXin Li if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
3616*67e74705SXin Li return SCS2.isPointerConversionToBool()
3617*67e74705SXin Li ? ImplicitConversionSequence::Better
3618*67e74705SXin Li : ImplicitConversionSequence::Worse;
3619*67e74705SXin Li
3620*67e74705SXin Li // C++ [over.ics.rank]p4b2:
3621*67e74705SXin Li //
3622*67e74705SXin Li // If class B is derived directly or indirectly from class A,
3623*67e74705SXin Li // conversion of B* to A* is better than conversion of B* to
3624*67e74705SXin Li // void*, and conversion of A* to void* is better than conversion
3625*67e74705SXin Li // of B* to void*.
3626*67e74705SXin Li bool SCS1ConvertsToVoid
3627*67e74705SXin Li = SCS1.isPointerConversionToVoidPointer(S.Context);
3628*67e74705SXin Li bool SCS2ConvertsToVoid
3629*67e74705SXin Li = SCS2.isPointerConversionToVoidPointer(S.Context);
3630*67e74705SXin Li if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
3631*67e74705SXin Li // Exactly one of the conversion sequences is a conversion to
3632*67e74705SXin Li // a void pointer; it's the worse conversion.
3633*67e74705SXin Li return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
3634*67e74705SXin Li : ImplicitConversionSequence::Worse;
3635*67e74705SXin Li } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
3636*67e74705SXin Li // Neither conversion sequence converts to a void pointer; compare
3637*67e74705SXin Li // their derived-to-base conversions.
3638*67e74705SXin Li if (ImplicitConversionSequence::CompareKind DerivedCK
3639*67e74705SXin Li = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
3640*67e74705SXin Li return DerivedCK;
3641*67e74705SXin Li } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
3642*67e74705SXin Li !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
3643*67e74705SXin Li // Both conversion sequences are conversions to void
3644*67e74705SXin Li // pointers. Compare the source types to determine if there's an
3645*67e74705SXin Li // inheritance relationship in their sources.
3646*67e74705SXin Li QualType FromType1 = SCS1.getFromType();
3647*67e74705SXin Li QualType FromType2 = SCS2.getFromType();
3648*67e74705SXin Li
3649*67e74705SXin Li // Adjust the types we're converting from via the array-to-pointer
3650*67e74705SXin Li // conversion, if we need to.
3651*67e74705SXin Li if (SCS1.First == ICK_Array_To_Pointer)
3652*67e74705SXin Li FromType1 = S.Context.getArrayDecayedType(FromType1);
3653*67e74705SXin Li if (SCS2.First == ICK_Array_To_Pointer)
3654*67e74705SXin Li FromType2 = S.Context.getArrayDecayedType(FromType2);
3655*67e74705SXin Li
3656*67e74705SXin Li QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
3657*67e74705SXin Li QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
3658*67e74705SXin Li
3659*67e74705SXin Li if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3660*67e74705SXin Li return ImplicitConversionSequence::Better;
3661*67e74705SXin Li else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3662*67e74705SXin Li return ImplicitConversionSequence::Worse;
3663*67e74705SXin Li
3664*67e74705SXin Li // Objective-C++: If one interface is more specific than the
3665*67e74705SXin Li // other, it is the better one.
3666*67e74705SXin Li const ObjCObjectPointerType* FromObjCPtr1
3667*67e74705SXin Li = FromType1->getAs<ObjCObjectPointerType>();
3668*67e74705SXin Li const ObjCObjectPointerType* FromObjCPtr2
3669*67e74705SXin Li = FromType2->getAs<ObjCObjectPointerType>();
3670*67e74705SXin Li if (FromObjCPtr1 && FromObjCPtr2) {
3671*67e74705SXin Li bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
3672*67e74705SXin Li FromObjCPtr2);
3673*67e74705SXin Li bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
3674*67e74705SXin Li FromObjCPtr1);
3675*67e74705SXin Li if (AssignLeft != AssignRight) {
3676*67e74705SXin Li return AssignLeft? ImplicitConversionSequence::Better
3677*67e74705SXin Li : ImplicitConversionSequence::Worse;
3678*67e74705SXin Li }
3679*67e74705SXin Li }
3680*67e74705SXin Li }
3681*67e74705SXin Li
3682*67e74705SXin Li // Compare based on qualification conversions (C++ 13.3.3.2p3,
3683*67e74705SXin Li // bullet 3).
3684*67e74705SXin Li if (ImplicitConversionSequence::CompareKind QualCK
3685*67e74705SXin Li = CompareQualificationConversions(S, SCS1, SCS2))
3686*67e74705SXin Li return QualCK;
3687*67e74705SXin Li
3688*67e74705SXin Li if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
3689*67e74705SXin Li // Check for a better reference binding based on the kind of bindings.
3690*67e74705SXin Li if (isBetterReferenceBindingKind(SCS1, SCS2))
3691*67e74705SXin Li return ImplicitConversionSequence::Better;
3692*67e74705SXin Li else if (isBetterReferenceBindingKind(SCS2, SCS1))
3693*67e74705SXin Li return ImplicitConversionSequence::Worse;
3694*67e74705SXin Li
3695*67e74705SXin Li // C++ [over.ics.rank]p3b4:
3696*67e74705SXin Li // -- S1 and S2 are reference bindings (8.5.3), and the types to
3697*67e74705SXin Li // which the references refer are the same type except for
3698*67e74705SXin Li // top-level cv-qualifiers, and the type to which the reference
3699*67e74705SXin Li // initialized by S2 refers is more cv-qualified than the type
3700*67e74705SXin Li // to which the reference initialized by S1 refers.
3701*67e74705SXin Li QualType T1 = SCS1.getToType(2);
3702*67e74705SXin Li QualType T2 = SCS2.getToType(2);
3703*67e74705SXin Li T1 = S.Context.getCanonicalType(T1);
3704*67e74705SXin Li T2 = S.Context.getCanonicalType(T2);
3705*67e74705SXin Li Qualifiers T1Quals, T2Quals;
3706*67e74705SXin Li QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3707*67e74705SXin Li QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3708*67e74705SXin Li if (UnqualT1 == UnqualT2) {
3709*67e74705SXin Li // Objective-C++ ARC: If the references refer to objects with different
3710*67e74705SXin Li // lifetimes, prefer bindings that don't change lifetime.
3711*67e74705SXin Li if (SCS1.ObjCLifetimeConversionBinding !=
3712*67e74705SXin Li SCS2.ObjCLifetimeConversionBinding) {
3713*67e74705SXin Li return SCS1.ObjCLifetimeConversionBinding
3714*67e74705SXin Li ? ImplicitConversionSequence::Worse
3715*67e74705SXin Li : ImplicitConversionSequence::Better;
3716*67e74705SXin Li }
3717*67e74705SXin Li
3718*67e74705SXin Li // If the type is an array type, promote the element qualifiers to the
3719*67e74705SXin Li // type for comparison.
3720*67e74705SXin Li if (isa<ArrayType>(T1) && T1Quals)
3721*67e74705SXin Li T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3722*67e74705SXin Li if (isa<ArrayType>(T2) && T2Quals)
3723*67e74705SXin Li T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3724*67e74705SXin Li if (T2.isMoreQualifiedThan(T1))
3725*67e74705SXin Li return ImplicitConversionSequence::Better;
3726*67e74705SXin Li else if (T1.isMoreQualifiedThan(T2))
3727*67e74705SXin Li return ImplicitConversionSequence::Worse;
3728*67e74705SXin Li }
3729*67e74705SXin Li }
3730*67e74705SXin Li
3731*67e74705SXin Li // In Microsoft mode, prefer an integral conversion to a
3732*67e74705SXin Li // floating-to-integral conversion if the integral conversion
3733*67e74705SXin Li // is between types of the same size.
3734*67e74705SXin Li // For example:
3735*67e74705SXin Li // void f(float);
3736*67e74705SXin Li // void f(int);
3737*67e74705SXin Li // int main {
3738*67e74705SXin Li // long a;
3739*67e74705SXin Li // f(a);
3740*67e74705SXin Li // }
3741*67e74705SXin Li // Here, MSVC will call f(int) instead of generating a compile error
3742*67e74705SXin Li // as clang will do in standard mode.
3743*67e74705SXin Li if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
3744*67e74705SXin Li SCS2.Second == ICK_Floating_Integral &&
3745*67e74705SXin Li S.Context.getTypeSize(SCS1.getFromType()) ==
3746*67e74705SXin Li S.Context.getTypeSize(SCS1.getToType(2)))
3747*67e74705SXin Li return ImplicitConversionSequence::Better;
3748*67e74705SXin Li
3749*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3750*67e74705SXin Li }
3751*67e74705SXin Li
3752*67e74705SXin Li /// CompareQualificationConversions - Compares two standard conversion
3753*67e74705SXin Li /// sequences to determine whether they can be ranked based on their
3754*67e74705SXin Li /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3755*67e74705SXin Li static ImplicitConversionSequence::CompareKind
CompareQualificationConversions(Sema & S,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3756*67e74705SXin Li CompareQualificationConversions(Sema &S,
3757*67e74705SXin Li const StandardConversionSequence& SCS1,
3758*67e74705SXin Li const StandardConversionSequence& SCS2) {
3759*67e74705SXin Li // C++ 13.3.3.2p3:
3760*67e74705SXin Li // -- S1 and S2 differ only in their qualification conversion and
3761*67e74705SXin Li // yield similar types T1 and T2 (C++ 4.4), respectively, and the
3762*67e74705SXin Li // cv-qualification signature of type T1 is a proper subset of
3763*67e74705SXin Li // the cv-qualification signature of type T2, and S1 is not the
3764*67e74705SXin Li // deprecated string literal array-to-pointer conversion (4.2).
3765*67e74705SXin Li if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3766*67e74705SXin Li SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3767*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3768*67e74705SXin Li
3769*67e74705SXin Li // FIXME: the example in the standard doesn't use a qualification
3770*67e74705SXin Li // conversion (!)
3771*67e74705SXin Li QualType T1 = SCS1.getToType(2);
3772*67e74705SXin Li QualType T2 = SCS2.getToType(2);
3773*67e74705SXin Li T1 = S.Context.getCanonicalType(T1);
3774*67e74705SXin Li T2 = S.Context.getCanonicalType(T2);
3775*67e74705SXin Li Qualifiers T1Quals, T2Quals;
3776*67e74705SXin Li QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3777*67e74705SXin Li QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3778*67e74705SXin Li
3779*67e74705SXin Li // If the types are the same, we won't learn anything by unwrapped
3780*67e74705SXin Li // them.
3781*67e74705SXin Li if (UnqualT1 == UnqualT2)
3782*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3783*67e74705SXin Li
3784*67e74705SXin Li // If the type is an array type, promote the element qualifiers to the type
3785*67e74705SXin Li // for comparison.
3786*67e74705SXin Li if (isa<ArrayType>(T1) && T1Quals)
3787*67e74705SXin Li T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3788*67e74705SXin Li if (isa<ArrayType>(T2) && T2Quals)
3789*67e74705SXin Li T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3790*67e74705SXin Li
3791*67e74705SXin Li ImplicitConversionSequence::CompareKind Result
3792*67e74705SXin Li = ImplicitConversionSequence::Indistinguishable;
3793*67e74705SXin Li
3794*67e74705SXin Li // Objective-C++ ARC:
3795*67e74705SXin Li // Prefer qualification conversions not involving a change in lifetime
3796*67e74705SXin Li // to qualification conversions that do not change lifetime.
3797*67e74705SXin Li if (SCS1.QualificationIncludesObjCLifetime !=
3798*67e74705SXin Li SCS2.QualificationIncludesObjCLifetime) {
3799*67e74705SXin Li Result = SCS1.QualificationIncludesObjCLifetime
3800*67e74705SXin Li ? ImplicitConversionSequence::Worse
3801*67e74705SXin Li : ImplicitConversionSequence::Better;
3802*67e74705SXin Li }
3803*67e74705SXin Li
3804*67e74705SXin Li while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3805*67e74705SXin Li // Within each iteration of the loop, we check the qualifiers to
3806*67e74705SXin Li // determine if this still looks like a qualification
3807*67e74705SXin Li // conversion. Then, if all is well, we unwrap one more level of
3808*67e74705SXin Li // pointers or pointers-to-members and do it all again
3809*67e74705SXin Li // until there are no more pointers or pointers-to-members left
3810*67e74705SXin Li // to unwrap. This essentially mimics what
3811*67e74705SXin Li // IsQualificationConversion does, but here we're checking for a
3812*67e74705SXin Li // strict subset of qualifiers.
3813*67e74705SXin Li if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3814*67e74705SXin Li // The qualifiers are the same, so this doesn't tell us anything
3815*67e74705SXin Li // about how the sequences rank.
3816*67e74705SXin Li ;
3817*67e74705SXin Li else if (T2.isMoreQualifiedThan(T1)) {
3818*67e74705SXin Li // T1 has fewer qualifiers, so it could be the better sequence.
3819*67e74705SXin Li if (Result == ImplicitConversionSequence::Worse)
3820*67e74705SXin Li // Neither has qualifiers that are a subset of the other's
3821*67e74705SXin Li // qualifiers.
3822*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3823*67e74705SXin Li
3824*67e74705SXin Li Result = ImplicitConversionSequence::Better;
3825*67e74705SXin Li } else if (T1.isMoreQualifiedThan(T2)) {
3826*67e74705SXin Li // T2 has fewer qualifiers, so it could be the better sequence.
3827*67e74705SXin Li if (Result == ImplicitConversionSequence::Better)
3828*67e74705SXin Li // Neither has qualifiers that are a subset of the other's
3829*67e74705SXin Li // qualifiers.
3830*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3831*67e74705SXin Li
3832*67e74705SXin Li Result = ImplicitConversionSequence::Worse;
3833*67e74705SXin Li } else {
3834*67e74705SXin Li // Qualifiers are disjoint.
3835*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
3836*67e74705SXin Li }
3837*67e74705SXin Li
3838*67e74705SXin Li // If the types after this point are equivalent, we're done.
3839*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(T1, T2))
3840*67e74705SXin Li break;
3841*67e74705SXin Li }
3842*67e74705SXin Li
3843*67e74705SXin Li // Check that the winning standard conversion sequence isn't using
3844*67e74705SXin Li // the deprecated string literal array to pointer conversion.
3845*67e74705SXin Li switch (Result) {
3846*67e74705SXin Li case ImplicitConversionSequence::Better:
3847*67e74705SXin Li if (SCS1.DeprecatedStringLiteralToCharPtr)
3848*67e74705SXin Li Result = ImplicitConversionSequence::Indistinguishable;
3849*67e74705SXin Li break;
3850*67e74705SXin Li
3851*67e74705SXin Li case ImplicitConversionSequence::Indistinguishable:
3852*67e74705SXin Li break;
3853*67e74705SXin Li
3854*67e74705SXin Li case ImplicitConversionSequence::Worse:
3855*67e74705SXin Li if (SCS2.DeprecatedStringLiteralToCharPtr)
3856*67e74705SXin Li Result = ImplicitConversionSequence::Indistinguishable;
3857*67e74705SXin Li break;
3858*67e74705SXin Li }
3859*67e74705SXin Li
3860*67e74705SXin Li return Result;
3861*67e74705SXin Li }
3862*67e74705SXin Li
3863*67e74705SXin Li /// CompareDerivedToBaseConversions - Compares two standard conversion
3864*67e74705SXin Li /// sequences to determine whether they can be ranked based on their
3865*67e74705SXin Li /// various kinds of derived-to-base conversions (C++
3866*67e74705SXin Li /// [over.ics.rank]p4b3). As part of these checks, we also look at
3867*67e74705SXin Li /// conversions between Objective-C interface types.
3868*67e74705SXin Li static ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(Sema & S,SourceLocation Loc,const StandardConversionSequence & SCS1,const StandardConversionSequence & SCS2)3869*67e74705SXin Li CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
3870*67e74705SXin Li const StandardConversionSequence& SCS1,
3871*67e74705SXin Li const StandardConversionSequence& SCS2) {
3872*67e74705SXin Li QualType FromType1 = SCS1.getFromType();
3873*67e74705SXin Li QualType ToType1 = SCS1.getToType(1);
3874*67e74705SXin Li QualType FromType2 = SCS2.getFromType();
3875*67e74705SXin Li QualType ToType2 = SCS2.getToType(1);
3876*67e74705SXin Li
3877*67e74705SXin Li // Adjust the types we're converting from via the array-to-pointer
3878*67e74705SXin Li // conversion, if we need to.
3879*67e74705SXin Li if (SCS1.First == ICK_Array_To_Pointer)
3880*67e74705SXin Li FromType1 = S.Context.getArrayDecayedType(FromType1);
3881*67e74705SXin Li if (SCS2.First == ICK_Array_To_Pointer)
3882*67e74705SXin Li FromType2 = S.Context.getArrayDecayedType(FromType2);
3883*67e74705SXin Li
3884*67e74705SXin Li // Canonicalize all of the types.
3885*67e74705SXin Li FromType1 = S.Context.getCanonicalType(FromType1);
3886*67e74705SXin Li ToType1 = S.Context.getCanonicalType(ToType1);
3887*67e74705SXin Li FromType2 = S.Context.getCanonicalType(FromType2);
3888*67e74705SXin Li ToType2 = S.Context.getCanonicalType(ToType2);
3889*67e74705SXin Li
3890*67e74705SXin Li // C++ [over.ics.rank]p4b3:
3891*67e74705SXin Li //
3892*67e74705SXin Li // If class B is derived directly or indirectly from class A and
3893*67e74705SXin Li // class C is derived directly or indirectly from B,
3894*67e74705SXin Li //
3895*67e74705SXin Li // Compare based on pointer conversions.
3896*67e74705SXin Li if (SCS1.Second == ICK_Pointer_Conversion &&
3897*67e74705SXin Li SCS2.Second == ICK_Pointer_Conversion &&
3898*67e74705SXin Li /*FIXME: Remove if Objective-C id conversions get their own rank*/
3899*67e74705SXin Li FromType1->isPointerType() && FromType2->isPointerType() &&
3900*67e74705SXin Li ToType1->isPointerType() && ToType2->isPointerType()) {
3901*67e74705SXin Li QualType FromPointee1
3902*67e74705SXin Li = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3903*67e74705SXin Li QualType ToPointee1
3904*67e74705SXin Li = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3905*67e74705SXin Li QualType FromPointee2
3906*67e74705SXin Li = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3907*67e74705SXin Li QualType ToPointee2
3908*67e74705SXin Li = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3909*67e74705SXin Li
3910*67e74705SXin Li // -- conversion of C* to B* is better than conversion of C* to A*,
3911*67e74705SXin Li if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3912*67e74705SXin Li if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
3913*67e74705SXin Li return ImplicitConversionSequence::Better;
3914*67e74705SXin Li else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
3915*67e74705SXin Li return ImplicitConversionSequence::Worse;
3916*67e74705SXin Li }
3917*67e74705SXin Li
3918*67e74705SXin Li // -- conversion of B* to A* is better than conversion of C* to A*,
3919*67e74705SXin Li if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3920*67e74705SXin Li if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
3921*67e74705SXin Li return ImplicitConversionSequence::Better;
3922*67e74705SXin Li else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
3923*67e74705SXin Li return ImplicitConversionSequence::Worse;
3924*67e74705SXin Li }
3925*67e74705SXin Li } else if (SCS1.Second == ICK_Pointer_Conversion &&
3926*67e74705SXin Li SCS2.Second == ICK_Pointer_Conversion) {
3927*67e74705SXin Li const ObjCObjectPointerType *FromPtr1
3928*67e74705SXin Li = FromType1->getAs<ObjCObjectPointerType>();
3929*67e74705SXin Li const ObjCObjectPointerType *FromPtr2
3930*67e74705SXin Li = FromType2->getAs<ObjCObjectPointerType>();
3931*67e74705SXin Li const ObjCObjectPointerType *ToPtr1
3932*67e74705SXin Li = ToType1->getAs<ObjCObjectPointerType>();
3933*67e74705SXin Li const ObjCObjectPointerType *ToPtr2
3934*67e74705SXin Li = ToType2->getAs<ObjCObjectPointerType>();
3935*67e74705SXin Li
3936*67e74705SXin Li if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3937*67e74705SXin Li // Apply the same conversion ranking rules for Objective-C pointer types
3938*67e74705SXin Li // that we do for C++ pointers to class types. However, we employ the
3939*67e74705SXin Li // Objective-C pseudo-subtyping relationship used for assignment of
3940*67e74705SXin Li // Objective-C pointer types.
3941*67e74705SXin Li bool FromAssignLeft
3942*67e74705SXin Li = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3943*67e74705SXin Li bool FromAssignRight
3944*67e74705SXin Li = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3945*67e74705SXin Li bool ToAssignLeft
3946*67e74705SXin Li = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3947*67e74705SXin Li bool ToAssignRight
3948*67e74705SXin Li = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3949*67e74705SXin Li
3950*67e74705SXin Li // A conversion to an a non-id object pointer type or qualified 'id'
3951*67e74705SXin Li // type is better than a conversion to 'id'.
3952*67e74705SXin Li if (ToPtr1->isObjCIdType() &&
3953*67e74705SXin Li (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3954*67e74705SXin Li return ImplicitConversionSequence::Worse;
3955*67e74705SXin Li if (ToPtr2->isObjCIdType() &&
3956*67e74705SXin Li (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3957*67e74705SXin Li return ImplicitConversionSequence::Better;
3958*67e74705SXin Li
3959*67e74705SXin Li // A conversion to a non-id object pointer type is better than a
3960*67e74705SXin Li // conversion to a qualified 'id' type
3961*67e74705SXin Li if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3962*67e74705SXin Li return ImplicitConversionSequence::Worse;
3963*67e74705SXin Li if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3964*67e74705SXin Li return ImplicitConversionSequence::Better;
3965*67e74705SXin Li
3966*67e74705SXin Li // A conversion to an a non-Class object pointer type or qualified 'Class'
3967*67e74705SXin Li // type is better than a conversion to 'Class'.
3968*67e74705SXin Li if (ToPtr1->isObjCClassType() &&
3969*67e74705SXin Li (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3970*67e74705SXin Li return ImplicitConversionSequence::Worse;
3971*67e74705SXin Li if (ToPtr2->isObjCClassType() &&
3972*67e74705SXin Li (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3973*67e74705SXin Li return ImplicitConversionSequence::Better;
3974*67e74705SXin Li
3975*67e74705SXin Li // A conversion to a non-Class object pointer type is better than a
3976*67e74705SXin Li // conversion to a qualified 'Class' type.
3977*67e74705SXin Li if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3978*67e74705SXin Li return ImplicitConversionSequence::Worse;
3979*67e74705SXin Li if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3980*67e74705SXin Li return ImplicitConversionSequence::Better;
3981*67e74705SXin Li
3982*67e74705SXin Li // -- "conversion of C* to B* is better than conversion of C* to A*,"
3983*67e74705SXin Li if (S.Context.hasSameType(FromType1, FromType2) &&
3984*67e74705SXin Li !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3985*67e74705SXin Li (ToAssignLeft != ToAssignRight))
3986*67e74705SXin Li return ToAssignLeft? ImplicitConversionSequence::Worse
3987*67e74705SXin Li : ImplicitConversionSequence::Better;
3988*67e74705SXin Li
3989*67e74705SXin Li // -- "conversion of B* to A* is better than conversion of C* to A*,"
3990*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3991*67e74705SXin Li (FromAssignLeft != FromAssignRight))
3992*67e74705SXin Li return FromAssignLeft? ImplicitConversionSequence::Better
3993*67e74705SXin Li : ImplicitConversionSequence::Worse;
3994*67e74705SXin Li }
3995*67e74705SXin Li }
3996*67e74705SXin Li
3997*67e74705SXin Li // Ranking of member-pointer types.
3998*67e74705SXin Li if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3999*67e74705SXin Li FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
4000*67e74705SXin Li ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
4001*67e74705SXin Li const MemberPointerType * FromMemPointer1 =
4002*67e74705SXin Li FromType1->getAs<MemberPointerType>();
4003*67e74705SXin Li const MemberPointerType * ToMemPointer1 =
4004*67e74705SXin Li ToType1->getAs<MemberPointerType>();
4005*67e74705SXin Li const MemberPointerType * FromMemPointer2 =
4006*67e74705SXin Li FromType2->getAs<MemberPointerType>();
4007*67e74705SXin Li const MemberPointerType * ToMemPointer2 =
4008*67e74705SXin Li ToType2->getAs<MemberPointerType>();
4009*67e74705SXin Li const Type *FromPointeeType1 = FromMemPointer1->getClass();
4010*67e74705SXin Li const Type *ToPointeeType1 = ToMemPointer1->getClass();
4011*67e74705SXin Li const Type *FromPointeeType2 = FromMemPointer2->getClass();
4012*67e74705SXin Li const Type *ToPointeeType2 = ToMemPointer2->getClass();
4013*67e74705SXin Li QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
4014*67e74705SXin Li QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
4015*67e74705SXin Li QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
4016*67e74705SXin Li QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
4017*67e74705SXin Li // conversion of A::* to B::* is better than conversion of A::* to C::*,
4018*67e74705SXin Li if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
4019*67e74705SXin Li if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
4020*67e74705SXin Li return ImplicitConversionSequence::Worse;
4021*67e74705SXin Li else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
4022*67e74705SXin Li return ImplicitConversionSequence::Better;
4023*67e74705SXin Li }
4024*67e74705SXin Li // conversion of B::* to C::* is better than conversion of A::* to C::*
4025*67e74705SXin Li if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
4026*67e74705SXin Li if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
4027*67e74705SXin Li return ImplicitConversionSequence::Better;
4028*67e74705SXin Li else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
4029*67e74705SXin Li return ImplicitConversionSequence::Worse;
4030*67e74705SXin Li }
4031*67e74705SXin Li }
4032*67e74705SXin Li
4033*67e74705SXin Li if (SCS1.Second == ICK_Derived_To_Base) {
4034*67e74705SXin Li // -- conversion of C to B is better than conversion of C to A,
4035*67e74705SXin Li // -- binding of an expression of type C to a reference of type
4036*67e74705SXin Li // B& is better than binding an expression of type C to a
4037*67e74705SXin Li // reference of type A&,
4038*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4039*67e74705SXin Li !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4040*67e74705SXin Li if (S.IsDerivedFrom(Loc, ToType1, ToType2))
4041*67e74705SXin Li return ImplicitConversionSequence::Better;
4042*67e74705SXin Li else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
4043*67e74705SXin Li return ImplicitConversionSequence::Worse;
4044*67e74705SXin Li }
4045*67e74705SXin Li
4046*67e74705SXin Li // -- conversion of B to A is better than conversion of C to A.
4047*67e74705SXin Li // -- binding of an expression of type B to a reference of type
4048*67e74705SXin Li // A& is better than binding an expression of type C to a
4049*67e74705SXin Li // reference of type A&,
4050*67e74705SXin Li if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
4051*67e74705SXin Li S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
4052*67e74705SXin Li if (S.IsDerivedFrom(Loc, FromType2, FromType1))
4053*67e74705SXin Li return ImplicitConversionSequence::Better;
4054*67e74705SXin Li else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
4055*67e74705SXin Li return ImplicitConversionSequence::Worse;
4056*67e74705SXin Li }
4057*67e74705SXin Li }
4058*67e74705SXin Li
4059*67e74705SXin Li return ImplicitConversionSequence::Indistinguishable;
4060*67e74705SXin Li }
4061*67e74705SXin Li
4062*67e74705SXin Li /// \brief Determine whether the given type is valid, e.g., it is not an invalid
4063*67e74705SXin Li /// C++ class.
isTypeValid(QualType T)4064*67e74705SXin Li static bool isTypeValid(QualType T) {
4065*67e74705SXin Li if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
4066*67e74705SXin Li return !Record->isInvalidDecl();
4067*67e74705SXin Li
4068*67e74705SXin Li return true;
4069*67e74705SXin Li }
4070*67e74705SXin Li
4071*67e74705SXin Li /// CompareReferenceRelationship - Compare the two types T1 and T2 to
4072*67e74705SXin Li /// determine whether they are reference-related,
4073*67e74705SXin Li /// reference-compatible, reference-compatible with added
4074*67e74705SXin Li /// qualification, or incompatible, for use in C++ initialization by
4075*67e74705SXin Li /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4076*67e74705SXin Li /// type, and the first type (T1) is the pointee type of the reference
4077*67e74705SXin Li /// type being initialized.
4078*67e74705SXin Li Sema::ReferenceCompareResult
CompareReferenceRelationship(SourceLocation Loc,QualType OrigT1,QualType OrigT2,bool & DerivedToBase,bool & ObjCConversion,bool & ObjCLifetimeConversion)4079*67e74705SXin Li Sema::CompareReferenceRelationship(SourceLocation Loc,
4080*67e74705SXin Li QualType OrigT1, QualType OrigT2,
4081*67e74705SXin Li bool &DerivedToBase,
4082*67e74705SXin Li bool &ObjCConversion,
4083*67e74705SXin Li bool &ObjCLifetimeConversion) {
4084*67e74705SXin Li assert(!OrigT1->isReferenceType() &&
4085*67e74705SXin Li "T1 must be the pointee type of the reference type");
4086*67e74705SXin Li assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4087*67e74705SXin Li
4088*67e74705SXin Li QualType T1 = Context.getCanonicalType(OrigT1);
4089*67e74705SXin Li QualType T2 = Context.getCanonicalType(OrigT2);
4090*67e74705SXin Li Qualifiers T1Quals, T2Quals;
4091*67e74705SXin Li QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4092*67e74705SXin Li QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4093*67e74705SXin Li
4094*67e74705SXin Li // C++ [dcl.init.ref]p4:
4095*67e74705SXin Li // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4096*67e74705SXin Li // reference-related to "cv2 T2" if T1 is the same type as T2, or
4097*67e74705SXin Li // T1 is a base class of T2.
4098*67e74705SXin Li DerivedToBase = false;
4099*67e74705SXin Li ObjCConversion = false;
4100*67e74705SXin Li ObjCLifetimeConversion = false;
4101*67e74705SXin Li if (UnqualT1 == UnqualT2) {
4102*67e74705SXin Li // Nothing to do.
4103*67e74705SXin Li } else if (isCompleteType(Loc, OrigT2) &&
4104*67e74705SXin Li isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
4105*67e74705SXin Li IsDerivedFrom(Loc, UnqualT2, UnqualT1))
4106*67e74705SXin Li DerivedToBase = true;
4107*67e74705SXin Li else if (UnqualT1->isObjCObjectOrInterfaceType() &&
4108*67e74705SXin Li UnqualT2->isObjCObjectOrInterfaceType() &&
4109*67e74705SXin Li Context.canBindObjCObjectType(UnqualT1, UnqualT2))
4110*67e74705SXin Li ObjCConversion = true;
4111*67e74705SXin Li else
4112*67e74705SXin Li return Ref_Incompatible;
4113*67e74705SXin Li
4114*67e74705SXin Li // At this point, we know that T1 and T2 are reference-related (at
4115*67e74705SXin Li // least).
4116*67e74705SXin Li
4117*67e74705SXin Li // If the type is an array type, promote the element qualifiers to the type
4118*67e74705SXin Li // for comparison.
4119*67e74705SXin Li if (isa<ArrayType>(T1) && T1Quals)
4120*67e74705SXin Li T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4121*67e74705SXin Li if (isa<ArrayType>(T2) && T2Quals)
4122*67e74705SXin Li T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4123*67e74705SXin Li
4124*67e74705SXin Li // C++ [dcl.init.ref]p4:
4125*67e74705SXin Li // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4126*67e74705SXin Li // reference-related to T2 and cv1 is the same cv-qualification
4127*67e74705SXin Li // as, or greater cv-qualification than, cv2. For purposes of
4128*67e74705SXin Li // overload resolution, cases for which cv1 is greater
4129*67e74705SXin Li // cv-qualification than cv2 are identified as
4130*67e74705SXin Li // reference-compatible with added qualification (see 13.3.3.2).
4131*67e74705SXin Li //
4132*67e74705SXin Li // Note that we also require equivalence of Objective-C GC and address-space
4133*67e74705SXin Li // qualifiers when performing these computations, so that e.g., an int in
4134*67e74705SXin Li // address space 1 is not reference-compatible with an int in address
4135*67e74705SXin Li // space 2.
4136*67e74705SXin Li if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
4137*67e74705SXin Li T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
4138*67e74705SXin Li if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
4139*67e74705SXin Li ObjCLifetimeConversion = true;
4140*67e74705SXin Li
4141*67e74705SXin Li T1Quals.removeObjCLifetime();
4142*67e74705SXin Li T2Quals.removeObjCLifetime();
4143*67e74705SXin Li }
4144*67e74705SXin Li
4145*67e74705SXin Li // MS compiler ignores __unaligned qualifier for references; do the same.
4146*67e74705SXin Li T1Quals.removeUnaligned();
4147*67e74705SXin Li T2Quals.removeUnaligned();
4148*67e74705SXin Li
4149*67e74705SXin Li if (T1Quals == T2Quals)
4150*67e74705SXin Li return Ref_Compatible;
4151*67e74705SXin Li else if (T1Quals.compatiblyIncludes(T2Quals))
4152*67e74705SXin Li return Ref_Compatible_With_Added_Qualification;
4153*67e74705SXin Li else
4154*67e74705SXin Li return Ref_Related;
4155*67e74705SXin Li }
4156*67e74705SXin Li
4157*67e74705SXin Li /// \brief Look for a user-defined conversion to an value reference-compatible
4158*67e74705SXin Li /// with DeclType. Return true if something definite is found.
4159*67e74705SXin Li static bool
FindConversionForRefInit(Sema & S,ImplicitConversionSequence & ICS,QualType DeclType,SourceLocation DeclLoc,Expr * Init,QualType T2,bool AllowRvalues,bool AllowExplicit)4160*67e74705SXin Li FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
4161*67e74705SXin Li QualType DeclType, SourceLocation DeclLoc,
4162*67e74705SXin Li Expr *Init, QualType T2, bool AllowRvalues,
4163*67e74705SXin Li bool AllowExplicit) {
4164*67e74705SXin Li assert(T2->isRecordType() && "Can only find conversions of record types.");
4165*67e74705SXin Li CXXRecordDecl *T2RecordDecl
4166*67e74705SXin Li = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4167*67e74705SXin Li
4168*67e74705SXin Li OverloadCandidateSet CandidateSet(DeclLoc, OverloadCandidateSet::CSK_Normal);
4169*67e74705SXin Li const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4170*67e74705SXin Li for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4171*67e74705SXin Li NamedDecl *D = *I;
4172*67e74705SXin Li CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4173*67e74705SXin Li if (isa<UsingShadowDecl>(D))
4174*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
4175*67e74705SXin Li
4176*67e74705SXin Li FunctionTemplateDecl *ConvTemplate
4177*67e74705SXin Li = dyn_cast<FunctionTemplateDecl>(D);
4178*67e74705SXin Li CXXConversionDecl *Conv;
4179*67e74705SXin Li if (ConvTemplate)
4180*67e74705SXin Li Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4181*67e74705SXin Li else
4182*67e74705SXin Li Conv = cast<CXXConversionDecl>(D);
4183*67e74705SXin Li
4184*67e74705SXin Li // If this is an explicit conversion, and we're not allowed to consider
4185*67e74705SXin Li // explicit conversions, skip it.
4186*67e74705SXin Li if (!AllowExplicit && Conv->isExplicit())
4187*67e74705SXin Li continue;
4188*67e74705SXin Li
4189*67e74705SXin Li if (AllowRvalues) {
4190*67e74705SXin Li bool DerivedToBase = false;
4191*67e74705SXin Li bool ObjCConversion = false;
4192*67e74705SXin Li bool ObjCLifetimeConversion = false;
4193*67e74705SXin Li
4194*67e74705SXin Li // If we are initializing an rvalue reference, don't permit conversion
4195*67e74705SXin Li // functions that return lvalues.
4196*67e74705SXin Li if (!ConvTemplate && DeclType->isRValueReferenceType()) {
4197*67e74705SXin Li const ReferenceType *RefType
4198*67e74705SXin Li = Conv->getConversionType()->getAs<LValueReferenceType>();
4199*67e74705SXin Li if (RefType && !RefType->getPointeeType()->isFunctionType())
4200*67e74705SXin Li continue;
4201*67e74705SXin Li }
4202*67e74705SXin Li
4203*67e74705SXin Li if (!ConvTemplate &&
4204*67e74705SXin Li S.CompareReferenceRelationship(
4205*67e74705SXin Li DeclLoc,
4206*67e74705SXin Li Conv->getConversionType().getNonReferenceType()
4207*67e74705SXin Li .getUnqualifiedType(),
4208*67e74705SXin Li DeclType.getNonReferenceType().getUnqualifiedType(),
4209*67e74705SXin Li DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
4210*67e74705SXin Li Sema::Ref_Incompatible)
4211*67e74705SXin Li continue;
4212*67e74705SXin Li } else {
4213*67e74705SXin Li // If the conversion function doesn't return a reference type,
4214*67e74705SXin Li // it can't be considered for this conversion. An rvalue reference
4215*67e74705SXin Li // is only acceptable if its referencee is a function type.
4216*67e74705SXin Li
4217*67e74705SXin Li const ReferenceType *RefType =
4218*67e74705SXin Li Conv->getConversionType()->getAs<ReferenceType>();
4219*67e74705SXin Li if (!RefType ||
4220*67e74705SXin Li (!RefType->isLValueReferenceType() &&
4221*67e74705SXin Li !RefType->getPointeeType()->isFunctionType()))
4222*67e74705SXin Li continue;
4223*67e74705SXin Li }
4224*67e74705SXin Li
4225*67e74705SXin Li if (ConvTemplate)
4226*67e74705SXin Li S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4227*67e74705SXin Li Init, DeclType, CandidateSet,
4228*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
4229*67e74705SXin Li else
4230*67e74705SXin Li S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4231*67e74705SXin Li DeclType, CandidateSet,
4232*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
4233*67e74705SXin Li }
4234*67e74705SXin Li
4235*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
4236*67e74705SXin Li
4237*67e74705SXin Li OverloadCandidateSet::iterator Best;
4238*67e74705SXin Li switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4239*67e74705SXin Li case OR_Success:
4240*67e74705SXin Li // C++ [over.ics.ref]p1:
4241*67e74705SXin Li //
4242*67e74705SXin Li // [...] If the parameter binds directly to the result of
4243*67e74705SXin Li // applying a conversion function to the argument
4244*67e74705SXin Li // expression, the implicit conversion sequence is a
4245*67e74705SXin Li // user-defined conversion sequence (13.3.3.1.2), with the
4246*67e74705SXin Li // second standard conversion sequence either an identity
4247*67e74705SXin Li // conversion or, if the conversion function returns an
4248*67e74705SXin Li // entity of a type that is a derived class of the parameter
4249*67e74705SXin Li // type, a derived-to-base Conversion.
4250*67e74705SXin Li if (!Best->FinalConversion.DirectBinding)
4251*67e74705SXin Li return false;
4252*67e74705SXin Li
4253*67e74705SXin Li ICS.setUserDefined();
4254*67e74705SXin Li ICS.UserDefined.Before = Best->Conversions[0].Standard;
4255*67e74705SXin Li ICS.UserDefined.After = Best->FinalConversion;
4256*67e74705SXin Li ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
4257*67e74705SXin Li ICS.UserDefined.ConversionFunction = Best->Function;
4258*67e74705SXin Li ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
4259*67e74705SXin Li ICS.UserDefined.EllipsisConversion = false;
4260*67e74705SXin Li assert(ICS.UserDefined.After.ReferenceBinding &&
4261*67e74705SXin Li ICS.UserDefined.After.DirectBinding &&
4262*67e74705SXin Li "Expected a direct reference binding!");
4263*67e74705SXin Li return true;
4264*67e74705SXin Li
4265*67e74705SXin Li case OR_Ambiguous:
4266*67e74705SXin Li ICS.setAmbiguous();
4267*67e74705SXin Li for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4268*67e74705SXin Li Cand != CandidateSet.end(); ++Cand)
4269*67e74705SXin Li if (Cand->Viable)
4270*67e74705SXin Li ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
4271*67e74705SXin Li return true;
4272*67e74705SXin Li
4273*67e74705SXin Li case OR_No_Viable_Function:
4274*67e74705SXin Li case OR_Deleted:
4275*67e74705SXin Li // There was no suitable conversion, or we found a deleted
4276*67e74705SXin Li // conversion; continue with other checks.
4277*67e74705SXin Li return false;
4278*67e74705SXin Li }
4279*67e74705SXin Li
4280*67e74705SXin Li llvm_unreachable("Invalid OverloadResult!");
4281*67e74705SXin Li }
4282*67e74705SXin Li
4283*67e74705SXin Li /// \brief Compute an implicit conversion sequence for reference
4284*67e74705SXin Li /// initialization.
4285*67e74705SXin Li static ImplicitConversionSequence
TryReferenceInit(Sema & S,Expr * Init,QualType DeclType,SourceLocation DeclLoc,bool SuppressUserConversions,bool AllowExplicit)4286*67e74705SXin Li TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
4287*67e74705SXin Li SourceLocation DeclLoc,
4288*67e74705SXin Li bool SuppressUserConversions,
4289*67e74705SXin Li bool AllowExplicit) {
4290*67e74705SXin Li assert(DeclType->isReferenceType() && "Reference init needs a reference");
4291*67e74705SXin Li
4292*67e74705SXin Li // Most paths end in a failed conversion.
4293*67e74705SXin Li ImplicitConversionSequence ICS;
4294*67e74705SXin Li ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4295*67e74705SXin Li
4296*67e74705SXin Li QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4297*67e74705SXin Li QualType T2 = Init->getType();
4298*67e74705SXin Li
4299*67e74705SXin Li // If the initializer is the address of an overloaded function, try
4300*67e74705SXin Li // to resolve the overloaded function. If all goes well, T2 is the
4301*67e74705SXin Li // type of the resulting function.
4302*67e74705SXin Li if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4303*67e74705SXin Li DeclAccessPair Found;
4304*67e74705SXin Li if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
4305*67e74705SXin Li false, Found))
4306*67e74705SXin Li T2 = Fn->getType();
4307*67e74705SXin Li }
4308*67e74705SXin Li
4309*67e74705SXin Li // Compute some basic properties of the types and the initializer.
4310*67e74705SXin Li bool isRValRef = DeclType->isRValueReferenceType();
4311*67e74705SXin Li bool DerivedToBase = false;
4312*67e74705SXin Li bool ObjCConversion = false;
4313*67e74705SXin Li bool ObjCLifetimeConversion = false;
4314*67e74705SXin Li Expr::Classification InitCategory = Init->Classify(S.Context);
4315*67e74705SXin Li Sema::ReferenceCompareResult RefRelationship
4316*67e74705SXin Li = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
4317*67e74705SXin Li ObjCConversion, ObjCLifetimeConversion);
4318*67e74705SXin Li
4319*67e74705SXin Li
4320*67e74705SXin Li // C++0x [dcl.init.ref]p5:
4321*67e74705SXin Li // A reference to type "cv1 T1" is initialized by an expression
4322*67e74705SXin Li // of type "cv2 T2" as follows:
4323*67e74705SXin Li
4324*67e74705SXin Li // -- If reference is an lvalue reference and the initializer expression
4325*67e74705SXin Li if (!isRValRef) {
4326*67e74705SXin Li // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4327*67e74705SXin Li // reference-compatible with "cv2 T2," or
4328*67e74705SXin Li //
4329*67e74705SXin Li // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
4330*67e74705SXin Li if (InitCategory.isLValue() &&
4331*67e74705SXin Li RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
4332*67e74705SXin Li // C++ [over.ics.ref]p1:
4333*67e74705SXin Li // When a parameter of reference type binds directly (8.5.3)
4334*67e74705SXin Li // to an argument expression, the implicit conversion sequence
4335*67e74705SXin Li // is the identity conversion, unless the argument expression
4336*67e74705SXin Li // has a type that is a derived class of the parameter type,
4337*67e74705SXin Li // in which case the implicit conversion sequence is a
4338*67e74705SXin Li // derived-to-base Conversion (13.3.3.1).
4339*67e74705SXin Li ICS.setStandard();
4340*67e74705SXin Li ICS.Standard.First = ICK_Identity;
4341*67e74705SXin Li ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4342*67e74705SXin Li : ObjCConversion? ICK_Compatible_Conversion
4343*67e74705SXin Li : ICK_Identity;
4344*67e74705SXin Li ICS.Standard.Third = ICK_Identity;
4345*67e74705SXin Li ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4346*67e74705SXin Li ICS.Standard.setToType(0, T2);
4347*67e74705SXin Li ICS.Standard.setToType(1, T1);
4348*67e74705SXin Li ICS.Standard.setToType(2, T1);
4349*67e74705SXin Li ICS.Standard.ReferenceBinding = true;
4350*67e74705SXin Li ICS.Standard.DirectBinding = true;
4351*67e74705SXin Li ICS.Standard.IsLvalueReference = !isRValRef;
4352*67e74705SXin Li ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4353*67e74705SXin Li ICS.Standard.BindsToRvalue = false;
4354*67e74705SXin Li ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4355*67e74705SXin Li ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4356*67e74705SXin Li ICS.Standard.CopyConstructor = nullptr;
4357*67e74705SXin Li ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4358*67e74705SXin Li
4359*67e74705SXin Li // Nothing more to do: the inaccessibility/ambiguity check for
4360*67e74705SXin Li // derived-to-base conversions is suppressed when we're
4361*67e74705SXin Li // computing the implicit conversion sequence (C++
4362*67e74705SXin Li // [over.best.ics]p2).
4363*67e74705SXin Li return ICS;
4364*67e74705SXin Li }
4365*67e74705SXin Li
4366*67e74705SXin Li // -- has a class type (i.e., T2 is a class type), where T1 is
4367*67e74705SXin Li // not reference-related to T2, and can be implicitly
4368*67e74705SXin Li // converted to an lvalue of type "cv3 T3," where "cv1 T1"
4369*67e74705SXin Li // is reference-compatible with "cv3 T3" 92) (this
4370*67e74705SXin Li // conversion is selected by enumerating the applicable
4371*67e74705SXin Li // conversion functions (13.3.1.6) and choosing the best
4372*67e74705SXin Li // one through overload resolution (13.3)),
4373*67e74705SXin Li if (!SuppressUserConversions && T2->isRecordType() &&
4374*67e74705SXin Li S.isCompleteType(DeclLoc, T2) &&
4375*67e74705SXin Li RefRelationship == Sema::Ref_Incompatible) {
4376*67e74705SXin Li if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4377*67e74705SXin Li Init, T2, /*AllowRvalues=*/false,
4378*67e74705SXin Li AllowExplicit))
4379*67e74705SXin Li return ICS;
4380*67e74705SXin Li }
4381*67e74705SXin Li }
4382*67e74705SXin Li
4383*67e74705SXin Li // -- Otherwise, the reference shall be an lvalue reference to a
4384*67e74705SXin Li // non-volatile const type (i.e., cv1 shall be const), or the reference
4385*67e74705SXin Li // shall be an rvalue reference.
4386*67e74705SXin Li if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
4387*67e74705SXin Li return ICS;
4388*67e74705SXin Li
4389*67e74705SXin Li // -- If the initializer expression
4390*67e74705SXin Li //
4391*67e74705SXin Li // -- is an xvalue, class prvalue, array prvalue or function
4392*67e74705SXin Li // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
4393*67e74705SXin Li if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
4394*67e74705SXin Li (InitCategory.isXValue() ||
4395*67e74705SXin Li (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
4396*67e74705SXin Li (InitCategory.isLValue() && T2->isFunctionType()))) {
4397*67e74705SXin Li ICS.setStandard();
4398*67e74705SXin Li ICS.Standard.First = ICK_Identity;
4399*67e74705SXin Li ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
4400*67e74705SXin Li : ObjCConversion? ICK_Compatible_Conversion
4401*67e74705SXin Li : ICK_Identity;
4402*67e74705SXin Li ICS.Standard.Third = ICK_Identity;
4403*67e74705SXin Li ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
4404*67e74705SXin Li ICS.Standard.setToType(0, T2);
4405*67e74705SXin Li ICS.Standard.setToType(1, T1);
4406*67e74705SXin Li ICS.Standard.setToType(2, T1);
4407*67e74705SXin Li ICS.Standard.ReferenceBinding = true;
4408*67e74705SXin Li // In C++0x, this is always a direct binding. In C++98/03, it's a direct
4409*67e74705SXin Li // binding unless we're binding to a class prvalue.
4410*67e74705SXin Li // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
4411*67e74705SXin Li // allow the use of rvalue references in C++98/03 for the benefit of
4412*67e74705SXin Li // standard library implementors; therefore, we need the xvalue check here.
4413*67e74705SXin Li ICS.Standard.DirectBinding =
4414*67e74705SXin Li S.getLangOpts().CPlusPlus11 ||
4415*67e74705SXin Li !(InitCategory.isPRValue() || T2->isRecordType());
4416*67e74705SXin Li ICS.Standard.IsLvalueReference = !isRValRef;
4417*67e74705SXin Li ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
4418*67e74705SXin Li ICS.Standard.BindsToRvalue = InitCategory.isRValue();
4419*67e74705SXin Li ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4420*67e74705SXin Li ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
4421*67e74705SXin Li ICS.Standard.CopyConstructor = nullptr;
4422*67e74705SXin Li ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
4423*67e74705SXin Li return ICS;
4424*67e74705SXin Li }
4425*67e74705SXin Li
4426*67e74705SXin Li // -- has a class type (i.e., T2 is a class type), where T1 is not
4427*67e74705SXin Li // reference-related to T2, and can be implicitly converted to
4428*67e74705SXin Li // an xvalue, class prvalue, or function lvalue of type
4429*67e74705SXin Li // "cv3 T3", where "cv1 T1" is reference-compatible with
4430*67e74705SXin Li // "cv3 T3",
4431*67e74705SXin Li //
4432*67e74705SXin Li // then the reference is bound to the value of the initializer
4433*67e74705SXin Li // expression in the first case and to the result of the conversion
4434*67e74705SXin Li // in the second case (or, in either case, to an appropriate base
4435*67e74705SXin Li // class subobject).
4436*67e74705SXin Li if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4437*67e74705SXin Li T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
4438*67e74705SXin Li FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
4439*67e74705SXin Li Init, T2, /*AllowRvalues=*/true,
4440*67e74705SXin Li AllowExplicit)) {
4441*67e74705SXin Li // In the second case, if the reference is an rvalue reference
4442*67e74705SXin Li // and the second standard conversion sequence of the
4443*67e74705SXin Li // user-defined conversion sequence includes an lvalue-to-rvalue
4444*67e74705SXin Li // conversion, the program is ill-formed.
4445*67e74705SXin Li if (ICS.isUserDefined() && isRValRef &&
4446*67e74705SXin Li ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
4447*67e74705SXin Li ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
4448*67e74705SXin Li
4449*67e74705SXin Li return ICS;
4450*67e74705SXin Li }
4451*67e74705SXin Li
4452*67e74705SXin Li // A temporary of function type cannot be created; don't even try.
4453*67e74705SXin Li if (T1->isFunctionType())
4454*67e74705SXin Li return ICS;
4455*67e74705SXin Li
4456*67e74705SXin Li // -- Otherwise, a temporary of type "cv1 T1" is created and
4457*67e74705SXin Li // initialized from the initializer expression using the
4458*67e74705SXin Li // rules for a non-reference copy initialization (8.5). The
4459*67e74705SXin Li // reference is then bound to the temporary. If T1 is
4460*67e74705SXin Li // reference-related to T2, cv1 must be the same
4461*67e74705SXin Li // cv-qualification as, or greater cv-qualification than,
4462*67e74705SXin Li // cv2; otherwise, the program is ill-formed.
4463*67e74705SXin Li if (RefRelationship == Sema::Ref_Related) {
4464*67e74705SXin Li // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4465*67e74705SXin Li // we would be reference-compatible or reference-compatible with
4466*67e74705SXin Li // added qualification. But that wasn't the case, so the reference
4467*67e74705SXin Li // initialization fails.
4468*67e74705SXin Li //
4469*67e74705SXin Li // Note that we only want to check address spaces and cvr-qualifiers here.
4470*67e74705SXin Li // ObjC GC, lifetime and unaligned qualifiers aren't important.
4471*67e74705SXin Li Qualifiers T1Quals = T1.getQualifiers();
4472*67e74705SXin Li Qualifiers T2Quals = T2.getQualifiers();
4473*67e74705SXin Li T1Quals.removeObjCGCAttr();
4474*67e74705SXin Li T1Quals.removeObjCLifetime();
4475*67e74705SXin Li T2Quals.removeObjCGCAttr();
4476*67e74705SXin Li T2Quals.removeObjCLifetime();
4477*67e74705SXin Li // MS compiler ignores __unaligned qualifier for references; do the same.
4478*67e74705SXin Li T1Quals.removeUnaligned();
4479*67e74705SXin Li T2Quals.removeUnaligned();
4480*67e74705SXin Li if (!T1Quals.compatiblyIncludes(T2Quals))
4481*67e74705SXin Li return ICS;
4482*67e74705SXin Li }
4483*67e74705SXin Li
4484*67e74705SXin Li // If at least one of the types is a class type, the types are not
4485*67e74705SXin Li // related, and we aren't allowed any user conversions, the
4486*67e74705SXin Li // reference binding fails. This case is important for breaking
4487*67e74705SXin Li // recursion, since TryImplicitConversion below will attempt to
4488*67e74705SXin Li // create a temporary through the use of a copy constructor.
4489*67e74705SXin Li if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
4490*67e74705SXin Li (T1->isRecordType() || T2->isRecordType()))
4491*67e74705SXin Li return ICS;
4492*67e74705SXin Li
4493*67e74705SXin Li // If T1 is reference-related to T2 and the reference is an rvalue
4494*67e74705SXin Li // reference, the initializer expression shall not be an lvalue.
4495*67e74705SXin Li if (RefRelationship >= Sema::Ref_Related &&
4496*67e74705SXin Li isRValRef && Init->Classify(S.Context).isLValue())
4497*67e74705SXin Li return ICS;
4498*67e74705SXin Li
4499*67e74705SXin Li // C++ [over.ics.ref]p2:
4500*67e74705SXin Li // When a parameter of reference type is not bound directly to
4501*67e74705SXin Li // an argument expression, the conversion sequence is the one
4502*67e74705SXin Li // required to convert the argument expression to the
4503*67e74705SXin Li // underlying type of the reference according to
4504*67e74705SXin Li // 13.3.3.1. Conceptually, this conversion sequence corresponds
4505*67e74705SXin Li // to copy-initializing a temporary of the underlying type with
4506*67e74705SXin Li // the argument expression. Any difference in top-level
4507*67e74705SXin Li // cv-qualification is subsumed by the initialization itself
4508*67e74705SXin Li // and does not constitute a conversion.
4509*67e74705SXin Li ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
4510*67e74705SXin Li /*AllowExplicit=*/false,
4511*67e74705SXin Li /*InOverloadResolution=*/false,
4512*67e74705SXin Li /*CStyle=*/false,
4513*67e74705SXin Li /*AllowObjCWritebackConversion=*/false,
4514*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
4515*67e74705SXin Li
4516*67e74705SXin Li // Of course, that's still a reference binding.
4517*67e74705SXin Li if (ICS.isStandard()) {
4518*67e74705SXin Li ICS.Standard.ReferenceBinding = true;
4519*67e74705SXin Li ICS.Standard.IsLvalueReference = !isRValRef;
4520*67e74705SXin Li ICS.Standard.BindsToFunctionLvalue = false;
4521*67e74705SXin Li ICS.Standard.BindsToRvalue = true;
4522*67e74705SXin Li ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4523*67e74705SXin Li ICS.Standard.ObjCLifetimeConversionBinding = false;
4524*67e74705SXin Li } else if (ICS.isUserDefined()) {
4525*67e74705SXin Li const ReferenceType *LValRefType =
4526*67e74705SXin Li ICS.UserDefined.ConversionFunction->getReturnType()
4527*67e74705SXin Li ->getAs<LValueReferenceType>();
4528*67e74705SXin Li
4529*67e74705SXin Li // C++ [over.ics.ref]p3:
4530*67e74705SXin Li // Except for an implicit object parameter, for which see 13.3.1, a
4531*67e74705SXin Li // standard conversion sequence cannot be formed if it requires [...]
4532*67e74705SXin Li // binding an rvalue reference to an lvalue other than a function
4533*67e74705SXin Li // lvalue.
4534*67e74705SXin Li // Note that the function case is not possible here.
4535*67e74705SXin Li if (DeclType->isRValueReferenceType() && LValRefType) {
4536*67e74705SXin Li // FIXME: This is the wrong BadConversionSequence. The problem is binding
4537*67e74705SXin Li // an rvalue reference to a (non-function) lvalue, not binding an lvalue
4538*67e74705SXin Li // reference to an rvalue!
4539*67e74705SXin Li ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
4540*67e74705SXin Li return ICS;
4541*67e74705SXin Li }
4542*67e74705SXin Li
4543*67e74705SXin Li ICS.UserDefined.Before.setAsIdentityConversion();
4544*67e74705SXin Li ICS.UserDefined.After.ReferenceBinding = true;
4545*67e74705SXin Li ICS.UserDefined.After.IsLvalueReference = !isRValRef;
4546*67e74705SXin Li ICS.UserDefined.After.BindsToFunctionLvalue = false;
4547*67e74705SXin Li ICS.UserDefined.After.BindsToRvalue = !LValRefType;
4548*67e74705SXin Li ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4549*67e74705SXin Li ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
4550*67e74705SXin Li }
4551*67e74705SXin Li
4552*67e74705SXin Li return ICS;
4553*67e74705SXin Li }
4554*67e74705SXin Li
4555*67e74705SXin Li static ImplicitConversionSequence
4556*67e74705SXin Li TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4557*67e74705SXin Li bool SuppressUserConversions,
4558*67e74705SXin Li bool InOverloadResolution,
4559*67e74705SXin Li bool AllowObjCWritebackConversion,
4560*67e74705SXin Li bool AllowExplicit = false);
4561*67e74705SXin Li
4562*67e74705SXin Li /// TryListConversion - Try to copy-initialize a value of type ToType from the
4563*67e74705SXin Li /// initializer list From.
4564*67e74705SXin Li static ImplicitConversionSequence
TryListConversion(Sema & S,InitListExpr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion)4565*67e74705SXin Li TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
4566*67e74705SXin Li bool SuppressUserConversions,
4567*67e74705SXin Li bool InOverloadResolution,
4568*67e74705SXin Li bool AllowObjCWritebackConversion) {
4569*67e74705SXin Li // C++11 [over.ics.list]p1:
4570*67e74705SXin Li // When an argument is an initializer list, it is not an expression and
4571*67e74705SXin Li // special rules apply for converting it to a parameter type.
4572*67e74705SXin Li
4573*67e74705SXin Li ImplicitConversionSequence Result;
4574*67e74705SXin Li Result.setBad(BadConversionSequence::no_conversion, From, ToType);
4575*67e74705SXin Li
4576*67e74705SXin Li // We need a complete type for what follows. Incomplete types can never be
4577*67e74705SXin Li // initialized from init lists.
4578*67e74705SXin Li if (!S.isCompleteType(From->getLocStart(), ToType))
4579*67e74705SXin Li return Result;
4580*67e74705SXin Li
4581*67e74705SXin Li // Per DR1467:
4582*67e74705SXin Li // If the parameter type is a class X and the initializer list has a single
4583*67e74705SXin Li // element of type cv U, where U is X or a class derived from X, the
4584*67e74705SXin Li // implicit conversion sequence is the one required to convert the element
4585*67e74705SXin Li // to the parameter type.
4586*67e74705SXin Li //
4587*67e74705SXin Li // Otherwise, if the parameter type is a character array [... ]
4588*67e74705SXin Li // and the initializer list has a single element that is an
4589*67e74705SXin Li // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
4590*67e74705SXin Li // implicit conversion sequence is the identity conversion.
4591*67e74705SXin Li if (From->getNumInits() == 1) {
4592*67e74705SXin Li if (ToType->isRecordType()) {
4593*67e74705SXin Li QualType InitType = From->getInit(0)->getType();
4594*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
4595*67e74705SXin Li S.IsDerivedFrom(From->getLocStart(), InitType, ToType))
4596*67e74705SXin Li return TryCopyInitialization(S, From->getInit(0), ToType,
4597*67e74705SXin Li SuppressUserConversions,
4598*67e74705SXin Li InOverloadResolution,
4599*67e74705SXin Li AllowObjCWritebackConversion);
4600*67e74705SXin Li }
4601*67e74705SXin Li // FIXME: Check the other conditions here: array of character type,
4602*67e74705SXin Li // initializer is a string literal.
4603*67e74705SXin Li if (ToType->isArrayType()) {
4604*67e74705SXin Li InitializedEntity Entity =
4605*67e74705SXin Li InitializedEntity::InitializeParameter(S.Context, ToType,
4606*67e74705SXin Li /*Consumed=*/false);
4607*67e74705SXin Li if (S.CanPerformCopyInitialization(Entity, From)) {
4608*67e74705SXin Li Result.setStandard();
4609*67e74705SXin Li Result.Standard.setAsIdentityConversion();
4610*67e74705SXin Li Result.Standard.setFromType(ToType);
4611*67e74705SXin Li Result.Standard.setAllToTypes(ToType);
4612*67e74705SXin Li return Result;
4613*67e74705SXin Li }
4614*67e74705SXin Li }
4615*67e74705SXin Li }
4616*67e74705SXin Li
4617*67e74705SXin Li // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
4618*67e74705SXin Li // C++11 [over.ics.list]p2:
4619*67e74705SXin Li // If the parameter type is std::initializer_list<X> or "array of X" and
4620*67e74705SXin Li // all the elements can be implicitly converted to X, the implicit
4621*67e74705SXin Li // conversion sequence is the worst conversion necessary to convert an
4622*67e74705SXin Li // element of the list to X.
4623*67e74705SXin Li //
4624*67e74705SXin Li // C++14 [over.ics.list]p3:
4625*67e74705SXin Li // Otherwise, if the parameter type is "array of N X", if the initializer
4626*67e74705SXin Li // list has exactly N elements or if it has fewer than N elements and X is
4627*67e74705SXin Li // default-constructible, and if all the elements of the initializer list
4628*67e74705SXin Li // can be implicitly converted to X, the implicit conversion sequence is
4629*67e74705SXin Li // the worst conversion necessary to convert an element of the list to X.
4630*67e74705SXin Li //
4631*67e74705SXin Li // FIXME: We're missing a lot of these checks.
4632*67e74705SXin Li bool toStdInitializerList = false;
4633*67e74705SXin Li QualType X;
4634*67e74705SXin Li if (ToType->isArrayType())
4635*67e74705SXin Li X = S.Context.getAsArrayType(ToType)->getElementType();
4636*67e74705SXin Li else
4637*67e74705SXin Li toStdInitializerList = S.isStdInitializerList(ToType, &X);
4638*67e74705SXin Li if (!X.isNull()) {
4639*67e74705SXin Li for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
4640*67e74705SXin Li Expr *Init = From->getInit(i);
4641*67e74705SXin Li ImplicitConversionSequence ICS =
4642*67e74705SXin Li TryCopyInitialization(S, Init, X, SuppressUserConversions,
4643*67e74705SXin Li InOverloadResolution,
4644*67e74705SXin Li AllowObjCWritebackConversion);
4645*67e74705SXin Li // If a single element isn't convertible, fail.
4646*67e74705SXin Li if (ICS.isBad()) {
4647*67e74705SXin Li Result = ICS;
4648*67e74705SXin Li break;
4649*67e74705SXin Li }
4650*67e74705SXin Li // Otherwise, look for the worst conversion.
4651*67e74705SXin Li if (Result.isBad() ||
4652*67e74705SXin Li CompareImplicitConversionSequences(S, From->getLocStart(), ICS,
4653*67e74705SXin Li Result) ==
4654*67e74705SXin Li ImplicitConversionSequence::Worse)
4655*67e74705SXin Li Result = ICS;
4656*67e74705SXin Li }
4657*67e74705SXin Li
4658*67e74705SXin Li // For an empty list, we won't have computed any conversion sequence.
4659*67e74705SXin Li // Introduce the identity conversion sequence.
4660*67e74705SXin Li if (From->getNumInits() == 0) {
4661*67e74705SXin Li Result.setStandard();
4662*67e74705SXin Li Result.Standard.setAsIdentityConversion();
4663*67e74705SXin Li Result.Standard.setFromType(ToType);
4664*67e74705SXin Li Result.Standard.setAllToTypes(ToType);
4665*67e74705SXin Li }
4666*67e74705SXin Li
4667*67e74705SXin Li Result.setStdInitializerListElement(toStdInitializerList);
4668*67e74705SXin Li return Result;
4669*67e74705SXin Li }
4670*67e74705SXin Li
4671*67e74705SXin Li // C++14 [over.ics.list]p4:
4672*67e74705SXin Li // C++11 [over.ics.list]p3:
4673*67e74705SXin Li // Otherwise, if the parameter is a non-aggregate class X and overload
4674*67e74705SXin Li // resolution chooses a single best constructor [...] the implicit
4675*67e74705SXin Li // conversion sequence is a user-defined conversion sequence. If multiple
4676*67e74705SXin Li // constructors are viable but none is better than the others, the
4677*67e74705SXin Li // implicit conversion sequence is a user-defined conversion sequence.
4678*67e74705SXin Li if (ToType->isRecordType() && !ToType->isAggregateType()) {
4679*67e74705SXin Li // This function can deal with initializer lists.
4680*67e74705SXin Li return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
4681*67e74705SXin Li /*AllowExplicit=*/false,
4682*67e74705SXin Li InOverloadResolution, /*CStyle=*/false,
4683*67e74705SXin Li AllowObjCWritebackConversion,
4684*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
4685*67e74705SXin Li }
4686*67e74705SXin Li
4687*67e74705SXin Li // C++14 [over.ics.list]p5:
4688*67e74705SXin Li // C++11 [over.ics.list]p4:
4689*67e74705SXin Li // Otherwise, if the parameter has an aggregate type which can be
4690*67e74705SXin Li // initialized from the initializer list [...] the implicit conversion
4691*67e74705SXin Li // sequence is a user-defined conversion sequence.
4692*67e74705SXin Li if (ToType->isAggregateType()) {
4693*67e74705SXin Li // Type is an aggregate, argument is an init list. At this point it comes
4694*67e74705SXin Li // down to checking whether the initialization works.
4695*67e74705SXin Li // FIXME: Find out whether this parameter is consumed or not.
4696*67e74705SXin Li InitializedEntity Entity =
4697*67e74705SXin Li InitializedEntity::InitializeParameter(S.Context, ToType,
4698*67e74705SXin Li /*Consumed=*/false);
4699*67e74705SXin Li if (S.CanPerformCopyInitialization(Entity, From)) {
4700*67e74705SXin Li Result.setUserDefined();
4701*67e74705SXin Li Result.UserDefined.Before.setAsIdentityConversion();
4702*67e74705SXin Li // Initializer lists don't have a type.
4703*67e74705SXin Li Result.UserDefined.Before.setFromType(QualType());
4704*67e74705SXin Li Result.UserDefined.Before.setAllToTypes(QualType());
4705*67e74705SXin Li
4706*67e74705SXin Li Result.UserDefined.After.setAsIdentityConversion();
4707*67e74705SXin Li Result.UserDefined.After.setFromType(ToType);
4708*67e74705SXin Li Result.UserDefined.After.setAllToTypes(ToType);
4709*67e74705SXin Li Result.UserDefined.ConversionFunction = nullptr;
4710*67e74705SXin Li }
4711*67e74705SXin Li return Result;
4712*67e74705SXin Li }
4713*67e74705SXin Li
4714*67e74705SXin Li // C++14 [over.ics.list]p6:
4715*67e74705SXin Li // C++11 [over.ics.list]p5:
4716*67e74705SXin Li // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
4717*67e74705SXin Li if (ToType->isReferenceType()) {
4718*67e74705SXin Li // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
4719*67e74705SXin Li // mention initializer lists in any way. So we go by what list-
4720*67e74705SXin Li // initialization would do and try to extrapolate from that.
4721*67e74705SXin Li
4722*67e74705SXin Li QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
4723*67e74705SXin Li
4724*67e74705SXin Li // If the initializer list has a single element that is reference-related
4725*67e74705SXin Li // to the parameter type, we initialize the reference from that.
4726*67e74705SXin Li if (From->getNumInits() == 1) {
4727*67e74705SXin Li Expr *Init = From->getInit(0);
4728*67e74705SXin Li
4729*67e74705SXin Li QualType T2 = Init->getType();
4730*67e74705SXin Li
4731*67e74705SXin Li // If the initializer is the address of an overloaded function, try
4732*67e74705SXin Li // to resolve the overloaded function. If all goes well, T2 is the
4733*67e74705SXin Li // type of the resulting function.
4734*67e74705SXin Li if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
4735*67e74705SXin Li DeclAccessPair Found;
4736*67e74705SXin Li if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
4737*67e74705SXin Li Init, ToType, false, Found))
4738*67e74705SXin Li T2 = Fn->getType();
4739*67e74705SXin Li }
4740*67e74705SXin Li
4741*67e74705SXin Li // Compute some basic properties of the types and the initializer.
4742*67e74705SXin Li bool dummy1 = false;
4743*67e74705SXin Li bool dummy2 = false;
4744*67e74705SXin Li bool dummy3 = false;
4745*67e74705SXin Li Sema::ReferenceCompareResult RefRelationship
4746*67e74705SXin Li = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
4747*67e74705SXin Li dummy2, dummy3);
4748*67e74705SXin Li
4749*67e74705SXin Li if (RefRelationship >= Sema::Ref_Related) {
4750*67e74705SXin Li return TryReferenceInit(S, Init, ToType, /*FIXME*/From->getLocStart(),
4751*67e74705SXin Li SuppressUserConversions,
4752*67e74705SXin Li /*AllowExplicit=*/false);
4753*67e74705SXin Li }
4754*67e74705SXin Li }
4755*67e74705SXin Li
4756*67e74705SXin Li // Otherwise, we bind the reference to a temporary created from the
4757*67e74705SXin Li // initializer list.
4758*67e74705SXin Li Result = TryListConversion(S, From, T1, SuppressUserConversions,
4759*67e74705SXin Li InOverloadResolution,
4760*67e74705SXin Li AllowObjCWritebackConversion);
4761*67e74705SXin Li if (Result.isFailure())
4762*67e74705SXin Li return Result;
4763*67e74705SXin Li assert(!Result.isEllipsis() &&
4764*67e74705SXin Li "Sub-initialization cannot result in ellipsis conversion.");
4765*67e74705SXin Li
4766*67e74705SXin Li // Can we even bind to a temporary?
4767*67e74705SXin Li if (ToType->isRValueReferenceType() ||
4768*67e74705SXin Li (T1.isConstQualified() && !T1.isVolatileQualified())) {
4769*67e74705SXin Li StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
4770*67e74705SXin Li Result.UserDefined.After;
4771*67e74705SXin Li SCS.ReferenceBinding = true;
4772*67e74705SXin Li SCS.IsLvalueReference = ToType->isLValueReferenceType();
4773*67e74705SXin Li SCS.BindsToRvalue = true;
4774*67e74705SXin Li SCS.BindsToFunctionLvalue = false;
4775*67e74705SXin Li SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
4776*67e74705SXin Li SCS.ObjCLifetimeConversionBinding = false;
4777*67e74705SXin Li } else
4778*67e74705SXin Li Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
4779*67e74705SXin Li From, ToType);
4780*67e74705SXin Li return Result;
4781*67e74705SXin Li }
4782*67e74705SXin Li
4783*67e74705SXin Li // C++14 [over.ics.list]p7:
4784*67e74705SXin Li // C++11 [over.ics.list]p6:
4785*67e74705SXin Li // Otherwise, if the parameter type is not a class:
4786*67e74705SXin Li if (!ToType->isRecordType()) {
4787*67e74705SXin Li // - if the initializer list has one element that is not itself an
4788*67e74705SXin Li // initializer list, the implicit conversion sequence is the one
4789*67e74705SXin Li // required to convert the element to the parameter type.
4790*67e74705SXin Li unsigned NumInits = From->getNumInits();
4791*67e74705SXin Li if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
4792*67e74705SXin Li Result = TryCopyInitialization(S, From->getInit(0), ToType,
4793*67e74705SXin Li SuppressUserConversions,
4794*67e74705SXin Li InOverloadResolution,
4795*67e74705SXin Li AllowObjCWritebackConversion);
4796*67e74705SXin Li // - if the initializer list has no elements, the implicit conversion
4797*67e74705SXin Li // sequence is the identity conversion.
4798*67e74705SXin Li else if (NumInits == 0) {
4799*67e74705SXin Li Result.setStandard();
4800*67e74705SXin Li Result.Standard.setAsIdentityConversion();
4801*67e74705SXin Li Result.Standard.setFromType(ToType);
4802*67e74705SXin Li Result.Standard.setAllToTypes(ToType);
4803*67e74705SXin Li }
4804*67e74705SXin Li return Result;
4805*67e74705SXin Li }
4806*67e74705SXin Li
4807*67e74705SXin Li // C++14 [over.ics.list]p8:
4808*67e74705SXin Li // C++11 [over.ics.list]p7:
4809*67e74705SXin Li // In all cases other than those enumerated above, no conversion is possible
4810*67e74705SXin Li return Result;
4811*67e74705SXin Li }
4812*67e74705SXin Li
4813*67e74705SXin Li /// TryCopyInitialization - Try to copy-initialize a value of type
4814*67e74705SXin Li /// ToType from the expression From. Return the implicit conversion
4815*67e74705SXin Li /// sequence required to pass this argument, which may be a bad
4816*67e74705SXin Li /// conversion sequence (meaning that the argument cannot be passed to
4817*67e74705SXin Li /// a parameter of this type). If @p SuppressUserConversions, then we
4818*67e74705SXin Li /// do not permit any user-defined conversion sequences.
4819*67e74705SXin Li static ImplicitConversionSequence
TryCopyInitialization(Sema & S,Expr * From,QualType ToType,bool SuppressUserConversions,bool InOverloadResolution,bool AllowObjCWritebackConversion,bool AllowExplicit)4820*67e74705SXin Li TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
4821*67e74705SXin Li bool SuppressUserConversions,
4822*67e74705SXin Li bool InOverloadResolution,
4823*67e74705SXin Li bool AllowObjCWritebackConversion,
4824*67e74705SXin Li bool AllowExplicit) {
4825*67e74705SXin Li if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
4826*67e74705SXin Li return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
4827*67e74705SXin Li InOverloadResolution,AllowObjCWritebackConversion);
4828*67e74705SXin Li
4829*67e74705SXin Li if (ToType->isReferenceType())
4830*67e74705SXin Li return TryReferenceInit(S, From, ToType,
4831*67e74705SXin Li /*FIXME:*/From->getLocStart(),
4832*67e74705SXin Li SuppressUserConversions,
4833*67e74705SXin Li AllowExplicit);
4834*67e74705SXin Li
4835*67e74705SXin Li return TryImplicitConversion(S, From, ToType,
4836*67e74705SXin Li SuppressUserConversions,
4837*67e74705SXin Li /*AllowExplicit=*/false,
4838*67e74705SXin Li InOverloadResolution,
4839*67e74705SXin Li /*CStyle=*/false,
4840*67e74705SXin Li AllowObjCWritebackConversion,
4841*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
4842*67e74705SXin Li }
4843*67e74705SXin Li
TryCopyInitialization(const CanQualType FromQTy,const CanQualType ToQTy,Sema & S,SourceLocation Loc,ExprValueKind FromVK)4844*67e74705SXin Li static bool TryCopyInitialization(const CanQualType FromQTy,
4845*67e74705SXin Li const CanQualType ToQTy,
4846*67e74705SXin Li Sema &S,
4847*67e74705SXin Li SourceLocation Loc,
4848*67e74705SXin Li ExprValueKind FromVK) {
4849*67e74705SXin Li OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
4850*67e74705SXin Li ImplicitConversionSequence ICS =
4851*67e74705SXin Li TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
4852*67e74705SXin Li
4853*67e74705SXin Li return !ICS.isBad();
4854*67e74705SXin Li }
4855*67e74705SXin Li
4856*67e74705SXin Li /// TryObjectArgumentInitialization - Try to initialize the object
4857*67e74705SXin Li /// parameter of the given member function (@c Method) from the
4858*67e74705SXin Li /// expression @p From.
4859*67e74705SXin Li static ImplicitConversionSequence
TryObjectArgumentInitialization(Sema & S,SourceLocation Loc,QualType FromType,Expr::Classification FromClassification,CXXMethodDecl * Method,CXXRecordDecl * ActingContext)4860*67e74705SXin Li TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
4861*67e74705SXin Li Expr::Classification FromClassification,
4862*67e74705SXin Li CXXMethodDecl *Method,
4863*67e74705SXin Li CXXRecordDecl *ActingContext) {
4864*67e74705SXin Li QualType ClassType = S.Context.getTypeDeclType(ActingContext);
4865*67e74705SXin Li // [class.dtor]p2: A destructor can be invoked for a const, volatile or
4866*67e74705SXin Li // const volatile object.
4867*67e74705SXin Li unsigned Quals = isa<CXXDestructorDecl>(Method) ?
4868*67e74705SXin Li Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
4869*67e74705SXin Li QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals);
4870*67e74705SXin Li
4871*67e74705SXin Li // Set up the conversion sequence as a "bad" conversion, to allow us
4872*67e74705SXin Li // to exit early.
4873*67e74705SXin Li ImplicitConversionSequence ICS;
4874*67e74705SXin Li
4875*67e74705SXin Li // We need to have an object of class type.
4876*67e74705SXin Li if (const PointerType *PT = FromType->getAs<PointerType>()) {
4877*67e74705SXin Li FromType = PT->getPointeeType();
4878*67e74705SXin Li
4879*67e74705SXin Li // When we had a pointer, it's implicitly dereferenced, so we
4880*67e74705SXin Li // better have an lvalue.
4881*67e74705SXin Li assert(FromClassification.isLValue());
4882*67e74705SXin Li }
4883*67e74705SXin Li
4884*67e74705SXin Li assert(FromType->isRecordType());
4885*67e74705SXin Li
4886*67e74705SXin Li // C++0x [over.match.funcs]p4:
4887*67e74705SXin Li // For non-static member functions, the type of the implicit object
4888*67e74705SXin Li // parameter is
4889*67e74705SXin Li //
4890*67e74705SXin Li // - "lvalue reference to cv X" for functions declared without a
4891*67e74705SXin Li // ref-qualifier or with the & ref-qualifier
4892*67e74705SXin Li // - "rvalue reference to cv X" for functions declared with the &&
4893*67e74705SXin Li // ref-qualifier
4894*67e74705SXin Li //
4895*67e74705SXin Li // where X is the class of which the function is a member and cv is the
4896*67e74705SXin Li // cv-qualification on the member function declaration.
4897*67e74705SXin Li //
4898*67e74705SXin Li // However, when finding an implicit conversion sequence for the argument, we
4899*67e74705SXin Li // are not allowed to create temporaries or perform user-defined conversions
4900*67e74705SXin Li // (C++ [over.match.funcs]p5). We perform a simplified version of
4901*67e74705SXin Li // reference binding here, that allows class rvalues to bind to
4902*67e74705SXin Li // non-constant references.
4903*67e74705SXin Li
4904*67e74705SXin Li // First check the qualifiers.
4905*67e74705SXin Li QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
4906*67e74705SXin Li if (ImplicitParamType.getCVRQualifiers()
4907*67e74705SXin Li != FromTypeCanon.getLocalCVRQualifiers() &&
4908*67e74705SXin Li !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
4909*67e74705SXin Li ICS.setBad(BadConversionSequence::bad_qualifiers,
4910*67e74705SXin Li FromType, ImplicitParamType);
4911*67e74705SXin Li return ICS;
4912*67e74705SXin Li }
4913*67e74705SXin Li
4914*67e74705SXin Li // Check that we have either the same type or a derived type. It
4915*67e74705SXin Li // affects the conversion rank.
4916*67e74705SXin Li QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
4917*67e74705SXin Li ImplicitConversionKind SecondKind;
4918*67e74705SXin Li if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
4919*67e74705SXin Li SecondKind = ICK_Identity;
4920*67e74705SXin Li } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
4921*67e74705SXin Li SecondKind = ICK_Derived_To_Base;
4922*67e74705SXin Li else {
4923*67e74705SXin Li ICS.setBad(BadConversionSequence::unrelated_class,
4924*67e74705SXin Li FromType, ImplicitParamType);
4925*67e74705SXin Li return ICS;
4926*67e74705SXin Li }
4927*67e74705SXin Li
4928*67e74705SXin Li // Check the ref-qualifier.
4929*67e74705SXin Li switch (Method->getRefQualifier()) {
4930*67e74705SXin Li case RQ_None:
4931*67e74705SXin Li // Do nothing; we don't care about lvalueness or rvalueness.
4932*67e74705SXin Li break;
4933*67e74705SXin Li
4934*67e74705SXin Li case RQ_LValue:
4935*67e74705SXin Li if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4936*67e74705SXin Li // non-const lvalue reference cannot bind to an rvalue
4937*67e74705SXin Li ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4938*67e74705SXin Li ImplicitParamType);
4939*67e74705SXin Li return ICS;
4940*67e74705SXin Li }
4941*67e74705SXin Li break;
4942*67e74705SXin Li
4943*67e74705SXin Li case RQ_RValue:
4944*67e74705SXin Li if (!FromClassification.isRValue()) {
4945*67e74705SXin Li // rvalue reference cannot bind to an lvalue
4946*67e74705SXin Li ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4947*67e74705SXin Li ImplicitParamType);
4948*67e74705SXin Li return ICS;
4949*67e74705SXin Li }
4950*67e74705SXin Li break;
4951*67e74705SXin Li }
4952*67e74705SXin Li
4953*67e74705SXin Li // Success. Mark this as a reference binding.
4954*67e74705SXin Li ICS.setStandard();
4955*67e74705SXin Li ICS.Standard.setAsIdentityConversion();
4956*67e74705SXin Li ICS.Standard.Second = SecondKind;
4957*67e74705SXin Li ICS.Standard.setFromType(FromType);
4958*67e74705SXin Li ICS.Standard.setAllToTypes(ImplicitParamType);
4959*67e74705SXin Li ICS.Standard.ReferenceBinding = true;
4960*67e74705SXin Li ICS.Standard.DirectBinding = true;
4961*67e74705SXin Li ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4962*67e74705SXin Li ICS.Standard.BindsToFunctionLvalue = false;
4963*67e74705SXin Li ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4964*67e74705SXin Li ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4965*67e74705SXin Li = (Method->getRefQualifier() == RQ_None);
4966*67e74705SXin Li return ICS;
4967*67e74705SXin Li }
4968*67e74705SXin Li
4969*67e74705SXin Li /// PerformObjectArgumentInitialization - Perform initialization of
4970*67e74705SXin Li /// the implicit object parameter for the given Method with the given
4971*67e74705SXin Li /// expression.
4972*67e74705SXin Li ExprResult
PerformObjectArgumentInitialization(Expr * From,NestedNameSpecifier * Qualifier,NamedDecl * FoundDecl,CXXMethodDecl * Method)4973*67e74705SXin Li Sema::PerformObjectArgumentInitialization(Expr *From,
4974*67e74705SXin Li NestedNameSpecifier *Qualifier,
4975*67e74705SXin Li NamedDecl *FoundDecl,
4976*67e74705SXin Li CXXMethodDecl *Method) {
4977*67e74705SXin Li QualType FromRecordType, DestType;
4978*67e74705SXin Li QualType ImplicitParamRecordType =
4979*67e74705SXin Li Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4980*67e74705SXin Li
4981*67e74705SXin Li Expr::Classification FromClassification;
4982*67e74705SXin Li if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4983*67e74705SXin Li FromRecordType = PT->getPointeeType();
4984*67e74705SXin Li DestType = Method->getThisType(Context);
4985*67e74705SXin Li FromClassification = Expr::Classification::makeSimpleLValue();
4986*67e74705SXin Li } else {
4987*67e74705SXin Li FromRecordType = From->getType();
4988*67e74705SXin Li DestType = ImplicitParamRecordType;
4989*67e74705SXin Li FromClassification = From->Classify(Context);
4990*67e74705SXin Li }
4991*67e74705SXin Li
4992*67e74705SXin Li // Note that we always use the true parent context when performing
4993*67e74705SXin Li // the actual argument initialization.
4994*67e74705SXin Li ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
4995*67e74705SXin Li *this, From->getLocStart(), From->getType(), FromClassification, Method,
4996*67e74705SXin Li Method->getParent());
4997*67e74705SXin Li if (ICS.isBad()) {
4998*67e74705SXin Li if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4999*67e74705SXin Li Qualifiers FromQs = FromRecordType.getQualifiers();
5000*67e74705SXin Li Qualifiers ToQs = DestType.getQualifiers();
5001*67e74705SXin Li unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5002*67e74705SXin Li if (CVR) {
5003*67e74705SXin Li Diag(From->getLocStart(),
5004*67e74705SXin Li diag::err_member_function_call_bad_cvr)
5005*67e74705SXin Li << Method->getDeclName() << FromRecordType << (CVR - 1)
5006*67e74705SXin Li << From->getSourceRange();
5007*67e74705SXin Li Diag(Method->getLocation(), diag::note_previous_decl)
5008*67e74705SXin Li << Method->getDeclName();
5009*67e74705SXin Li return ExprError();
5010*67e74705SXin Li }
5011*67e74705SXin Li }
5012*67e74705SXin Li
5013*67e74705SXin Li return Diag(From->getLocStart(),
5014*67e74705SXin Li diag::err_implicit_object_parameter_init)
5015*67e74705SXin Li << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
5016*67e74705SXin Li }
5017*67e74705SXin Li
5018*67e74705SXin Li if (ICS.Standard.Second == ICK_Derived_To_Base) {
5019*67e74705SXin Li ExprResult FromRes =
5020*67e74705SXin Li PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
5021*67e74705SXin Li if (FromRes.isInvalid())
5022*67e74705SXin Li return ExprError();
5023*67e74705SXin Li From = FromRes.get();
5024*67e74705SXin Li }
5025*67e74705SXin Li
5026*67e74705SXin Li if (!Context.hasSameType(From->getType(), DestType))
5027*67e74705SXin Li From = ImpCastExprToType(From, DestType, CK_NoOp,
5028*67e74705SXin Li From->getValueKind()).get();
5029*67e74705SXin Li return From;
5030*67e74705SXin Li }
5031*67e74705SXin Li
5032*67e74705SXin Li /// TryContextuallyConvertToBool - Attempt to contextually convert the
5033*67e74705SXin Li /// expression From to bool (C++0x [conv]p3).
5034*67e74705SXin Li static ImplicitConversionSequence
TryContextuallyConvertToBool(Sema & S,Expr * From)5035*67e74705SXin Li TryContextuallyConvertToBool(Sema &S, Expr *From) {
5036*67e74705SXin Li return TryImplicitConversion(S, From, S.Context.BoolTy,
5037*67e74705SXin Li /*SuppressUserConversions=*/false,
5038*67e74705SXin Li /*AllowExplicit=*/true,
5039*67e74705SXin Li /*InOverloadResolution=*/false,
5040*67e74705SXin Li /*CStyle=*/false,
5041*67e74705SXin Li /*AllowObjCWritebackConversion=*/false,
5042*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
5043*67e74705SXin Li }
5044*67e74705SXin Li
5045*67e74705SXin Li /// PerformContextuallyConvertToBool - Perform a contextual conversion
5046*67e74705SXin Li /// of the expression From to bool (C++0x [conv]p3).
PerformContextuallyConvertToBool(Expr * From)5047*67e74705SXin Li ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
5048*67e74705SXin Li if (checkPlaceholderForOverload(*this, From))
5049*67e74705SXin Li return ExprError();
5050*67e74705SXin Li
5051*67e74705SXin Li ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
5052*67e74705SXin Li if (!ICS.isBad())
5053*67e74705SXin Li return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
5054*67e74705SXin Li
5055*67e74705SXin Li if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
5056*67e74705SXin Li return Diag(From->getLocStart(),
5057*67e74705SXin Li diag::err_typecheck_bool_condition)
5058*67e74705SXin Li << From->getType() << From->getSourceRange();
5059*67e74705SXin Li return ExprError();
5060*67e74705SXin Li }
5061*67e74705SXin Li
5062*67e74705SXin Li /// Check that the specified conversion is permitted in a converted constant
5063*67e74705SXin Li /// expression, according to C++11 [expr.const]p3. Return true if the conversion
5064*67e74705SXin Li /// is acceptable.
CheckConvertedConstantConversions(Sema & S,StandardConversionSequence & SCS)5065*67e74705SXin Li static bool CheckConvertedConstantConversions(Sema &S,
5066*67e74705SXin Li StandardConversionSequence &SCS) {
5067*67e74705SXin Li // Since we know that the target type is an integral or unscoped enumeration
5068*67e74705SXin Li // type, most conversion kinds are impossible. All possible First and Third
5069*67e74705SXin Li // conversions are fine.
5070*67e74705SXin Li switch (SCS.Second) {
5071*67e74705SXin Li case ICK_Identity:
5072*67e74705SXin Li case ICK_NoReturn_Adjustment:
5073*67e74705SXin Li case ICK_Integral_Promotion:
5074*67e74705SXin Li case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
5075*67e74705SXin Li return true;
5076*67e74705SXin Li
5077*67e74705SXin Li case ICK_Boolean_Conversion:
5078*67e74705SXin Li // Conversion from an integral or unscoped enumeration type to bool is
5079*67e74705SXin Li // classified as ICK_Boolean_Conversion, but it's also arguably an integral
5080*67e74705SXin Li // conversion, so we allow it in a converted constant expression.
5081*67e74705SXin Li //
5082*67e74705SXin Li // FIXME: Per core issue 1407, we should not allow this, but that breaks
5083*67e74705SXin Li // a lot of popular code. We should at least add a warning for this
5084*67e74705SXin Li // (non-conforming) extension.
5085*67e74705SXin Li return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
5086*67e74705SXin Li SCS.getToType(2)->isBooleanType();
5087*67e74705SXin Li
5088*67e74705SXin Li case ICK_Pointer_Conversion:
5089*67e74705SXin Li case ICK_Pointer_Member:
5090*67e74705SXin Li // C++1z: null pointer conversions and null member pointer conversions are
5091*67e74705SXin Li // only permitted if the source type is std::nullptr_t.
5092*67e74705SXin Li return SCS.getFromType()->isNullPtrType();
5093*67e74705SXin Li
5094*67e74705SXin Li case ICK_Floating_Promotion:
5095*67e74705SXin Li case ICK_Complex_Promotion:
5096*67e74705SXin Li case ICK_Floating_Conversion:
5097*67e74705SXin Li case ICK_Complex_Conversion:
5098*67e74705SXin Li case ICK_Floating_Integral:
5099*67e74705SXin Li case ICK_Compatible_Conversion:
5100*67e74705SXin Li case ICK_Derived_To_Base:
5101*67e74705SXin Li case ICK_Vector_Conversion:
5102*67e74705SXin Li case ICK_Vector_Splat:
5103*67e74705SXin Li case ICK_Complex_Real:
5104*67e74705SXin Li case ICK_Block_Pointer_Conversion:
5105*67e74705SXin Li case ICK_TransparentUnionConversion:
5106*67e74705SXin Li case ICK_Writeback_Conversion:
5107*67e74705SXin Li case ICK_Zero_Event_Conversion:
5108*67e74705SXin Li case ICK_C_Only_Conversion:
5109*67e74705SXin Li return false;
5110*67e74705SXin Li
5111*67e74705SXin Li case ICK_Lvalue_To_Rvalue:
5112*67e74705SXin Li case ICK_Array_To_Pointer:
5113*67e74705SXin Li case ICK_Function_To_Pointer:
5114*67e74705SXin Li llvm_unreachable("found a first conversion kind in Second");
5115*67e74705SXin Li
5116*67e74705SXin Li case ICK_Qualification:
5117*67e74705SXin Li llvm_unreachable("found a third conversion kind in Second");
5118*67e74705SXin Li
5119*67e74705SXin Li case ICK_Num_Conversion_Kinds:
5120*67e74705SXin Li break;
5121*67e74705SXin Li }
5122*67e74705SXin Li
5123*67e74705SXin Li llvm_unreachable("unknown conversion kind");
5124*67e74705SXin Li }
5125*67e74705SXin Li
5126*67e74705SXin Li /// CheckConvertedConstantExpression - Check that the expression From is a
5127*67e74705SXin Li /// converted constant expression of type T, perform the conversion and produce
5128*67e74705SXin Li /// the converted expression, per C++11 [expr.const]p3.
CheckConvertedConstantExpression(Sema & S,Expr * From,QualType T,APValue & Value,Sema::CCEKind CCE,bool RequireInt)5129*67e74705SXin Li static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
5130*67e74705SXin Li QualType T, APValue &Value,
5131*67e74705SXin Li Sema::CCEKind CCE,
5132*67e74705SXin Li bool RequireInt) {
5133*67e74705SXin Li assert(S.getLangOpts().CPlusPlus11 &&
5134*67e74705SXin Li "converted constant expression outside C++11");
5135*67e74705SXin Li
5136*67e74705SXin Li if (checkPlaceholderForOverload(S, From))
5137*67e74705SXin Li return ExprError();
5138*67e74705SXin Li
5139*67e74705SXin Li // C++1z [expr.const]p3:
5140*67e74705SXin Li // A converted constant expression of type T is an expression,
5141*67e74705SXin Li // implicitly converted to type T, where the converted
5142*67e74705SXin Li // expression is a constant expression and the implicit conversion
5143*67e74705SXin Li // sequence contains only [... list of conversions ...].
5144*67e74705SXin Li ImplicitConversionSequence ICS =
5145*67e74705SXin Li TryCopyInitialization(S, From, T,
5146*67e74705SXin Li /*SuppressUserConversions=*/false,
5147*67e74705SXin Li /*InOverloadResolution=*/false,
5148*67e74705SXin Li /*AllowObjcWritebackConversion=*/false,
5149*67e74705SXin Li /*AllowExplicit=*/false);
5150*67e74705SXin Li StandardConversionSequence *SCS = nullptr;
5151*67e74705SXin Li switch (ICS.getKind()) {
5152*67e74705SXin Li case ImplicitConversionSequence::StandardConversion:
5153*67e74705SXin Li SCS = &ICS.Standard;
5154*67e74705SXin Li break;
5155*67e74705SXin Li case ImplicitConversionSequence::UserDefinedConversion:
5156*67e74705SXin Li // We are converting to a non-class type, so the Before sequence
5157*67e74705SXin Li // must be trivial.
5158*67e74705SXin Li SCS = &ICS.UserDefined.After;
5159*67e74705SXin Li break;
5160*67e74705SXin Li case ImplicitConversionSequence::AmbiguousConversion:
5161*67e74705SXin Li case ImplicitConversionSequence::BadConversion:
5162*67e74705SXin Li if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
5163*67e74705SXin Li return S.Diag(From->getLocStart(),
5164*67e74705SXin Li diag::err_typecheck_converted_constant_expression)
5165*67e74705SXin Li << From->getType() << From->getSourceRange() << T;
5166*67e74705SXin Li return ExprError();
5167*67e74705SXin Li
5168*67e74705SXin Li case ImplicitConversionSequence::EllipsisConversion:
5169*67e74705SXin Li llvm_unreachable("ellipsis conversion in converted constant expression");
5170*67e74705SXin Li }
5171*67e74705SXin Li
5172*67e74705SXin Li // Check that we would only use permitted conversions.
5173*67e74705SXin Li if (!CheckConvertedConstantConversions(S, *SCS)) {
5174*67e74705SXin Li return S.Diag(From->getLocStart(),
5175*67e74705SXin Li diag::err_typecheck_converted_constant_expression_disallowed)
5176*67e74705SXin Li << From->getType() << From->getSourceRange() << T;
5177*67e74705SXin Li }
5178*67e74705SXin Li // [...] and where the reference binding (if any) binds directly.
5179*67e74705SXin Li if (SCS->ReferenceBinding && !SCS->DirectBinding) {
5180*67e74705SXin Li return S.Diag(From->getLocStart(),
5181*67e74705SXin Li diag::err_typecheck_converted_constant_expression_indirect)
5182*67e74705SXin Li << From->getType() << From->getSourceRange() << T;
5183*67e74705SXin Li }
5184*67e74705SXin Li
5185*67e74705SXin Li ExprResult Result =
5186*67e74705SXin Li S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
5187*67e74705SXin Li if (Result.isInvalid())
5188*67e74705SXin Li return Result;
5189*67e74705SXin Li
5190*67e74705SXin Li // Check for a narrowing implicit conversion.
5191*67e74705SXin Li APValue PreNarrowingValue;
5192*67e74705SXin Li QualType PreNarrowingType;
5193*67e74705SXin Li switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
5194*67e74705SXin Li PreNarrowingType)) {
5195*67e74705SXin Li case NK_Variable_Narrowing:
5196*67e74705SXin Li // Implicit conversion to a narrower type, and the value is not a constant
5197*67e74705SXin Li // expression. We'll diagnose this in a moment.
5198*67e74705SXin Li case NK_Not_Narrowing:
5199*67e74705SXin Li break;
5200*67e74705SXin Li
5201*67e74705SXin Li case NK_Constant_Narrowing:
5202*67e74705SXin Li S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5203*67e74705SXin Li << CCE << /*Constant*/1
5204*67e74705SXin Li << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
5205*67e74705SXin Li break;
5206*67e74705SXin Li
5207*67e74705SXin Li case NK_Type_Narrowing:
5208*67e74705SXin Li S.Diag(From->getLocStart(), diag::ext_cce_narrowing)
5209*67e74705SXin Li << CCE << /*Constant*/0 << From->getType() << T;
5210*67e74705SXin Li break;
5211*67e74705SXin Li }
5212*67e74705SXin Li
5213*67e74705SXin Li // Check the expression is a constant expression.
5214*67e74705SXin Li SmallVector<PartialDiagnosticAt, 8> Notes;
5215*67e74705SXin Li Expr::EvalResult Eval;
5216*67e74705SXin Li Eval.Diag = &Notes;
5217*67e74705SXin Li
5218*67e74705SXin Li if ((T->isReferenceType()
5219*67e74705SXin Li ? !Result.get()->EvaluateAsLValue(Eval, S.Context)
5220*67e74705SXin Li : !Result.get()->EvaluateAsRValue(Eval, S.Context)) ||
5221*67e74705SXin Li (RequireInt && !Eval.Val.isInt())) {
5222*67e74705SXin Li // The expression can't be folded, so we can't keep it at this position in
5223*67e74705SXin Li // the AST.
5224*67e74705SXin Li Result = ExprError();
5225*67e74705SXin Li } else {
5226*67e74705SXin Li Value = Eval.Val;
5227*67e74705SXin Li
5228*67e74705SXin Li if (Notes.empty()) {
5229*67e74705SXin Li // It's a constant expression.
5230*67e74705SXin Li return Result;
5231*67e74705SXin Li }
5232*67e74705SXin Li }
5233*67e74705SXin Li
5234*67e74705SXin Li // It's not a constant expression. Produce an appropriate diagnostic.
5235*67e74705SXin Li if (Notes.size() == 1 &&
5236*67e74705SXin Li Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
5237*67e74705SXin Li S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
5238*67e74705SXin Li else {
5239*67e74705SXin Li S.Diag(From->getLocStart(), diag::err_expr_not_cce)
5240*67e74705SXin Li << CCE << From->getSourceRange();
5241*67e74705SXin Li for (unsigned I = 0; I < Notes.size(); ++I)
5242*67e74705SXin Li S.Diag(Notes[I].first, Notes[I].second);
5243*67e74705SXin Li }
5244*67e74705SXin Li return ExprError();
5245*67e74705SXin Li }
5246*67e74705SXin Li
CheckConvertedConstantExpression(Expr * From,QualType T,APValue & Value,CCEKind CCE)5247*67e74705SXin Li ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5248*67e74705SXin Li APValue &Value, CCEKind CCE) {
5249*67e74705SXin Li return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
5250*67e74705SXin Li }
5251*67e74705SXin Li
CheckConvertedConstantExpression(Expr * From,QualType T,llvm::APSInt & Value,CCEKind CCE)5252*67e74705SXin Li ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
5253*67e74705SXin Li llvm::APSInt &Value,
5254*67e74705SXin Li CCEKind CCE) {
5255*67e74705SXin Li assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
5256*67e74705SXin Li
5257*67e74705SXin Li APValue V;
5258*67e74705SXin Li auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
5259*67e74705SXin Li if (!R.isInvalid())
5260*67e74705SXin Li Value = V.getInt();
5261*67e74705SXin Li return R;
5262*67e74705SXin Li }
5263*67e74705SXin Li
5264*67e74705SXin Li
5265*67e74705SXin Li /// dropPointerConversions - If the given standard conversion sequence
5266*67e74705SXin Li /// involves any pointer conversions, remove them. This may change
5267*67e74705SXin Li /// the result type of the conversion sequence.
dropPointerConversion(StandardConversionSequence & SCS)5268*67e74705SXin Li static void dropPointerConversion(StandardConversionSequence &SCS) {
5269*67e74705SXin Li if (SCS.Second == ICK_Pointer_Conversion) {
5270*67e74705SXin Li SCS.Second = ICK_Identity;
5271*67e74705SXin Li SCS.Third = ICK_Identity;
5272*67e74705SXin Li SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
5273*67e74705SXin Li }
5274*67e74705SXin Li }
5275*67e74705SXin Li
5276*67e74705SXin Li /// TryContextuallyConvertToObjCPointer - Attempt to contextually
5277*67e74705SXin Li /// convert the expression From to an Objective-C pointer type.
5278*67e74705SXin Li static ImplicitConversionSequence
TryContextuallyConvertToObjCPointer(Sema & S,Expr * From)5279*67e74705SXin Li TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
5280*67e74705SXin Li // Do an implicit conversion to 'id'.
5281*67e74705SXin Li QualType Ty = S.Context.getObjCIdType();
5282*67e74705SXin Li ImplicitConversionSequence ICS
5283*67e74705SXin Li = TryImplicitConversion(S, From, Ty,
5284*67e74705SXin Li // FIXME: Are these flags correct?
5285*67e74705SXin Li /*SuppressUserConversions=*/false,
5286*67e74705SXin Li /*AllowExplicit=*/true,
5287*67e74705SXin Li /*InOverloadResolution=*/false,
5288*67e74705SXin Li /*CStyle=*/false,
5289*67e74705SXin Li /*AllowObjCWritebackConversion=*/false,
5290*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/true);
5291*67e74705SXin Li
5292*67e74705SXin Li // Strip off any final conversions to 'id'.
5293*67e74705SXin Li switch (ICS.getKind()) {
5294*67e74705SXin Li case ImplicitConversionSequence::BadConversion:
5295*67e74705SXin Li case ImplicitConversionSequence::AmbiguousConversion:
5296*67e74705SXin Li case ImplicitConversionSequence::EllipsisConversion:
5297*67e74705SXin Li break;
5298*67e74705SXin Li
5299*67e74705SXin Li case ImplicitConversionSequence::UserDefinedConversion:
5300*67e74705SXin Li dropPointerConversion(ICS.UserDefined.After);
5301*67e74705SXin Li break;
5302*67e74705SXin Li
5303*67e74705SXin Li case ImplicitConversionSequence::StandardConversion:
5304*67e74705SXin Li dropPointerConversion(ICS.Standard);
5305*67e74705SXin Li break;
5306*67e74705SXin Li }
5307*67e74705SXin Li
5308*67e74705SXin Li return ICS;
5309*67e74705SXin Li }
5310*67e74705SXin Li
5311*67e74705SXin Li /// PerformContextuallyConvertToObjCPointer - Perform a contextual
5312*67e74705SXin Li /// conversion of the expression From to an Objective-C pointer type.
PerformContextuallyConvertToObjCPointer(Expr * From)5313*67e74705SXin Li ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
5314*67e74705SXin Li if (checkPlaceholderForOverload(*this, From))
5315*67e74705SXin Li return ExprError();
5316*67e74705SXin Li
5317*67e74705SXin Li QualType Ty = Context.getObjCIdType();
5318*67e74705SXin Li ImplicitConversionSequence ICS =
5319*67e74705SXin Li TryContextuallyConvertToObjCPointer(*this, From);
5320*67e74705SXin Li if (!ICS.isBad())
5321*67e74705SXin Li return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
5322*67e74705SXin Li return ExprError();
5323*67e74705SXin Li }
5324*67e74705SXin Li
5325*67e74705SXin Li /// Determine whether the provided type is an integral type, or an enumeration
5326*67e74705SXin Li /// type of a permitted flavor.
match(QualType T)5327*67e74705SXin Li bool Sema::ICEConvertDiagnoser::match(QualType T) {
5328*67e74705SXin Li return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
5329*67e74705SXin Li : T->isIntegralOrUnscopedEnumerationType();
5330*67e74705SXin Li }
5331*67e74705SXin Li
5332*67e74705SXin Li static ExprResult
diagnoseAmbiguousConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter,QualType T,UnresolvedSetImpl & ViableConversions)5333*67e74705SXin Li diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
5334*67e74705SXin Li Sema::ContextualImplicitConverter &Converter,
5335*67e74705SXin Li QualType T, UnresolvedSetImpl &ViableConversions) {
5336*67e74705SXin Li
5337*67e74705SXin Li if (Converter.Suppress)
5338*67e74705SXin Li return ExprError();
5339*67e74705SXin Li
5340*67e74705SXin Li Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
5341*67e74705SXin Li for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5342*67e74705SXin Li CXXConversionDecl *Conv =
5343*67e74705SXin Li cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
5344*67e74705SXin Li QualType ConvTy = Conv->getConversionType().getNonReferenceType();
5345*67e74705SXin Li Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
5346*67e74705SXin Li }
5347*67e74705SXin Li return From;
5348*67e74705SXin Li }
5349*67e74705SXin Li
5350*67e74705SXin Li static bool
diagnoseNoViableConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,UnresolvedSetImpl & ExplicitConversions)5351*67e74705SXin Li diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5352*67e74705SXin Li Sema::ContextualImplicitConverter &Converter,
5353*67e74705SXin Li QualType T, bool HadMultipleCandidates,
5354*67e74705SXin Li UnresolvedSetImpl &ExplicitConversions) {
5355*67e74705SXin Li if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
5356*67e74705SXin Li DeclAccessPair Found = ExplicitConversions[0];
5357*67e74705SXin Li CXXConversionDecl *Conversion =
5358*67e74705SXin Li cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5359*67e74705SXin Li
5360*67e74705SXin Li // The user probably meant to invoke the given explicit
5361*67e74705SXin Li // conversion; use it.
5362*67e74705SXin Li QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
5363*67e74705SXin Li std::string TypeStr;
5364*67e74705SXin Li ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
5365*67e74705SXin Li
5366*67e74705SXin Li Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
5367*67e74705SXin Li << FixItHint::CreateInsertion(From->getLocStart(),
5368*67e74705SXin Li "static_cast<" + TypeStr + ">(")
5369*67e74705SXin Li << FixItHint::CreateInsertion(
5370*67e74705SXin Li SemaRef.getLocForEndOfToken(From->getLocEnd()), ")");
5371*67e74705SXin Li Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
5372*67e74705SXin Li
5373*67e74705SXin Li // If we aren't in a SFINAE context, build a call to the
5374*67e74705SXin Li // explicit conversion function.
5375*67e74705SXin Li if (SemaRef.isSFINAEContext())
5376*67e74705SXin Li return true;
5377*67e74705SXin Li
5378*67e74705SXin Li SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5379*67e74705SXin Li ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5380*67e74705SXin Li HadMultipleCandidates);
5381*67e74705SXin Li if (Result.isInvalid())
5382*67e74705SXin Li return true;
5383*67e74705SXin Li // Record usage of conversion in an implicit cast.
5384*67e74705SXin Li From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5385*67e74705SXin Li CK_UserDefinedConversion, Result.get(),
5386*67e74705SXin Li nullptr, Result.get()->getValueKind());
5387*67e74705SXin Li }
5388*67e74705SXin Li return false;
5389*67e74705SXin Li }
5390*67e74705SXin Li
recordConversion(Sema & SemaRef,SourceLocation Loc,Expr * & From,Sema::ContextualImplicitConverter & Converter,QualType T,bool HadMultipleCandidates,DeclAccessPair & Found)5391*67e74705SXin Li static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
5392*67e74705SXin Li Sema::ContextualImplicitConverter &Converter,
5393*67e74705SXin Li QualType T, bool HadMultipleCandidates,
5394*67e74705SXin Li DeclAccessPair &Found) {
5395*67e74705SXin Li CXXConversionDecl *Conversion =
5396*67e74705SXin Li cast<CXXConversionDecl>(Found->getUnderlyingDecl());
5397*67e74705SXin Li SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
5398*67e74705SXin Li
5399*67e74705SXin Li QualType ToType = Conversion->getConversionType().getNonReferenceType();
5400*67e74705SXin Li if (!Converter.SuppressConversion) {
5401*67e74705SXin Li if (SemaRef.isSFINAEContext())
5402*67e74705SXin Li return true;
5403*67e74705SXin Li
5404*67e74705SXin Li Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
5405*67e74705SXin Li << From->getSourceRange();
5406*67e74705SXin Li }
5407*67e74705SXin Li
5408*67e74705SXin Li ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
5409*67e74705SXin Li HadMultipleCandidates);
5410*67e74705SXin Li if (Result.isInvalid())
5411*67e74705SXin Li return true;
5412*67e74705SXin Li // Record usage of conversion in an implicit cast.
5413*67e74705SXin Li From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
5414*67e74705SXin Li CK_UserDefinedConversion, Result.get(),
5415*67e74705SXin Li nullptr, Result.get()->getValueKind());
5416*67e74705SXin Li return false;
5417*67e74705SXin Li }
5418*67e74705SXin Li
finishContextualImplicitConversion(Sema & SemaRef,SourceLocation Loc,Expr * From,Sema::ContextualImplicitConverter & Converter)5419*67e74705SXin Li static ExprResult finishContextualImplicitConversion(
5420*67e74705SXin Li Sema &SemaRef, SourceLocation Loc, Expr *From,
5421*67e74705SXin Li Sema::ContextualImplicitConverter &Converter) {
5422*67e74705SXin Li if (!Converter.match(From->getType()) && !Converter.Suppress)
5423*67e74705SXin Li Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
5424*67e74705SXin Li << From->getSourceRange();
5425*67e74705SXin Li
5426*67e74705SXin Li return SemaRef.DefaultLvalueConversion(From);
5427*67e74705SXin Li }
5428*67e74705SXin Li
5429*67e74705SXin Li static void
collectViableConversionCandidates(Sema & SemaRef,Expr * From,QualType ToType,UnresolvedSetImpl & ViableConversions,OverloadCandidateSet & CandidateSet)5430*67e74705SXin Li collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
5431*67e74705SXin Li UnresolvedSetImpl &ViableConversions,
5432*67e74705SXin Li OverloadCandidateSet &CandidateSet) {
5433*67e74705SXin Li for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
5434*67e74705SXin Li DeclAccessPair FoundDecl = ViableConversions[I];
5435*67e74705SXin Li NamedDecl *D = FoundDecl.getDecl();
5436*67e74705SXin Li CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5437*67e74705SXin Li if (isa<UsingShadowDecl>(D))
5438*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
5439*67e74705SXin Li
5440*67e74705SXin Li CXXConversionDecl *Conv;
5441*67e74705SXin Li FunctionTemplateDecl *ConvTemplate;
5442*67e74705SXin Li if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
5443*67e74705SXin Li Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5444*67e74705SXin Li else
5445*67e74705SXin Li Conv = cast<CXXConversionDecl>(D);
5446*67e74705SXin Li
5447*67e74705SXin Li if (ConvTemplate)
5448*67e74705SXin Li SemaRef.AddTemplateConversionCandidate(
5449*67e74705SXin Li ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
5450*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
5451*67e74705SXin Li else
5452*67e74705SXin Li SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
5453*67e74705SXin Li ToType, CandidateSet,
5454*67e74705SXin Li /*AllowObjCConversionOnExplicit=*/false);
5455*67e74705SXin Li }
5456*67e74705SXin Li }
5457*67e74705SXin Li
5458*67e74705SXin Li /// \brief Attempt to convert the given expression to a type which is accepted
5459*67e74705SXin Li /// by the given converter.
5460*67e74705SXin Li ///
5461*67e74705SXin Li /// This routine will attempt to convert an expression of class type to a
5462*67e74705SXin Li /// type accepted by the specified converter. In C++11 and before, the class
5463*67e74705SXin Li /// must have a single non-explicit conversion function converting to a matching
5464*67e74705SXin Li /// type. In C++1y, there can be multiple such conversion functions, but only
5465*67e74705SXin Li /// one target type.
5466*67e74705SXin Li ///
5467*67e74705SXin Li /// \param Loc The source location of the construct that requires the
5468*67e74705SXin Li /// conversion.
5469*67e74705SXin Li ///
5470*67e74705SXin Li /// \param From The expression we're converting from.
5471*67e74705SXin Li ///
5472*67e74705SXin Li /// \param Converter Used to control and diagnose the conversion process.
5473*67e74705SXin Li ///
5474*67e74705SXin Li /// \returns The expression, converted to an integral or enumeration type if
5475*67e74705SXin Li /// successful.
PerformContextualImplicitConversion(SourceLocation Loc,Expr * From,ContextualImplicitConverter & Converter)5476*67e74705SXin Li ExprResult Sema::PerformContextualImplicitConversion(
5477*67e74705SXin Li SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
5478*67e74705SXin Li // We can't perform any more checking for type-dependent expressions.
5479*67e74705SXin Li if (From->isTypeDependent())
5480*67e74705SXin Li return From;
5481*67e74705SXin Li
5482*67e74705SXin Li // Process placeholders immediately.
5483*67e74705SXin Li if (From->hasPlaceholderType()) {
5484*67e74705SXin Li ExprResult result = CheckPlaceholderExpr(From);
5485*67e74705SXin Li if (result.isInvalid())
5486*67e74705SXin Li return result;
5487*67e74705SXin Li From = result.get();
5488*67e74705SXin Li }
5489*67e74705SXin Li
5490*67e74705SXin Li // If the expression already has a matching type, we're golden.
5491*67e74705SXin Li QualType T = From->getType();
5492*67e74705SXin Li if (Converter.match(T))
5493*67e74705SXin Li return DefaultLvalueConversion(From);
5494*67e74705SXin Li
5495*67e74705SXin Li // FIXME: Check for missing '()' if T is a function type?
5496*67e74705SXin Li
5497*67e74705SXin Li // We can only perform contextual implicit conversions on objects of class
5498*67e74705SXin Li // type.
5499*67e74705SXin Li const RecordType *RecordTy = T->getAs<RecordType>();
5500*67e74705SXin Li if (!RecordTy || !getLangOpts().CPlusPlus) {
5501*67e74705SXin Li if (!Converter.Suppress)
5502*67e74705SXin Li Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
5503*67e74705SXin Li return From;
5504*67e74705SXin Li }
5505*67e74705SXin Li
5506*67e74705SXin Li // We must have a complete class type.
5507*67e74705SXin Li struct TypeDiagnoserPartialDiag : TypeDiagnoser {
5508*67e74705SXin Li ContextualImplicitConverter &Converter;
5509*67e74705SXin Li Expr *From;
5510*67e74705SXin Li
5511*67e74705SXin Li TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
5512*67e74705SXin Li : Converter(Converter), From(From) {}
5513*67e74705SXin Li
5514*67e74705SXin Li void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
5515*67e74705SXin Li Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
5516*67e74705SXin Li }
5517*67e74705SXin Li } IncompleteDiagnoser(Converter, From);
5518*67e74705SXin Li
5519*67e74705SXin Li if (Converter.Suppress ? !isCompleteType(Loc, T)
5520*67e74705SXin Li : RequireCompleteType(Loc, T, IncompleteDiagnoser))
5521*67e74705SXin Li return From;
5522*67e74705SXin Li
5523*67e74705SXin Li // Look for a conversion to an integral or enumeration type.
5524*67e74705SXin Li UnresolvedSet<4>
5525*67e74705SXin Li ViableConversions; // These are *potentially* viable in C++1y.
5526*67e74705SXin Li UnresolvedSet<4> ExplicitConversions;
5527*67e74705SXin Li const auto &Conversions =
5528*67e74705SXin Li cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
5529*67e74705SXin Li
5530*67e74705SXin Li bool HadMultipleCandidates =
5531*67e74705SXin Li (std::distance(Conversions.begin(), Conversions.end()) > 1);
5532*67e74705SXin Li
5533*67e74705SXin Li // To check that there is only one target type, in C++1y:
5534*67e74705SXin Li QualType ToType;
5535*67e74705SXin Li bool HasUniqueTargetType = true;
5536*67e74705SXin Li
5537*67e74705SXin Li // Collect explicit or viable (potentially in C++1y) conversions.
5538*67e74705SXin Li for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5539*67e74705SXin Li NamedDecl *D = (*I)->getUnderlyingDecl();
5540*67e74705SXin Li CXXConversionDecl *Conversion;
5541*67e74705SXin Li FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5542*67e74705SXin Li if (ConvTemplate) {
5543*67e74705SXin Li if (getLangOpts().CPlusPlus14)
5544*67e74705SXin Li Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5545*67e74705SXin Li else
5546*67e74705SXin Li continue; // C++11 does not consider conversion operator templates(?).
5547*67e74705SXin Li } else
5548*67e74705SXin Li Conversion = cast<CXXConversionDecl>(D);
5549*67e74705SXin Li
5550*67e74705SXin Li assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
5551*67e74705SXin Li "Conversion operator templates are considered potentially "
5552*67e74705SXin Li "viable in C++1y");
5553*67e74705SXin Li
5554*67e74705SXin Li QualType CurToType = Conversion->getConversionType().getNonReferenceType();
5555*67e74705SXin Li if (Converter.match(CurToType) || ConvTemplate) {
5556*67e74705SXin Li
5557*67e74705SXin Li if (Conversion->isExplicit()) {
5558*67e74705SXin Li // FIXME: For C++1y, do we need this restriction?
5559*67e74705SXin Li // cf. diagnoseNoViableConversion()
5560*67e74705SXin Li if (!ConvTemplate)
5561*67e74705SXin Li ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
5562*67e74705SXin Li } else {
5563*67e74705SXin Li if (!ConvTemplate && getLangOpts().CPlusPlus14) {
5564*67e74705SXin Li if (ToType.isNull())
5565*67e74705SXin Li ToType = CurToType.getUnqualifiedType();
5566*67e74705SXin Li else if (HasUniqueTargetType &&
5567*67e74705SXin Li (CurToType.getUnqualifiedType() != ToType))
5568*67e74705SXin Li HasUniqueTargetType = false;
5569*67e74705SXin Li }
5570*67e74705SXin Li ViableConversions.addDecl(I.getDecl(), I.getAccess());
5571*67e74705SXin Li }
5572*67e74705SXin Li }
5573*67e74705SXin Li }
5574*67e74705SXin Li
5575*67e74705SXin Li if (getLangOpts().CPlusPlus14) {
5576*67e74705SXin Li // C++1y [conv]p6:
5577*67e74705SXin Li // ... An expression e of class type E appearing in such a context
5578*67e74705SXin Li // is said to be contextually implicitly converted to a specified
5579*67e74705SXin Li // type T and is well-formed if and only if e can be implicitly
5580*67e74705SXin Li // converted to a type T that is determined as follows: E is searched
5581*67e74705SXin Li // for conversion functions whose return type is cv T or reference to
5582*67e74705SXin Li // cv T such that T is allowed by the context. There shall be
5583*67e74705SXin Li // exactly one such T.
5584*67e74705SXin Li
5585*67e74705SXin Li // If no unique T is found:
5586*67e74705SXin Li if (ToType.isNull()) {
5587*67e74705SXin Li if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5588*67e74705SXin Li HadMultipleCandidates,
5589*67e74705SXin Li ExplicitConversions))
5590*67e74705SXin Li return ExprError();
5591*67e74705SXin Li return finishContextualImplicitConversion(*this, Loc, From, Converter);
5592*67e74705SXin Li }
5593*67e74705SXin Li
5594*67e74705SXin Li // If more than one unique Ts are found:
5595*67e74705SXin Li if (!HasUniqueTargetType)
5596*67e74705SXin Li return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5597*67e74705SXin Li ViableConversions);
5598*67e74705SXin Li
5599*67e74705SXin Li // If one unique T is found:
5600*67e74705SXin Li // First, build a candidate set from the previously recorded
5601*67e74705SXin Li // potentially viable conversions.
5602*67e74705SXin Li OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5603*67e74705SXin Li collectViableConversionCandidates(*this, From, ToType, ViableConversions,
5604*67e74705SXin Li CandidateSet);
5605*67e74705SXin Li
5606*67e74705SXin Li // Then, perform overload resolution over the candidate set.
5607*67e74705SXin Li OverloadCandidateSet::iterator Best;
5608*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
5609*67e74705SXin Li case OR_Success: {
5610*67e74705SXin Li // Apply this conversion.
5611*67e74705SXin Li DeclAccessPair Found =
5612*67e74705SXin Li DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
5613*67e74705SXin Li if (recordConversion(*this, Loc, From, Converter, T,
5614*67e74705SXin Li HadMultipleCandidates, Found))
5615*67e74705SXin Li return ExprError();
5616*67e74705SXin Li break;
5617*67e74705SXin Li }
5618*67e74705SXin Li case OR_Ambiguous:
5619*67e74705SXin Li return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5620*67e74705SXin Li ViableConversions);
5621*67e74705SXin Li case OR_No_Viable_Function:
5622*67e74705SXin Li if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5623*67e74705SXin Li HadMultipleCandidates,
5624*67e74705SXin Li ExplicitConversions))
5625*67e74705SXin Li return ExprError();
5626*67e74705SXin Li // fall through 'OR_Deleted' case.
5627*67e74705SXin Li case OR_Deleted:
5628*67e74705SXin Li // We'll complain below about a non-integral condition type.
5629*67e74705SXin Li break;
5630*67e74705SXin Li }
5631*67e74705SXin Li } else {
5632*67e74705SXin Li switch (ViableConversions.size()) {
5633*67e74705SXin Li case 0: {
5634*67e74705SXin Li if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
5635*67e74705SXin Li HadMultipleCandidates,
5636*67e74705SXin Li ExplicitConversions))
5637*67e74705SXin Li return ExprError();
5638*67e74705SXin Li
5639*67e74705SXin Li // We'll complain below about a non-integral condition type.
5640*67e74705SXin Li break;
5641*67e74705SXin Li }
5642*67e74705SXin Li case 1: {
5643*67e74705SXin Li // Apply this conversion.
5644*67e74705SXin Li DeclAccessPair Found = ViableConversions[0];
5645*67e74705SXin Li if (recordConversion(*this, Loc, From, Converter, T,
5646*67e74705SXin Li HadMultipleCandidates, Found))
5647*67e74705SXin Li return ExprError();
5648*67e74705SXin Li break;
5649*67e74705SXin Li }
5650*67e74705SXin Li default:
5651*67e74705SXin Li return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
5652*67e74705SXin Li ViableConversions);
5653*67e74705SXin Li }
5654*67e74705SXin Li }
5655*67e74705SXin Li
5656*67e74705SXin Li return finishContextualImplicitConversion(*this, Loc, From, Converter);
5657*67e74705SXin Li }
5658*67e74705SXin Li
5659*67e74705SXin Li /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
5660*67e74705SXin Li /// an acceptable non-member overloaded operator for a call whose
5661*67e74705SXin Li /// arguments have types T1 (and, if non-empty, T2). This routine
5662*67e74705SXin Li /// implements the check in C++ [over.match.oper]p3b2 concerning
5663*67e74705SXin Li /// enumeration types.
IsAcceptableNonMemberOperatorCandidate(ASTContext & Context,FunctionDecl * Fn,ArrayRef<Expr * > Args)5664*67e74705SXin Li static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
5665*67e74705SXin Li FunctionDecl *Fn,
5666*67e74705SXin Li ArrayRef<Expr *> Args) {
5667*67e74705SXin Li QualType T1 = Args[0]->getType();
5668*67e74705SXin Li QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
5669*67e74705SXin Li
5670*67e74705SXin Li if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
5671*67e74705SXin Li return true;
5672*67e74705SXin Li
5673*67e74705SXin Li if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
5674*67e74705SXin Li return true;
5675*67e74705SXin Li
5676*67e74705SXin Li const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
5677*67e74705SXin Li if (Proto->getNumParams() < 1)
5678*67e74705SXin Li return false;
5679*67e74705SXin Li
5680*67e74705SXin Li if (T1->isEnumeralType()) {
5681*67e74705SXin Li QualType ArgType = Proto->getParamType(0).getNonReferenceType();
5682*67e74705SXin Li if (Context.hasSameUnqualifiedType(T1, ArgType))
5683*67e74705SXin Li return true;
5684*67e74705SXin Li }
5685*67e74705SXin Li
5686*67e74705SXin Li if (Proto->getNumParams() < 2)
5687*67e74705SXin Li return false;
5688*67e74705SXin Li
5689*67e74705SXin Li if (!T2.isNull() && T2->isEnumeralType()) {
5690*67e74705SXin Li QualType ArgType = Proto->getParamType(1).getNonReferenceType();
5691*67e74705SXin Li if (Context.hasSameUnqualifiedType(T2, ArgType))
5692*67e74705SXin Li return true;
5693*67e74705SXin Li }
5694*67e74705SXin Li
5695*67e74705SXin Li return false;
5696*67e74705SXin Li }
5697*67e74705SXin Li
5698*67e74705SXin Li /// AddOverloadCandidate - Adds the given function to the set of
5699*67e74705SXin Li /// candidate functions, using the given function call arguments. If
5700*67e74705SXin Li /// @p SuppressUserConversions, then don't allow user-defined
5701*67e74705SXin Li /// conversions via constructors or conversion operators.
5702*67e74705SXin Li ///
5703*67e74705SXin Li /// \param PartialOverloading true if we are performing "partial" overloading
5704*67e74705SXin Li /// based on an incomplete set of function arguments. This feature is used by
5705*67e74705SXin Li /// code completion.
5706*67e74705SXin Li void
AddOverloadCandidate(FunctionDecl * Function,DeclAccessPair FoundDecl,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading,bool AllowExplicit)5707*67e74705SXin Li Sema::AddOverloadCandidate(FunctionDecl *Function,
5708*67e74705SXin Li DeclAccessPair FoundDecl,
5709*67e74705SXin Li ArrayRef<Expr *> Args,
5710*67e74705SXin Li OverloadCandidateSet &CandidateSet,
5711*67e74705SXin Li bool SuppressUserConversions,
5712*67e74705SXin Li bool PartialOverloading,
5713*67e74705SXin Li bool AllowExplicit) {
5714*67e74705SXin Li const FunctionProtoType *Proto
5715*67e74705SXin Li = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
5716*67e74705SXin Li assert(Proto && "Functions without a prototype cannot be overloaded");
5717*67e74705SXin Li assert(!Function->getDescribedFunctionTemplate() &&
5718*67e74705SXin Li "Use AddTemplateOverloadCandidate for function templates");
5719*67e74705SXin Li
5720*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
5721*67e74705SXin Li if (!isa<CXXConstructorDecl>(Method)) {
5722*67e74705SXin Li // If we get here, it's because we're calling a member function
5723*67e74705SXin Li // that is named without a member access expression (e.g.,
5724*67e74705SXin Li // "this->f") that was either written explicitly or created
5725*67e74705SXin Li // implicitly. This can happen with a qualified call to a member
5726*67e74705SXin Li // function, e.g., X::f(). We use an empty type for the implied
5727*67e74705SXin Li // object argument (C++ [over.call.func]p3), and the acting context
5728*67e74705SXin Li // is irrelevant.
5729*67e74705SXin Li AddMethodCandidate(Method, FoundDecl, Method->getParent(),
5730*67e74705SXin Li QualType(), Expr::Classification::makeSimpleLValue(),
5731*67e74705SXin Li Args, CandidateSet, SuppressUserConversions,
5732*67e74705SXin Li PartialOverloading);
5733*67e74705SXin Li return;
5734*67e74705SXin Li }
5735*67e74705SXin Li // We treat a constructor like a non-member function, since its object
5736*67e74705SXin Li // argument doesn't participate in overload resolution.
5737*67e74705SXin Li }
5738*67e74705SXin Li
5739*67e74705SXin Li if (!CandidateSet.isNewCandidate(Function))
5740*67e74705SXin Li return;
5741*67e74705SXin Li
5742*67e74705SXin Li // C++ [over.match.oper]p3:
5743*67e74705SXin Li // if no operand has a class type, only those non-member functions in the
5744*67e74705SXin Li // lookup set that have a first parameter of type T1 or "reference to
5745*67e74705SXin Li // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
5746*67e74705SXin Li // is a right operand) a second parameter of type T2 or "reference to
5747*67e74705SXin Li // (possibly cv-qualified) T2", when T2 is an enumeration type, are
5748*67e74705SXin Li // candidate functions.
5749*67e74705SXin Li if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
5750*67e74705SXin Li !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
5751*67e74705SXin Li return;
5752*67e74705SXin Li
5753*67e74705SXin Li // C++11 [class.copy]p11: [DR1402]
5754*67e74705SXin Li // A defaulted move constructor that is defined as deleted is ignored by
5755*67e74705SXin Li // overload resolution.
5756*67e74705SXin Li CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
5757*67e74705SXin Li if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
5758*67e74705SXin Li Constructor->isMoveConstructor())
5759*67e74705SXin Li return;
5760*67e74705SXin Li
5761*67e74705SXin Li // Overload resolution is always an unevaluated context.
5762*67e74705SXin Li EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5763*67e74705SXin Li
5764*67e74705SXin Li // Add this candidate
5765*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
5766*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
5767*67e74705SXin Li Candidate.Function = Function;
5768*67e74705SXin Li Candidate.Viable = true;
5769*67e74705SXin Li Candidate.IsSurrogate = false;
5770*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
5771*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
5772*67e74705SXin Li
5773*67e74705SXin Li if (Constructor) {
5774*67e74705SXin Li // C++ [class.copy]p3:
5775*67e74705SXin Li // A member function template is never instantiated to perform the copy
5776*67e74705SXin Li // of a class object to an object of its class type.
5777*67e74705SXin Li QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
5778*67e74705SXin Li if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
5779*67e74705SXin Li (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
5780*67e74705SXin Li IsDerivedFrom(Args[0]->getLocStart(), Args[0]->getType(),
5781*67e74705SXin Li ClassType))) {
5782*67e74705SXin Li Candidate.Viable = false;
5783*67e74705SXin Li Candidate.FailureKind = ovl_fail_illegal_constructor;
5784*67e74705SXin Li return;
5785*67e74705SXin Li }
5786*67e74705SXin Li }
5787*67e74705SXin Li
5788*67e74705SXin Li unsigned NumParams = Proto->getNumParams();
5789*67e74705SXin Li
5790*67e74705SXin Li // (C++ 13.3.2p2): A candidate function having fewer than m
5791*67e74705SXin Li // parameters is viable only if it has an ellipsis in its parameter
5792*67e74705SXin Li // list (8.3.5).
5793*67e74705SXin Li if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
5794*67e74705SXin Li !Proto->isVariadic()) {
5795*67e74705SXin Li Candidate.Viable = false;
5796*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_many_arguments;
5797*67e74705SXin Li return;
5798*67e74705SXin Li }
5799*67e74705SXin Li
5800*67e74705SXin Li // (C++ 13.3.2p2): A candidate function having more than m parameters
5801*67e74705SXin Li // is viable only if the (m+1)st parameter has a default argument
5802*67e74705SXin Li // (8.3.6). For the purposes of overload resolution, the
5803*67e74705SXin Li // parameter list is truncated on the right, so that there are
5804*67e74705SXin Li // exactly m parameters.
5805*67e74705SXin Li unsigned MinRequiredArgs = Function->getMinRequiredArguments();
5806*67e74705SXin Li if (Args.size() < MinRequiredArgs && !PartialOverloading) {
5807*67e74705SXin Li // Not enough arguments.
5808*67e74705SXin Li Candidate.Viable = false;
5809*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_few_arguments;
5810*67e74705SXin Li return;
5811*67e74705SXin Li }
5812*67e74705SXin Li
5813*67e74705SXin Li // (CUDA B.1): Check for invalid calls between targets.
5814*67e74705SXin Li if (getLangOpts().CUDA)
5815*67e74705SXin Li if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
5816*67e74705SXin Li // Skip the check for callers that are implicit members, because in this
5817*67e74705SXin Li // case we may not yet know what the member's target is; the target is
5818*67e74705SXin Li // inferred for the member automatically, based on the bases and fields of
5819*67e74705SXin Li // the class.
5820*67e74705SXin Li if (!Caller->isImplicit() && CheckCUDATarget(Caller, Function)) {
5821*67e74705SXin Li Candidate.Viable = false;
5822*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_target;
5823*67e74705SXin Li return;
5824*67e74705SXin Li }
5825*67e74705SXin Li
5826*67e74705SXin Li // Determine the implicit conversion sequences for each of the
5827*67e74705SXin Li // arguments.
5828*67e74705SXin Li for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
5829*67e74705SXin Li if (ArgIdx < NumParams) {
5830*67e74705SXin Li // (C++ 13.3.2p3): for F to be a viable function, there shall
5831*67e74705SXin Li // exist for each argument an implicit conversion sequence
5832*67e74705SXin Li // (13.3.3.1) that converts that argument to the corresponding
5833*67e74705SXin Li // parameter of F.
5834*67e74705SXin Li QualType ParamType = Proto->getParamType(ArgIdx);
5835*67e74705SXin Li Candidate.Conversions[ArgIdx]
5836*67e74705SXin Li = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5837*67e74705SXin Li SuppressUserConversions,
5838*67e74705SXin Li /*InOverloadResolution=*/true,
5839*67e74705SXin Li /*AllowObjCWritebackConversion=*/
5840*67e74705SXin Li getLangOpts().ObjCAutoRefCount,
5841*67e74705SXin Li AllowExplicit);
5842*67e74705SXin Li if (Candidate.Conversions[ArgIdx].isBad()) {
5843*67e74705SXin Li Candidate.Viable = false;
5844*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
5845*67e74705SXin Li return;
5846*67e74705SXin Li }
5847*67e74705SXin Li } else {
5848*67e74705SXin Li // (C++ 13.3.2p2): For the purposes of overload resolution, any
5849*67e74705SXin Li // argument for which there is no corresponding parameter is
5850*67e74705SXin Li // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5851*67e74705SXin Li Candidate.Conversions[ArgIdx].setEllipsis();
5852*67e74705SXin Li }
5853*67e74705SXin Li }
5854*67e74705SXin Li
5855*67e74705SXin Li if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
5856*67e74705SXin Li Candidate.Viable = false;
5857*67e74705SXin Li Candidate.FailureKind = ovl_fail_enable_if;
5858*67e74705SXin Li Candidate.DeductionFailure.Data = FailedAttr;
5859*67e74705SXin Li return;
5860*67e74705SXin Li }
5861*67e74705SXin Li }
5862*67e74705SXin Li
5863*67e74705SXin Li ObjCMethodDecl *
SelectBestMethod(Selector Sel,MultiExprArg Args,bool IsInstance,SmallVectorImpl<ObjCMethodDecl * > & Methods)5864*67e74705SXin Li Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
5865*67e74705SXin Li SmallVectorImpl<ObjCMethodDecl *> &Methods) {
5866*67e74705SXin Li if (Methods.size() <= 1)
5867*67e74705SXin Li return nullptr;
5868*67e74705SXin Li
5869*67e74705SXin Li for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5870*67e74705SXin Li bool Match = true;
5871*67e74705SXin Li ObjCMethodDecl *Method = Methods[b];
5872*67e74705SXin Li unsigned NumNamedArgs = Sel.getNumArgs();
5873*67e74705SXin Li // Method might have more arguments than selector indicates. This is due
5874*67e74705SXin Li // to addition of c-style arguments in method.
5875*67e74705SXin Li if (Method->param_size() > NumNamedArgs)
5876*67e74705SXin Li NumNamedArgs = Method->param_size();
5877*67e74705SXin Li if (Args.size() < NumNamedArgs)
5878*67e74705SXin Li continue;
5879*67e74705SXin Li
5880*67e74705SXin Li for (unsigned i = 0; i < NumNamedArgs; i++) {
5881*67e74705SXin Li // We can't do any type-checking on a type-dependent argument.
5882*67e74705SXin Li if (Args[i]->isTypeDependent()) {
5883*67e74705SXin Li Match = false;
5884*67e74705SXin Li break;
5885*67e74705SXin Li }
5886*67e74705SXin Li
5887*67e74705SXin Li ParmVarDecl *param = Method->parameters()[i];
5888*67e74705SXin Li Expr *argExpr = Args[i];
5889*67e74705SXin Li assert(argExpr && "SelectBestMethod(): missing expression");
5890*67e74705SXin Li
5891*67e74705SXin Li // Strip the unbridged-cast placeholder expression off unless it's
5892*67e74705SXin Li // a consumed argument.
5893*67e74705SXin Li if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
5894*67e74705SXin Li !param->hasAttr<CFConsumedAttr>())
5895*67e74705SXin Li argExpr = stripARCUnbridgedCast(argExpr);
5896*67e74705SXin Li
5897*67e74705SXin Li // If the parameter is __unknown_anytype, move on to the next method.
5898*67e74705SXin Li if (param->getType() == Context.UnknownAnyTy) {
5899*67e74705SXin Li Match = false;
5900*67e74705SXin Li break;
5901*67e74705SXin Li }
5902*67e74705SXin Li
5903*67e74705SXin Li ImplicitConversionSequence ConversionState
5904*67e74705SXin Li = TryCopyInitialization(*this, argExpr, param->getType(),
5905*67e74705SXin Li /*SuppressUserConversions*/false,
5906*67e74705SXin Li /*InOverloadResolution=*/true,
5907*67e74705SXin Li /*AllowObjCWritebackConversion=*/
5908*67e74705SXin Li getLangOpts().ObjCAutoRefCount,
5909*67e74705SXin Li /*AllowExplicit*/false);
5910*67e74705SXin Li if (ConversionState.isBad()) {
5911*67e74705SXin Li Match = false;
5912*67e74705SXin Li break;
5913*67e74705SXin Li }
5914*67e74705SXin Li }
5915*67e74705SXin Li // Promote additional arguments to variadic methods.
5916*67e74705SXin Li if (Match && Method->isVariadic()) {
5917*67e74705SXin Li for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
5918*67e74705SXin Li if (Args[i]->isTypeDependent()) {
5919*67e74705SXin Li Match = false;
5920*67e74705SXin Li break;
5921*67e74705SXin Li }
5922*67e74705SXin Li ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
5923*67e74705SXin Li nullptr);
5924*67e74705SXin Li if (Arg.isInvalid()) {
5925*67e74705SXin Li Match = false;
5926*67e74705SXin Li break;
5927*67e74705SXin Li }
5928*67e74705SXin Li }
5929*67e74705SXin Li } else {
5930*67e74705SXin Li // Check for extra arguments to non-variadic methods.
5931*67e74705SXin Li if (Args.size() != NumNamedArgs)
5932*67e74705SXin Li Match = false;
5933*67e74705SXin Li else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
5934*67e74705SXin Li // Special case when selectors have no argument. In this case, select
5935*67e74705SXin Li // one with the most general result type of 'id'.
5936*67e74705SXin Li for (unsigned b = 0, e = Methods.size(); b < e; b++) {
5937*67e74705SXin Li QualType ReturnT = Methods[b]->getReturnType();
5938*67e74705SXin Li if (ReturnT->isObjCIdType())
5939*67e74705SXin Li return Methods[b];
5940*67e74705SXin Li }
5941*67e74705SXin Li }
5942*67e74705SXin Li }
5943*67e74705SXin Li
5944*67e74705SXin Li if (Match)
5945*67e74705SXin Li return Method;
5946*67e74705SXin Li }
5947*67e74705SXin Li return nullptr;
5948*67e74705SXin Li }
5949*67e74705SXin Li
5950*67e74705SXin Li // specific_attr_iterator iterates over enable_if attributes in reverse, and
5951*67e74705SXin Li // enable_if is order-sensitive. As a result, we need to reverse things
5952*67e74705SXin Li // sometimes. Size of 4 elements is arbitrary.
5953*67e74705SXin Li static SmallVector<EnableIfAttr *, 4>
getOrderedEnableIfAttrs(const FunctionDecl * Function)5954*67e74705SXin Li getOrderedEnableIfAttrs(const FunctionDecl *Function) {
5955*67e74705SXin Li SmallVector<EnableIfAttr *, 4> Result;
5956*67e74705SXin Li if (!Function->hasAttrs())
5957*67e74705SXin Li return Result;
5958*67e74705SXin Li
5959*67e74705SXin Li const auto &FuncAttrs = Function->getAttrs();
5960*67e74705SXin Li for (Attr *Attr : FuncAttrs)
5961*67e74705SXin Li if (auto *EnableIf = dyn_cast<EnableIfAttr>(Attr))
5962*67e74705SXin Li Result.push_back(EnableIf);
5963*67e74705SXin Li
5964*67e74705SXin Li std::reverse(Result.begin(), Result.end());
5965*67e74705SXin Li return Result;
5966*67e74705SXin Li }
5967*67e74705SXin Li
CheckEnableIf(FunctionDecl * Function,ArrayRef<Expr * > Args,bool MissingImplicitThis)5968*67e74705SXin Li EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
5969*67e74705SXin Li bool MissingImplicitThis) {
5970*67e74705SXin Li auto EnableIfAttrs = getOrderedEnableIfAttrs(Function);
5971*67e74705SXin Li if (EnableIfAttrs.empty())
5972*67e74705SXin Li return nullptr;
5973*67e74705SXin Li
5974*67e74705SXin Li SFINAETrap Trap(*this);
5975*67e74705SXin Li SmallVector<Expr *, 16> ConvertedArgs;
5976*67e74705SXin Li bool InitializationFailed = false;
5977*67e74705SXin Li
5978*67e74705SXin Li // Convert the arguments.
5979*67e74705SXin Li for (unsigned I = 0, E = Args.size(); I != E; ++I) {
5980*67e74705SXin Li ExprResult R;
5981*67e74705SXin Li if (I == 0 && !MissingImplicitThis && isa<CXXMethodDecl>(Function) &&
5982*67e74705SXin Li !cast<CXXMethodDecl>(Function)->isStatic() &&
5983*67e74705SXin Li !isa<CXXConstructorDecl>(Function)) {
5984*67e74705SXin Li CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
5985*67e74705SXin Li R = PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
5986*67e74705SXin Li Method, Method);
5987*67e74705SXin Li } else {
5988*67e74705SXin Li R = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5989*67e74705SXin Li Context, Function->getParamDecl(I)),
5990*67e74705SXin Li SourceLocation(), Args[I]);
5991*67e74705SXin Li }
5992*67e74705SXin Li
5993*67e74705SXin Li if (R.isInvalid()) {
5994*67e74705SXin Li InitializationFailed = true;
5995*67e74705SXin Li break;
5996*67e74705SXin Li }
5997*67e74705SXin Li
5998*67e74705SXin Li ConvertedArgs.push_back(R.get());
5999*67e74705SXin Li }
6000*67e74705SXin Li
6001*67e74705SXin Li if (InitializationFailed || Trap.hasErrorOccurred())
6002*67e74705SXin Li return EnableIfAttrs[0];
6003*67e74705SXin Li
6004*67e74705SXin Li // Push default arguments if needed.
6005*67e74705SXin Li if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
6006*67e74705SXin Li for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
6007*67e74705SXin Li ParmVarDecl *P = Function->getParamDecl(i);
6008*67e74705SXin Li ExprResult R = PerformCopyInitialization(
6009*67e74705SXin Li InitializedEntity::InitializeParameter(Context,
6010*67e74705SXin Li Function->getParamDecl(i)),
6011*67e74705SXin Li SourceLocation(),
6012*67e74705SXin Li P->hasUninstantiatedDefaultArg() ? P->getUninstantiatedDefaultArg()
6013*67e74705SXin Li : P->getDefaultArg());
6014*67e74705SXin Li if (R.isInvalid()) {
6015*67e74705SXin Li InitializationFailed = true;
6016*67e74705SXin Li break;
6017*67e74705SXin Li }
6018*67e74705SXin Li ConvertedArgs.push_back(R.get());
6019*67e74705SXin Li }
6020*67e74705SXin Li
6021*67e74705SXin Li if (InitializationFailed || Trap.hasErrorOccurred())
6022*67e74705SXin Li return EnableIfAttrs[0];
6023*67e74705SXin Li }
6024*67e74705SXin Li
6025*67e74705SXin Li for (auto *EIA : EnableIfAttrs) {
6026*67e74705SXin Li APValue Result;
6027*67e74705SXin Li // FIXME: This doesn't consider value-dependent cases, because doing so is
6028*67e74705SXin Li // very difficult. Ideally, we should handle them more gracefully.
6029*67e74705SXin Li if (!EIA->getCond()->EvaluateWithSubstitution(
6030*67e74705SXin Li Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
6031*67e74705SXin Li return EIA;
6032*67e74705SXin Li
6033*67e74705SXin Li if (!Result.isInt() || !Result.getInt().getBoolValue())
6034*67e74705SXin Li return EIA;
6035*67e74705SXin Li }
6036*67e74705SXin Li return nullptr;
6037*67e74705SXin Li }
6038*67e74705SXin Li
6039*67e74705SXin Li /// \brief Add all of the function declarations in the given function set to
6040*67e74705SXin Li /// the overload candidate set.
AddFunctionCandidates(const UnresolvedSetImpl & Fns,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,TemplateArgumentListInfo * ExplicitTemplateArgs,bool SuppressUserConversions,bool PartialOverloading)6041*67e74705SXin Li void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
6042*67e74705SXin Li ArrayRef<Expr *> Args,
6043*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6044*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
6045*67e74705SXin Li bool SuppressUserConversions,
6046*67e74705SXin Li bool PartialOverloading) {
6047*67e74705SXin Li for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
6048*67e74705SXin Li NamedDecl *D = F.getDecl()->getUnderlyingDecl();
6049*67e74705SXin Li if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6050*67e74705SXin Li if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
6051*67e74705SXin Li AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
6052*67e74705SXin Li cast<CXXMethodDecl>(FD)->getParent(),
6053*67e74705SXin Li Args[0]->getType(), Args[0]->Classify(Context),
6054*67e74705SXin Li Args.slice(1), CandidateSet,
6055*67e74705SXin Li SuppressUserConversions, PartialOverloading);
6056*67e74705SXin Li else
6057*67e74705SXin Li AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
6058*67e74705SXin Li SuppressUserConversions, PartialOverloading);
6059*67e74705SXin Li } else {
6060*67e74705SXin Li FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
6061*67e74705SXin Li if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
6062*67e74705SXin Li !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
6063*67e74705SXin Li AddMethodTemplateCandidate(FunTmpl, F.getPair(),
6064*67e74705SXin Li cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
6065*67e74705SXin Li ExplicitTemplateArgs,
6066*67e74705SXin Li Args[0]->getType(),
6067*67e74705SXin Li Args[0]->Classify(Context), Args.slice(1),
6068*67e74705SXin Li CandidateSet, SuppressUserConversions,
6069*67e74705SXin Li PartialOverloading);
6070*67e74705SXin Li else
6071*67e74705SXin Li AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
6072*67e74705SXin Li ExplicitTemplateArgs, Args,
6073*67e74705SXin Li CandidateSet, SuppressUserConversions,
6074*67e74705SXin Li PartialOverloading);
6075*67e74705SXin Li }
6076*67e74705SXin Li }
6077*67e74705SXin Li }
6078*67e74705SXin Li
6079*67e74705SXin Li /// AddMethodCandidate - Adds a named decl (which is some kind of
6080*67e74705SXin Li /// method) as a method candidate to the given overload set.
AddMethodCandidate(DeclAccessPair FoundDecl,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions)6081*67e74705SXin Li void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
6082*67e74705SXin Li QualType ObjectType,
6083*67e74705SXin Li Expr::Classification ObjectClassification,
6084*67e74705SXin Li ArrayRef<Expr *> Args,
6085*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6086*67e74705SXin Li bool SuppressUserConversions) {
6087*67e74705SXin Li NamedDecl *Decl = FoundDecl.getDecl();
6088*67e74705SXin Li CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
6089*67e74705SXin Li
6090*67e74705SXin Li if (isa<UsingShadowDecl>(Decl))
6091*67e74705SXin Li Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
6092*67e74705SXin Li
6093*67e74705SXin Li if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
6094*67e74705SXin Li assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
6095*67e74705SXin Li "Expected a member function template");
6096*67e74705SXin Li AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
6097*67e74705SXin Li /*ExplicitArgs*/ nullptr,
6098*67e74705SXin Li ObjectType, ObjectClassification,
6099*67e74705SXin Li Args, CandidateSet,
6100*67e74705SXin Li SuppressUserConversions);
6101*67e74705SXin Li } else {
6102*67e74705SXin Li AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
6103*67e74705SXin Li ObjectType, ObjectClassification,
6104*67e74705SXin Li Args,
6105*67e74705SXin Li CandidateSet, SuppressUserConversions);
6106*67e74705SXin Li }
6107*67e74705SXin Li }
6108*67e74705SXin Li
6109*67e74705SXin Li /// AddMethodCandidate - Adds the given C++ member function to the set
6110*67e74705SXin Li /// of candidate functions, using the given function call arguments
6111*67e74705SXin Li /// and the object argument (@c Object). For example, in a call
6112*67e74705SXin Li /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
6113*67e74705SXin Li /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
6114*67e74705SXin Li /// allow user-defined conversions via constructors or conversion
6115*67e74705SXin Li /// operators.
6116*67e74705SXin Li void
AddMethodCandidate(CXXMethodDecl * Method,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading)6117*67e74705SXin Li Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
6118*67e74705SXin Li CXXRecordDecl *ActingContext, QualType ObjectType,
6119*67e74705SXin Li Expr::Classification ObjectClassification,
6120*67e74705SXin Li ArrayRef<Expr *> Args,
6121*67e74705SXin Li OverloadCandidateSet &CandidateSet,
6122*67e74705SXin Li bool SuppressUserConversions,
6123*67e74705SXin Li bool PartialOverloading) {
6124*67e74705SXin Li const FunctionProtoType *Proto
6125*67e74705SXin Li = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
6126*67e74705SXin Li assert(Proto && "Methods without a prototype cannot be overloaded");
6127*67e74705SXin Li assert(!isa<CXXConstructorDecl>(Method) &&
6128*67e74705SXin Li "Use AddOverloadCandidate for constructors");
6129*67e74705SXin Li
6130*67e74705SXin Li if (!CandidateSet.isNewCandidate(Method))
6131*67e74705SXin Li return;
6132*67e74705SXin Li
6133*67e74705SXin Li // C++11 [class.copy]p23: [DR1402]
6134*67e74705SXin Li // A defaulted move assignment operator that is defined as deleted is
6135*67e74705SXin Li // ignored by overload resolution.
6136*67e74705SXin Li if (Method->isDefaulted() && Method->isDeleted() &&
6137*67e74705SXin Li Method->isMoveAssignmentOperator())
6138*67e74705SXin Li return;
6139*67e74705SXin Li
6140*67e74705SXin Li // Overload resolution is always an unevaluated context.
6141*67e74705SXin Li EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6142*67e74705SXin Li
6143*67e74705SXin Li // Add this candidate
6144*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6145*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6146*67e74705SXin Li Candidate.Function = Method;
6147*67e74705SXin Li Candidate.IsSurrogate = false;
6148*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6149*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
6150*67e74705SXin Li
6151*67e74705SXin Li unsigned NumParams = Proto->getNumParams();
6152*67e74705SXin Li
6153*67e74705SXin Li // (C++ 13.3.2p2): A candidate function having fewer than m
6154*67e74705SXin Li // parameters is viable only if it has an ellipsis in its parameter
6155*67e74705SXin Li // list (8.3.5).
6156*67e74705SXin Li if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
6157*67e74705SXin Li !Proto->isVariadic()) {
6158*67e74705SXin Li Candidate.Viable = false;
6159*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_many_arguments;
6160*67e74705SXin Li return;
6161*67e74705SXin Li }
6162*67e74705SXin Li
6163*67e74705SXin Li // (C++ 13.3.2p2): A candidate function having more than m parameters
6164*67e74705SXin Li // is viable only if the (m+1)st parameter has a default argument
6165*67e74705SXin Li // (8.3.6). For the purposes of overload resolution, the
6166*67e74705SXin Li // parameter list is truncated on the right, so that there are
6167*67e74705SXin Li // exactly m parameters.
6168*67e74705SXin Li unsigned MinRequiredArgs = Method->getMinRequiredArguments();
6169*67e74705SXin Li if (Args.size() < MinRequiredArgs && !PartialOverloading) {
6170*67e74705SXin Li // Not enough arguments.
6171*67e74705SXin Li Candidate.Viable = false;
6172*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_few_arguments;
6173*67e74705SXin Li return;
6174*67e74705SXin Li }
6175*67e74705SXin Li
6176*67e74705SXin Li Candidate.Viable = true;
6177*67e74705SXin Li
6178*67e74705SXin Li if (Method->isStatic() || ObjectType.isNull())
6179*67e74705SXin Li // The implicit object argument is ignored.
6180*67e74705SXin Li Candidate.IgnoreObjectArgument = true;
6181*67e74705SXin Li else {
6182*67e74705SXin Li // Determine the implicit conversion sequence for the object
6183*67e74705SXin Li // parameter.
6184*67e74705SXin Li Candidate.Conversions[0] = TryObjectArgumentInitialization(
6185*67e74705SXin Li *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
6186*67e74705SXin Li Method, ActingContext);
6187*67e74705SXin Li if (Candidate.Conversions[0].isBad()) {
6188*67e74705SXin Li Candidate.Viable = false;
6189*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6190*67e74705SXin Li return;
6191*67e74705SXin Li }
6192*67e74705SXin Li }
6193*67e74705SXin Li
6194*67e74705SXin Li // (CUDA B.1): Check for invalid calls between targets.
6195*67e74705SXin Li if (getLangOpts().CUDA)
6196*67e74705SXin Li if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
6197*67e74705SXin Li if (CheckCUDATarget(Caller, Method)) {
6198*67e74705SXin Li Candidate.Viable = false;
6199*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_target;
6200*67e74705SXin Li return;
6201*67e74705SXin Li }
6202*67e74705SXin Li
6203*67e74705SXin Li // Determine the implicit conversion sequences for each of the
6204*67e74705SXin Li // arguments.
6205*67e74705SXin Li for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
6206*67e74705SXin Li if (ArgIdx < NumParams) {
6207*67e74705SXin Li // (C++ 13.3.2p3): for F to be a viable function, there shall
6208*67e74705SXin Li // exist for each argument an implicit conversion sequence
6209*67e74705SXin Li // (13.3.3.1) that converts that argument to the corresponding
6210*67e74705SXin Li // parameter of F.
6211*67e74705SXin Li QualType ParamType = Proto->getParamType(ArgIdx);
6212*67e74705SXin Li Candidate.Conversions[ArgIdx + 1]
6213*67e74705SXin Li = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6214*67e74705SXin Li SuppressUserConversions,
6215*67e74705SXin Li /*InOverloadResolution=*/true,
6216*67e74705SXin Li /*AllowObjCWritebackConversion=*/
6217*67e74705SXin Li getLangOpts().ObjCAutoRefCount);
6218*67e74705SXin Li if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6219*67e74705SXin Li Candidate.Viable = false;
6220*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6221*67e74705SXin Li return;
6222*67e74705SXin Li }
6223*67e74705SXin Li } else {
6224*67e74705SXin Li // (C++ 13.3.2p2): For the purposes of overload resolution, any
6225*67e74705SXin Li // argument for which there is no corresponding parameter is
6226*67e74705SXin Li // considered to "match the ellipsis" (C+ 13.3.3.1.3).
6227*67e74705SXin Li Candidate.Conversions[ArgIdx + 1].setEllipsis();
6228*67e74705SXin Li }
6229*67e74705SXin Li }
6230*67e74705SXin Li
6231*67e74705SXin Li if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
6232*67e74705SXin Li Candidate.Viable = false;
6233*67e74705SXin Li Candidate.FailureKind = ovl_fail_enable_if;
6234*67e74705SXin Li Candidate.DeductionFailure.Data = FailedAttr;
6235*67e74705SXin Li return;
6236*67e74705SXin Li }
6237*67e74705SXin Li }
6238*67e74705SXin Li
6239*67e74705SXin Li /// \brief Add a C++ member function template as a candidate to the candidate
6240*67e74705SXin Li /// set, using template argument deduction to produce an appropriate member
6241*67e74705SXin Li /// function template specialization.
6242*67e74705SXin Li void
AddMethodTemplateCandidate(FunctionTemplateDecl * MethodTmpl,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,TemplateArgumentListInfo * ExplicitTemplateArgs,QualType ObjectType,Expr::Classification ObjectClassification,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading)6243*67e74705SXin Li Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
6244*67e74705SXin Li DeclAccessPair FoundDecl,
6245*67e74705SXin Li CXXRecordDecl *ActingContext,
6246*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
6247*67e74705SXin Li QualType ObjectType,
6248*67e74705SXin Li Expr::Classification ObjectClassification,
6249*67e74705SXin Li ArrayRef<Expr *> Args,
6250*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6251*67e74705SXin Li bool SuppressUserConversions,
6252*67e74705SXin Li bool PartialOverloading) {
6253*67e74705SXin Li if (!CandidateSet.isNewCandidate(MethodTmpl))
6254*67e74705SXin Li return;
6255*67e74705SXin Li
6256*67e74705SXin Li // C++ [over.match.funcs]p7:
6257*67e74705SXin Li // In each case where a candidate is a function template, candidate
6258*67e74705SXin Li // function template specializations are generated using template argument
6259*67e74705SXin Li // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6260*67e74705SXin Li // candidate functions in the usual way.113) A given name can refer to one
6261*67e74705SXin Li // or more function templates and also to a set of overloaded non-template
6262*67e74705SXin Li // functions. In such a case, the candidate functions generated from each
6263*67e74705SXin Li // function template are combined with the set of non-template candidate
6264*67e74705SXin Li // functions.
6265*67e74705SXin Li TemplateDeductionInfo Info(CandidateSet.getLocation());
6266*67e74705SXin Li FunctionDecl *Specialization = nullptr;
6267*67e74705SXin Li if (TemplateDeductionResult Result
6268*67e74705SXin Li = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
6269*67e74705SXin Li Specialization, Info, PartialOverloading)) {
6270*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate();
6271*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6272*67e74705SXin Li Candidate.Function = MethodTmpl->getTemplatedDecl();
6273*67e74705SXin Li Candidate.Viable = false;
6274*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_deduction;
6275*67e74705SXin Li Candidate.IsSurrogate = false;
6276*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6277*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
6278*67e74705SXin Li Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6279*67e74705SXin Li Info);
6280*67e74705SXin Li return;
6281*67e74705SXin Li }
6282*67e74705SXin Li
6283*67e74705SXin Li // Add the function template specialization produced by template argument
6284*67e74705SXin Li // deduction as a candidate.
6285*67e74705SXin Li assert(Specialization && "Missing member function template specialization?");
6286*67e74705SXin Li assert(isa<CXXMethodDecl>(Specialization) &&
6287*67e74705SXin Li "Specialization is not a member function?");
6288*67e74705SXin Li AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
6289*67e74705SXin Li ActingContext, ObjectType, ObjectClassification, Args,
6290*67e74705SXin Li CandidateSet, SuppressUserConversions, PartialOverloading);
6291*67e74705SXin Li }
6292*67e74705SXin Li
6293*67e74705SXin Li /// \brief Add a C++ function template specialization as a candidate
6294*67e74705SXin Li /// in the candidate set, using template argument deduction to produce
6295*67e74705SXin Li /// an appropriate function template specialization.
6296*67e74705SXin Li void
AddTemplateOverloadCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool SuppressUserConversions,bool PartialOverloading)6297*67e74705SXin Li Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
6298*67e74705SXin Li DeclAccessPair FoundDecl,
6299*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
6300*67e74705SXin Li ArrayRef<Expr *> Args,
6301*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6302*67e74705SXin Li bool SuppressUserConversions,
6303*67e74705SXin Li bool PartialOverloading) {
6304*67e74705SXin Li if (!CandidateSet.isNewCandidate(FunctionTemplate))
6305*67e74705SXin Li return;
6306*67e74705SXin Li
6307*67e74705SXin Li // C++ [over.match.funcs]p7:
6308*67e74705SXin Li // In each case where a candidate is a function template, candidate
6309*67e74705SXin Li // function template specializations are generated using template argument
6310*67e74705SXin Li // deduction (14.8.3, 14.8.2). Those candidates are then handled as
6311*67e74705SXin Li // candidate functions in the usual way.113) A given name can refer to one
6312*67e74705SXin Li // or more function templates and also to a set of overloaded non-template
6313*67e74705SXin Li // functions. In such a case, the candidate functions generated from each
6314*67e74705SXin Li // function template are combined with the set of non-template candidate
6315*67e74705SXin Li // functions.
6316*67e74705SXin Li TemplateDeductionInfo Info(CandidateSet.getLocation());
6317*67e74705SXin Li FunctionDecl *Specialization = nullptr;
6318*67e74705SXin Li if (TemplateDeductionResult Result
6319*67e74705SXin Li = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
6320*67e74705SXin Li Specialization, Info, PartialOverloading)) {
6321*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate();
6322*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6323*67e74705SXin Li Candidate.Function = FunctionTemplate->getTemplatedDecl();
6324*67e74705SXin Li Candidate.Viable = false;
6325*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_deduction;
6326*67e74705SXin Li Candidate.IsSurrogate = false;
6327*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6328*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
6329*67e74705SXin Li Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6330*67e74705SXin Li Info);
6331*67e74705SXin Li return;
6332*67e74705SXin Li }
6333*67e74705SXin Li
6334*67e74705SXin Li // Add the function template specialization produced by template argument
6335*67e74705SXin Li // deduction as a candidate.
6336*67e74705SXin Li assert(Specialization && "Missing function template specialization?");
6337*67e74705SXin Li AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
6338*67e74705SXin Li SuppressUserConversions, PartialOverloading);
6339*67e74705SXin Li }
6340*67e74705SXin Li
6341*67e74705SXin Li /// Determine whether this is an allowable conversion from the result
6342*67e74705SXin Li /// of an explicit conversion operator to the expected type, per C++
6343*67e74705SXin Li /// [over.match.conv]p1 and [over.match.ref]p1.
6344*67e74705SXin Li ///
6345*67e74705SXin Li /// \param ConvType The return type of the conversion function.
6346*67e74705SXin Li ///
6347*67e74705SXin Li /// \param ToType The type we are converting to.
6348*67e74705SXin Li ///
6349*67e74705SXin Li /// \param AllowObjCPointerConversion Allow a conversion from one
6350*67e74705SXin Li /// Objective-C pointer to another.
6351*67e74705SXin Li ///
6352*67e74705SXin Li /// \returns true if the conversion is allowable, false otherwise.
isAllowableExplicitConversion(Sema & S,QualType ConvType,QualType ToType,bool AllowObjCPointerConversion)6353*67e74705SXin Li static bool isAllowableExplicitConversion(Sema &S,
6354*67e74705SXin Li QualType ConvType, QualType ToType,
6355*67e74705SXin Li bool AllowObjCPointerConversion) {
6356*67e74705SXin Li QualType ToNonRefType = ToType.getNonReferenceType();
6357*67e74705SXin Li
6358*67e74705SXin Li // Easy case: the types are the same.
6359*67e74705SXin Li if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
6360*67e74705SXin Li return true;
6361*67e74705SXin Li
6362*67e74705SXin Li // Allow qualification conversions.
6363*67e74705SXin Li bool ObjCLifetimeConversion;
6364*67e74705SXin Li if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
6365*67e74705SXin Li ObjCLifetimeConversion))
6366*67e74705SXin Li return true;
6367*67e74705SXin Li
6368*67e74705SXin Li // If we're not allowed to consider Objective-C pointer conversions,
6369*67e74705SXin Li // we're done.
6370*67e74705SXin Li if (!AllowObjCPointerConversion)
6371*67e74705SXin Li return false;
6372*67e74705SXin Li
6373*67e74705SXin Li // Is this an Objective-C pointer conversion?
6374*67e74705SXin Li bool IncompatibleObjC = false;
6375*67e74705SXin Li QualType ConvertedType;
6376*67e74705SXin Li return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
6377*67e74705SXin Li IncompatibleObjC);
6378*67e74705SXin Li }
6379*67e74705SXin Li
6380*67e74705SXin Li /// AddConversionCandidate - Add a C++ conversion function as a
6381*67e74705SXin Li /// candidate in the candidate set (C++ [over.match.conv],
6382*67e74705SXin Li /// C++ [over.match.copy]). From is the expression we're converting from,
6383*67e74705SXin Li /// and ToType is the type that we're eventually trying to convert to
6384*67e74705SXin Li /// (which may or may not be the same type as the type that the
6385*67e74705SXin Li /// conversion function produces).
6386*67e74705SXin Li void
AddConversionCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit)6387*67e74705SXin Li Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
6388*67e74705SXin Li DeclAccessPair FoundDecl,
6389*67e74705SXin Li CXXRecordDecl *ActingContext,
6390*67e74705SXin Li Expr *From, QualType ToType,
6391*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6392*67e74705SXin Li bool AllowObjCConversionOnExplicit) {
6393*67e74705SXin Li assert(!Conversion->getDescribedFunctionTemplate() &&
6394*67e74705SXin Li "Conversion function templates use AddTemplateConversionCandidate");
6395*67e74705SXin Li QualType ConvType = Conversion->getConversionType().getNonReferenceType();
6396*67e74705SXin Li if (!CandidateSet.isNewCandidate(Conversion))
6397*67e74705SXin Li return;
6398*67e74705SXin Li
6399*67e74705SXin Li // If the conversion function has an undeduced return type, trigger its
6400*67e74705SXin Li // deduction now.
6401*67e74705SXin Li if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
6402*67e74705SXin Li if (DeduceReturnType(Conversion, From->getExprLoc()))
6403*67e74705SXin Li return;
6404*67e74705SXin Li ConvType = Conversion->getConversionType().getNonReferenceType();
6405*67e74705SXin Li }
6406*67e74705SXin Li
6407*67e74705SXin Li // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
6408*67e74705SXin Li // operator is only a candidate if its return type is the target type or
6409*67e74705SXin Li // can be converted to the target type with a qualification conversion.
6410*67e74705SXin Li if (Conversion->isExplicit() &&
6411*67e74705SXin Li !isAllowableExplicitConversion(*this, ConvType, ToType,
6412*67e74705SXin Li AllowObjCConversionOnExplicit))
6413*67e74705SXin Li return;
6414*67e74705SXin Li
6415*67e74705SXin Li // Overload resolution is always an unevaluated context.
6416*67e74705SXin Li EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6417*67e74705SXin Li
6418*67e74705SXin Li // Add this candidate
6419*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
6420*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6421*67e74705SXin Li Candidate.Function = Conversion;
6422*67e74705SXin Li Candidate.IsSurrogate = false;
6423*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6424*67e74705SXin Li Candidate.FinalConversion.setAsIdentityConversion();
6425*67e74705SXin Li Candidate.FinalConversion.setFromType(ConvType);
6426*67e74705SXin Li Candidate.FinalConversion.setAllToTypes(ToType);
6427*67e74705SXin Li Candidate.Viable = true;
6428*67e74705SXin Li Candidate.ExplicitCallArguments = 1;
6429*67e74705SXin Li
6430*67e74705SXin Li // C++ [over.match.funcs]p4:
6431*67e74705SXin Li // For conversion functions, the function is considered to be a member of
6432*67e74705SXin Li // the class of the implicit implied object argument for the purpose of
6433*67e74705SXin Li // defining the type of the implicit object parameter.
6434*67e74705SXin Li //
6435*67e74705SXin Li // Determine the implicit conversion sequence for the implicit
6436*67e74705SXin Li // object parameter.
6437*67e74705SXin Li QualType ImplicitParamType = From->getType();
6438*67e74705SXin Li if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
6439*67e74705SXin Li ImplicitParamType = FromPtrType->getPointeeType();
6440*67e74705SXin Li CXXRecordDecl *ConversionContext
6441*67e74705SXin Li = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
6442*67e74705SXin Li
6443*67e74705SXin Li Candidate.Conversions[0] = TryObjectArgumentInitialization(
6444*67e74705SXin Li *this, CandidateSet.getLocation(), From->getType(),
6445*67e74705SXin Li From->Classify(Context), Conversion, ConversionContext);
6446*67e74705SXin Li
6447*67e74705SXin Li if (Candidate.Conversions[0].isBad()) {
6448*67e74705SXin Li Candidate.Viable = false;
6449*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6450*67e74705SXin Li return;
6451*67e74705SXin Li }
6452*67e74705SXin Li
6453*67e74705SXin Li // We won't go through a user-defined type conversion function to convert a
6454*67e74705SXin Li // derived to base as such conversions are given Conversion Rank. They only
6455*67e74705SXin Li // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
6456*67e74705SXin Li QualType FromCanon
6457*67e74705SXin Li = Context.getCanonicalType(From->getType().getUnqualifiedType());
6458*67e74705SXin Li QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
6459*67e74705SXin Li if (FromCanon == ToCanon ||
6460*67e74705SXin Li IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
6461*67e74705SXin Li Candidate.Viable = false;
6462*67e74705SXin Li Candidate.FailureKind = ovl_fail_trivial_conversion;
6463*67e74705SXin Li return;
6464*67e74705SXin Li }
6465*67e74705SXin Li
6466*67e74705SXin Li // To determine what the conversion from the result of calling the
6467*67e74705SXin Li // conversion function to the type we're eventually trying to
6468*67e74705SXin Li // convert to (ToType), we need to synthesize a call to the
6469*67e74705SXin Li // conversion function and attempt copy initialization from it. This
6470*67e74705SXin Li // makes sure that we get the right semantics with respect to
6471*67e74705SXin Li // lvalues/rvalues and the type. Fortunately, we can allocate this
6472*67e74705SXin Li // call on the stack and we don't need its arguments to be
6473*67e74705SXin Li // well-formed.
6474*67e74705SXin Li DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
6475*67e74705SXin Li VK_LValue, From->getLocStart());
6476*67e74705SXin Li ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
6477*67e74705SXin Li Context.getPointerType(Conversion->getType()),
6478*67e74705SXin Li CK_FunctionToPointerDecay,
6479*67e74705SXin Li &ConversionRef, VK_RValue);
6480*67e74705SXin Li
6481*67e74705SXin Li QualType ConversionType = Conversion->getConversionType();
6482*67e74705SXin Li if (!isCompleteType(From->getLocStart(), ConversionType)) {
6483*67e74705SXin Li Candidate.Viable = false;
6484*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_final_conversion;
6485*67e74705SXin Li return;
6486*67e74705SXin Li }
6487*67e74705SXin Li
6488*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ConversionType);
6489*67e74705SXin Li
6490*67e74705SXin Li // Note that it is safe to allocate CallExpr on the stack here because
6491*67e74705SXin Li // there are 0 arguments (i.e., nothing is allocated using ASTContext's
6492*67e74705SXin Li // allocator).
6493*67e74705SXin Li QualType CallResultType = ConversionType.getNonLValueExprType(Context);
6494*67e74705SXin Li CallExpr Call(Context, &ConversionFn, None, CallResultType, VK,
6495*67e74705SXin Li From->getLocStart());
6496*67e74705SXin Li ImplicitConversionSequence ICS =
6497*67e74705SXin Li TryCopyInitialization(*this, &Call, ToType,
6498*67e74705SXin Li /*SuppressUserConversions=*/true,
6499*67e74705SXin Li /*InOverloadResolution=*/false,
6500*67e74705SXin Li /*AllowObjCWritebackConversion=*/false);
6501*67e74705SXin Li
6502*67e74705SXin Li switch (ICS.getKind()) {
6503*67e74705SXin Li case ImplicitConversionSequence::StandardConversion:
6504*67e74705SXin Li Candidate.FinalConversion = ICS.Standard;
6505*67e74705SXin Li
6506*67e74705SXin Li // C++ [over.ics.user]p3:
6507*67e74705SXin Li // If the user-defined conversion is specified by a specialization of a
6508*67e74705SXin Li // conversion function template, the second standard conversion sequence
6509*67e74705SXin Li // shall have exact match rank.
6510*67e74705SXin Li if (Conversion->getPrimaryTemplate() &&
6511*67e74705SXin Li GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
6512*67e74705SXin Li Candidate.Viable = false;
6513*67e74705SXin Li Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
6514*67e74705SXin Li return;
6515*67e74705SXin Li }
6516*67e74705SXin Li
6517*67e74705SXin Li // C++0x [dcl.init.ref]p5:
6518*67e74705SXin Li // In the second case, if the reference is an rvalue reference and
6519*67e74705SXin Li // the second standard conversion sequence of the user-defined
6520*67e74705SXin Li // conversion sequence includes an lvalue-to-rvalue conversion, the
6521*67e74705SXin Li // program is ill-formed.
6522*67e74705SXin Li if (ToType->isRValueReferenceType() &&
6523*67e74705SXin Li ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6524*67e74705SXin Li Candidate.Viable = false;
6525*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_final_conversion;
6526*67e74705SXin Li return;
6527*67e74705SXin Li }
6528*67e74705SXin Li break;
6529*67e74705SXin Li
6530*67e74705SXin Li case ImplicitConversionSequence::BadConversion:
6531*67e74705SXin Li Candidate.Viable = false;
6532*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_final_conversion;
6533*67e74705SXin Li return;
6534*67e74705SXin Li
6535*67e74705SXin Li default:
6536*67e74705SXin Li llvm_unreachable(
6537*67e74705SXin Li "Can only end up with a standard conversion sequence or failure");
6538*67e74705SXin Li }
6539*67e74705SXin Li
6540*67e74705SXin Li if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6541*67e74705SXin Li Candidate.Viable = false;
6542*67e74705SXin Li Candidate.FailureKind = ovl_fail_enable_if;
6543*67e74705SXin Li Candidate.DeductionFailure.Data = FailedAttr;
6544*67e74705SXin Li return;
6545*67e74705SXin Li }
6546*67e74705SXin Li }
6547*67e74705SXin Li
6548*67e74705SXin Li /// \brief Adds a conversion function template specialization
6549*67e74705SXin Li /// candidate to the overload set, using template argument deduction
6550*67e74705SXin Li /// to deduce the template arguments of the conversion function
6551*67e74705SXin Li /// template from the type that we are converting to (C++
6552*67e74705SXin Li /// [temp.deduct.conv]).
6553*67e74705SXin Li void
AddTemplateConversionCandidate(FunctionTemplateDecl * FunctionTemplate,DeclAccessPair FoundDecl,CXXRecordDecl * ActingDC,Expr * From,QualType ToType,OverloadCandidateSet & CandidateSet,bool AllowObjCConversionOnExplicit)6554*67e74705SXin Li Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
6555*67e74705SXin Li DeclAccessPair FoundDecl,
6556*67e74705SXin Li CXXRecordDecl *ActingDC,
6557*67e74705SXin Li Expr *From, QualType ToType,
6558*67e74705SXin Li OverloadCandidateSet &CandidateSet,
6559*67e74705SXin Li bool AllowObjCConversionOnExplicit) {
6560*67e74705SXin Li assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
6561*67e74705SXin Li "Only conversion function templates permitted here");
6562*67e74705SXin Li
6563*67e74705SXin Li if (!CandidateSet.isNewCandidate(FunctionTemplate))
6564*67e74705SXin Li return;
6565*67e74705SXin Li
6566*67e74705SXin Li TemplateDeductionInfo Info(CandidateSet.getLocation());
6567*67e74705SXin Li CXXConversionDecl *Specialization = nullptr;
6568*67e74705SXin Li if (TemplateDeductionResult Result
6569*67e74705SXin Li = DeduceTemplateArguments(FunctionTemplate, ToType,
6570*67e74705SXin Li Specialization, Info)) {
6571*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate();
6572*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6573*67e74705SXin Li Candidate.Function = FunctionTemplate->getTemplatedDecl();
6574*67e74705SXin Li Candidate.Viable = false;
6575*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_deduction;
6576*67e74705SXin Li Candidate.IsSurrogate = false;
6577*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6578*67e74705SXin Li Candidate.ExplicitCallArguments = 1;
6579*67e74705SXin Li Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
6580*67e74705SXin Li Info);
6581*67e74705SXin Li return;
6582*67e74705SXin Li }
6583*67e74705SXin Li
6584*67e74705SXin Li // Add the conversion function template specialization produced by
6585*67e74705SXin Li // template argument deduction as a candidate.
6586*67e74705SXin Li assert(Specialization && "Missing function template specialization?");
6587*67e74705SXin Li AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
6588*67e74705SXin Li CandidateSet, AllowObjCConversionOnExplicit);
6589*67e74705SXin Li }
6590*67e74705SXin Li
6591*67e74705SXin Li /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
6592*67e74705SXin Li /// converts the given @c Object to a function pointer via the
6593*67e74705SXin Li /// conversion function @c Conversion, and then attempts to call it
6594*67e74705SXin Li /// with the given arguments (C++ [over.call.object]p2-4). Proto is
6595*67e74705SXin Li /// the type of function that we'll eventually be calling.
AddSurrogateCandidate(CXXConversionDecl * Conversion,DeclAccessPair FoundDecl,CXXRecordDecl * ActingContext,const FunctionProtoType * Proto,Expr * Object,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)6596*67e74705SXin Li void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
6597*67e74705SXin Li DeclAccessPair FoundDecl,
6598*67e74705SXin Li CXXRecordDecl *ActingContext,
6599*67e74705SXin Li const FunctionProtoType *Proto,
6600*67e74705SXin Li Expr *Object,
6601*67e74705SXin Li ArrayRef<Expr *> Args,
6602*67e74705SXin Li OverloadCandidateSet& CandidateSet) {
6603*67e74705SXin Li if (!CandidateSet.isNewCandidate(Conversion))
6604*67e74705SXin Li return;
6605*67e74705SXin Li
6606*67e74705SXin Li // Overload resolution is always an unevaluated context.
6607*67e74705SXin Li EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6608*67e74705SXin Li
6609*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
6610*67e74705SXin Li Candidate.FoundDecl = FoundDecl;
6611*67e74705SXin Li Candidate.Function = nullptr;
6612*67e74705SXin Li Candidate.Surrogate = Conversion;
6613*67e74705SXin Li Candidate.Viable = true;
6614*67e74705SXin Li Candidate.IsSurrogate = true;
6615*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6616*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
6617*67e74705SXin Li
6618*67e74705SXin Li // Determine the implicit conversion sequence for the implicit
6619*67e74705SXin Li // object parameter.
6620*67e74705SXin Li ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
6621*67e74705SXin Li *this, CandidateSet.getLocation(), Object->getType(),
6622*67e74705SXin Li Object->Classify(Context), Conversion, ActingContext);
6623*67e74705SXin Li if (ObjectInit.isBad()) {
6624*67e74705SXin Li Candidate.Viable = false;
6625*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6626*67e74705SXin Li Candidate.Conversions[0] = ObjectInit;
6627*67e74705SXin Li return;
6628*67e74705SXin Li }
6629*67e74705SXin Li
6630*67e74705SXin Li // The first conversion is actually a user-defined conversion whose
6631*67e74705SXin Li // first conversion is ObjectInit's standard conversion (which is
6632*67e74705SXin Li // effectively a reference binding). Record it as such.
6633*67e74705SXin Li Candidate.Conversions[0].setUserDefined();
6634*67e74705SXin Li Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
6635*67e74705SXin Li Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
6636*67e74705SXin Li Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
6637*67e74705SXin Li Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
6638*67e74705SXin Li Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
6639*67e74705SXin Li Candidate.Conversions[0].UserDefined.After
6640*67e74705SXin Li = Candidate.Conversions[0].UserDefined.Before;
6641*67e74705SXin Li Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
6642*67e74705SXin Li
6643*67e74705SXin Li // Find the
6644*67e74705SXin Li unsigned NumParams = Proto->getNumParams();
6645*67e74705SXin Li
6646*67e74705SXin Li // (C++ 13.3.2p2): A candidate function having fewer than m
6647*67e74705SXin Li // parameters is viable only if it has an ellipsis in its parameter
6648*67e74705SXin Li // list (8.3.5).
6649*67e74705SXin Li if (Args.size() > NumParams && !Proto->isVariadic()) {
6650*67e74705SXin Li Candidate.Viable = false;
6651*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_many_arguments;
6652*67e74705SXin Li return;
6653*67e74705SXin Li }
6654*67e74705SXin Li
6655*67e74705SXin Li // Function types don't have any default arguments, so just check if
6656*67e74705SXin Li // we have enough arguments.
6657*67e74705SXin Li if (Args.size() < NumParams) {
6658*67e74705SXin Li // Not enough arguments.
6659*67e74705SXin Li Candidate.Viable = false;
6660*67e74705SXin Li Candidate.FailureKind = ovl_fail_too_few_arguments;
6661*67e74705SXin Li return;
6662*67e74705SXin Li }
6663*67e74705SXin Li
6664*67e74705SXin Li // Determine the implicit conversion sequences for each of the
6665*67e74705SXin Li // arguments.
6666*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6667*67e74705SXin Li if (ArgIdx < NumParams) {
6668*67e74705SXin Li // (C++ 13.3.2p3): for F to be a viable function, there shall
6669*67e74705SXin Li // exist for each argument an implicit conversion sequence
6670*67e74705SXin Li // (13.3.3.1) that converts that argument to the corresponding
6671*67e74705SXin Li // parameter of F.
6672*67e74705SXin Li QualType ParamType = Proto->getParamType(ArgIdx);
6673*67e74705SXin Li Candidate.Conversions[ArgIdx + 1]
6674*67e74705SXin Li = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
6675*67e74705SXin Li /*SuppressUserConversions=*/false,
6676*67e74705SXin Li /*InOverloadResolution=*/false,
6677*67e74705SXin Li /*AllowObjCWritebackConversion=*/
6678*67e74705SXin Li getLangOpts().ObjCAutoRefCount);
6679*67e74705SXin Li if (Candidate.Conversions[ArgIdx + 1].isBad()) {
6680*67e74705SXin Li Candidate.Viable = false;
6681*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6682*67e74705SXin Li return;
6683*67e74705SXin Li }
6684*67e74705SXin Li } else {
6685*67e74705SXin Li // (C++ 13.3.2p2): For the purposes of overload resolution, any
6686*67e74705SXin Li // argument for which there is no corresponding parameter is
6687*67e74705SXin Li // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
6688*67e74705SXin Li Candidate.Conversions[ArgIdx + 1].setEllipsis();
6689*67e74705SXin Li }
6690*67e74705SXin Li }
6691*67e74705SXin Li
6692*67e74705SXin Li if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
6693*67e74705SXin Li Candidate.Viable = false;
6694*67e74705SXin Li Candidate.FailureKind = ovl_fail_enable_if;
6695*67e74705SXin Li Candidate.DeductionFailure.Data = FailedAttr;
6696*67e74705SXin Li return;
6697*67e74705SXin Li }
6698*67e74705SXin Li }
6699*67e74705SXin Li
6700*67e74705SXin Li /// \brief Add overload candidates for overloaded operators that are
6701*67e74705SXin Li /// member functions.
6702*67e74705SXin Li ///
6703*67e74705SXin Li /// Add the overloaded operator candidates that are member functions
6704*67e74705SXin Li /// for the operator Op that was used in an operator expression such
6705*67e74705SXin Li /// as "x Op y". , Args/NumArgs provides the operator arguments, and
6706*67e74705SXin Li /// CandidateSet will store the added overload candidates. (C++
6707*67e74705SXin Li /// [over.match.oper]).
AddMemberOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,SourceRange OpRange)6708*67e74705SXin Li void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
6709*67e74705SXin Li SourceLocation OpLoc,
6710*67e74705SXin Li ArrayRef<Expr *> Args,
6711*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6712*67e74705SXin Li SourceRange OpRange) {
6713*67e74705SXin Li DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6714*67e74705SXin Li
6715*67e74705SXin Li // C++ [over.match.oper]p3:
6716*67e74705SXin Li // For a unary operator @ with an operand of a type whose
6717*67e74705SXin Li // cv-unqualified version is T1, and for a binary operator @ with
6718*67e74705SXin Li // a left operand of a type whose cv-unqualified version is T1 and
6719*67e74705SXin Li // a right operand of a type whose cv-unqualified version is T2,
6720*67e74705SXin Li // three sets of candidate functions, designated member
6721*67e74705SXin Li // candidates, non-member candidates and built-in candidates, are
6722*67e74705SXin Li // constructed as follows:
6723*67e74705SXin Li QualType T1 = Args[0]->getType();
6724*67e74705SXin Li
6725*67e74705SXin Li // -- If T1 is a complete class type or a class currently being
6726*67e74705SXin Li // defined, the set of member candidates is the result of the
6727*67e74705SXin Li // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
6728*67e74705SXin Li // the set of member candidates is empty.
6729*67e74705SXin Li if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
6730*67e74705SXin Li // Complete the type if it can be completed.
6731*67e74705SXin Li if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
6732*67e74705SXin Li return;
6733*67e74705SXin Li // If the type is neither complete nor being defined, bail out now.
6734*67e74705SXin Li if (!T1Rec->getDecl()->getDefinition())
6735*67e74705SXin Li return;
6736*67e74705SXin Li
6737*67e74705SXin Li LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
6738*67e74705SXin Li LookupQualifiedName(Operators, T1Rec->getDecl());
6739*67e74705SXin Li Operators.suppressDiagnostics();
6740*67e74705SXin Li
6741*67e74705SXin Li for (LookupResult::iterator Oper = Operators.begin(),
6742*67e74705SXin Li OperEnd = Operators.end();
6743*67e74705SXin Li Oper != OperEnd;
6744*67e74705SXin Li ++Oper)
6745*67e74705SXin Li AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
6746*67e74705SXin Li Args[0]->Classify(Context),
6747*67e74705SXin Li Args.slice(1),
6748*67e74705SXin Li CandidateSet,
6749*67e74705SXin Li /* SuppressUserConversions = */ false);
6750*67e74705SXin Li }
6751*67e74705SXin Li }
6752*67e74705SXin Li
6753*67e74705SXin Li /// AddBuiltinCandidate - Add a candidate for a built-in
6754*67e74705SXin Li /// operator. ResultTy and ParamTys are the result and parameter types
6755*67e74705SXin Li /// of the built-in candidate, respectively. Args and NumArgs are the
6756*67e74705SXin Li /// arguments being passed to the candidate. IsAssignmentOperator
6757*67e74705SXin Li /// should be true when this built-in candidate is an assignment
6758*67e74705SXin Li /// operator. NumContextualBoolArguments is the number of arguments
6759*67e74705SXin Li /// (at the beginning of the argument list) that will be contextually
6760*67e74705SXin Li /// converted to bool.
AddBuiltinCandidate(QualType ResultTy,QualType * ParamTys,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool IsAssignmentOperator,unsigned NumContextualBoolArguments)6761*67e74705SXin Li void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
6762*67e74705SXin Li ArrayRef<Expr *> Args,
6763*67e74705SXin Li OverloadCandidateSet& CandidateSet,
6764*67e74705SXin Li bool IsAssignmentOperator,
6765*67e74705SXin Li unsigned NumContextualBoolArguments) {
6766*67e74705SXin Li // Overload resolution is always an unevaluated context.
6767*67e74705SXin Li EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
6768*67e74705SXin Li
6769*67e74705SXin Li // Add this candidate
6770*67e74705SXin Li OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
6771*67e74705SXin Li Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
6772*67e74705SXin Li Candidate.Function = nullptr;
6773*67e74705SXin Li Candidate.IsSurrogate = false;
6774*67e74705SXin Li Candidate.IgnoreObjectArgument = false;
6775*67e74705SXin Li Candidate.BuiltinTypes.ResultTy = ResultTy;
6776*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
6777*67e74705SXin Li Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
6778*67e74705SXin Li
6779*67e74705SXin Li // Determine the implicit conversion sequences for each of the
6780*67e74705SXin Li // arguments.
6781*67e74705SXin Li Candidate.Viable = true;
6782*67e74705SXin Li Candidate.ExplicitCallArguments = Args.size();
6783*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
6784*67e74705SXin Li // C++ [over.match.oper]p4:
6785*67e74705SXin Li // For the built-in assignment operators, conversions of the
6786*67e74705SXin Li // left operand are restricted as follows:
6787*67e74705SXin Li // -- no temporaries are introduced to hold the left operand, and
6788*67e74705SXin Li // -- no user-defined conversions are applied to the left
6789*67e74705SXin Li // operand to achieve a type match with the left-most
6790*67e74705SXin Li // parameter of a built-in candidate.
6791*67e74705SXin Li //
6792*67e74705SXin Li // We block these conversions by turning off user-defined
6793*67e74705SXin Li // conversions, since that is the only way that initialization of
6794*67e74705SXin Li // a reference to a non-class type can occur from something that
6795*67e74705SXin Li // is not of the same type.
6796*67e74705SXin Li if (ArgIdx < NumContextualBoolArguments) {
6797*67e74705SXin Li assert(ParamTys[ArgIdx] == Context.BoolTy &&
6798*67e74705SXin Li "Contextual conversion to bool requires bool type");
6799*67e74705SXin Li Candidate.Conversions[ArgIdx]
6800*67e74705SXin Li = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
6801*67e74705SXin Li } else {
6802*67e74705SXin Li Candidate.Conversions[ArgIdx]
6803*67e74705SXin Li = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
6804*67e74705SXin Li ArgIdx == 0 && IsAssignmentOperator,
6805*67e74705SXin Li /*InOverloadResolution=*/false,
6806*67e74705SXin Li /*AllowObjCWritebackConversion=*/
6807*67e74705SXin Li getLangOpts().ObjCAutoRefCount);
6808*67e74705SXin Li }
6809*67e74705SXin Li if (Candidate.Conversions[ArgIdx].isBad()) {
6810*67e74705SXin Li Candidate.Viable = false;
6811*67e74705SXin Li Candidate.FailureKind = ovl_fail_bad_conversion;
6812*67e74705SXin Li break;
6813*67e74705SXin Li }
6814*67e74705SXin Li }
6815*67e74705SXin Li }
6816*67e74705SXin Li
6817*67e74705SXin Li namespace {
6818*67e74705SXin Li
6819*67e74705SXin Li /// BuiltinCandidateTypeSet - A set of types that will be used for the
6820*67e74705SXin Li /// candidate operator functions for built-in operators (C++
6821*67e74705SXin Li /// [over.built]). The types are separated into pointer types and
6822*67e74705SXin Li /// enumeration types.
6823*67e74705SXin Li class BuiltinCandidateTypeSet {
6824*67e74705SXin Li /// TypeSet - A set of types.
6825*67e74705SXin Li typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
6826*67e74705SXin Li llvm::SmallPtrSet<QualType, 8>> TypeSet;
6827*67e74705SXin Li
6828*67e74705SXin Li /// PointerTypes - The set of pointer types that will be used in the
6829*67e74705SXin Li /// built-in candidates.
6830*67e74705SXin Li TypeSet PointerTypes;
6831*67e74705SXin Li
6832*67e74705SXin Li /// MemberPointerTypes - The set of member pointer types that will be
6833*67e74705SXin Li /// used in the built-in candidates.
6834*67e74705SXin Li TypeSet MemberPointerTypes;
6835*67e74705SXin Li
6836*67e74705SXin Li /// EnumerationTypes - The set of enumeration types that will be
6837*67e74705SXin Li /// used in the built-in candidates.
6838*67e74705SXin Li TypeSet EnumerationTypes;
6839*67e74705SXin Li
6840*67e74705SXin Li /// \brief The set of vector types that will be used in the built-in
6841*67e74705SXin Li /// candidates.
6842*67e74705SXin Li TypeSet VectorTypes;
6843*67e74705SXin Li
6844*67e74705SXin Li /// \brief A flag indicating non-record types are viable candidates
6845*67e74705SXin Li bool HasNonRecordTypes;
6846*67e74705SXin Li
6847*67e74705SXin Li /// \brief A flag indicating whether either arithmetic or enumeration types
6848*67e74705SXin Li /// were present in the candidate set.
6849*67e74705SXin Li bool HasArithmeticOrEnumeralTypes;
6850*67e74705SXin Li
6851*67e74705SXin Li /// \brief A flag indicating whether the nullptr type was present in the
6852*67e74705SXin Li /// candidate set.
6853*67e74705SXin Li bool HasNullPtrType;
6854*67e74705SXin Li
6855*67e74705SXin Li /// Sema - The semantic analysis instance where we are building the
6856*67e74705SXin Li /// candidate type set.
6857*67e74705SXin Li Sema &SemaRef;
6858*67e74705SXin Li
6859*67e74705SXin Li /// Context - The AST context in which we will build the type sets.
6860*67e74705SXin Li ASTContext &Context;
6861*67e74705SXin Li
6862*67e74705SXin Li bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6863*67e74705SXin Li const Qualifiers &VisibleQuals);
6864*67e74705SXin Li bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
6865*67e74705SXin Li
6866*67e74705SXin Li public:
6867*67e74705SXin Li /// iterator - Iterates through the types that are part of the set.
6868*67e74705SXin Li typedef TypeSet::iterator iterator;
6869*67e74705SXin Li
BuiltinCandidateTypeSet(Sema & SemaRef)6870*67e74705SXin Li BuiltinCandidateTypeSet(Sema &SemaRef)
6871*67e74705SXin Li : HasNonRecordTypes(false),
6872*67e74705SXin Li HasArithmeticOrEnumeralTypes(false),
6873*67e74705SXin Li HasNullPtrType(false),
6874*67e74705SXin Li SemaRef(SemaRef),
6875*67e74705SXin Li Context(SemaRef.Context) { }
6876*67e74705SXin Li
6877*67e74705SXin Li void AddTypesConvertedFrom(QualType Ty,
6878*67e74705SXin Li SourceLocation Loc,
6879*67e74705SXin Li bool AllowUserConversions,
6880*67e74705SXin Li bool AllowExplicitConversions,
6881*67e74705SXin Li const Qualifiers &VisibleTypeConversionsQuals);
6882*67e74705SXin Li
6883*67e74705SXin Li /// pointer_begin - First pointer type found;
pointer_begin()6884*67e74705SXin Li iterator pointer_begin() { return PointerTypes.begin(); }
6885*67e74705SXin Li
6886*67e74705SXin Li /// pointer_end - Past the last pointer type found;
pointer_end()6887*67e74705SXin Li iterator pointer_end() { return PointerTypes.end(); }
6888*67e74705SXin Li
6889*67e74705SXin Li /// member_pointer_begin - First member pointer type found;
member_pointer_begin()6890*67e74705SXin Li iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
6891*67e74705SXin Li
6892*67e74705SXin Li /// member_pointer_end - Past the last member pointer type found;
member_pointer_end()6893*67e74705SXin Li iterator member_pointer_end() { return MemberPointerTypes.end(); }
6894*67e74705SXin Li
6895*67e74705SXin Li /// enumeration_begin - First enumeration type found;
enumeration_begin()6896*67e74705SXin Li iterator enumeration_begin() { return EnumerationTypes.begin(); }
6897*67e74705SXin Li
6898*67e74705SXin Li /// enumeration_end - Past the last enumeration type found;
enumeration_end()6899*67e74705SXin Li iterator enumeration_end() { return EnumerationTypes.end(); }
6900*67e74705SXin Li
vector_begin()6901*67e74705SXin Li iterator vector_begin() { return VectorTypes.begin(); }
vector_end()6902*67e74705SXin Li iterator vector_end() { return VectorTypes.end(); }
6903*67e74705SXin Li
hasNonRecordTypes()6904*67e74705SXin Li bool hasNonRecordTypes() { return HasNonRecordTypes; }
hasArithmeticOrEnumeralTypes()6905*67e74705SXin Li bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
hasNullPtrType() const6906*67e74705SXin Li bool hasNullPtrType() const { return HasNullPtrType; }
6907*67e74705SXin Li };
6908*67e74705SXin Li
6909*67e74705SXin Li } // end anonymous namespace
6910*67e74705SXin Li
6911*67e74705SXin Li /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
6912*67e74705SXin Li /// the set of pointer types along with any more-qualified variants of
6913*67e74705SXin Li /// that type. For example, if @p Ty is "int const *", this routine
6914*67e74705SXin Li /// will add "int const *", "int const volatile *", "int const
6915*67e74705SXin Li /// restrict *", and "int const volatile restrict *" to the set of
6916*67e74705SXin Li /// pointer types. Returns true if the add of @p Ty itself succeeded,
6917*67e74705SXin Li /// false otherwise.
6918*67e74705SXin Li ///
6919*67e74705SXin Li /// FIXME: what to do about extended qualifiers?
6920*67e74705SXin Li bool
AddPointerWithMoreQualifiedTypeVariants(QualType Ty,const Qualifiers & VisibleQuals)6921*67e74705SXin Li BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
6922*67e74705SXin Li const Qualifiers &VisibleQuals) {
6923*67e74705SXin Li
6924*67e74705SXin Li // Insert this type.
6925*67e74705SXin Li if (!PointerTypes.insert(Ty))
6926*67e74705SXin Li return false;
6927*67e74705SXin Li
6928*67e74705SXin Li QualType PointeeTy;
6929*67e74705SXin Li const PointerType *PointerTy = Ty->getAs<PointerType>();
6930*67e74705SXin Li bool buildObjCPtr = false;
6931*67e74705SXin Li if (!PointerTy) {
6932*67e74705SXin Li const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
6933*67e74705SXin Li PointeeTy = PTy->getPointeeType();
6934*67e74705SXin Li buildObjCPtr = true;
6935*67e74705SXin Li } else {
6936*67e74705SXin Li PointeeTy = PointerTy->getPointeeType();
6937*67e74705SXin Li }
6938*67e74705SXin Li
6939*67e74705SXin Li // Don't add qualified variants of arrays. For one, they're not allowed
6940*67e74705SXin Li // (the qualifier would sink to the element type), and for another, the
6941*67e74705SXin Li // only overload situation where it matters is subscript or pointer +- int,
6942*67e74705SXin Li // and those shouldn't have qualifier variants anyway.
6943*67e74705SXin Li if (PointeeTy->isArrayType())
6944*67e74705SXin Li return true;
6945*67e74705SXin Li
6946*67e74705SXin Li unsigned BaseCVR = PointeeTy.getCVRQualifiers();
6947*67e74705SXin Li bool hasVolatile = VisibleQuals.hasVolatile();
6948*67e74705SXin Li bool hasRestrict = VisibleQuals.hasRestrict();
6949*67e74705SXin Li
6950*67e74705SXin Li // Iterate through all strict supersets of BaseCVR.
6951*67e74705SXin Li for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
6952*67e74705SXin Li if ((CVR | BaseCVR) != CVR) continue;
6953*67e74705SXin Li // Skip over volatile if no volatile found anywhere in the types.
6954*67e74705SXin Li if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
6955*67e74705SXin Li
6956*67e74705SXin Li // Skip over restrict if no restrict found anywhere in the types, or if
6957*67e74705SXin Li // the type cannot be restrict-qualified.
6958*67e74705SXin Li if ((CVR & Qualifiers::Restrict) &&
6959*67e74705SXin Li (!hasRestrict ||
6960*67e74705SXin Li (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
6961*67e74705SXin Li continue;
6962*67e74705SXin Li
6963*67e74705SXin Li // Build qualified pointee type.
6964*67e74705SXin Li QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
6965*67e74705SXin Li
6966*67e74705SXin Li // Build qualified pointer type.
6967*67e74705SXin Li QualType QPointerTy;
6968*67e74705SXin Li if (!buildObjCPtr)
6969*67e74705SXin Li QPointerTy = Context.getPointerType(QPointeeTy);
6970*67e74705SXin Li else
6971*67e74705SXin Li QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
6972*67e74705SXin Li
6973*67e74705SXin Li // Insert qualified pointer type.
6974*67e74705SXin Li PointerTypes.insert(QPointerTy);
6975*67e74705SXin Li }
6976*67e74705SXin Li
6977*67e74705SXin Li return true;
6978*67e74705SXin Li }
6979*67e74705SXin Li
6980*67e74705SXin Li /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
6981*67e74705SXin Li /// to the set of pointer types along with any more-qualified variants of
6982*67e74705SXin Li /// that type. For example, if @p Ty is "int const *", this routine
6983*67e74705SXin Li /// will add "int const *", "int const volatile *", "int const
6984*67e74705SXin Li /// restrict *", and "int const volatile restrict *" to the set of
6985*67e74705SXin Li /// pointer types. Returns true if the add of @p Ty itself succeeded,
6986*67e74705SXin Li /// false otherwise.
6987*67e74705SXin Li ///
6988*67e74705SXin Li /// FIXME: what to do about extended qualifiers?
6989*67e74705SXin Li bool
AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty)6990*67e74705SXin Li BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
6991*67e74705SXin Li QualType Ty) {
6992*67e74705SXin Li // Insert this type.
6993*67e74705SXin Li if (!MemberPointerTypes.insert(Ty))
6994*67e74705SXin Li return false;
6995*67e74705SXin Li
6996*67e74705SXin Li const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
6997*67e74705SXin Li assert(PointerTy && "type was not a member pointer type!");
6998*67e74705SXin Li
6999*67e74705SXin Li QualType PointeeTy = PointerTy->getPointeeType();
7000*67e74705SXin Li // Don't add qualified variants of arrays. For one, they're not allowed
7001*67e74705SXin Li // (the qualifier would sink to the element type), and for another, the
7002*67e74705SXin Li // only overload situation where it matters is subscript or pointer +- int,
7003*67e74705SXin Li // and those shouldn't have qualifier variants anyway.
7004*67e74705SXin Li if (PointeeTy->isArrayType())
7005*67e74705SXin Li return true;
7006*67e74705SXin Li const Type *ClassTy = PointerTy->getClass();
7007*67e74705SXin Li
7008*67e74705SXin Li // Iterate through all strict supersets of the pointee type's CVR
7009*67e74705SXin Li // qualifiers.
7010*67e74705SXin Li unsigned BaseCVR = PointeeTy.getCVRQualifiers();
7011*67e74705SXin Li for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
7012*67e74705SXin Li if ((CVR | BaseCVR) != CVR) continue;
7013*67e74705SXin Li
7014*67e74705SXin Li QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
7015*67e74705SXin Li MemberPointerTypes.insert(
7016*67e74705SXin Li Context.getMemberPointerType(QPointeeTy, ClassTy));
7017*67e74705SXin Li }
7018*67e74705SXin Li
7019*67e74705SXin Li return true;
7020*67e74705SXin Li }
7021*67e74705SXin Li
7022*67e74705SXin Li /// AddTypesConvertedFrom - Add each of the types to which the type @p
7023*67e74705SXin Li /// Ty can be implicit converted to the given set of @p Types. We're
7024*67e74705SXin Li /// primarily interested in pointer types and enumeration types. We also
7025*67e74705SXin Li /// take member pointer types, for the conditional operator.
7026*67e74705SXin Li /// AllowUserConversions is true if we should look at the conversion
7027*67e74705SXin Li /// functions of a class type, and AllowExplicitConversions if we
7028*67e74705SXin Li /// should also include the explicit conversion functions of a class
7029*67e74705SXin Li /// type.
7030*67e74705SXin Li void
AddTypesConvertedFrom(QualType Ty,SourceLocation Loc,bool AllowUserConversions,bool AllowExplicitConversions,const Qualifiers & VisibleQuals)7031*67e74705SXin Li BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
7032*67e74705SXin Li SourceLocation Loc,
7033*67e74705SXin Li bool AllowUserConversions,
7034*67e74705SXin Li bool AllowExplicitConversions,
7035*67e74705SXin Li const Qualifiers &VisibleQuals) {
7036*67e74705SXin Li // Only deal with canonical types.
7037*67e74705SXin Li Ty = Context.getCanonicalType(Ty);
7038*67e74705SXin Li
7039*67e74705SXin Li // Look through reference types; they aren't part of the type of an
7040*67e74705SXin Li // expression for the purposes of conversions.
7041*67e74705SXin Li if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
7042*67e74705SXin Li Ty = RefTy->getPointeeType();
7043*67e74705SXin Li
7044*67e74705SXin Li // If we're dealing with an array type, decay to the pointer.
7045*67e74705SXin Li if (Ty->isArrayType())
7046*67e74705SXin Li Ty = SemaRef.Context.getArrayDecayedType(Ty);
7047*67e74705SXin Li
7048*67e74705SXin Li // Otherwise, we don't care about qualifiers on the type.
7049*67e74705SXin Li Ty = Ty.getLocalUnqualifiedType();
7050*67e74705SXin Li
7051*67e74705SXin Li // Flag if we ever add a non-record type.
7052*67e74705SXin Li const RecordType *TyRec = Ty->getAs<RecordType>();
7053*67e74705SXin Li HasNonRecordTypes = HasNonRecordTypes || !TyRec;
7054*67e74705SXin Li
7055*67e74705SXin Li // Flag if we encounter an arithmetic type.
7056*67e74705SXin Li HasArithmeticOrEnumeralTypes =
7057*67e74705SXin Li HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
7058*67e74705SXin Li
7059*67e74705SXin Li if (Ty->isObjCIdType() || Ty->isObjCClassType())
7060*67e74705SXin Li PointerTypes.insert(Ty);
7061*67e74705SXin Li else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
7062*67e74705SXin Li // Insert our type, and its more-qualified variants, into the set
7063*67e74705SXin Li // of types.
7064*67e74705SXin Li if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
7065*67e74705SXin Li return;
7066*67e74705SXin Li } else if (Ty->isMemberPointerType()) {
7067*67e74705SXin Li // Member pointers are far easier, since the pointee can't be converted.
7068*67e74705SXin Li if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
7069*67e74705SXin Li return;
7070*67e74705SXin Li } else if (Ty->isEnumeralType()) {
7071*67e74705SXin Li HasArithmeticOrEnumeralTypes = true;
7072*67e74705SXin Li EnumerationTypes.insert(Ty);
7073*67e74705SXin Li } else if (Ty->isVectorType()) {
7074*67e74705SXin Li // We treat vector types as arithmetic types in many contexts as an
7075*67e74705SXin Li // extension.
7076*67e74705SXin Li HasArithmeticOrEnumeralTypes = true;
7077*67e74705SXin Li VectorTypes.insert(Ty);
7078*67e74705SXin Li } else if (Ty->isNullPtrType()) {
7079*67e74705SXin Li HasNullPtrType = true;
7080*67e74705SXin Li } else if (AllowUserConversions && TyRec) {
7081*67e74705SXin Li // No conversion functions in incomplete types.
7082*67e74705SXin Li if (!SemaRef.isCompleteType(Loc, Ty))
7083*67e74705SXin Li return;
7084*67e74705SXin Li
7085*67e74705SXin Li CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7086*67e74705SXin Li for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7087*67e74705SXin Li if (isa<UsingShadowDecl>(D))
7088*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
7089*67e74705SXin Li
7090*67e74705SXin Li // Skip conversion function templates; they don't tell us anything
7091*67e74705SXin Li // about which builtin types we can convert to.
7092*67e74705SXin Li if (isa<FunctionTemplateDecl>(D))
7093*67e74705SXin Li continue;
7094*67e74705SXin Li
7095*67e74705SXin Li CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7096*67e74705SXin Li if (AllowExplicitConversions || !Conv->isExplicit()) {
7097*67e74705SXin Li AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
7098*67e74705SXin Li VisibleQuals);
7099*67e74705SXin Li }
7100*67e74705SXin Li }
7101*67e74705SXin Li }
7102*67e74705SXin Li }
7103*67e74705SXin Li
7104*67e74705SXin Li /// \brief Helper function for AddBuiltinOperatorCandidates() that adds
7105*67e74705SXin Li /// the volatile- and non-volatile-qualified assignment operators for the
7106*67e74705SXin Li /// given type to the candidate set.
AddBuiltinAssignmentOperatorCandidates(Sema & S,QualType T,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)7107*67e74705SXin Li static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
7108*67e74705SXin Li QualType T,
7109*67e74705SXin Li ArrayRef<Expr *> Args,
7110*67e74705SXin Li OverloadCandidateSet &CandidateSet) {
7111*67e74705SXin Li QualType ParamTypes[2];
7112*67e74705SXin Li
7113*67e74705SXin Li // T& operator=(T&, T)
7114*67e74705SXin Li ParamTypes[0] = S.Context.getLValueReferenceType(T);
7115*67e74705SXin Li ParamTypes[1] = T;
7116*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7117*67e74705SXin Li /*IsAssignmentOperator=*/true);
7118*67e74705SXin Li
7119*67e74705SXin Li if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
7120*67e74705SXin Li // volatile T& operator=(volatile T&, T)
7121*67e74705SXin Li ParamTypes[0]
7122*67e74705SXin Li = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
7123*67e74705SXin Li ParamTypes[1] = T;
7124*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7125*67e74705SXin Li /*IsAssignmentOperator=*/true);
7126*67e74705SXin Li }
7127*67e74705SXin Li }
7128*67e74705SXin Li
7129*67e74705SXin Li /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
7130*67e74705SXin Li /// if any, found in visible type conversion functions found in ArgExpr's type.
CollectVRQualifiers(ASTContext & Context,Expr * ArgExpr)7131*67e74705SXin Li static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
7132*67e74705SXin Li Qualifiers VRQuals;
7133*67e74705SXin Li const RecordType *TyRec;
7134*67e74705SXin Li if (const MemberPointerType *RHSMPType =
7135*67e74705SXin Li ArgExpr->getType()->getAs<MemberPointerType>())
7136*67e74705SXin Li TyRec = RHSMPType->getClass()->getAs<RecordType>();
7137*67e74705SXin Li else
7138*67e74705SXin Li TyRec = ArgExpr->getType()->getAs<RecordType>();
7139*67e74705SXin Li if (!TyRec) {
7140*67e74705SXin Li // Just to be safe, assume the worst case.
7141*67e74705SXin Li VRQuals.addVolatile();
7142*67e74705SXin Li VRQuals.addRestrict();
7143*67e74705SXin Li return VRQuals;
7144*67e74705SXin Li }
7145*67e74705SXin Li
7146*67e74705SXin Li CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
7147*67e74705SXin Li if (!ClassDecl->hasDefinition())
7148*67e74705SXin Li return VRQuals;
7149*67e74705SXin Li
7150*67e74705SXin Li for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
7151*67e74705SXin Li if (isa<UsingShadowDecl>(D))
7152*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
7153*67e74705SXin Li if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
7154*67e74705SXin Li QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
7155*67e74705SXin Li if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
7156*67e74705SXin Li CanTy = ResTypeRef->getPointeeType();
7157*67e74705SXin Li // Need to go down the pointer/mempointer chain and add qualifiers
7158*67e74705SXin Li // as see them.
7159*67e74705SXin Li bool done = false;
7160*67e74705SXin Li while (!done) {
7161*67e74705SXin Li if (CanTy.isRestrictQualified())
7162*67e74705SXin Li VRQuals.addRestrict();
7163*67e74705SXin Li if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
7164*67e74705SXin Li CanTy = ResTypePtr->getPointeeType();
7165*67e74705SXin Li else if (const MemberPointerType *ResTypeMPtr =
7166*67e74705SXin Li CanTy->getAs<MemberPointerType>())
7167*67e74705SXin Li CanTy = ResTypeMPtr->getPointeeType();
7168*67e74705SXin Li else
7169*67e74705SXin Li done = true;
7170*67e74705SXin Li if (CanTy.isVolatileQualified())
7171*67e74705SXin Li VRQuals.addVolatile();
7172*67e74705SXin Li if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
7173*67e74705SXin Li return VRQuals;
7174*67e74705SXin Li }
7175*67e74705SXin Li }
7176*67e74705SXin Li }
7177*67e74705SXin Li return VRQuals;
7178*67e74705SXin Li }
7179*67e74705SXin Li
7180*67e74705SXin Li namespace {
7181*67e74705SXin Li
7182*67e74705SXin Li /// \brief Helper class to manage the addition of builtin operator overload
7183*67e74705SXin Li /// candidates. It provides shared state and utility methods used throughout
7184*67e74705SXin Li /// the process, as well as a helper method to add each group of builtin
7185*67e74705SXin Li /// operator overloads from the standard to a candidate set.
7186*67e74705SXin Li class BuiltinOperatorOverloadBuilder {
7187*67e74705SXin Li // Common instance state available to all overload candidate addition methods.
7188*67e74705SXin Li Sema &S;
7189*67e74705SXin Li ArrayRef<Expr *> Args;
7190*67e74705SXin Li Qualifiers VisibleTypeConversionsQuals;
7191*67e74705SXin Li bool HasArithmeticOrEnumeralCandidateType;
7192*67e74705SXin Li SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
7193*67e74705SXin Li OverloadCandidateSet &CandidateSet;
7194*67e74705SXin Li
7195*67e74705SXin Li // Define some constants used to index and iterate over the arithemetic types
7196*67e74705SXin Li // provided via the getArithmeticType() method below.
7197*67e74705SXin Li // The "promoted arithmetic types" are the arithmetic
7198*67e74705SXin Li // types are that preserved by promotion (C++ [over.built]p2).
7199*67e74705SXin Li static const unsigned FirstIntegralType = 4;
7200*67e74705SXin Li static const unsigned LastIntegralType = 21;
7201*67e74705SXin Li static const unsigned FirstPromotedIntegralType = 4,
7202*67e74705SXin Li LastPromotedIntegralType = 12;
7203*67e74705SXin Li static const unsigned FirstPromotedArithmeticType = 0,
7204*67e74705SXin Li LastPromotedArithmeticType = 12;
7205*67e74705SXin Li static const unsigned NumArithmeticTypes = 21;
7206*67e74705SXin Li
7207*67e74705SXin Li /// \brief Get the canonical type for a given arithmetic type index.
getArithmeticType(unsigned index)7208*67e74705SXin Li CanQualType getArithmeticType(unsigned index) {
7209*67e74705SXin Li assert(index < NumArithmeticTypes);
7210*67e74705SXin Li static CanQualType ASTContext::* const
7211*67e74705SXin Li ArithmeticTypes[NumArithmeticTypes] = {
7212*67e74705SXin Li // Start of promoted types.
7213*67e74705SXin Li &ASTContext::FloatTy,
7214*67e74705SXin Li &ASTContext::DoubleTy,
7215*67e74705SXin Li &ASTContext::LongDoubleTy,
7216*67e74705SXin Li &ASTContext::Float128Ty,
7217*67e74705SXin Li
7218*67e74705SXin Li // Start of integral types.
7219*67e74705SXin Li &ASTContext::IntTy,
7220*67e74705SXin Li &ASTContext::LongTy,
7221*67e74705SXin Li &ASTContext::LongLongTy,
7222*67e74705SXin Li &ASTContext::Int128Ty,
7223*67e74705SXin Li &ASTContext::UnsignedIntTy,
7224*67e74705SXin Li &ASTContext::UnsignedLongTy,
7225*67e74705SXin Li &ASTContext::UnsignedLongLongTy,
7226*67e74705SXin Li &ASTContext::UnsignedInt128Ty,
7227*67e74705SXin Li // End of promoted types.
7228*67e74705SXin Li
7229*67e74705SXin Li &ASTContext::BoolTy,
7230*67e74705SXin Li &ASTContext::CharTy,
7231*67e74705SXin Li &ASTContext::WCharTy,
7232*67e74705SXin Li &ASTContext::Char16Ty,
7233*67e74705SXin Li &ASTContext::Char32Ty,
7234*67e74705SXin Li &ASTContext::SignedCharTy,
7235*67e74705SXin Li &ASTContext::ShortTy,
7236*67e74705SXin Li &ASTContext::UnsignedCharTy,
7237*67e74705SXin Li &ASTContext::UnsignedShortTy,
7238*67e74705SXin Li // End of integral types.
7239*67e74705SXin Li // FIXME: What about complex? What about half?
7240*67e74705SXin Li };
7241*67e74705SXin Li return S.Context.*ArithmeticTypes[index];
7242*67e74705SXin Li }
7243*67e74705SXin Li
7244*67e74705SXin Li /// \brief Gets the canonical type resulting from the usual arithemetic
7245*67e74705SXin Li /// converions for the given arithmetic types.
getUsualArithmeticConversions(unsigned L,unsigned R)7246*67e74705SXin Li CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
7247*67e74705SXin Li // Accelerator table for performing the usual arithmetic conversions.
7248*67e74705SXin Li // The rules are basically:
7249*67e74705SXin Li // - if either is floating-point, use the wider floating-point
7250*67e74705SXin Li // - if same signedness, use the higher rank
7251*67e74705SXin Li // - if same size, use unsigned of the higher rank
7252*67e74705SXin Li // - use the larger type
7253*67e74705SXin Li // These rules, together with the axiom that higher ranks are
7254*67e74705SXin Li // never smaller, are sufficient to precompute all of these results
7255*67e74705SXin Li // *except* when dealing with signed types of higher rank.
7256*67e74705SXin Li // (we could precompute SLL x UI for all known platforms, but it's
7257*67e74705SXin Li // better not to make any assumptions).
7258*67e74705SXin Li // We assume that int128 has a higher rank than long long on all platforms.
7259*67e74705SXin Li enum PromotedType : int8_t {
7260*67e74705SXin Li Dep=-1,
7261*67e74705SXin Li Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128
7262*67e74705SXin Li };
7263*67e74705SXin Li static const PromotedType ConversionsTable[LastPromotedArithmeticType]
7264*67e74705SXin Li [LastPromotedArithmeticType] = {
7265*67e74705SXin Li /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt, Flt, Flt },
7266*67e74705SXin Li /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl },
7267*67e74705SXin Li /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
7268*67e74705SXin Li /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, S128, UI, UL, ULL, U128 },
7269*67e74705SXin Li /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, S128, Dep, UL, ULL, U128 },
7270*67e74705SXin Li /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, S128, Dep, Dep, ULL, U128 },
7271*67e74705SXin Li /*S128*/ { Flt, Dbl, LDbl, S128, S128, S128, S128, S128, S128, S128, U128 },
7272*67e74705SXin Li /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, S128, UI, UL, ULL, U128 },
7273*67e74705SXin Li /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, S128, UL, UL, ULL, U128 },
7274*67e74705SXin Li /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, S128, ULL, ULL, ULL, U128 },
7275*67e74705SXin Li /*U128*/ { Flt, Dbl, LDbl, U128, U128, U128, U128, U128, U128, U128, U128 },
7276*67e74705SXin Li };
7277*67e74705SXin Li
7278*67e74705SXin Li assert(L < LastPromotedArithmeticType);
7279*67e74705SXin Li assert(R < LastPromotedArithmeticType);
7280*67e74705SXin Li int Idx = ConversionsTable[L][R];
7281*67e74705SXin Li
7282*67e74705SXin Li // Fast path: the table gives us a concrete answer.
7283*67e74705SXin Li if (Idx != Dep) return getArithmeticType(Idx);
7284*67e74705SXin Li
7285*67e74705SXin Li // Slow path: we need to compare widths.
7286*67e74705SXin Li // An invariant is that the signed type has higher rank.
7287*67e74705SXin Li CanQualType LT = getArithmeticType(L),
7288*67e74705SXin Li RT = getArithmeticType(R);
7289*67e74705SXin Li unsigned LW = S.Context.getIntWidth(LT),
7290*67e74705SXin Li RW = S.Context.getIntWidth(RT);
7291*67e74705SXin Li
7292*67e74705SXin Li // If they're different widths, use the signed type.
7293*67e74705SXin Li if (LW > RW) return LT;
7294*67e74705SXin Li else if (LW < RW) return RT;
7295*67e74705SXin Li
7296*67e74705SXin Li // Otherwise, use the unsigned type of the signed type's rank.
7297*67e74705SXin Li if (L == SL || R == SL) return S.Context.UnsignedLongTy;
7298*67e74705SXin Li assert(L == SLL || R == SLL);
7299*67e74705SXin Li return S.Context.UnsignedLongLongTy;
7300*67e74705SXin Li }
7301*67e74705SXin Li
7302*67e74705SXin Li /// \brief Helper method to factor out the common pattern of adding overloads
7303*67e74705SXin Li /// for '++' and '--' builtin operators.
addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,bool HasVolatile,bool HasRestrict)7304*67e74705SXin Li void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
7305*67e74705SXin Li bool HasVolatile,
7306*67e74705SXin Li bool HasRestrict) {
7307*67e74705SXin Li QualType ParamTypes[2] = {
7308*67e74705SXin Li S.Context.getLValueReferenceType(CandidateTy),
7309*67e74705SXin Li S.Context.IntTy
7310*67e74705SXin Li };
7311*67e74705SXin Li
7312*67e74705SXin Li // Non-volatile version.
7313*67e74705SXin Li if (Args.size() == 1)
7314*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7315*67e74705SXin Li else
7316*67e74705SXin Li S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7317*67e74705SXin Li
7318*67e74705SXin Li // Use a heuristic to reduce number of builtin candidates in the set:
7319*67e74705SXin Li // add volatile version only if there are conversions to a volatile type.
7320*67e74705SXin Li if (HasVolatile) {
7321*67e74705SXin Li ParamTypes[0] =
7322*67e74705SXin Li S.Context.getLValueReferenceType(
7323*67e74705SXin Li S.Context.getVolatileType(CandidateTy));
7324*67e74705SXin Li if (Args.size() == 1)
7325*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7326*67e74705SXin Li else
7327*67e74705SXin Li S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7328*67e74705SXin Li }
7329*67e74705SXin Li
7330*67e74705SXin Li // Add restrict version only if there are conversions to a restrict type
7331*67e74705SXin Li // and our candidate type is a non-restrict-qualified pointer.
7332*67e74705SXin Li if (HasRestrict && CandidateTy->isAnyPointerType() &&
7333*67e74705SXin Li !CandidateTy.isRestrictQualified()) {
7334*67e74705SXin Li ParamTypes[0]
7335*67e74705SXin Li = S.Context.getLValueReferenceType(
7336*67e74705SXin Li S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
7337*67e74705SXin Li if (Args.size() == 1)
7338*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7339*67e74705SXin Li else
7340*67e74705SXin Li S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7341*67e74705SXin Li
7342*67e74705SXin Li if (HasVolatile) {
7343*67e74705SXin Li ParamTypes[0]
7344*67e74705SXin Li = S.Context.getLValueReferenceType(
7345*67e74705SXin Li S.Context.getCVRQualifiedType(CandidateTy,
7346*67e74705SXin Li (Qualifiers::Volatile |
7347*67e74705SXin Li Qualifiers::Restrict)));
7348*67e74705SXin Li if (Args.size() == 1)
7349*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
7350*67e74705SXin Li else
7351*67e74705SXin Li S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, CandidateSet);
7352*67e74705SXin Li }
7353*67e74705SXin Li }
7354*67e74705SXin Li
7355*67e74705SXin Li }
7356*67e74705SXin Li
7357*67e74705SXin Li public:
BuiltinOperatorOverloadBuilder(Sema & S,ArrayRef<Expr * > Args,Qualifiers VisibleTypeConversionsQuals,bool HasArithmeticOrEnumeralCandidateType,SmallVectorImpl<BuiltinCandidateTypeSet> & CandidateTypes,OverloadCandidateSet & CandidateSet)7358*67e74705SXin Li BuiltinOperatorOverloadBuilder(
7359*67e74705SXin Li Sema &S, ArrayRef<Expr *> Args,
7360*67e74705SXin Li Qualifiers VisibleTypeConversionsQuals,
7361*67e74705SXin Li bool HasArithmeticOrEnumeralCandidateType,
7362*67e74705SXin Li SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
7363*67e74705SXin Li OverloadCandidateSet &CandidateSet)
7364*67e74705SXin Li : S(S), Args(Args),
7365*67e74705SXin Li VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
7366*67e74705SXin Li HasArithmeticOrEnumeralCandidateType(
7367*67e74705SXin Li HasArithmeticOrEnumeralCandidateType),
7368*67e74705SXin Li CandidateTypes(CandidateTypes),
7369*67e74705SXin Li CandidateSet(CandidateSet) {
7370*67e74705SXin Li // Validate some of our static helper constants in debug builds.
7371*67e74705SXin Li assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
7372*67e74705SXin Li "Invalid first promoted integral type");
7373*67e74705SXin Li assert(getArithmeticType(LastPromotedIntegralType - 1)
7374*67e74705SXin Li == S.Context.UnsignedInt128Ty &&
7375*67e74705SXin Li "Invalid last promoted integral type");
7376*67e74705SXin Li assert(getArithmeticType(FirstPromotedArithmeticType)
7377*67e74705SXin Li == S.Context.FloatTy &&
7378*67e74705SXin Li "Invalid first promoted arithmetic type");
7379*67e74705SXin Li assert(getArithmeticType(LastPromotedArithmeticType - 1)
7380*67e74705SXin Li == S.Context.UnsignedInt128Ty &&
7381*67e74705SXin Li "Invalid last promoted arithmetic type");
7382*67e74705SXin Li }
7383*67e74705SXin Li
7384*67e74705SXin Li // C++ [over.built]p3:
7385*67e74705SXin Li //
7386*67e74705SXin Li // For every pair (T, VQ), where T is an arithmetic type, and VQ
7387*67e74705SXin Li // is either volatile or empty, there exist candidate operator
7388*67e74705SXin Li // functions of the form
7389*67e74705SXin Li //
7390*67e74705SXin Li // VQ T& operator++(VQ T&);
7391*67e74705SXin Li // T operator++(VQ T&, int);
7392*67e74705SXin Li //
7393*67e74705SXin Li // C++ [over.built]p4:
7394*67e74705SXin Li //
7395*67e74705SXin Li // For every pair (T, VQ), where T is an arithmetic type other
7396*67e74705SXin Li // than bool, and VQ is either volatile or empty, there exist
7397*67e74705SXin Li // candidate operator functions of the form
7398*67e74705SXin Li //
7399*67e74705SXin Li // VQ T& operator--(VQ T&);
7400*67e74705SXin Li // T operator--(VQ T&, int);
addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op)7401*67e74705SXin Li void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
7402*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7403*67e74705SXin Li return;
7404*67e74705SXin Li
7405*67e74705SXin Li for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
7406*67e74705SXin Li Arith < NumArithmeticTypes; ++Arith) {
7407*67e74705SXin Li addPlusPlusMinusMinusStyleOverloads(
7408*67e74705SXin Li getArithmeticType(Arith),
7409*67e74705SXin Li VisibleTypeConversionsQuals.hasVolatile(),
7410*67e74705SXin Li VisibleTypeConversionsQuals.hasRestrict());
7411*67e74705SXin Li }
7412*67e74705SXin Li }
7413*67e74705SXin Li
7414*67e74705SXin Li // C++ [over.built]p5:
7415*67e74705SXin Li //
7416*67e74705SXin Li // For every pair (T, VQ), where T is a cv-qualified or
7417*67e74705SXin Li // cv-unqualified object type, and VQ is either volatile or
7418*67e74705SXin Li // empty, there exist candidate operator functions of the form
7419*67e74705SXin Li //
7420*67e74705SXin Li // T*VQ& operator++(T*VQ&);
7421*67e74705SXin Li // T*VQ& operator--(T*VQ&);
7422*67e74705SXin Li // T* operator++(T*VQ&, int);
7423*67e74705SXin Li // T* operator--(T*VQ&, int);
addPlusPlusMinusMinusPointerOverloads()7424*67e74705SXin Li void addPlusPlusMinusMinusPointerOverloads() {
7425*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7426*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
7427*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
7428*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7429*67e74705SXin Li // Skip pointer types that aren't pointers to object types.
7430*67e74705SXin Li if (!(*Ptr)->getPointeeType()->isObjectType())
7431*67e74705SXin Li continue;
7432*67e74705SXin Li
7433*67e74705SXin Li addPlusPlusMinusMinusStyleOverloads(*Ptr,
7434*67e74705SXin Li (!(*Ptr).isVolatileQualified() &&
7435*67e74705SXin Li VisibleTypeConversionsQuals.hasVolatile()),
7436*67e74705SXin Li (!(*Ptr).isRestrictQualified() &&
7437*67e74705SXin Li VisibleTypeConversionsQuals.hasRestrict()));
7438*67e74705SXin Li }
7439*67e74705SXin Li }
7440*67e74705SXin Li
7441*67e74705SXin Li // C++ [over.built]p6:
7442*67e74705SXin Li // For every cv-qualified or cv-unqualified object type T, there
7443*67e74705SXin Li // exist candidate operator functions of the form
7444*67e74705SXin Li //
7445*67e74705SXin Li // T& operator*(T*);
7446*67e74705SXin Li //
7447*67e74705SXin Li // C++ [over.built]p7:
7448*67e74705SXin Li // For every function type T that does not have cv-qualifiers or a
7449*67e74705SXin Li // ref-qualifier, there exist candidate operator functions of the form
7450*67e74705SXin Li // T& operator*(T*);
addUnaryStarPointerOverloads()7451*67e74705SXin Li void addUnaryStarPointerOverloads() {
7452*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7453*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
7454*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
7455*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7456*67e74705SXin Li QualType ParamTy = *Ptr;
7457*67e74705SXin Li QualType PointeeTy = ParamTy->getPointeeType();
7458*67e74705SXin Li if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
7459*67e74705SXin Li continue;
7460*67e74705SXin Li
7461*67e74705SXin Li if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
7462*67e74705SXin Li if (Proto->getTypeQuals() || Proto->getRefQualifier())
7463*67e74705SXin Li continue;
7464*67e74705SXin Li
7465*67e74705SXin Li S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
7466*67e74705SXin Li &ParamTy, Args, CandidateSet);
7467*67e74705SXin Li }
7468*67e74705SXin Li }
7469*67e74705SXin Li
7470*67e74705SXin Li // C++ [over.built]p9:
7471*67e74705SXin Li // For every promoted arithmetic type T, there exist candidate
7472*67e74705SXin Li // operator functions of the form
7473*67e74705SXin Li //
7474*67e74705SXin Li // T operator+(T);
7475*67e74705SXin Li // T operator-(T);
addUnaryPlusOrMinusArithmeticOverloads()7476*67e74705SXin Li void addUnaryPlusOrMinusArithmeticOverloads() {
7477*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7478*67e74705SXin Li return;
7479*67e74705SXin Li
7480*67e74705SXin Li for (unsigned Arith = FirstPromotedArithmeticType;
7481*67e74705SXin Li Arith < LastPromotedArithmeticType; ++Arith) {
7482*67e74705SXin Li QualType ArithTy = getArithmeticType(Arith);
7483*67e74705SXin Li S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, CandidateSet);
7484*67e74705SXin Li }
7485*67e74705SXin Li
7486*67e74705SXin Li // Extension: We also add these operators for vector types.
7487*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7488*67e74705SXin Li Vec = CandidateTypes[0].vector_begin(),
7489*67e74705SXin Li VecEnd = CandidateTypes[0].vector_end();
7490*67e74705SXin Li Vec != VecEnd; ++Vec) {
7491*67e74705SXin Li QualType VecTy = *Vec;
7492*67e74705SXin Li S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7493*67e74705SXin Li }
7494*67e74705SXin Li }
7495*67e74705SXin Li
7496*67e74705SXin Li // C++ [over.built]p8:
7497*67e74705SXin Li // For every type T, there exist candidate operator functions of
7498*67e74705SXin Li // the form
7499*67e74705SXin Li //
7500*67e74705SXin Li // T* operator+(T*);
addUnaryPlusPointerOverloads()7501*67e74705SXin Li void addUnaryPlusPointerOverloads() {
7502*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7503*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
7504*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
7505*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7506*67e74705SXin Li QualType ParamTy = *Ptr;
7507*67e74705SXin Li S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet);
7508*67e74705SXin Li }
7509*67e74705SXin Li }
7510*67e74705SXin Li
7511*67e74705SXin Li // C++ [over.built]p10:
7512*67e74705SXin Li // For every promoted integral type T, there exist candidate
7513*67e74705SXin Li // operator functions of the form
7514*67e74705SXin Li //
7515*67e74705SXin Li // T operator~(T);
addUnaryTildePromotedIntegralOverloads()7516*67e74705SXin Li void addUnaryTildePromotedIntegralOverloads() {
7517*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7518*67e74705SXin Li return;
7519*67e74705SXin Li
7520*67e74705SXin Li for (unsigned Int = FirstPromotedIntegralType;
7521*67e74705SXin Li Int < LastPromotedIntegralType; ++Int) {
7522*67e74705SXin Li QualType IntTy = getArithmeticType(Int);
7523*67e74705SXin Li S.AddBuiltinCandidate(IntTy, &IntTy, Args, CandidateSet);
7524*67e74705SXin Li }
7525*67e74705SXin Li
7526*67e74705SXin Li // Extension: We also add this operator for vector types.
7527*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7528*67e74705SXin Li Vec = CandidateTypes[0].vector_begin(),
7529*67e74705SXin Li VecEnd = CandidateTypes[0].vector_end();
7530*67e74705SXin Li Vec != VecEnd; ++Vec) {
7531*67e74705SXin Li QualType VecTy = *Vec;
7532*67e74705SXin Li S.AddBuiltinCandidate(VecTy, &VecTy, Args, CandidateSet);
7533*67e74705SXin Li }
7534*67e74705SXin Li }
7535*67e74705SXin Li
7536*67e74705SXin Li // C++ [over.match.oper]p16:
7537*67e74705SXin Li // For every pointer to member type T, there exist candidate operator
7538*67e74705SXin Li // functions of the form
7539*67e74705SXin Li //
7540*67e74705SXin Li // bool operator==(T,T);
7541*67e74705SXin Li // bool operator!=(T,T);
addEqualEqualOrNotEqualMemberPointerOverloads()7542*67e74705SXin Li void addEqualEqualOrNotEqualMemberPointerOverloads() {
7543*67e74705SXin Li /// Set of (canonical) types that we've already handled.
7544*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
7545*67e74705SXin Li
7546*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7547*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7548*67e74705SXin Li MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7549*67e74705SXin Li MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7550*67e74705SXin Li MemPtr != MemPtrEnd;
7551*67e74705SXin Li ++MemPtr) {
7552*67e74705SXin Li // Don't add the same builtin candidate twice.
7553*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7554*67e74705SXin Li continue;
7555*67e74705SXin Li
7556*67e74705SXin Li QualType ParamTypes[2] = { *MemPtr, *MemPtr };
7557*67e74705SXin Li S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7558*67e74705SXin Li }
7559*67e74705SXin Li }
7560*67e74705SXin Li }
7561*67e74705SXin Li
7562*67e74705SXin Li // C++ [over.built]p15:
7563*67e74705SXin Li //
7564*67e74705SXin Li // For every T, where T is an enumeration type, a pointer type, or
7565*67e74705SXin Li // std::nullptr_t, there exist candidate operator functions of the form
7566*67e74705SXin Li //
7567*67e74705SXin Li // bool operator<(T, T);
7568*67e74705SXin Li // bool operator>(T, T);
7569*67e74705SXin Li // bool operator<=(T, T);
7570*67e74705SXin Li // bool operator>=(T, T);
7571*67e74705SXin Li // bool operator==(T, T);
7572*67e74705SXin Li // bool operator!=(T, T);
addRelationalPointerOrEnumeralOverloads()7573*67e74705SXin Li void addRelationalPointerOrEnumeralOverloads() {
7574*67e74705SXin Li // C++ [over.match.oper]p3:
7575*67e74705SXin Li // [...]the built-in candidates include all of the candidate operator
7576*67e74705SXin Li // functions defined in 13.6 that, compared to the given operator, [...]
7577*67e74705SXin Li // do not have the same parameter-type-list as any non-template non-member
7578*67e74705SXin Li // candidate.
7579*67e74705SXin Li //
7580*67e74705SXin Li // Note that in practice, this only affects enumeration types because there
7581*67e74705SXin Li // aren't any built-in candidates of record type, and a user-defined operator
7582*67e74705SXin Li // must have an operand of record or enumeration type. Also, the only other
7583*67e74705SXin Li // overloaded operator with enumeration arguments, operator=,
7584*67e74705SXin Li // cannot be overloaded for enumeration types, so this is the only place
7585*67e74705SXin Li // where we must suppress candidates like this.
7586*67e74705SXin Li llvm::DenseSet<std::pair<CanQualType, CanQualType> >
7587*67e74705SXin Li UserDefinedBinaryOperators;
7588*67e74705SXin Li
7589*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7590*67e74705SXin Li if (CandidateTypes[ArgIdx].enumeration_begin() !=
7591*67e74705SXin Li CandidateTypes[ArgIdx].enumeration_end()) {
7592*67e74705SXin Li for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
7593*67e74705SXin Li CEnd = CandidateSet.end();
7594*67e74705SXin Li C != CEnd; ++C) {
7595*67e74705SXin Li if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
7596*67e74705SXin Li continue;
7597*67e74705SXin Li
7598*67e74705SXin Li if (C->Function->isFunctionTemplateSpecialization())
7599*67e74705SXin Li continue;
7600*67e74705SXin Li
7601*67e74705SXin Li QualType FirstParamType =
7602*67e74705SXin Li C->Function->getParamDecl(0)->getType().getUnqualifiedType();
7603*67e74705SXin Li QualType SecondParamType =
7604*67e74705SXin Li C->Function->getParamDecl(1)->getType().getUnqualifiedType();
7605*67e74705SXin Li
7606*67e74705SXin Li // Skip if either parameter isn't of enumeral type.
7607*67e74705SXin Li if (!FirstParamType->isEnumeralType() ||
7608*67e74705SXin Li !SecondParamType->isEnumeralType())
7609*67e74705SXin Li continue;
7610*67e74705SXin Li
7611*67e74705SXin Li // Add this operator to the set of known user-defined operators.
7612*67e74705SXin Li UserDefinedBinaryOperators.insert(
7613*67e74705SXin Li std::make_pair(S.Context.getCanonicalType(FirstParamType),
7614*67e74705SXin Li S.Context.getCanonicalType(SecondParamType)));
7615*67e74705SXin Li }
7616*67e74705SXin Li }
7617*67e74705SXin Li }
7618*67e74705SXin Li
7619*67e74705SXin Li /// Set of (canonical) types that we've already handled.
7620*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
7621*67e74705SXin Li
7622*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
7623*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7624*67e74705SXin Li Ptr = CandidateTypes[ArgIdx].pointer_begin(),
7625*67e74705SXin Li PtrEnd = CandidateTypes[ArgIdx].pointer_end();
7626*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7627*67e74705SXin Li // Don't add the same builtin candidate twice.
7628*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7629*67e74705SXin Li continue;
7630*67e74705SXin Li
7631*67e74705SXin Li QualType ParamTypes[2] = { *Ptr, *Ptr };
7632*67e74705SXin Li S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7633*67e74705SXin Li }
7634*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7635*67e74705SXin Li Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7636*67e74705SXin Li EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7637*67e74705SXin Li Enum != EnumEnd; ++Enum) {
7638*67e74705SXin Li CanQualType CanonType = S.Context.getCanonicalType(*Enum);
7639*67e74705SXin Li
7640*67e74705SXin Li // Don't add the same builtin candidate twice, or if a user defined
7641*67e74705SXin Li // candidate exists.
7642*67e74705SXin Li if (!AddedTypes.insert(CanonType).second ||
7643*67e74705SXin Li UserDefinedBinaryOperators.count(std::make_pair(CanonType,
7644*67e74705SXin Li CanonType)))
7645*67e74705SXin Li continue;
7646*67e74705SXin Li
7647*67e74705SXin Li QualType ParamTypes[2] = { *Enum, *Enum };
7648*67e74705SXin Li S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet);
7649*67e74705SXin Li }
7650*67e74705SXin Li
7651*67e74705SXin Li if (CandidateTypes[ArgIdx].hasNullPtrType()) {
7652*67e74705SXin Li CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
7653*67e74705SXin Li if (AddedTypes.insert(NullPtrTy).second &&
7654*67e74705SXin Li !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
7655*67e74705SXin Li NullPtrTy))) {
7656*67e74705SXin Li QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
7657*67e74705SXin Li S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args,
7658*67e74705SXin Li CandidateSet);
7659*67e74705SXin Li }
7660*67e74705SXin Li }
7661*67e74705SXin Li }
7662*67e74705SXin Li }
7663*67e74705SXin Li
7664*67e74705SXin Li // C++ [over.built]p13:
7665*67e74705SXin Li //
7666*67e74705SXin Li // For every cv-qualified or cv-unqualified object type T
7667*67e74705SXin Li // there exist candidate operator functions of the form
7668*67e74705SXin Li //
7669*67e74705SXin Li // T* operator+(T*, ptrdiff_t);
7670*67e74705SXin Li // T& operator[](T*, ptrdiff_t); [BELOW]
7671*67e74705SXin Li // T* operator-(T*, ptrdiff_t);
7672*67e74705SXin Li // T* operator+(ptrdiff_t, T*);
7673*67e74705SXin Li // T& operator[](ptrdiff_t, T*); [BELOW]
7674*67e74705SXin Li //
7675*67e74705SXin Li // C++ [over.built]p14:
7676*67e74705SXin Li //
7677*67e74705SXin Li // For every T, where T is a pointer to object type, there
7678*67e74705SXin Li // exist candidate operator functions of the form
7679*67e74705SXin Li //
7680*67e74705SXin Li // ptrdiff_t operator-(T, T);
addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op)7681*67e74705SXin Li void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
7682*67e74705SXin Li /// Set of (canonical) types that we've already handled.
7683*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
7684*67e74705SXin Li
7685*67e74705SXin Li for (int Arg = 0; Arg < 2; ++Arg) {
7686*67e74705SXin Li QualType AsymmetricParamTypes[2] = {
7687*67e74705SXin Li S.Context.getPointerDiffType(),
7688*67e74705SXin Li S.Context.getPointerDiffType(),
7689*67e74705SXin Li };
7690*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7691*67e74705SXin Li Ptr = CandidateTypes[Arg].pointer_begin(),
7692*67e74705SXin Li PtrEnd = CandidateTypes[Arg].pointer_end();
7693*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7694*67e74705SXin Li QualType PointeeTy = (*Ptr)->getPointeeType();
7695*67e74705SXin Li if (!PointeeTy->isObjectType())
7696*67e74705SXin Li continue;
7697*67e74705SXin Li
7698*67e74705SXin Li AsymmetricParamTypes[Arg] = *Ptr;
7699*67e74705SXin Li if (Arg == 0 || Op == OO_Plus) {
7700*67e74705SXin Li // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
7701*67e74705SXin Li // T* operator+(ptrdiff_t, T*);
7702*67e74705SXin Li S.AddBuiltinCandidate(*Ptr, AsymmetricParamTypes, Args, CandidateSet);
7703*67e74705SXin Li }
7704*67e74705SXin Li if (Op == OO_Minus) {
7705*67e74705SXin Li // ptrdiff_t operator-(T, T);
7706*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7707*67e74705SXin Li continue;
7708*67e74705SXin Li
7709*67e74705SXin Li QualType ParamTypes[2] = { *Ptr, *Ptr };
7710*67e74705SXin Li S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
7711*67e74705SXin Li Args, CandidateSet);
7712*67e74705SXin Li }
7713*67e74705SXin Li }
7714*67e74705SXin Li }
7715*67e74705SXin Li }
7716*67e74705SXin Li
7717*67e74705SXin Li // C++ [over.built]p12:
7718*67e74705SXin Li //
7719*67e74705SXin Li // For every pair of promoted arithmetic types L and R, there
7720*67e74705SXin Li // exist candidate operator functions of the form
7721*67e74705SXin Li //
7722*67e74705SXin Li // LR operator*(L, R);
7723*67e74705SXin Li // LR operator/(L, R);
7724*67e74705SXin Li // LR operator+(L, R);
7725*67e74705SXin Li // LR operator-(L, R);
7726*67e74705SXin Li // bool operator<(L, R);
7727*67e74705SXin Li // bool operator>(L, R);
7728*67e74705SXin Li // bool operator<=(L, R);
7729*67e74705SXin Li // bool operator>=(L, R);
7730*67e74705SXin Li // bool operator==(L, R);
7731*67e74705SXin Li // bool operator!=(L, R);
7732*67e74705SXin Li //
7733*67e74705SXin Li // where LR is the result of the usual arithmetic conversions
7734*67e74705SXin Li // between types L and R.
7735*67e74705SXin Li //
7736*67e74705SXin Li // C++ [over.built]p24:
7737*67e74705SXin Li //
7738*67e74705SXin Li // For every pair of promoted arithmetic types L and R, there exist
7739*67e74705SXin Li // candidate operator functions of the form
7740*67e74705SXin Li //
7741*67e74705SXin Li // LR operator?(bool, L, R);
7742*67e74705SXin Li //
7743*67e74705SXin Li // where LR is the result of the usual arithmetic conversions
7744*67e74705SXin Li // between types L and R.
7745*67e74705SXin Li // Our candidates ignore the first parameter.
addGenericBinaryArithmeticOverloads(bool isComparison)7746*67e74705SXin Li void addGenericBinaryArithmeticOverloads(bool isComparison) {
7747*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7748*67e74705SXin Li return;
7749*67e74705SXin Li
7750*67e74705SXin Li for (unsigned Left = FirstPromotedArithmeticType;
7751*67e74705SXin Li Left < LastPromotedArithmeticType; ++Left) {
7752*67e74705SXin Li for (unsigned Right = FirstPromotedArithmeticType;
7753*67e74705SXin Li Right < LastPromotedArithmeticType; ++Right) {
7754*67e74705SXin Li QualType LandR[2] = { getArithmeticType(Left),
7755*67e74705SXin Li getArithmeticType(Right) };
7756*67e74705SXin Li QualType Result =
7757*67e74705SXin Li isComparison ? S.Context.BoolTy
7758*67e74705SXin Li : getUsualArithmeticConversions(Left, Right);
7759*67e74705SXin Li S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7760*67e74705SXin Li }
7761*67e74705SXin Li }
7762*67e74705SXin Li
7763*67e74705SXin Li // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
7764*67e74705SXin Li // conditional operator for vector types.
7765*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7766*67e74705SXin Li Vec1 = CandidateTypes[0].vector_begin(),
7767*67e74705SXin Li Vec1End = CandidateTypes[0].vector_end();
7768*67e74705SXin Li Vec1 != Vec1End; ++Vec1) {
7769*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7770*67e74705SXin Li Vec2 = CandidateTypes[1].vector_begin(),
7771*67e74705SXin Li Vec2End = CandidateTypes[1].vector_end();
7772*67e74705SXin Li Vec2 != Vec2End; ++Vec2) {
7773*67e74705SXin Li QualType LandR[2] = { *Vec1, *Vec2 };
7774*67e74705SXin Li QualType Result = S.Context.BoolTy;
7775*67e74705SXin Li if (!isComparison) {
7776*67e74705SXin Li if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
7777*67e74705SXin Li Result = *Vec1;
7778*67e74705SXin Li else
7779*67e74705SXin Li Result = *Vec2;
7780*67e74705SXin Li }
7781*67e74705SXin Li
7782*67e74705SXin Li S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7783*67e74705SXin Li }
7784*67e74705SXin Li }
7785*67e74705SXin Li }
7786*67e74705SXin Li
7787*67e74705SXin Li // C++ [over.built]p17:
7788*67e74705SXin Li //
7789*67e74705SXin Li // For every pair of promoted integral types L and R, there
7790*67e74705SXin Li // exist candidate operator functions of the form
7791*67e74705SXin Li //
7792*67e74705SXin Li // LR operator%(L, R);
7793*67e74705SXin Li // LR operator&(L, R);
7794*67e74705SXin Li // LR operator^(L, R);
7795*67e74705SXin Li // LR operator|(L, R);
7796*67e74705SXin Li // L operator<<(L, R);
7797*67e74705SXin Li // L operator>>(L, R);
7798*67e74705SXin Li //
7799*67e74705SXin Li // where LR is the result of the usual arithmetic conversions
7800*67e74705SXin Li // between types L and R.
addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op)7801*67e74705SXin Li void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
7802*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7803*67e74705SXin Li return;
7804*67e74705SXin Li
7805*67e74705SXin Li for (unsigned Left = FirstPromotedIntegralType;
7806*67e74705SXin Li Left < LastPromotedIntegralType; ++Left) {
7807*67e74705SXin Li for (unsigned Right = FirstPromotedIntegralType;
7808*67e74705SXin Li Right < LastPromotedIntegralType; ++Right) {
7809*67e74705SXin Li QualType LandR[2] = { getArithmeticType(Left),
7810*67e74705SXin Li getArithmeticType(Right) };
7811*67e74705SXin Li QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
7812*67e74705SXin Li ? LandR[0]
7813*67e74705SXin Li : getUsualArithmeticConversions(Left, Right);
7814*67e74705SXin Li S.AddBuiltinCandidate(Result, LandR, Args, CandidateSet);
7815*67e74705SXin Li }
7816*67e74705SXin Li }
7817*67e74705SXin Li }
7818*67e74705SXin Li
7819*67e74705SXin Li // C++ [over.built]p20:
7820*67e74705SXin Li //
7821*67e74705SXin Li // For every pair (T, VQ), where T is an enumeration or
7822*67e74705SXin Li // pointer to member type and VQ is either volatile or
7823*67e74705SXin Li // empty, there exist candidate operator functions of the form
7824*67e74705SXin Li //
7825*67e74705SXin Li // VQ T& operator=(VQ T&, T);
addAssignmentMemberPointerOrEnumeralOverloads()7826*67e74705SXin Li void addAssignmentMemberPointerOrEnumeralOverloads() {
7827*67e74705SXin Li /// Set of (canonical) types that we've already handled.
7828*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
7829*67e74705SXin Li
7830*67e74705SXin Li for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
7831*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7832*67e74705SXin Li Enum = CandidateTypes[ArgIdx].enumeration_begin(),
7833*67e74705SXin Li EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
7834*67e74705SXin Li Enum != EnumEnd; ++Enum) {
7835*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
7836*67e74705SXin Li continue;
7837*67e74705SXin Li
7838*67e74705SXin Li AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
7839*67e74705SXin Li }
7840*67e74705SXin Li
7841*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7842*67e74705SXin Li MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
7843*67e74705SXin Li MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
7844*67e74705SXin Li MemPtr != MemPtrEnd; ++MemPtr) {
7845*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
7846*67e74705SXin Li continue;
7847*67e74705SXin Li
7848*67e74705SXin Li AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
7849*67e74705SXin Li }
7850*67e74705SXin Li }
7851*67e74705SXin Li }
7852*67e74705SXin Li
7853*67e74705SXin Li // C++ [over.built]p19:
7854*67e74705SXin Li //
7855*67e74705SXin Li // For every pair (T, VQ), where T is any type and VQ is either
7856*67e74705SXin Li // volatile or empty, there exist candidate operator functions
7857*67e74705SXin Li // of the form
7858*67e74705SXin Li //
7859*67e74705SXin Li // T*VQ& operator=(T*VQ&, T*);
7860*67e74705SXin Li //
7861*67e74705SXin Li // C++ [over.built]p21:
7862*67e74705SXin Li //
7863*67e74705SXin Li // For every pair (T, VQ), where T is a cv-qualified or
7864*67e74705SXin Li // cv-unqualified object type and VQ is either volatile or
7865*67e74705SXin Li // empty, there exist candidate operator functions of the form
7866*67e74705SXin Li //
7867*67e74705SXin Li // T*VQ& operator+=(T*VQ&, ptrdiff_t);
7868*67e74705SXin Li // T*VQ& operator-=(T*VQ&, ptrdiff_t);
addAssignmentPointerOverloads(bool isEqualOp)7869*67e74705SXin Li void addAssignmentPointerOverloads(bool isEqualOp) {
7870*67e74705SXin Li /// Set of (canonical) types that we've already handled.
7871*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
7872*67e74705SXin Li
7873*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7874*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
7875*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
7876*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7877*67e74705SXin Li // If this is operator=, keep track of the builtin candidates we added.
7878*67e74705SXin Li if (isEqualOp)
7879*67e74705SXin Li AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
7880*67e74705SXin Li else if (!(*Ptr)->getPointeeType()->isObjectType())
7881*67e74705SXin Li continue;
7882*67e74705SXin Li
7883*67e74705SXin Li // non-volatile version
7884*67e74705SXin Li QualType ParamTypes[2] = {
7885*67e74705SXin Li S.Context.getLValueReferenceType(*Ptr),
7886*67e74705SXin Li isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
7887*67e74705SXin Li };
7888*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7889*67e74705SXin Li /*IsAssigmentOperator=*/ isEqualOp);
7890*67e74705SXin Li
7891*67e74705SXin Li bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7892*67e74705SXin Li VisibleTypeConversionsQuals.hasVolatile();
7893*67e74705SXin Li if (NeedVolatile) {
7894*67e74705SXin Li // volatile version
7895*67e74705SXin Li ParamTypes[0] =
7896*67e74705SXin Li S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7897*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7898*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
7899*67e74705SXin Li }
7900*67e74705SXin Li
7901*67e74705SXin Li if (!(*Ptr).isRestrictQualified() &&
7902*67e74705SXin Li VisibleTypeConversionsQuals.hasRestrict()) {
7903*67e74705SXin Li // restrict version
7904*67e74705SXin Li ParamTypes[0]
7905*67e74705SXin Li = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7906*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7907*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
7908*67e74705SXin Li
7909*67e74705SXin Li if (NeedVolatile) {
7910*67e74705SXin Li // volatile restrict version
7911*67e74705SXin Li ParamTypes[0]
7912*67e74705SXin Li = S.Context.getLValueReferenceType(
7913*67e74705SXin Li S.Context.getCVRQualifiedType(*Ptr,
7914*67e74705SXin Li (Qualifiers::Volatile |
7915*67e74705SXin Li Qualifiers::Restrict)));
7916*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7917*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
7918*67e74705SXin Li }
7919*67e74705SXin Li }
7920*67e74705SXin Li }
7921*67e74705SXin Li
7922*67e74705SXin Li if (isEqualOp) {
7923*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
7924*67e74705SXin Li Ptr = CandidateTypes[1].pointer_begin(),
7925*67e74705SXin Li PtrEnd = CandidateTypes[1].pointer_end();
7926*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
7927*67e74705SXin Li // Make sure we don't add the same candidate twice.
7928*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
7929*67e74705SXin Li continue;
7930*67e74705SXin Li
7931*67e74705SXin Li QualType ParamTypes[2] = {
7932*67e74705SXin Li S.Context.getLValueReferenceType(*Ptr),
7933*67e74705SXin Li *Ptr,
7934*67e74705SXin Li };
7935*67e74705SXin Li
7936*67e74705SXin Li // non-volatile version
7937*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7938*67e74705SXin Li /*IsAssigmentOperator=*/true);
7939*67e74705SXin Li
7940*67e74705SXin Li bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
7941*67e74705SXin Li VisibleTypeConversionsQuals.hasVolatile();
7942*67e74705SXin Li if (NeedVolatile) {
7943*67e74705SXin Li // volatile version
7944*67e74705SXin Li ParamTypes[0] =
7945*67e74705SXin Li S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
7946*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7947*67e74705SXin Li /*IsAssigmentOperator=*/true);
7948*67e74705SXin Li }
7949*67e74705SXin Li
7950*67e74705SXin Li if (!(*Ptr).isRestrictQualified() &&
7951*67e74705SXin Li VisibleTypeConversionsQuals.hasRestrict()) {
7952*67e74705SXin Li // restrict version
7953*67e74705SXin Li ParamTypes[0]
7954*67e74705SXin Li = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
7955*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7956*67e74705SXin Li /*IsAssigmentOperator=*/true);
7957*67e74705SXin Li
7958*67e74705SXin Li if (NeedVolatile) {
7959*67e74705SXin Li // volatile restrict version
7960*67e74705SXin Li ParamTypes[0]
7961*67e74705SXin Li = S.Context.getLValueReferenceType(
7962*67e74705SXin Li S.Context.getCVRQualifiedType(*Ptr,
7963*67e74705SXin Li (Qualifiers::Volatile |
7964*67e74705SXin Li Qualifiers::Restrict)));
7965*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7966*67e74705SXin Li /*IsAssigmentOperator=*/true);
7967*67e74705SXin Li }
7968*67e74705SXin Li }
7969*67e74705SXin Li }
7970*67e74705SXin Li }
7971*67e74705SXin Li }
7972*67e74705SXin Li
7973*67e74705SXin Li // C++ [over.built]p18:
7974*67e74705SXin Li //
7975*67e74705SXin Li // For every triple (L, VQ, R), where L is an arithmetic type,
7976*67e74705SXin Li // VQ is either volatile or empty, and R is a promoted
7977*67e74705SXin Li // arithmetic type, there exist candidate operator functions of
7978*67e74705SXin Li // the form
7979*67e74705SXin Li //
7980*67e74705SXin Li // VQ L& operator=(VQ L&, R);
7981*67e74705SXin Li // VQ L& operator*=(VQ L&, R);
7982*67e74705SXin Li // VQ L& operator/=(VQ L&, R);
7983*67e74705SXin Li // VQ L& operator+=(VQ L&, R);
7984*67e74705SXin Li // VQ L& operator-=(VQ L&, R);
addAssignmentArithmeticOverloads(bool isEqualOp)7985*67e74705SXin Li void addAssignmentArithmeticOverloads(bool isEqualOp) {
7986*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
7987*67e74705SXin Li return;
7988*67e74705SXin Li
7989*67e74705SXin Li for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
7990*67e74705SXin Li for (unsigned Right = FirstPromotedArithmeticType;
7991*67e74705SXin Li Right < LastPromotedArithmeticType; ++Right) {
7992*67e74705SXin Li QualType ParamTypes[2];
7993*67e74705SXin Li ParamTypes[1] = getArithmeticType(Right);
7994*67e74705SXin Li
7995*67e74705SXin Li // Add this built-in operator as a candidate (VQ is empty).
7996*67e74705SXin Li ParamTypes[0] =
7997*67e74705SXin Li S.Context.getLValueReferenceType(getArithmeticType(Left));
7998*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
7999*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
8000*67e74705SXin Li
8001*67e74705SXin Li // Add this built-in operator as a candidate (VQ is 'volatile').
8002*67e74705SXin Li if (VisibleTypeConversionsQuals.hasVolatile()) {
8003*67e74705SXin Li ParamTypes[0] =
8004*67e74705SXin Li S.Context.getVolatileType(getArithmeticType(Left));
8005*67e74705SXin Li ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8006*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8007*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
8008*67e74705SXin Li }
8009*67e74705SXin Li }
8010*67e74705SXin Li }
8011*67e74705SXin Li
8012*67e74705SXin Li // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
8013*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8014*67e74705SXin Li Vec1 = CandidateTypes[0].vector_begin(),
8015*67e74705SXin Li Vec1End = CandidateTypes[0].vector_end();
8016*67e74705SXin Li Vec1 != Vec1End; ++Vec1) {
8017*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8018*67e74705SXin Li Vec2 = CandidateTypes[1].vector_begin(),
8019*67e74705SXin Li Vec2End = CandidateTypes[1].vector_end();
8020*67e74705SXin Li Vec2 != Vec2End; ++Vec2) {
8021*67e74705SXin Li QualType ParamTypes[2];
8022*67e74705SXin Li ParamTypes[1] = *Vec2;
8023*67e74705SXin Li // Add this built-in operator as a candidate (VQ is empty).
8024*67e74705SXin Li ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
8025*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8026*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
8027*67e74705SXin Li
8028*67e74705SXin Li // Add this built-in operator as a candidate (VQ is 'volatile').
8029*67e74705SXin Li if (VisibleTypeConversionsQuals.hasVolatile()) {
8030*67e74705SXin Li ParamTypes[0] = S.Context.getVolatileType(*Vec1);
8031*67e74705SXin Li ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8032*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet,
8033*67e74705SXin Li /*IsAssigmentOperator=*/isEqualOp);
8034*67e74705SXin Li }
8035*67e74705SXin Li }
8036*67e74705SXin Li }
8037*67e74705SXin Li }
8038*67e74705SXin Li
8039*67e74705SXin Li // C++ [over.built]p22:
8040*67e74705SXin Li //
8041*67e74705SXin Li // For every triple (L, VQ, R), where L is an integral type, VQ
8042*67e74705SXin Li // is either volatile or empty, and R is a promoted integral
8043*67e74705SXin Li // type, there exist candidate operator functions of the form
8044*67e74705SXin Li //
8045*67e74705SXin Li // VQ L& operator%=(VQ L&, R);
8046*67e74705SXin Li // VQ L& operator<<=(VQ L&, R);
8047*67e74705SXin Li // VQ L& operator>>=(VQ L&, R);
8048*67e74705SXin Li // VQ L& operator&=(VQ L&, R);
8049*67e74705SXin Li // VQ L& operator^=(VQ L&, R);
8050*67e74705SXin Li // VQ L& operator|=(VQ L&, R);
addAssignmentIntegralOverloads()8051*67e74705SXin Li void addAssignmentIntegralOverloads() {
8052*67e74705SXin Li if (!HasArithmeticOrEnumeralCandidateType)
8053*67e74705SXin Li return;
8054*67e74705SXin Li
8055*67e74705SXin Li for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
8056*67e74705SXin Li for (unsigned Right = FirstPromotedIntegralType;
8057*67e74705SXin Li Right < LastPromotedIntegralType; ++Right) {
8058*67e74705SXin Li QualType ParamTypes[2];
8059*67e74705SXin Li ParamTypes[1] = getArithmeticType(Right);
8060*67e74705SXin Li
8061*67e74705SXin Li // Add this built-in operator as a candidate (VQ is empty).
8062*67e74705SXin Li ParamTypes[0] =
8063*67e74705SXin Li S.Context.getLValueReferenceType(getArithmeticType(Left));
8064*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8065*67e74705SXin Li if (VisibleTypeConversionsQuals.hasVolatile()) {
8066*67e74705SXin Li // Add this built-in operator as a candidate (VQ is 'volatile').
8067*67e74705SXin Li ParamTypes[0] = getArithmeticType(Left);
8068*67e74705SXin Li ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
8069*67e74705SXin Li ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
8070*67e74705SXin Li S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, CandidateSet);
8071*67e74705SXin Li }
8072*67e74705SXin Li }
8073*67e74705SXin Li }
8074*67e74705SXin Li }
8075*67e74705SXin Li
8076*67e74705SXin Li // C++ [over.operator]p23:
8077*67e74705SXin Li //
8078*67e74705SXin Li // There also exist candidate operator functions of the form
8079*67e74705SXin Li //
8080*67e74705SXin Li // bool operator!(bool);
8081*67e74705SXin Li // bool operator&&(bool, bool);
8082*67e74705SXin Li // bool operator||(bool, bool);
addExclaimOverload()8083*67e74705SXin Li void addExclaimOverload() {
8084*67e74705SXin Li QualType ParamTy = S.Context.BoolTy;
8085*67e74705SXin Li S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, CandidateSet,
8086*67e74705SXin Li /*IsAssignmentOperator=*/false,
8087*67e74705SXin Li /*NumContextualBoolArguments=*/1);
8088*67e74705SXin Li }
addAmpAmpOrPipePipeOverload()8089*67e74705SXin Li void addAmpAmpOrPipePipeOverload() {
8090*67e74705SXin Li QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
8091*67e74705SXin Li S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, CandidateSet,
8092*67e74705SXin Li /*IsAssignmentOperator=*/false,
8093*67e74705SXin Li /*NumContextualBoolArguments=*/2);
8094*67e74705SXin Li }
8095*67e74705SXin Li
8096*67e74705SXin Li // C++ [over.built]p13:
8097*67e74705SXin Li //
8098*67e74705SXin Li // For every cv-qualified or cv-unqualified object type T there
8099*67e74705SXin Li // exist candidate operator functions of the form
8100*67e74705SXin Li //
8101*67e74705SXin Li // T* operator+(T*, ptrdiff_t); [ABOVE]
8102*67e74705SXin Li // T& operator[](T*, ptrdiff_t);
8103*67e74705SXin Li // T* operator-(T*, ptrdiff_t); [ABOVE]
8104*67e74705SXin Li // T* operator+(ptrdiff_t, T*); [ABOVE]
8105*67e74705SXin Li // T& operator[](ptrdiff_t, T*);
addSubscriptOverloads()8106*67e74705SXin Li void addSubscriptOverloads() {
8107*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8108*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
8109*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
8110*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
8111*67e74705SXin Li QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
8112*67e74705SXin Li QualType PointeeType = (*Ptr)->getPointeeType();
8113*67e74705SXin Li if (!PointeeType->isObjectType())
8114*67e74705SXin Li continue;
8115*67e74705SXin Li
8116*67e74705SXin Li QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8117*67e74705SXin Li
8118*67e74705SXin Li // T& operator[](T*, ptrdiff_t)
8119*67e74705SXin Li S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8120*67e74705SXin Li }
8121*67e74705SXin Li
8122*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8123*67e74705SXin Li Ptr = CandidateTypes[1].pointer_begin(),
8124*67e74705SXin Li PtrEnd = CandidateTypes[1].pointer_end();
8125*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
8126*67e74705SXin Li QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
8127*67e74705SXin Li QualType PointeeType = (*Ptr)->getPointeeType();
8128*67e74705SXin Li if (!PointeeType->isObjectType())
8129*67e74705SXin Li continue;
8130*67e74705SXin Li
8131*67e74705SXin Li QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
8132*67e74705SXin Li
8133*67e74705SXin Li // T& operator[](ptrdiff_t, T*)
8134*67e74705SXin Li S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8135*67e74705SXin Li }
8136*67e74705SXin Li }
8137*67e74705SXin Li
8138*67e74705SXin Li // C++ [over.built]p11:
8139*67e74705SXin Li // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
8140*67e74705SXin Li // C1 is the same type as C2 or is a derived class of C2, T is an object
8141*67e74705SXin Li // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
8142*67e74705SXin Li // there exist candidate operator functions of the form
8143*67e74705SXin Li //
8144*67e74705SXin Li // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
8145*67e74705SXin Li //
8146*67e74705SXin Li // where CV12 is the union of CV1 and CV2.
addArrowStarOverloads()8147*67e74705SXin Li void addArrowStarOverloads() {
8148*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8149*67e74705SXin Li Ptr = CandidateTypes[0].pointer_begin(),
8150*67e74705SXin Li PtrEnd = CandidateTypes[0].pointer_end();
8151*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
8152*67e74705SXin Li QualType C1Ty = (*Ptr);
8153*67e74705SXin Li QualType C1;
8154*67e74705SXin Li QualifierCollector Q1;
8155*67e74705SXin Li C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
8156*67e74705SXin Li if (!isa<RecordType>(C1))
8157*67e74705SXin Li continue;
8158*67e74705SXin Li // heuristic to reduce number of builtin candidates in the set.
8159*67e74705SXin Li // Add volatile/restrict version only if there are conversions to a
8160*67e74705SXin Li // volatile/restrict type.
8161*67e74705SXin Li if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
8162*67e74705SXin Li continue;
8163*67e74705SXin Li if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
8164*67e74705SXin Li continue;
8165*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8166*67e74705SXin Li MemPtr = CandidateTypes[1].member_pointer_begin(),
8167*67e74705SXin Li MemPtrEnd = CandidateTypes[1].member_pointer_end();
8168*67e74705SXin Li MemPtr != MemPtrEnd; ++MemPtr) {
8169*67e74705SXin Li const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
8170*67e74705SXin Li QualType C2 = QualType(mptr->getClass(), 0);
8171*67e74705SXin Li C2 = C2.getUnqualifiedType();
8172*67e74705SXin Li if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
8173*67e74705SXin Li break;
8174*67e74705SXin Li QualType ParamTypes[2] = { *Ptr, *MemPtr };
8175*67e74705SXin Li // build CV12 T&
8176*67e74705SXin Li QualType T = mptr->getPointeeType();
8177*67e74705SXin Li if (!VisibleTypeConversionsQuals.hasVolatile() &&
8178*67e74705SXin Li T.isVolatileQualified())
8179*67e74705SXin Li continue;
8180*67e74705SXin Li if (!VisibleTypeConversionsQuals.hasRestrict() &&
8181*67e74705SXin Li T.isRestrictQualified())
8182*67e74705SXin Li continue;
8183*67e74705SXin Li T = Q1.apply(S.Context, T);
8184*67e74705SXin Li QualType ResultTy = S.Context.getLValueReferenceType(T);
8185*67e74705SXin Li S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, CandidateSet);
8186*67e74705SXin Li }
8187*67e74705SXin Li }
8188*67e74705SXin Li }
8189*67e74705SXin Li
8190*67e74705SXin Li // Note that we don't consider the first argument, since it has been
8191*67e74705SXin Li // contextually converted to bool long ago. The candidates below are
8192*67e74705SXin Li // therefore added as binary.
8193*67e74705SXin Li //
8194*67e74705SXin Li // C++ [over.built]p25:
8195*67e74705SXin Li // For every type T, where T is a pointer, pointer-to-member, or scoped
8196*67e74705SXin Li // enumeration type, there exist candidate operator functions of the form
8197*67e74705SXin Li //
8198*67e74705SXin Li // T operator?(bool, T, T);
8199*67e74705SXin Li //
addConditionalOperatorOverloads()8200*67e74705SXin Li void addConditionalOperatorOverloads() {
8201*67e74705SXin Li /// Set of (canonical) types that we've already handled.
8202*67e74705SXin Li llvm::SmallPtrSet<QualType, 8> AddedTypes;
8203*67e74705SXin Li
8204*67e74705SXin Li for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
8205*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8206*67e74705SXin Li Ptr = CandidateTypes[ArgIdx].pointer_begin(),
8207*67e74705SXin Li PtrEnd = CandidateTypes[ArgIdx].pointer_end();
8208*67e74705SXin Li Ptr != PtrEnd; ++Ptr) {
8209*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
8210*67e74705SXin Li continue;
8211*67e74705SXin Li
8212*67e74705SXin Li QualType ParamTypes[2] = { *Ptr, *Ptr };
8213*67e74705SXin Li S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, CandidateSet);
8214*67e74705SXin Li }
8215*67e74705SXin Li
8216*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8217*67e74705SXin Li MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
8218*67e74705SXin Li MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
8219*67e74705SXin Li MemPtr != MemPtrEnd; ++MemPtr) {
8220*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
8221*67e74705SXin Li continue;
8222*67e74705SXin Li
8223*67e74705SXin Li QualType ParamTypes[2] = { *MemPtr, *MemPtr };
8224*67e74705SXin Li S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, CandidateSet);
8225*67e74705SXin Li }
8226*67e74705SXin Li
8227*67e74705SXin Li if (S.getLangOpts().CPlusPlus11) {
8228*67e74705SXin Li for (BuiltinCandidateTypeSet::iterator
8229*67e74705SXin Li Enum = CandidateTypes[ArgIdx].enumeration_begin(),
8230*67e74705SXin Li EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
8231*67e74705SXin Li Enum != EnumEnd; ++Enum) {
8232*67e74705SXin Li if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
8233*67e74705SXin Li continue;
8234*67e74705SXin Li
8235*67e74705SXin Li if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
8236*67e74705SXin Li continue;
8237*67e74705SXin Li
8238*67e74705SXin Li QualType ParamTypes[2] = { *Enum, *Enum };
8239*67e74705SXin Li S.AddBuiltinCandidate(*Enum, ParamTypes, Args, CandidateSet);
8240*67e74705SXin Li }
8241*67e74705SXin Li }
8242*67e74705SXin Li }
8243*67e74705SXin Li }
8244*67e74705SXin Li };
8245*67e74705SXin Li
8246*67e74705SXin Li } // end anonymous namespace
8247*67e74705SXin Li
8248*67e74705SXin Li /// AddBuiltinOperatorCandidates - Add the appropriate built-in
8249*67e74705SXin Li /// operator overloads to the candidate set (C++ [over.built]), based
8250*67e74705SXin Li /// on the operator @p Op and the arguments given. For example, if the
8251*67e74705SXin Li /// operator is a binary '+', this routine might add "int
8252*67e74705SXin Li /// operator+(int, int)" to cover integer addition.
AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet)8253*67e74705SXin Li void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
8254*67e74705SXin Li SourceLocation OpLoc,
8255*67e74705SXin Li ArrayRef<Expr *> Args,
8256*67e74705SXin Li OverloadCandidateSet &CandidateSet) {
8257*67e74705SXin Li // Find all of the types that the arguments can convert to, but only
8258*67e74705SXin Li // if the operator we're looking at has built-in operator candidates
8259*67e74705SXin Li // that make use of these types. Also record whether we encounter non-record
8260*67e74705SXin Li // candidate types or either arithmetic or enumeral candidate types.
8261*67e74705SXin Li Qualifiers VisibleTypeConversionsQuals;
8262*67e74705SXin Li VisibleTypeConversionsQuals.addConst();
8263*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
8264*67e74705SXin Li VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
8265*67e74705SXin Li
8266*67e74705SXin Li bool HasNonRecordCandidateType = false;
8267*67e74705SXin Li bool HasArithmeticOrEnumeralCandidateType = false;
8268*67e74705SXin Li SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
8269*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
8270*67e74705SXin Li CandidateTypes.emplace_back(*this);
8271*67e74705SXin Li CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
8272*67e74705SXin Li OpLoc,
8273*67e74705SXin Li true,
8274*67e74705SXin Li (Op == OO_Exclaim ||
8275*67e74705SXin Li Op == OO_AmpAmp ||
8276*67e74705SXin Li Op == OO_PipePipe),
8277*67e74705SXin Li VisibleTypeConversionsQuals);
8278*67e74705SXin Li HasNonRecordCandidateType = HasNonRecordCandidateType ||
8279*67e74705SXin Li CandidateTypes[ArgIdx].hasNonRecordTypes();
8280*67e74705SXin Li HasArithmeticOrEnumeralCandidateType =
8281*67e74705SXin Li HasArithmeticOrEnumeralCandidateType ||
8282*67e74705SXin Li CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
8283*67e74705SXin Li }
8284*67e74705SXin Li
8285*67e74705SXin Li // Exit early when no non-record types have been added to the candidate set
8286*67e74705SXin Li // for any of the arguments to the operator.
8287*67e74705SXin Li //
8288*67e74705SXin Li // We can't exit early for !, ||, or &&, since there we have always have
8289*67e74705SXin Li // 'bool' overloads.
8290*67e74705SXin Li if (!HasNonRecordCandidateType &&
8291*67e74705SXin Li !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
8292*67e74705SXin Li return;
8293*67e74705SXin Li
8294*67e74705SXin Li // Setup an object to manage the common state for building overloads.
8295*67e74705SXin Li BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
8296*67e74705SXin Li VisibleTypeConversionsQuals,
8297*67e74705SXin Li HasArithmeticOrEnumeralCandidateType,
8298*67e74705SXin Li CandidateTypes, CandidateSet);
8299*67e74705SXin Li
8300*67e74705SXin Li // Dispatch over the operation to add in only those overloads which apply.
8301*67e74705SXin Li switch (Op) {
8302*67e74705SXin Li case OO_None:
8303*67e74705SXin Li case NUM_OVERLOADED_OPERATORS:
8304*67e74705SXin Li llvm_unreachable("Expected an overloaded operator");
8305*67e74705SXin Li
8306*67e74705SXin Li case OO_New:
8307*67e74705SXin Li case OO_Delete:
8308*67e74705SXin Li case OO_Array_New:
8309*67e74705SXin Li case OO_Array_Delete:
8310*67e74705SXin Li case OO_Call:
8311*67e74705SXin Li llvm_unreachable(
8312*67e74705SXin Li "Special operators don't use AddBuiltinOperatorCandidates");
8313*67e74705SXin Li
8314*67e74705SXin Li case OO_Comma:
8315*67e74705SXin Li case OO_Arrow:
8316*67e74705SXin Li case OO_Coawait:
8317*67e74705SXin Li // C++ [over.match.oper]p3:
8318*67e74705SXin Li // -- For the operator ',', the unary operator '&', the
8319*67e74705SXin Li // operator '->', or the operator 'co_await', the
8320*67e74705SXin Li // built-in candidates set is empty.
8321*67e74705SXin Li break;
8322*67e74705SXin Li
8323*67e74705SXin Li case OO_Plus: // '+' is either unary or binary
8324*67e74705SXin Li if (Args.size() == 1)
8325*67e74705SXin Li OpBuilder.addUnaryPlusPointerOverloads();
8326*67e74705SXin Li // Fall through.
8327*67e74705SXin Li
8328*67e74705SXin Li case OO_Minus: // '-' is either unary or binary
8329*67e74705SXin Li if (Args.size() == 1) {
8330*67e74705SXin Li OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
8331*67e74705SXin Li } else {
8332*67e74705SXin Li OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
8333*67e74705SXin Li OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8334*67e74705SXin Li }
8335*67e74705SXin Li break;
8336*67e74705SXin Li
8337*67e74705SXin Li case OO_Star: // '*' is either unary or binary
8338*67e74705SXin Li if (Args.size() == 1)
8339*67e74705SXin Li OpBuilder.addUnaryStarPointerOverloads();
8340*67e74705SXin Li else
8341*67e74705SXin Li OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8342*67e74705SXin Li break;
8343*67e74705SXin Li
8344*67e74705SXin Li case OO_Slash:
8345*67e74705SXin Li OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8346*67e74705SXin Li break;
8347*67e74705SXin Li
8348*67e74705SXin Li case OO_PlusPlus:
8349*67e74705SXin Li case OO_MinusMinus:
8350*67e74705SXin Li OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
8351*67e74705SXin Li OpBuilder.addPlusPlusMinusMinusPointerOverloads();
8352*67e74705SXin Li break;
8353*67e74705SXin Li
8354*67e74705SXin Li case OO_EqualEqual:
8355*67e74705SXin Li case OO_ExclaimEqual:
8356*67e74705SXin Li OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
8357*67e74705SXin Li // Fall through.
8358*67e74705SXin Li
8359*67e74705SXin Li case OO_Less:
8360*67e74705SXin Li case OO_Greater:
8361*67e74705SXin Li case OO_LessEqual:
8362*67e74705SXin Li case OO_GreaterEqual:
8363*67e74705SXin Li OpBuilder.addRelationalPointerOrEnumeralOverloads();
8364*67e74705SXin Li OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
8365*67e74705SXin Li break;
8366*67e74705SXin Li
8367*67e74705SXin Li case OO_Percent:
8368*67e74705SXin Li case OO_Caret:
8369*67e74705SXin Li case OO_Pipe:
8370*67e74705SXin Li case OO_LessLess:
8371*67e74705SXin Li case OO_GreaterGreater:
8372*67e74705SXin Li OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8373*67e74705SXin Li break;
8374*67e74705SXin Li
8375*67e74705SXin Li case OO_Amp: // '&' is either unary or binary
8376*67e74705SXin Li if (Args.size() == 1)
8377*67e74705SXin Li // C++ [over.match.oper]p3:
8378*67e74705SXin Li // -- For the operator ',', the unary operator '&', or the
8379*67e74705SXin Li // operator '->', the built-in candidates set is empty.
8380*67e74705SXin Li break;
8381*67e74705SXin Li
8382*67e74705SXin Li OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
8383*67e74705SXin Li break;
8384*67e74705SXin Li
8385*67e74705SXin Li case OO_Tilde:
8386*67e74705SXin Li OpBuilder.addUnaryTildePromotedIntegralOverloads();
8387*67e74705SXin Li break;
8388*67e74705SXin Li
8389*67e74705SXin Li case OO_Equal:
8390*67e74705SXin Li OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
8391*67e74705SXin Li // Fall through.
8392*67e74705SXin Li
8393*67e74705SXin Li case OO_PlusEqual:
8394*67e74705SXin Li case OO_MinusEqual:
8395*67e74705SXin Li OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
8396*67e74705SXin Li // Fall through.
8397*67e74705SXin Li
8398*67e74705SXin Li case OO_StarEqual:
8399*67e74705SXin Li case OO_SlashEqual:
8400*67e74705SXin Li OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
8401*67e74705SXin Li break;
8402*67e74705SXin Li
8403*67e74705SXin Li case OO_PercentEqual:
8404*67e74705SXin Li case OO_LessLessEqual:
8405*67e74705SXin Li case OO_GreaterGreaterEqual:
8406*67e74705SXin Li case OO_AmpEqual:
8407*67e74705SXin Li case OO_CaretEqual:
8408*67e74705SXin Li case OO_PipeEqual:
8409*67e74705SXin Li OpBuilder.addAssignmentIntegralOverloads();
8410*67e74705SXin Li break;
8411*67e74705SXin Li
8412*67e74705SXin Li case OO_Exclaim:
8413*67e74705SXin Li OpBuilder.addExclaimOverload();
8414*67e74705SXin Li break;
8415*67e74705SXin Li
8416*67e74705SXin Li case OO_AmpAmp:
8417*67e74705SXin Li case OO_PipePipe:
8418*67e74705SXin Li OpBuilder.addAmpAmpOrPipePipeOverload();
8419*67e74705SXin Li break;
8420*67e74705SXin Li
8421*67e74705SXin Li case OO_Subscript:
8422*67e74705SXin Li OpBuilder.addSubscriptOverloads();
8423*67e74705SXin Li break;
8424*67e74705SXin Li
8425*67e74705SXin Li case OO_ArrowStar:
8426*67e74705SXin Li OpBuilder.addArrowStarOverloads();
8427*67e74705SXin Li break;
8428*67e74705SXin Li
8429*67e74705SXin Li case OO_Conditional:
8430*67e74705SXin Li OpBuilder.addConditionalOperatorOverloads();
8431*67e74705SXin Li OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
8432*67e74705SXin Li break;
8433*67e74705SXin Li }
8434*67e74705SXin Li }
8435*67e74705SXin Li
8436*67e74705SXin Li /// \brief Add function candidates found via argument-dependent lookup
8437*67e74705SXin Li /// to the set of overloading candidates.
8438*67e74705SXin Li ///
8439*67e74705SXin Li /// This routine performs argument-dependent name lookup based on the
8440*67e74705SXin Li /// given function name (which may also be an operator name) and adds
8441*67e74705SXin Li /// all of the overload candidates found by ADL to the overload
8442*67e74705SXin Li /// candidate set (C++ [basic.lookup.argdep]).
8443*67e74705SXin Li void
AddArgumentDependentLookupCandidates(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,TemplateArgumentListInfo * ExplicitTemplateArgs,OverloadCandidateSet & CandidateSet,bool PartialOverloading)8444*67e74705SXin Li Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
8445*67e74705SXin Li SourceLocation Loc,
8446*67e74705SXin Li ArrayRef<Expr *> Args,
8447*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
8448*67e74705SXin Li OverloadCandidateSet& CandidateSet,
8449*67e74705SXin Li bool PartialOverloading) {
8450*67e74705SXin Li ADLResult Fns;
8451*67e74705SXin Li
8452*67e74705SXin Li // FIXME: This approach for uniquing ADL results (and removing
8453*67e74705SXin Li // redundant candidates from the set) relies on pointer-equality,
8454*67e74705SXin Li // which means we need to key off the canonical decl. However,
8455*67e74705SXin Li // always going back to the canonical decl might not get us the
8456*67e74705SXin Li // right set of default arguments. What default arguments are
8457*67e74705SXin Li // we supposed to consider on ADL candidates, anyway?
8458*67e74705SXin Li
8459*67e74705SXin Li // FIXME: Pass in the explicit template arguments?
8460*67e74705SXin Li ArgumentDependentLookup(Name, Loc, Args, Fns);
8461*67e74705SXin Li
8462*67e74705SXin Li // Erase all of the candidates we already knew about.
8463*67e74705SXin Li for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
8464*67e74705SXin Li CandEnd = CandidateSet.end();
8465*67e74705SXin Li Cand != CandEnd; ++Cand)
8466*67e74705SXin Li if (Cand->Function) {
8467*67e74705SXin Li Fns.erase(Cand->Function);
8468*67e74705SXin Li if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
8469*67e74705SXin Li Fns.erase(FunTmpl);
8470*67e74705SXin Li }
8471*67e74705SXin Li
8472*67e74705SXin Li // For each of the ADL candidates we found, add it to the overload
8473*67e74705SXin Li // set.
8474*67e74705SXin Li for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
8475*67e74705SXin Li DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
8476*67e74705SXin Li if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
8477*67e74705SXin Li if (ExplicitTemplateArgs)
8478*67e74705SXin Li continue;
8479*67e74705SXin Li
8480*67e74705SXin Li AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
8481*67e74705SXin Li PartialOverloading);
8482*67e74705SXin Li } else
8483*67e74705SXin Li AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
8484*67e74705SXin Li FoundDecl, ExplicitTemplateArgs,
8485*67e74705SXin Li Args, CandidateSet, PartialOverloading);
8486*67e74705SXin Li }
8487*67e74705SXin Li }
8488*67e74705SXin Li
8489*67e74705SXin Li namespace {
8490*67e74705SXin Li enum class Comparison { Equal, Better, Worse };
8491*67e74705SXin Li }
8492*67e74705SXin Li
8493*67e74705SXin Li /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
8494*67e74705SXin Li /// overload resolution.
8495*67e74705SXin Li ///
8496*67e74705SXin Li /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
8497*67e74705SXin Li /// Cand1's first N enable_if attributes have precisely the same conditions as
8498*67e74705SXin Li /// Cand2's first N enable_if attributes (where N = the number of enable_if
8499*67e74705SXin Li /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
8500*67e74705SXin Li ///
8501*67e74705SXin Li /// Note that you can have a pair of candidates such that Cand1's enable_if
8502*67e74705SXin Li /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
8503*67e74705SXin Li /// worse than Cand1's.
compareEnableIfAttrs(const Sema & S,const FunctionDecl * Cand1,const FunctionDecl * Cand2)8504*67e74705SXin Li static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
8505*67e74705SXin Li const FunctionDecl *Cand2) {
8506*67e74705SXin Li // Common case: One (or both) decls don't have enable_if attrs.
8507*67e74705SXin Li bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
8508*67e74705SXin Li bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
8509*67e74705SXin Li if (!Cand1Attr || !Cand2Attr) {
8510*67e74705SXin Li if (Cand1Attr == Cand2Attr)
8511*67e74705SXin Li return Comparison::Equal;
8512*67e74705SXin Li return Cand1Attr ? Comparison::Better : Comparison::Worse;
8513*67e74705SXin Li }
8514*67e74705SXin Li
8515*67e74705SXin Li // FIXME: The next several lines are just
8516*67e74705SXin Li // specific_attr_iterator<EnableIfAttr> but going in declaration order,
8517*67e74705SXin Li // instead of reverse order which is how they're stored in the AST.
8518*67e74705SXin Li auto Cand1Attrs = getOrderedEnableIfAttrs(Cand1);
8519*67e74705SXin Li auto Cand2Attrs = getOrderedEnableIfAttrs(Cand2);
8520*67e74705SXin Li
8521*67e74705SXin Li // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
8522*67e74705SXin Li // has fewer enable_if attributes than Cand2.
8523*67e74705SXin Li if (Cand1Attrs.size() < Cand2Attrs.size())
8524*67e74705SXin Li return Comparison::Worse;
8525*67e74705SXin Li
8526*67e74705SXin Li auto Cand1I = Cand1Attrs.begin();
8527*67e74705SXin Li llvm::FoldingSetNodeID Cand1ID, Cand2ID;
8528*67e74705SXin Li for (auto &Cand2A : Cand2Attrs) {
8529*67e74705SXin Li Cand1ID.clear();
8530*67e74705SXin Li Cand2ID.clear();
8531*67e74705SXin Li
8532*67e74705SXin Li auto &Cand1A = *Cand1I++;
8533*67e74705SXin Li Cand1A->getCond()->Profile(Cand1ID, S.getASTContext(), true);
8534*67e74705SXin Li Cand2A->getCond()->Profile(Cand2ID, S.getASTContext(), true);
8535*67e74705SXin Li if (Cand1ID != Cand2ID)
8536*67e74705SXin Li return Comparison::Worse;
8537*67e74705SXin Li }
8538*67e74705SXin Li
8539*67e74705SXin Li return Cand1I == Cand1Attrs.end() ? Comparison::Equal : Comparison::Better;
8540*67e74705SXin Li }
8541*67e74705SXin Li
8542*67e74705SXin Li /// isBetterOverloadCandidate - Determines whether the first overload
8543*67e74705SXin Li /// candidate is a better candidate than the second (C++ 13.3.3p1).
isBetterOverloadCandidate(Sema & S,const OverloadCandidate & Cand1,const OverloadCandidate & Cand2,SourceLocation Loc,bool UserDefinedConversion)8544*67e74705SXin Li bool clang::isBetterOverloadCandidate(Sema &S, const OverloadCandidate &Cand1,
8545*67e74705SXin Li const OverloadCandidate &Cand2,
8546*67e74705SXin Li SourceLocation Loc,
8547*67e74705SXin Li bool UserDefinedConversion) {
8548*67e74705SXin Li // Define viable functions to be better candidates than non-viable
8549*67e74705SXin Li // functions.
8550*67e74705SXin Li if (!Cand2.Viable)
8551*67e74705SXin Li return Cand1.Viable;
8552*67e74705SXin Li else if (!Cand1.Viable)
8553*67e74705SXin Li return false;
8554*67e74705SXin Li
8555*67e74705SXin Li // C++ [over.match.best]p1:
8556*67e74705SXin Li //
8557*67e74705SXin Li // -- if F is a static member function, ICS1(F) is defined such
8558*67e74705SXin Li // that ICS1(F) is neither better nor worse than ICS1(G) for
8559*67e74705SXin Li // any function G, and, symmetrically, ICS1(G) is neither
8560*67e74705SXin Li // better nor worse than ICS1(F).
8561*67e74705SXin Li unsigned StartArg = 0;
8562*67e74705SXin Li if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
8563*67e74705SXin Li StartArg = 1;
8564*67e74705SXin Li
8565*67e74705SXin Li // C++ [over.match.best]p1:
8566*67e74705SXin Li // A viable function F1 is defined to be a better function than another
8567*67e74705SXin Li // viable function F2 if for all arguments i, ICSi(F1) is not a worse
8568*67e74705SXin Li // conversion sequence than ICSi(F2), and then...
8569*67e74705SXin Li unsigned NumArgs = Cand1.NumConversions;
8570*67e74705SXin Li assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
8571*67e74705SXin Li bool HasBetterConversion = false;
8572*67e74705SXin Li for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
8573*67e74705SXin Li switch (CompareImplicitConversionSequences(S, Loc,
8574*67e74705SXin Li Cand1.Conversions[ArgIdx],
8575*67e74705SXin Li Cand2.Conversions[ArgIdx])) {
8576*67e74705SXin Li case ImplicitConversionSequence::Better:
8577*67e74705SXin Li // Cand1 has a better conversion sequence.
8578*67e74705SXin Li HasBetterConversion = true;
8579*67e74705SXin Li break;
8580*67e74705SXin Li
8581*67e74705SXin Li case ImplicitConversionSequence::Worse:
8582*67e74705SXin Li // Cand1 can't be better than Cand2.
8583*67e74705SXin Li return false;
8584*67e74705SXin Li
8585*67e74705SXin Li case ImplicitConversionSequence::Indistinguishable:
8586*67e74705SXin Li // Do nothing.
8587*67e74705SXin Li break;
8588*67e74705SXin Li }
8589*67e74705SXin Li }
8590*67e74705SXin Li
8591*67e74705SXin Li // -- for some argument j, ICSj(F1) is a better conversion sequence than
8592*67e74705SXin Li // ICSj(F2), or, if not that,
8593*67e74705SXin Li if (HasBetterConversion)
8594*67e74705SXin Li return true;
8595*67e74705SXin Li
8596*67e74705SXin Li // -- the context is an initialization by user-defined conversion
8597*67e74705SXin Li // (see 8.5, 13.3.1.5) and the standard conversion sequence
8598*67e74705SXin Li // from the return type of F1 to the destination type (i.e.,
8599*67e74705SXin Li // the type of the entity being initialized) is a better
8600*67e74705SXin Li // conversion sequence than the standard conversion sequence
8601*67e74705SXin Li // from the return type of F2 to the destination type.
8602*67e74705SXin Li if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
8603*67e74705SXin Li isa<CXXConversionDecl>(Cand1.Function) &&
8604*67e74705SXin Li isa<CXXConversionDecl>(Cand2.Function)) {
8605*67e74705SXin Li // First check whether we prefer one of the conversion functions over the
8606*67e74705SXin Li // other. This only distinguishes the results in non-standard, extension
8607*67e74705SXin Li // cases such as the conversion from a lambda closure type to a function
8608*67e74705SXin Li // pointer or block.
8609*67e74705SXin Li ImplicitConversionSequence::CompareKind Result =
8610*67e74705SXin Li compareConversionFunctions(S, Cand1.Function, Cand2.Function);
8611*67e74705SXin Li if (Result == ImplicitConversionSequence::Indistinguishable)
8612*67e74705SXin Li Result = CompareStandardConversionSequences(S, Loc,
8613*67e74705SXin Li Cand1.FinalConversion,
8614*67e74705SXin Li Cand2.FinalConversion);
8615*67e74705SXin Li
8616*67e74705SXin Li if (Result != ImplicitConversionSequence::Indistinguishable)
8617*67e74705SXin Li return Result == ImplicitConversionSequence::Better;
8618*67e74705SXin Li
8619*67e74705SXin Li // FIXME: Compare kind of reference binding if conversion functions
8620*67e74705SXin Li // convert to a reference type used in direct reference binding, per
8621*67e74705SXin Li // C++14 [over.match.best]p1 section 2 bullet 3.
8622*67e74705SXin Li }
8623*67e74705SXin Li
8624*67e74705SXin Li // -- F1 is a non-template function and F2 is a function template
8625*67e74705SXin Li // specialization, or, if not that,
8626*67e74705SXin Li bool Cand1IsSpecialization = Cand1.Function &&
8627*67e74705SXin Li Cand1.Function->getPrimaryTemplate();
8628*67e74705SXin Li bool Cand2IsSpecialization = Cand2.Function &&
8629*67e74705SXin Li Cand2.Function->getPrimaryTemplate();
8630*67e74705SXin Li if (Cand1IsSpecialization != Cand2IsSpecialization)
8631*67e74705SXin Li return Cand2IsSpecialization;
8632*67e74705SXin Li
8633*67e74705SXin Li // -- F1 and F2 are function template specializations, and the function
8634*67e74705SXin Li // template for F1 is more specialized than the template for F2
8635*67e74705SXin Li // according to the partial ordering rules described in 14.5.5.2, or,
8636*67e74705SXin Li // if not that,
8637*67e74705SXin Li if (Cand1IsSpecialization && Cand2IsSpecialization) {
8638*67e74705SXin Li if (FunctionTemplateDecl *BetterTemplate
8639*67e74705SXin Li = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
8640*67e74705SXin Li Cand2.Function->getPrimaryTemplate(),
8641*67e74705SXin Li Loc,
8642*67e74705SXin Li isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
8643*67e74705SXin Li : TPOC_Call,
8644*67e74705SXin Li Cand1.ExplicitCallArguments,
8645*67e74705SXin Li Cand2.ExplicitCallArguments))
8646*67e74705SXin Li return BetterTemplate == Cand1.Function->getPrimaryTemplate();
8647*67e74705SXin Li }
8648*67e74705SXin Li
8649*67e74705SXin Li // FIXME: Work around a defect in the C++17 inheriting constructor wording.
8650*67e74705SXin Li // A derived-class constructor beats an (inherited) base class constructor.
8651*67e74705SXin Li bool Cand1IsInherited =
8652*67e74705SXin Li dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
8653*67e74705SXin Li bool Cand2IsInherited =
8654*67e74705SXin Li dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
8655*67e74705SXin Li if (Cand1IsInherited != Cand2IsInherited)
8656*67e74705SXin Li return Cand2IsInherited;
8657*67e74705SXin Li else if (Cand1IsInherited) {
8658*67e74705SXin Li assert(Cand2IsInherited);
8659*67e74705SXin Li auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
8660*67e74705SXin Li auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
8661*67e74705SXin Li if (Cand1Class->isDerivedFrom(Cand2Class))
8662*67e74705SXin Li return true;
8663*67e74705SXin Li if (Cand2Class->isDerivedFrom(Cand1Class))
8664*67e74705SXin Li return false;
8665*67e74705SXin Li // Inherited from sibling base classes: still ambiguous.
8666*67e74705SXin Li }
8667*67e74705SXin Li
8668*67e74705SXin Li // Check for enable_if value-based overload resolution.
8669*67e74705SXin Li if (Cand1.Function && Cand2.Function) {
8670*67e74705SXin Li Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
8671*67e74705SXin Li if (Cmp != Comparison::Equal)
8672*67e74705SXin Li return Cmp == Comparison::Better;
8673*67e74705SXin Li }
8674*67e74705SXin Li
8675*67e74705SXin Li if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
8676*67e74705SXin Li FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
8677*67e74705SXin Li return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
8678*67e74705SXin Li S.IdentifyCUDAPreference(Caller, Cand2.Function);
8679*67e74705SXin Li }
8680*67e74705SXin Li
8681*67e74705SXin Li bool HasPS1 = Cand1.Function != nullptr &&
8682*67e74705SXin Li functionHasPassObjectSizeParams(Cand1.Function);
8683*67e74705SXin Li bool HasPS2 = Cand2.Function != nullptr &&
8684*67e74705SXin Li functionHasPassObjectSizeParams(Cand2.Function);
8685*67e74705SXin Li return HasPS1 != HasPS2 && HasPS1;
8686*67e74705SXin Li }
8687*67e74705SXin Li
8688*67e74705SXin Li /// Determine whether two declarations are "equivalent" for the purposes of
8689*67e74705SXin Li /// name lookup and overload resolution. This applies when the same internal/no
8690*67e74705SXin Li /// linkage entity is defined by two modules (probably by textually including
8691*67e74705SXin Li /// the same header). In such a case, we don't consider the declarations to
8692*67e74705SXin Li /// declare the same entity, but we also don't want lookups with both
8693*67e74705SXin Li /// declarations visible to be ambiguous in some cases (this happens when using
8694*67e74705SXin Li /// a modularized libstdc++).
isEquivalentInternalLinkageDeclaration(const NamedDecl * A,const NamedDecl * B)8695*67e74705SXin Li bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
8696*67e74705SXin Li const NamedDecl *B) {
8697*67e74705SXin Li auto *VA = dyn_cast_or_null<ValueDecl>(A);
8698*67e74705SXin Li auto *VB = dyn_cast_or_null<ValueDecl>(B);
8699*67e74705SXin Li if (!VA || !VB)
8700*67e74705SXin Li return false;
8701*67e74705SXin Li
8702*67e74705SXin Li // The declarations must be declaring the same name as an internal linkage
8703*67e74705SXin Li // entity in different modules.
8704*67e74705SXin Li if (!VA->getDeclContext()->getRedeclContext()->Equals(
8705*67e74705SXin Li VB->getDeclContext()->getRedeclContext()) ||
8706*67e74705SXin Li getOwningModule(const_cast<ValueDecl *>(VA)) ==
8707*67e74705SXin Li getOwningModule(const_cast<ValueDecl *>(VB)) ||
8708*67e74705SXin Li VA->isExternallyVisible() || VB->isExternallyVisible())
8709*67e74705SXin Li return false;
8710*67e74705SXin Li
8711*67e74705SXin Li // Check that the declarations appear to be equivalent.
8712*67e74705SXin Li //
8713*67e74705SXin Li // FIXME: Checking the type isn't really enough to resolve the ambiguity.
8714*67e74705SXin Li // For constants and functions, we should check the initializer or body is
8715*67e74705SXin Li // the same. For non-constant variables, we shouldn't allow it at all.
8716*67e74705SXin Li if (Context.hasSameType(VA->getType(), VB->getType()))
8717*67e74705SXin Li return true;
8718*67e74705SXin Li
8719*67e74705SXin Li // Enum constants within unnamed enumerations will have different types, but
8720*67e74705SXin Li // may still be similar enough to be interchangeable for our purposes.
8721*67e74705SXin Li if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
8722*67e74705SXin Li if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
8723*67e74705SXin Li // Only handle anonymous enums. If the enumerations were named and
8724*67e74705SXin Li // equivalent, they would have been merged to the same type.
8725*67e74705SXin Li auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
8726*67e74705SXin Li auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
8727*67e74705SXin Li if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
8728*67e74705SXin Li !Context.hasSameType(EnumA->getIntegerType(),
8729*67e74705SXin Li EnumB->getIntegerType()))
8730*67e74705SXin Li return false;
8731*67e74705SXin Li // Allow this only if the value is the same for both enumerators.
8732*67e74705SXin Li return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
8733*67e74705SXin Li }
8734*67e74705SXin Li }
8735*67e74705SXin Li
8736*67e74705SXin Li // Nothing else is sufficiently similar.
8737*67e74705SXin Li return false;
8738*67e74705SXin Li }
8739*67e74705SXin Li
diagnoseEquivalentInternalLinkageDeclarations(SourceLocation Loc,const NamedDecl * D,ArrayRef<const NamedDecl * > Equiv)8740*67e74705SXin Li void Sema::diagnoseEquivalentInternalLinkageDeclarations(
8741*67e74705SXin Li SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
8742*67e74705SXin Li Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
8743*67e74705SXin Li
8744*67e74705SXin Li Module *M = getOwningModule(const_cast<NamedDecl*>(D));
8745*67e74705SXin Li Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
8746*67e74705SXin Li << !M << (M ? M->getFullModuleName() : "");
8747*67e74705SXin Li
8748*67e74705SXin Li for (auto *E : Equiv) {
8749*67e74705SXin Li Module *M = getOwningModule(const_cast<NamedDecl*>(E));
8750*67e74705SXin Li Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
8751*67e74705SXin Li << !M << (M ? M->getFullModuleName() : "");
8752*67e74705SXin Li }
8753*67e74705SXin Li }
8754*67e74705SXin Li
8755*67e74705SXin Li /// \brief Computes the best viable function (C++ 13.3.3)
8756*67e74705SXin Li /// within an overload candidate set.
8757*67e74705SXin Li ///
8758*67e74705SXin Li /// \param Loc The location of the function name (or operator symbol) for
8759*67e74705SXin Li /// which overload resolution occurs.
8760*67e74705SXin Li ///
8761*67e74705SXin Li /// \param Best If overload resolution was successful or found a deleted
8762*67e74705SXin Li /// function, \p Best points to the candidate function found.
8763*67e74705SXin Li ///
8764*67e74705SXin Li /// \returns The result of overload resolution.
8765*67e74705SXin Li OverloadingResult
BestViableFunction(Sema & S,SourceLocation Loc,iterator & Best,bool UserDefinedConversion)8766*67e74705SXin Li OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
8767*67e74705SXin Li iterator &Best,
8768*67e74705SXin Li bool UserDefinedConversion) {
8769*67e74705SXin Li llvm::SmallVector<OverloadCandidate *, 16> Candidates;
8770*67e74705SXin Li std::transform(begin(), end(), std::back_inserter(Candidates),
8771*67e74705SXin Li [](OverloadCandidate &Cand) { return &Cand; });
8772*67e74705SXin Li
8773*67e74705SXin Li // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA
8774*67e74705SXin Li // but accepted by both clang and NVCC. However during a particular
8775*67e74705SXin Li // compilation mode only one call variant is viable. We need to
8776*67e74705SXin Li // exclude non-viable overload candidates from consideration based
8777*67e74705SXin Li // only on their host/device attributes. Specifically, if one
8778*67e74705SXin Li // candidate call is WrongSide and the other is SameSide, we ignore
8779*67e74705SXin Li // the WrongSide candidate.
8780*67e74705SXin Li if (S.getLangOpts().CUDA) {
8781*67e74705SXin Li const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
8782*67e74705SXin Li bool ContainsSameSideCandidate =
8783*67e74705SXin Li llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
8784*67e74705SXin Li return Cand->Function &&
8785*67e74705SXin Li S.IdentifyCUDAPreference(Caller, Cand->Function) ==
8786*67e74705SXin Li Sema::CFP_SameSide;
8787*67e74705SXin Li });
8788*67e74705SXin Li if (ContainsSameSideCandidate) {
8789*67e74705SXin Li auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
8790*67e74705SXin Li return Cand->Function &&
8791*67e74705SXin Li S.IdentifyCUDAPreference(Caller, Cand->Function) ==
8792*67e74705SXin Li Sema::CFP_WrongSide;
8793*67e74705SXin Li };
8794*67e74705SXin Li Candidates.erase(std::remove_if(Candidates.begin(), Candidates.end(),
8795*67e74705SXin Li IsWrongSideCandidate),
8796*67e74705SXin Li Candidates.end());
8797*67e74705SXin Li }
8798*67e74705SXin Li }
8799*67e74705SXin Li
8800*67e74705SXin Li // Find the best viable function.
8801*67e74705SXin Li Best = end();
8802*67e74705SXin Li for (auto *Cand : Candidates)
8803*67e74705SXin Li if (Cand->Viable)
8804*67e74705SXin Li if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
8805*67e74705SXin Li UserDefinedConversion))
8806*67e74705SXin Li Best = Cand;
8807*67e74705SXin Li
8808*67e74705SXin Li // If we didn't find any viable functions, abort.
8809*67e74705SXin Li if (Best == end())
8810*67e74705SXin Li return OR_No_Viable_Function;
8811*67e74705SXin Li
8812*67e74705SXin Li llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
8813*67e74705SXin Li
8814*67e74705SXin Li // Make sure that this function is better than every other viable
8815*67e74705SXin Li // function. If not, we have an ambiguity.
8816*67e74705SXin Li for (auto *Cand : Candidates) {
8817*67e74705SXin Li if (Cand->Viable &&
8818*67e74705SXin Li Cand != Best &&
8819*67e74705SXin Li !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
8820*67e74705SXin Li UserDefinedConversion)) {
8821*67e74705SXin Li if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
8822*67e74705SXin Li Cand->Function)) {
8823*67e74705SXin Li EquivalentCands.push_back(Cand->Function);
8824*67e74705SXin Li continue;
8825*67e74705SXin Li }
8826*67e74705SXin Li
8827*67e74705SXin Li Best = end();
8828*67e74705SXin Li return OR_Ambiguous;
8829*67e74705SXin Li }
8830*67e74705SXin Li }
8831*67e74705SXin Li
8832*67e74705SXin Li // Best is the best viable function.
8833*67e74705SXin Li if (Best->Function &&
8834*67e74705SXin Li (Best->Function->isDeleted() ||
8835*67e74705SXin Li S.isFunctionConsideredUnavailable(Best->Function)))
8836*67e74705SXin Li return OR_Deleted;
8837*67e74705SXin Li
8838*67e74705SXin Li if (!EquivalentCands.empty())
8839*67e74705SXin Li S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
8840*67e74705SXin Li EquivalentCands);
8841*67e74705SXin Li
8842*67e74705SXin Li return OR_Success;
8843*67e74705SXin Li }
8844*67e74705SXin Li
8845*67e74705SXin Li namespace {
8846*67e74705SXin Li
8847*67e74705SXin Li enum OverloadCandidateKind {
8848*67e74705SXin Li oc_function,
8849*67e74705SXin Li oc_method,
8850*67e74705SXin Li oc_constructor,
8851*67e74705SXin Li oc_function_template,
8852*67e74705SXin Li oc_method_template,
8853*67e74705SXin Li oc_constructor_template,
8854*67e74705SXin Li oc_implicit_default_constructor,
8855*67e74705SXin Li oc_implicit_copy_constructor,
8856*67e74705SXin Li oc_implicit_move_constructor,
8857*67e74705SXin Li oc_implicit_copy_assignment,
8858*67e74705SXin Li oc_implicit_move_assignment,
8859*67e74705SXin Li oc_inherited_constructor,
8860*67e74705SXin Li oc_inherited_constructor_template
8861*67e74705SXin Li };
8862*67e74705SXin Li
ClassifyOverloadCandidate(Sema & S,NamedDecl * Found,FunctionDecl * Fn,std::string & Description)8863*67e74705SXin Li OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
8864*67e74705SXin Li NamedDecl *Found,
8865*67e74705SXin Li FunctionDecl *Fn,
8866*67e74705SXin Li std::string &Description) {
8867*67e74705SXin Li bool isTemplate = false;
8868*67e74705SXin Li
8869*67e74705SXin Li if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
8870*67e74705SXin Li isTemplate = true;
8871*67e74705SXin Li Description = S.getTemplateArgumentBindingsText(
8872*67e74705SXin Li FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
8873*67e74705SXin Li }
8874*67e74705SXin Li
8875*67e74705SXin Li if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
8876*67e74705SXin Li if (!Ctor->isImplicit()) {
8877*67e74705SXin Li if (isa<ConstructorUsingShadowDecl>(Found))
8878*67e74705SXin Li return isTemplate ? oc_inherited_constructor_template
8879*67e74705SXin Li : oc_inherited_constructor;
8880*67e74705SXin Li else
8881*67e74705SXin Li return isTemplate ? oc_constructor_template : oc_constructor;
8882*67e74705SXin Li }
8883*67e74705SXin Li
8884*67e74705SXin Li if (Ctor->isDefaultConstructor())
8885*67e74705SXin Li return oc_implicit_default_constructor;
8886*67e74705SXin Li
8887*67e74705SXin Li if (Ctor->isMoveConstructor())
8888*67e74705SXin Li return oc_implicit_move_constructor;
8889*67e74705SXin Li
8890*67e74705SXin Li assert(Ctor->isCopyConstructor() &&
8891*67e74705SXin Li "unexpected sort of implicit constructor");
8892*67e74705SXin Li return oc_implicit_copy_constructor;
8893*67e74705SXin Li }
8894*67e74705SXin Li
8895*67e74705SXin Li if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
8896*67e74705SXin Li // This actually gets spelled 'candidate function' for now, but
8897*67e74705SXin Li // it doesn't hurt to split it out.
8898*67e74705SXin Li if (!Meth->isImplicit())
8899*67e74705SXin Li return isTemplate ? oc_method_template : oc_method;
8900*67e74705SXin Li
8901*67e74705SXin Li if (Meth->isMoveAssignmentOperator())
8902*67e74705SXin Li return oc_implicit_move_assignment;
8903*67e74705SXin Li
8904*67e74705SXin Li if (Meth->isCopyAssignmentOperator())
8905*67e74705SXin Li return oc_implicit_copy_assignment;
8906*67e74705SXin Li
8907*67e74705SXin Li assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
8908*67e74705SXin Li return oc_method;
8909*67e74705SXin Li }
8910*67e74705SXin Li
8911*67e74705SXin Li return isTemplate ? oc_function_template : oc_function;
8912*67e74705SXin Li }
8913*67e74705SXin Li
MaybeEmitInheritedConstructorNote(Sema & S,Decl * FoundDecl)8914*67e74705SXin Li void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
8915*67e74705SXin Li // FIXME: It'd be nice to only emit a note once per using-decl per overload
8916*67e74705SXin Li // set.
8917*67e74705SXin Li if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
8918*67e74705SXin Li S.Diag(FoundDecl->getLocation(),
8919*67e74705SXin Li diag::note_ovl_candidate_inherited_constructor)
8920*67e74705SXin Li << Shadow->getNominatedBaseClass();
8921*67e74705SXin Li }
8922*67e74705SXin Li
8923*67e74705SXin Li } // end anonymous namespace
8924*67e74705SXin Li
isFunctionAlwaysEnabled(const ASTContext & Ctx,const FunctionDecl * FD)8925*67e74705SXin Li static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
8926*67e74705SXin Li const FunctionDecl *FD) {
8927*67e74705SXin Li for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
8928*67e74705SXin Li bool AlwaysTrue;
8929*67e74705SXin Li if (!EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
8930*67e74705SXin Li return false;
8931*67e74705SXin Li if (!AlwaysTrue)
8932*67e74705SXin Li return false;
8933*67e74705SXin Li }
8934*67e74705SXin Li return true;
8935*67e74705SXin Li }
8936*67e74705SXin Li
8937*67e74705SXin Li /// \brief Returns true if we can take the address of the function.
8938*67e74705SXin Li ///
8939*67e74705SXin Li /// \param Complain - If true, we'll emit a diagnostic
8940*67e74705SXin Li /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
8941*67e74705SXin Li /// we in overload resolution?
8942*67e74705SXin Li /// \param Loc - The location of the statement we're complaining about. Ignored
8943*67e74705SXin Li /// if we're not complaining, or if we're in overload resolution.
checkAddressOfFunctionIsAvailable(Sema & S,const FunctionDecl * FD,bool Complain,bool InOverloadResolution,SourceLocation Loc)8944*67e74705SXin Li static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
8945*67e74705SXin Li bool Complain,
8946*67e74705SXin Li bool InOverloadResolution,
8947*67e74705SXin Li SourceLocation Loc) {
8948*67e74705SXin Li if (!isFunctionAlwaysEnabled(S.Context, FD)) {
8949*67e74705SXin Li if (Complain) {
8950*67e74705SXin Li if (InOverloadResolution)
8951*67e74705SXin Li S.Diag(FD->getLocStart(),
8952*67e74705SXin Li diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
8953*67e74705SXin Li else
8954*67e74705SXin Li S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
8955*67e74705SXin Li }
8956*67e74705SXin Li return false;
8957*67e74705SXin Li }
8958*67e74705SXin Li
8959*67e74705SXin Li auto I = llvm::find_if(
8960*67e74705SXin Li FD->parameters(), std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>));
8961*67e74705SXin Li if (I == FD->param_end())
8962*67e74705SXin Li return true;
8963*67e74705SXin Li
8964*67e74705SXin Li if (Complain) {
8965*67e74705SXin Li // Add one to ParamNo because it's user-facing
8966*67e74705SXin Li unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
8967*67e74705SXin Li if (InOverloadResolution)
8968*67e74705SXin Li S.Diag(FD->getLocation(),
8969*67e74705SXin Li diag::note_ovl_candidate_has_pass_object_size_params)
8970*67e74705SXin Li << ParamNo;
8971*67e74705SXin Li else
8972*67e74705SXin Li S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
8973*67e74705SXin Li << FD << ParamNo;
8974*67e74705SXin Li }
8975*67e74705SXin Li return false;
8976*67e74705SXin Li }
8977*67e74705SXin Li
checkAddressOfCandidateIsAvailable(Sema & S,const FunctionDecl * FD)8978*67e74705SXin Li static bool checkAddressOfCandidateIsAvailable(Sema &S,
8979*67e74705SXin Li const FunctionDecl *FD) {
8980*67e74705SXin Li return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
8981*67e74705SXin Li /*InOverloadResolution=*/true,
8982*67e74705SXin Li /*Loc=*/SourceLocation());
8983*67e74705SXin Li }
8984*67e74705SXin Li
checkAddressOfFunctionIsAvailable(const FunctionDecl * Function,bool Complain,SourceLocation Loc)8985*67e74705SXin Li bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
8986*67e74705SXin Li bool Complain,
8987*67e74705SXin Li SourceLocation Loc) {
8988*67e74705SXin Li return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
8989*67e74705SXin Li /*InOverloadResolution=*/false,
8990*67e74705SXin Li Loc);
8991*67e74705SXin Li }
8992*67e74705SXin Li
8993*67e74705SXin Li // Notes the location of an overload candidate.
NoteOverloadCandidate(NamedDecl * Found,FunctionDecl * Fn,QualType DestType,bool TakingAddress)8994*67e74705SXin Li void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
8995*67e74705SXin Li QualType DestType, bool TakingAddress) {
8996*67e74705SXin Li if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
8997*67e74705SXin Li return;
8998*67e74705SXin Li
8999*67e74705SXin Li std::string FnDesc;
9000*67e74705SXin Li OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Found, Fn, FnDesc);
9001*67e74705SXin Li PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
9002*67e74705SXin Li << (unsigned) K << FnDesc;
9003*67e74705SXin Li
9004*67e74705SXin Li HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
9005*67e74705SXin Li Diag(Fn->getLocation(), PD);
9006*67e74705SXin Li MaybeEmitInheritedConstructorNote(*this, Found);
9007*67e74705SXin Li }
9008*67e74705SXin Li
9009*67e74705SXin Li // Notes the location of all overload candidates designated through
9010*67e74705SXin Li // OverloadedExpr
NoteAllOverloadCandidates(Expr * OverloadedExpr,QualType DestType,bool TakingAddress)9011*67e74705SXin Li void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
9012*67e74705SXin Li bool TakingAddress) {
9013*67e74705SXin Li assert(OverloadedExpr->getType() == Context.OverloadTy);
9014*67e74705SXin Li
9015*67e74705SXin Li OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
9016*67e74705SXin Li OverloadExpr *OvlExpr = Ovl.Expression;
9017*67e74705SXin Li
9018*67e74705SXin Li for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
9019*67e74705SXin Li IEnd = OvlExpr->decls_end();
9020*67e74705SXin Li I != IEnd; ++I) {
9021*67e74705SXin Li if (FunctionTemplateDecl *FunTmpl =
9022*67e74705SXin Li dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
9023*67e74705SXin Li NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), DestType,
9024*67e74705SXin Li TakingAddress);
9025*67e74705SXin Li } else if (FunctionDecl *Fun
9026*67e74705SXin Li = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
9027*67e74705SXin Li NoteOverloadCandidate(*I, Fun, DestType, TakingAddress);
9028*67e74705SXin Li }
9029*67e74705SXin Li }
9030*67e74705SXin Li }
9031*67e74705SXin Li
9032*67e74705SXin Li /// Diagnoses an ambiguous conversion. The partial diagnostic is the
9033*67e74705SXin Li /// "lead" diagnostic; it will be given two arguments, the source and
9034*67e74705SXin Li /// target types of the conversion.
DiagnoseAmbiguousConversion(Sema & S,SourceLocation CaretLoc,const PartialDiagnostic & PDiag) const9035*67e74705SXin Li void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
9036*67e74705SXin Li Sema &S,
9037*67e74705SXin Li SourceLocation CaretLoc,
9038*67e74705SXin Li const PartialDiagnostic &PDiag) const {
9039*67e74705SXin Li S.Diag(CaretLoc, PDiag)
9040*67e74705SXin Li << Ambiguous.getFromType() << Ambiguous.getToType();
9041*67e74705SXin Li // FIXME: The note limiting machinery is borrowed from
9042*67e74705SXin Li // OverloadCandidateSet::NoteCandidates; there's an opportunity for
9043*67e74705SXin Li // refactoring here.
9044*67e74705SXin Li const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
9045*67e74705SXin Li unsigned CandsShown = 0;
9046*67e74705SXin Li AmbiguousConversionSequence::const_iterator I, E;
9047*67e74705SXin Li for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
9048*67e74705SXin Li if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
9049*67e74705SXin Li break;
9050*67e74705SXin Li ++CandsShown;
9051*67e74705SXin Li S.NoteOverloadCandidate(I->first, I->second);
9052*67e74705SXin Li }
9053*67e74705SXin Li if (I != E)
9054*67e74705SXin Li S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
9055*67e74705SXin Li }
9056*67e74705SXin Li
DiagnoseBadConversion(Sema & S,OverloadCandidate * Cand,unsigned I,bool TakingCandidateAddress)9057*67e74705SXin Li static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
9058*67e74705SXin Li unsigned I, bool TakingCandidateAddress) {
9059*67e74705SXin Li const ImplicitConversionSequence &Conv = Cand->Conversions[I];
9060*67e74705SXin Li assert(Conv.isBad());
9061*67e74705SXin Li assert(Cand->Function && "for now, candidate must be a function");
9062*67e74705SXin Li FunctionDecl *Fn = Cand->Function;
9063*67e74705SXin Li
9064*67e74705SXin Li // There's a conversion slot for the object argument if this is a
9065*67e74705SXin Li // non-constructor method. Note that 'I' corresponds the
9066*67e74705SXin Li // conversion-slot index.
9067*67e74705SXin Li bool isObjectArgument = false;
9068*67e74705SXin Li if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
9069*67e74705SXin Li if (I == 0)
9070*67e74705SXin Li isObjectArgument = true;
9071*67e74705SXin Li else
9072*67e74705SXin Li I--;
9073*67e74705SXin Li }
9074*67e74705SXin Li
9075*67e74705SXin Li std::string FnDesc;
9076*67e74705SXin Li OverloadCandidateKind FnKind =
9077*67e74705SXin Li ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9078*67e74705SXin Li
9079*67e74705SXin Li Expr *FromExpr = Conv.Bad.FromExpr;
9080*67e74705SXin Li QualType FromTy = Conv.Bad.getFromType();
9081*67e74705SXin Li QualType ToTy = Conv.Bad.getToType();
9082*67e74705SXin Li
9083*67e74705SXin Li if (FromTy == S.Context.OverloadTy) {
9084*67e74705SXin Li assert(FromExpr && "overload set argument came from implicit argument?");
9085*67e74705SXin Li Expr *E = FromExpr->IgnoreParens();
9086*67e74705SXin Li if (isa<UnaryOperator>(E))
9087*67e74705SXin Li E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
9088*67e74705SXin Li DeclarationName Name = cast<OverloadExpr>(E)->getName();
9089*67e74705SXin Li
9090*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
9091*67e74705SXin Li << (unsigned) FnKind << FnDesc
9092*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9093*67e74705SXin Li << ToTy << Name << I+1;
9094*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9095*67e74705SXin Li return;
9096*67e74705SXin Li }
9097*67e74705SXin Li
9098*67e74705SXin Li // Do some hand-waving analysis to see if the non-viability is due
9099*67e74705SXin Li // to a qualifier mismatch.
9100*67e74705SXin Li CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
9101*67e74705SXin Li CanQualType CToTy = S.Context.getCanonicalType(ToTy);
9102*67e74705SXin Li if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
9103*67e74705SXin Li CToTy = RT->getPointeeType();
9104*67e74705SXin Li else {
9105*67e74705SXin Li // TODO: detect and diagnose the full richness of const mismatches.
9106*67e74705SXin Li if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
9107*67e74705SXin Li if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
9108*67e74705SXin Li CFromTy = FromPT->getPointeeType();
9109*67e74705SXin Li CToTy = ToPT->getPointeeType();
9110*67e74705SXin Li }
9111*67e74705SXin Li }
9112*67e74705SXin Li
9113*67e74705SXin Li if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
9114*67e74705SXin Li !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
9115*67e74705SXin Li Qualifiers FromQs = CFromTy.getQualifiers();
9116*67e74705SXin Li Qualifiers ToQs = CToTy.getQualifiers();
9117*67e74705SXin Li
9118*67e74705SXin Li if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
9119*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
9120*67e74705SXin Li << (unsigned) FnKind << FnDesc
9121*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9122*67e74705SXin Li << FromTy
9123*67e74705SXin Li << FromQs.getAddressSpace() << ToQs.getAddressSpace()
9124*67e74705SXin Li << (unsigned) isObjectArgument << I+1;
9125*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9126*67e74705SXin Li return;
9127*67e74705SXin Li }
9128*67e74705SXin Li
9129*67e74705SXin Li if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9130*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
9131*67e74705SXin Li << (unsigned) FnKind << FnDesc
9132*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9133*67e74705SXin Li << FromTy
9134*67e74705SXin Li << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
9135*67e74705SXin Li << (unsigned) isObjectArgument << I+1;
9136*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9137*67e74705SXin Li return;
9138*67e74705SXin Li }
9139*67e74705SXin Li
9140*67e74705SXin Li if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
9141*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
9142*67e74705SXin Li << (unsigned) FnKind << FnDesc
9143*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9144*67e74705SXin Li << FromTy
9145*67e74705SXin Li << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
9146*67e74705SXin Li << (unsigned) isObjectArgument << I+1;
9147*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9148*67e74705SXin Li return;
9149*67e74705SXin Li }
9150*67e74705SXin Li
9151*67e74705SXin Li if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
9152*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
9153*67e74705SXin Li << (unsigned) FnKind << FnDesc
9154*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9155*67e74705SXin Li << FromTy << FromQs.hasUnaligned() << I+1;
9156*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9157*67e74705SXin Li return;
9158*67e74705SXin Li }
9159*67e74705SXin Li
9160*67e74705SXin Li unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
9161*67e74705SXin Li assert(CVR && "unexpected qualifiers mismatch");
9162*67e74705SXin Li
9163*67e74705SXin Li if (isObjectArgument) {
9164*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
9165*67e74705SXin Li << (unsigned) FnKind << FnDesc
9166*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9167*67e74705SXin Li << FromTy << (CVR - 1);
9168*67e74705SXin Li } else {
9169*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
9170*67e74705SXin Li << (unsigned) FnKind << FnDesc
9171*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9172*67e74705SXin Li << FromTy << (CVR - 1) << I+1;
9173*67e74705SXin Li }
9174*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9175*67e74705SXin Li return;
9176*67e74705SXin Li }
9177*67e74705SXin Li
9178*67e74705SXin Li // Special diagnostic for failure to convert an initializer list, since
9179*67e74705SXin Li // telling the user that it has type void is not useful.
9180*67e74705SXin Li if (FromExpr && isa<InitListExpr>(FromExpr)) {
9181*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
9182*67e74705SXin Li << (unsigned) FnKind << FnDesc
9183*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9184*67e74705SXin Li << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9185*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9186*67e74705SXin Li return;
9187*67e74705SXin Li }
9188*67e74705SXin Li
9189*67e74705SXin Li // Diagnose references or pointers to incomplete types differently,
9190*67e74705SXin Li // since it's far from impossible that the incompleteness triggered
9191*67e74705SXin Li // the failure.
9192*67e74705SXin Li QualType TempFromTy = FromTy.getNonReferenceType();
9193*67e74705SXin Li if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
9194*67e74705SXin Li TempFromTy = PTy->getPointeeType();
9195*67e74705SXin Li if (TempFromTy->isIncompleteType()) {
9196*67e74705SXin Li // Emit the generic diagnostic and, optionally, add the hints to it.
9197*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
9198*67e74705SXin Li << (unsigned) FnKind << FnDesc
9199*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9200*67e74705SXin Li << FromTy << ToTy << (unsigned) isObjectArgument << I+1
9201*67e74705SXin Li << (unsigned) (Cand->Fix.Kind);
9202*67e74705SXin Li
9203*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9204*67e74705SXin Li return;
9205*67e74705SXin Li }
9206*67e74705SXin Li
9207*67e74705SXin Li // Diagnose base -> derived pointer conversions.
9208*67e74705SXin Li unsigned BaseToDerivedConversion = 0;
9209*67e74705SXin Li if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
9210*67e74705SXin Li if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
9211*67e74705SXin Li if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9212*67e74705SXin Li FromPtrTy->getPointeeType()) &&
9213*67e74705SXin Li !FromPtrTy->getPointeeType()->isIncompleteType() &&
9214*67e74705SXin Li !ToPtrTy->getPointeeType()->isIncompleteType() &&
9215*67e74705SXin Li S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
9216*67e74705SXin Li FromPtrTy->getPointeeType()))
9217*67e74705SXin Li BaseToDerivedConversion = 1;
9218*67e74705SXin Li }
9219*67e74705SXin Li } else if (const ObjCObjectPointerType *FromPtrTy
9220*67e74705SXin Li = FromTy->getAs<ObjCObjectPointerType>()) {
9221*67e74705SXin Li if (const ObjCObjectPointerType *ToPtrTy
9222*67e74705SXin Li = ToTy->getAs<ObjCObjectPointerType>())
9223*67e74705SXin Li if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
9224*67e74705SXin Li if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
9225*67e74705SXin Li if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
9226*67e74705SXin Li FromPtrTy->getPointeeType()) &&
9227*67e74705SXin Li FromIface->isSuperClassOf(ToIface))
9228*67e74705SXin Li BaseToDerivedConversion = 2;
9229*67e74705SXin Li } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
9230*67e74705SXin Li if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
9231*67e74705SXin Li !FromTy->isIncompleteType() &&
9232*67e74705SXin Li !ToRefTy->getPointeeType()->isIncompleteType() &&
9233*67e74705SXin Li S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
9234*67e74705SXin Li BaseToDerivedConversion = 3;
9235*67e74705SXin Li } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
9236*67e74705SXin Li ToTy.getNonReferenceType().getCanonicalType() ==
9237*67e74705SXin Li FromTy.getNonReferenceType().getCanonicalType()) {
9238*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
9239*67e74705SXin Li << (unsigned) FnKind << FnDesc
9240*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9241*67e74705SXin Li << (unsigned) isObjectArgument << I + 1;
9242*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9243*67e74705SXin Li return;
9244*67e74705SXin Li }
9245*67e74705SXin Li }
9246*67e74705SXin Li
9247*67e74705SXin Li if (BaseToDerivedConversion) {
9248*67e74705SXin Li S.Diag(Fn->getLocation(),
9249*67e74705SXin Li diag::note_ovl_candidate_bad_base_to_derived_conv)
9250*67e74705SXin Li << (unsigned) FnKind << FnDesc
9251*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9252*67e74705SXin Li << (BaseToDerivedConversion - 1)
9253*67e74705SXin Li << FromTy << ToTy << I+1;
9254*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9255*67e74705SXin Li return;
9256*67e74705SXin Li }
9257*67e74705SXin Li
9258*67e74705SXin Li if (isa<ObjCObjectPointerType>(CFromTy) &&
9259*67e74705SXin Li isa<PointerType>(CToTy)) {
9260*67e74705SXin Li Qualifiers FromQs = CFromTy.getQualifiers();
9261*67e74705SXin Li Qualifiers ToQs = CToTy.getQualifiers();
9262*67e74705SXin Li if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
9263*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
9264*67e74705SXin Li << (unsigned) FnKind << FnDesc
9265*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9266*67e74705SXin Li << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
9267*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9268*67e74705SXin Li return;
9269*67e74705SXin Li }
9270*67e74705SXin Li }
9271*67e74705SXin Li
9272*67e74705SXin Li if (TakingCandidateAddress &&
9273*67e74705SXin Li !checkAddressOfCandidateIsAvailable(S, Cand->Function))
9274*67e74705SXin Li return;
9275*67e74705SXin Li
9276*67e74705SXin Li // Emit the generic diagnostic and, optionally, add the hints to it.
9277*67e74705SXin Li PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
9278*67e74705SXin Li FDiag << (unsigned) FnKind << FnDesc
9279*67e74705SXin Li << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
9280*67e74705SXin Li << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
9281*67e74705SXin Li << (unsigned) (Cand->Fix.Kind);
9282*67e74705SXin Li
9283*67e74705SXin Li // If we can fix the conversion, suggest the FixIts.
9284*67e74705SXin Li for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
9285*67e74705SXin Li HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
9286*67e74705SXin Li FDiag << *HI;
9287*67e74705SXin Li S.Diag(Fn->getLocation(), FDiag);
9288*67e74705SXin Li
9289*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9290*67e74705SXin Li }
9291*67e74705SXin Li
9292*67e74705SXin Li /// Additional arity mismatch diagnosis specific to a function overload
9293*67e74705SXin Li /// candidates. This is not covered by the more general DiagnoseArityMismatch()
9294*67e74705SXin Li /// over a candidate in any candidate set.
CheckArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumArgs)9295*67e74705SXin Li static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
9296*67e74705SXin Li unsigned NumArgs) {
9297*67e74705SXin Li FunctionDecl *Fn = Cand->Function;
9298*67e74705SXin Li unsigned MinParams = Fn->getMinRequiredArguments();
9299*67e74705SXin Li
9300*67e74705SXin Li // With invalid overloaded operators, it's possible that we think we
9301*67e74705SXin Li // have an arity mismatch when in fact it looks like we have the
9302*67e74705SXin Li // right number of arguments, because only overloaded operators have
9303*67e74705SXin Li // the weird behavior of overloading member and non-member functions.
9304*67e74705SXin Li // Just don't report anything.
9305*67e74705SXin Li if (Fn->isInvalidDecl() &&
9306*67e74705SXin Li Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
9307*67e74705SXin Li return true;
9308*67e74705SXin Li
9309*67e74705SXin Li if (NumArgs < MinParams) {
9310*67e74705SXin Li assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
9311*67e74705SXin Li (Cand->FailureKind == ovl_fail_bad_deduction &&
9312*67e74705SXin Li Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
9313*67e74705SXin Li } else {
9314*67e74705SXin Li assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
9315*67e74705SXin Li (Cand->FailureKind == ovl_fail_bad_deduction &&
9316*67e74705SXin Li Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
9317*67e74705SXin Li }
9318*67e74705SXin Li
9319*67e74705SXin Li return false;
9320*67e74705SXin Li }
9321*67e74705SXin Li
9322*67e74705SXin Li /// General arity mismatch diagnosis over a candidate in a candidate set.
DiagnoseArityMismatch(Sema & S,NamedDecl * Found,Decl * D,unsigned NumFormalArgs)9323*67e74705SXin Li static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
9324*67e74705SXin Li unsigned NumFormalArgs) {
9325*67e74705SXin Li assert(isa<FunctionDecl>(D) &&
9326*67e74705SXin Li "The templated declaration should at least be a function"
9327*67e74705SXin Li " when diagnosing bad template argument deduction due to too many"
9328*67e74705SXin Li " or too few arguments");
9329*67e74705SXin Li
9330*67e74705SXin Li FunctionDecl *Fn = cast<FunctionDecl>(D);
9331*67e74705SXin Li
9332*67e74705SXin Li // TODO: treat calls to a missing default constructor as a special case
9333*67e74705SXin Li const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
9334*67e74705SXin Li unsigned MinParams = Fn->getMinRequiredArguments();
9335*67e74705SXin Li
9336*67e74705SXin Li // at least / at most / exactly
9337*67e74705SXin Li unsigned mode, modeCount;
9338*67e74705SXin Li if (NumFormalArgs < MinParams) {
9339*67e74705SXin Li if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
9340*67e74705SXin Li FnTy->isTemplateVariadic())
9341*67e74705SXin Li mode = 0; // "at least"
9342*67e74705SXin Li else
9343*67e74705SXin Li mode = 2; // "exactly"
9344*67e74705SXin Li modeCount = MinParams;
9345*67e74705SXin Li } else {
9346*67e74705SXin Li if (MinParams != FnTy->getNumParams())
9347*67e74705SXin Li mode = 1; // "at most"
9348*67e74705SXin Li else
9349*67e74705SXin Li mode = 2; // "exactly"
9350*67e74705SXin Li modeCount = FnTy->getNumParams();
9351*67e74705SXin Li }
9352*67e74705SXin Li
9353*67e74705SXin Li std::string Description;
9354*67e74705SXin Li OverloadCandidateKind FnKind =
9355*67e74705SXin Li ClassifyOverloadCandidate(S, Found, Fn, Description);
9356*67e74705SXin Li
9357*67e74705SXin Li if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
9358*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
9359*67e74705SXin Li << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9360*67e74705SXin Li << mode << Fn->getParamDecl(0) << NumFormalArgs;
9361*67e74705SXin Li else
9362*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
9363*67e74705SXin Li << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != nullptr)
9364*67e74705SXin Li << mode << modeCount << NumFormalArgs;
9365*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9366*67e74705SXin Li }
9367*67e74705SXin Li
9368*67e74705SXin Li /// Arity mismatch diagnosis specific to a function overload candidate.
DiagnoseArityMismatch(Sema & S,OverloadCandidate * Cand,unsigned NumFormalArgs)9369*67e74705SXin Li static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
9370*67e74705SXin Li unsigned NumFormalArgs) {
9371*67e74705SXin Li if (!CheckArityMismatch(S, Cand, NumFormalArgs))
9372*67e74705SXin Li DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
9373*67e74705SXin Li }
9374*67e74705SXin Li
getDescribedTemplate(Decl * Templated)9375*67e74705SXin Li static TemplateDecl *getDescribedTemplate(Decl *Templated) {
9376*67e74705SXin Li if (TemplateDecl *TD = Templated->getDescribedTemplate())
9377*67e74705SXin Li return TD;
9378*67e74705SXin Li llvm_unreachable("Unsupported: Getting the described template declaration"
9379*67e74705SXin Li " for bad deduction diagnosis");
9380*67e74705SXin Li }
9381*67e74705SXin Li
9382*67e74705SXin Li /// Diagnose a failed template-argument deduction.
DiagnoseBadDeduction(Sema & S,NamedDecl * Found,Decl * Templated,DeductionFailureInfo & DeductionFailure,unsigned NumArgs,bool TakingCandidateAddress)9383*67e74705SXin Li static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
9384*67e74705SXin Li DeductionFailureInfo &DeductionFailure,
9385*67e74705SXin Li unsigned NumArgs,
9386*67e74705SXin Li bool TakingCandidateAddress) {
9387*67e74705SXin Li TemplateParameter Param = DeductionFailure.getTemplateParameter();
9388*67e74705SXin Li NamedDecl *ParamD;
9389*67e74705SXin Li (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
9390*67e74705SXin Li (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
9391*67e74705SXin Li (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
9392*67e74705SXin Li switch (DeductionFailure.Result) {
9393*67e74705SXin Li case Sema::TDK_Success:
9394*67e74705SXin Li llvm_unreachable("TDK_success while diagnosing bad deduction");
9395*67e74705SXin Li
9396*67e74705SXin Li case Sema::TDK_Incomplete: {
9397*67e74705SXin Li assert(ParamD && "no parameter found for incomplete deduction result");
9398*67e74705SXin Li S.Diag(Templated->getLocation(),
9399*67e74705SXin Li diag::note_ovl_candidate_incomplete_deduction)
9400*67e74705SXin Li << ParamD->getDeclName();
9401*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9402*67e74705SXin Li return;
9403*67e74705SXin Li }
9404*67e74705SXin Li
9405*67e74705SXin Li case Sema::TDK_Underqualified: {
9406*67e74705SXin Li assert(ParamD && "no parameter found for bad qualifiers deduction result");
9407*67e74705SXin Li TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
9408*67e74705SXin Li
9409*67e74705SXin Li QualType Param = DeductionFailure.getFirstArg()->getAsType();
9410*67e74705SXin Li
9411*67e74705SXin Li // Param will have been canonicalized, but it should just be a
9412*67e74705SXin Li // qualified version of ParamD, so move the qualifiers to that.
9413*67e74705SXin Li QualifierCollector Qs;
9414*67e74705SXin Li Qs.strip(Param);
9415*67e74705SXin Li QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
9416*67e74705SXin Li assert(S.Context.hasSameType(Param, NonCanonParam));
9417*67e74705SXin Li
9418*67e74705SXin Li // Arg has also been canonicalized, but there's nothing we can do
9419*67e74705SXin Li // about that. It also doesn't matter as much, because it won't
9420*67e74705SXin Li // have any template parameters in it (because deduction isn't
9421*67e74705SXin Li // done on dependent types).
9422*67e74705SXin Li QualType Arg = DeductionFailure.getSecondArg()->getAsType();
9423*67e74705SXin Li
9424*67e74705SXin Li S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
9425*67e74705SXin Li << ParamD->getDeclName() << Arg << NonCanonParam;
9426*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9427*67e74705SXin Li return;
9428*67e74705SXin Li }
9429*67e74705SXin Li
9430*67e74705SXin Li case Sema::TDK_Inconsistent: {
9431*67e74705SXin Li assert(ParamD && "no parameter found for inconsistent deduction result");
9432*67e74705SXin Li int which = 0;
9433*67e74705SXin Li if (isa<TemplateTypeParmDecl>(ParamD))
9434*67e74705SXin Li which = 0;
9435*67e74705SXin Li else if (isa<NonTypeTemplateParmDecl>(ParamD))
9436*67e74705SXin Li which = 1;
9437*67e74705SXin Li else {
9438*67e74705SXin Li which = 2;
9439*67e74705SXin Li }
9440*67e74705SXin Li
9441*67e74705SXin Li S.Diag(Templated->getLocation(),
9442*67e74705SXin Li diag::note_ovl_candidate_inconsistent_deduction)
9443*67e74705SXin Li << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
9444*67e74705SXin Li << *DeductionFailure.getSecondArg();
9445*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9446*67e74705SXin Li return;
9447*67e74705SXin Li }
9448*67e74705SXin Li
9449*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
9450*67e74705SXin Li assert(ParamD && "no parameter found for invalid explicit arguments");
9451*67e74705SXin Li if (ParamD->getDeclName())
9452*67e74705SXin Li S.Diag(Templated->getLocation(),
9453*67e74705SXin Li diag::note_ovl_candidate_explicit_arg_mismatch_named)
9454*67e74705SXin Li << ParamD->getDeclName();
9455*67e74705SXin Li else {
9456*67e74705SXin Li int index = 0;
9457*67e74705SXin Li if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
9458*67e74705SXin Li index = TTP->getIndex();
9459*67e74705SXin Li else if (NonTypeTemplateParmDecl *NTTP
9460*67e74705SXin Li = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
9461*67e74705SXin Li index = NTTP->getIndex();
9462*67e74705SXin Li else
9463*67e74705SXin Li index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
9464*67e74705SXin Li S.Diag(Templated->getLocation(),
9465*67e74705SXin Li diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
9466*67e74705SXin Li << (index + 1);
9467*67e74705SXin Li }
9468*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9469*67e74705SXin Li return;
9470*67e74705SXin Li
9471*67e74705SXin Li case Sema::TDK_TooManyArguments:
9472*67e74705SXin Li case Sema::TDK_TooFewArguments:
9473*67e74705SXin Li DiagnoseArityMismatch(S, Found, Templated, NumArgs);
9474*67e74705SXin Li return;
9475*67e74705SXin Li
9476*67e74705SXin Li case Sema::TDK_InstantiationDepth:
9477*67e74705SXin Li S.Diag(Templated->getLocation(),
9478*67e74705SXin Li diag::note_ovl_candidate_instantiation_depth);
9479*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9480*67e74705SXin Li return;
9481*67e74705SXin Li
9482*67e74705SXin Li case Sema::TDK_SubstitutionFailure: {
9483*67e74705SXin Li // Format the template argument list into the argument string.
9484*67e74705SXin Li SmallString<128> TemplateArgString;
9485*67e74705SXin Li if (TemplateArgumentList *Args =
9486*67e74705SXin Li DeductionFailure.getTemplateArgumentList()) {
9487*67e74705SXin Li TemplateArgString = " ";
9488*67e74705SXin Li TemplateArgString += S.getTemplateArgumentBindingsText(
9489*67e74705SXin Li getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9490*67e74705SXin Li }
9491*67e74705SXin Li
9492*67e74705SXin Li // If this candidate was disabled by enable_if, say so.
9493*67e74705SXin Li PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
9494*67e74705SXin Li if (PDiag && PDiag->second.getDiagID() ==
9495*67e74705SXin Li diag::err_typename_nested_not_found_enable_if) {
9496*67e74705SXin Li // FIXME: Use the source range of the condition, and the fully-qualified
9497*67e74705SXin Li // name of the enable_if template. These are both present in PDiag.
9498*67e74705SXin Li S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
9499*67e74705SXin Li << "'enable_if'" << TemplateArgString;
9500*67e74705SXin Li return;
9501*67e74705SXin Li }
9502*67e74705SXin Li
9503*67e74705SXin Li // Format the SFINAE diagnostic into the argument string.
9504*67e74705SXin Li // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
9505*67e74705SXin Li // formatted message in another diagnostic.
9506*67e74705SXin Li SmallString<128> SFINAEArgString;
9507*67e74705SXin Li SourceRange R;
9508*67e74705SXin Li if (PDiag) {
9509*67e74705SXin Li SFINAEArgString = ": ";
9510*67e74705SXin Li R = SourceRange(PDiag->first, PDiag->first);
9511*67e74705SXin Li PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
9512*67e74705SXin Li }
9513*67e74705SXin Li
9514*67e74705SXin Li S.Diag(Templated->getLocation(),
9515*67e74705SXin Li diag::note_ovl_candidate_substitution_failure)
9516*67e74705SXin Li << TemplateArgString << SFINAEArgString << R;
9517*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9518*67e74705SXin Li return;
9519*67e74705SXin Li }
9520*67e74705SXin Li
9521*67e74705SXin Li case Sema::TDK_FailedOverloadResolution: {
9522*67e74705SXin Li OverloadExpr::FindResult R = OverloadExpr::find(DeductionFailure.getExpr());
9523*67e74705SXin Li S.Diag(Templated->getLocation(),
9524*67e74705SXin Li diag::note_ovl_candidate_failed_overload_resolution)
9525*67e74705SXin Li << R.Expression->getName();
9526*67e74705SXin Li return;
9527*67e74705SXin Li }
9528*67e74705SXin Li
9529*67e74705SXin Li case Sema::TDK_DeducedMismatch: {
9530*67e74705SXin Li // Format the template argument list into the argument string.
9531*67e74705SXin Li SmallString<128> TemplateArgString;
9532*67e74705SXin Li if (TemplateArgumentList *Args =
9533*67e74705SXin Li DeductionFailure.getTemplateArgumentList()) {
9534*67e74705SXin Li TemplateArgString = " ";
9535*67e74705SXin Li TemplateArgString += S.getTemplateArgumentBindingsText(
9536*67e74705SXin Li getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
9537*67e74705SXin Li }
9538*67e74705SXin Li
9539*67e74705SXin Li S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
9540*67e74705SXin Li << (*DeductionFailure.getCallArgIndex() + 1)
9541*67e74705SXin Li << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
9542*67e74705SXin Li << TemplateArgString;
9543*67e74705SXin Li break;
9544*67e74705SXin Li }
9545*67e74705SXin Li
9546*67e74705SXin Li case Sema::TDK_NonDeducedMismatch: {
9547*67e74705SXin Li // FIXME: Provide a source location to indicate what we couldn't match.
9548*67e74705SXin Li TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
9549*67e74705SXin Li TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
9550*67e74705SXin Li if (FirstTA.getKind() == TemplateArgument::Template &&
9551*67e74705SXin Li SecondTA.getKind() == TemplateArgument::Template) {
9552*67e74705SXin Li TemplateName FirstTN = FirstTA.getAsTemplate();
9553*67e74705SXin Li TemplateName SecondTN = SecondTA.getAsTemplate();
9554*67e74705SXin Li if (FirstTN.getKind() == TemplateName::Template &&
9555*67e74705SXin Li SecondTN.getKind() == TemplateName::Template) {
9556*67e74705SXin Li if (FirstTN.getAsTemplateDecl()->getName() ==
9557*67e74705SXin Li SecondTN.getAsTemplateDecl()->getName()) {
9558*67e74705SXin Li // FIXME: This fixes a bad diagnostic where both templates are named
9559*67e74705SXin Li // the same. This particular case is a bit difficult since:
9560*67e74705SXin Li // 1) It is passed as a string to the diagnostic printer.
9561*67e74705SXin Li // 2) The diagnostic printer only attempts to find a better
9562*67e74705SXin Li // name for types, not decls.
9563*67e74705SXin Li // Ideally, this should folded into the diagnostic printer.
9564*67e74705SXin Li S.Diag(Templated->getLocation(),
9565*67e74705SXin Li diag::note_ovl_candidate_non_deduced_mismatch_qualified)
9566*67e74705SXin Li << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
9567*67e74705SXin Li return;
9568*67e74705SXin Li }
9569*67e74705SXin Li }
9570*67e74705SXin Li }
9571*67e74705SXin Li
9572*67e74705SXin Li if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
9573*67e74705SXin Li !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
9574*67e74705SXin Li return;
9575*67e74705SXin Li
9576*67e74705SXin Li // FIXME: For generic lambda parameters, check if the function is a lambda
9577*67e74705SXin Li // call operator, and if so, emit a prettier and more informative
9578*67e74705SXin Li // diagnostic that mentions 'auto' and lambda in addition to
9579*67e74705SXin Li // (or instead of?) the canonical template type parameters.
9580*67e74705SXin Li S.Diag(Templated->getLocation(),
9581*67e74705SXin Li diag::note_ovl_candidate_non_deduced_mismatch)
9582*67e74705SXin Li << FirstTA << SecondTA;
9583*67e74705SXin Li return;
9584*67e74705SXin Li }
9585*67e74705SXin Li // TODO: diagnose these individually, then kill off
9586*67e74705SXin Li // note_ovl_candidate_bad_deduction, which is uselessly vague.
9587*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
9588*67e74705SXin Li S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
9589*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Found);
9590*67e74705SXin Li return;
9591*67e74705SXin Li }
9592*67e74705SXin Li }
9593*67e74705SXin Li
9594*67e74705SXin Li /// Diagnose a failed template-argument deduction, for function calls.
DiagnoseBadDeduction(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress)9595*67e74705SXin Li static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
9596*67e74705SXin Li unsigned NumArgs,
9597*67e74705SXin Li bool TakingCandidateAddress) {
9598*67e74705SXin Li unsigned TDK = Cand->DeductionFailure.Result;
9599*67e74705SXin Li if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
9600*67e74705SXin Li if (CheckArityMismatch(S, Cand, NumArgs))
9601*67e74705SXin Li return;
9602*67e74705SXin Li }
9603*67e74705SXin Li DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
9604*67e74705SXin Li Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
9605*67e74705SXin Li }
9606*67e74705SXin Li
9607*67e74705SXin Li /// CUDA: diagnose an invalid call across targets.
DiagnoseBadTarget(Sema & S,OverloadCandidate * Cand)9608*67e74705SXin Li static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
9609*67e74705SXin Li FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
9610*67e74705SXin Li FunctionDecl *Callee = Cand->Function;
9611*67e74705SXin Li
9612*67e74705SXin Li Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
9613*67e74705SXin Li CalleeTarget = S.IdentifyCUDATarget(Callee);
9614*67e74705SXin Li
9615*67e74705SXin Li std::string FnDesc;
9616*67e74705SXin Li OverloadCandidateKind FnKind =
9617*67e74705SXin Li ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, FnDesc);
9618*67e74705SXin Li
9619*67e74705SXin Li S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
9620*67e74705SXin Li << (unsigned)FnKind << CalleeTarget << CallerTarget;
9621*67e74705SXin Li
9622*67e74705SXin Li // This could be an implicit constructor for which we could not infer the
9623*67e74705SXin Li // target due to a collsion. Diagnose that case.
9624*67e74705SXin Li CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
9625*67e74705SXin Li if (Meth != nullptr && Meth->isImplicit()) {
9626*67e74705SXin Li CXXRecordDecl *ParentClass = Meth->getParent();
9627*67e74705SXin Li Sema::CXXSpecialMember CSM;
9628*67e74705SXin Li
9629*67e74705SXin Li switch (FnKind) {
9630*67e74705SXin Li default:
9631*67e74705SXin Li return;
9632*67e74705SXin Li case oc_implicit_default_constructor:
9633*67e74705SXin Li CSM = Sema::CXXDefaultConstructor;
9634*67e74705SXin Li break;
9635*67e74705SXin Li case oc_implicit_copy_constructor:
9636*67e74705SXin Li CSM = Sema::CXXCopyConstructor;
9637*67e74705SXin Li break;
9638*67e74705SXin Li case oc_implicit_move_constructor:
9639*67e74705SXin Li CSM = Sema::CXXMoveConstructor;
9640*67e74705SXin Li break;
9641*67e74705SXin Li case oc_implicit_copy_assignment:
9642*67e74705SXin Li CSM = Sema::CXXCopyAssignment;
9643*67e74705SXin Li break;
9644*67e74705SXin Li case oc_implicit_move_assignment:
9645*67e74705SXin Li CSM = Sema::CXXMoveAssignment;
9646*67e74705SXin Li break;
9647*67e74705SXin Li };
9648*67e74705SXin Li
9649*67e74705SXin Li bool ConstRHS = false;
9650*67e74705SXin Li if (Meth->getNumParams()) {
9651*67e74705SXin Li if (const ReferenceType *RT =
9652*67e74705SXin Li Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
9653*67e74705SXin Li ConstRHS = RT->getPointeeType().isConstQualified();
9654*67e74705SXin Li }
9655*67e74705SXin Li }
9656*67e74705SXin Li
9657*67e74705SXin Li S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
9658*67e74705SXin Li /* ConstRHS */ ConstRHS,
9659*67e74705SXin Li /* Diagnose */ true);
9660*67e74705SXin Li }
9661*67e74705SXin Li }
9662*67e74705SXin Li
DiagnoseFailedEnableIfAttr(Sema & S,OverloadCandidate * Cand)9663*67e74705SXin Li static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
9664*67e74705SXin Li FunctionDecl *Callee = Cand->Function;
9665*67e74705SXin Li EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
9666*67e74705SXin Li
9667*67e74705SXin Li S.Diag(Callee->getLocation(),
9668*67e74705SXin Li diag::note_ovl_candidate_disabled_by_enable_if_attr)
9669*67e74705SXin Li << Attr->getCond()->getSourceRange() << Attr->getMessage();
9670*67e74705SXin Li }
9671*67e74705SXin Li
9672*67e74705SXin Li /// Generates a 'note' diagnostic for an overload candidate. We've
9673*67e74705SXin Li /// already generated a primary error at the call site.
9674*67e74705SXin Li ///
9675*67e74705SXin Li /// It really does need to be a single diagnostic with its caret
9676*67e74705SXin Li /// pointed at the candidate declaration. Yes, this creates some
9677*67e74705SXin Li /// major challenges of technical writing. Yes, this makes pointing
9678*67e74705SXin Li /// out problems with specific arguments quite awkward. It's still
9679*67e74705SXin Li /// better than generating twenty screens of text for every failed
9680*67e74705SXin Li /// overload.
9681*67e74705SXin Li ///
9682*67e74705SXin Li /// It would be great to be able to express per-candidate problems
9683*67e74705SXin Li /// more richly for those diagnostic clients that cared, but we'd
9684*67e74705SXin Li /// still have to be just as careful with the default diagnostics.
NoteFunctionCandidate(Sema & S,OverloadCandidate * Cand,unsigned NumArgs,bool TakingCandidateAddress)9685*67e74705SXin Li static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
9686*67e74705SXin Li unsigned NumArgs,
9687*67e74705SXin Li bool TakingCandidateAddress) {
9688*67e74705SXin Li FunctionDecl *Fn = Cand->Function;
9689*67e74705SXin Li
9690*67e74705SXin Li // Note deleted candidates, but only if they're viable.
9691*67e74705SXin Li if (Cand->Viable && (Fn->isDeleted() ||
9692*67e74705SXin Li S.isFunctionConsideredUnavailable(Fn))) {
9693*67e74705SXin Li std::string FnDesc;
9694*67e74705SXin Li OverloadCandidateKind FnKind =
9695*67e74705SXin Li ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, FnDesc);
9696*67e74705SXin Li
9697*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
9698*67e74705SXin Li << FnKind << FnDesc
9699*67e74705SXin Li << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
9700*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9701*67e74705SXin Li return;
9702*67e74705SXin Li }
9703*67e74705SXin Li
9704*67e74705SXin Li // We don't really have anything else to say about viable candidates.
9705*67e74705SXin Li if (Cand->Viable) {
9706*67e74705SXin Li S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9707*67e74705SXin Li return;
9708*67e74705SXin Li }
9709*67e74705SXin Li
9710*67e74705SXin Li switch (Cand->FailureKind) {
9711*67e74705SXin Li case ovl_fail_too_many_arguments:
9712*67e74705SXin Li case ovl_fail_too_few_arguments:
9713*67e74705SXin Li return DiagnoseArityMismatch(S, Cand, NumArgs);
9714*67e74705SXin Li
9715*67e74705SXin Li case ovl_fail_bad_deduction:
9716*67e74705SXin Li return DiagnoseBadDeduction(S, Cand, NumArgs,
9717*67e74705SXin Li TakingCandidateAddress);
9718*67e74705SXin Li
9719*67e74705SXin Li case ovl_fail_illegal_constructor: {
9720*67e74705SXin Li S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
9721*67e74705SXin Li << (Fn->getPrimaryTemplate() ? 1 : 0);
9722*67e74705SXin Li MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
9723*67e74705SXin Li return;
9724*67e74705SXin Li }
9725*67e74705SXin Li
9726*67e74705SXin Li case ovl_fail_trivial_conversion:
9727*67e74705SXin Li case ovl_fail_bad_final_conversion:
9728*67e74705SXin Li case ovl_fail_final_conversion_not_exact:
9729*67e74705SXin Li return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9730*67e74705SXin Li
9731*67e74705SXin Li case ovl_fail_bad_conversion: {
9732*67e74705SXin Li unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
9733*67e74705SXin Li for (unsigned N = Cand->NumConversions; I != N; ++I)
9734*67e74705SXin Li if (Cand->Conversions[I].isBad())
9735*67e74705SXin Li return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
9736*67e74705SXin Li
9737*67e74705SXin Li // FIXME: this currently happens when we're called from SemaInit
9738*67e74705SXin Li // when user-conversion overload fails. Figure out how to handle
9739*67e74705SXin Li // those conditions and diagnose them well.
9740*67e74705SXin Li return S.NoteOverloadCandidate(Cand->FoundDecl, Fn);
9741*67e74705SXin Li }
9742*67e74705SXin Li
9743*67e74705SXin Li case ovl_fail_bad_target:
9744*67e74705SXin Li return DiagnoseBadTarget(S, Cand);
9745*67e74705SXin Li
9746*67e74705SXin Li case ovl_fail_enable_if:
9747*67e74705SXin Li return DiagnoseFailedEnableIfAttr(S, Cand);
9748*67e74705SXin Li
9749*67e74705SXin Li case ovl_fail_addr_not_available: {
9750*67e74705SXin Li bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
9751*67e74705SXin Li (void)Available;
9752*67e74705SXin Li assert(!Available);
9753*67e74705SXin Li break;
9754*67e74705SXin Li }
9755*67e74705SXin Li }
9756*67e74705SXin Li }
9757*67e74705SXin Li
NoteSurrogateCandidate(Sema & S,OverloadCandidate * Cand)9758*67e74705SXin Li static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
9759*67e74705SXin Li // Desugar the type of the surrogate down to a function type,
9760*67e74705SXin Li // retaining as many typedefs as possible while still showing
9761*67e74705SXin Li // the function type (and, therefore, its parameter types).
9762*67e74705SXin Li QualType FnType = Cand->Surrogate->getConversionType();
9763*67e74705SXin Li bool isLValueReference = false;
9764*67e74705SXin Li bool isRValueReference = false;
9765*67e74705SXin Li bool isPointer = false;
9766*67e74705SXin Li if (const LValueReferenceType *FnTypeRef =
9767*67e74705SXin Li FnType->getAs<LValueReferenceType>()) {
9768*67e74705SXin Li FnType = FnTypeRef->getPointeeType();
9769*67e74705SXin Li isLValueReference = true;
9770*67e74705SXin Li } else if (const RValueReferenceType *FnTypeRef =
9771*67e74705SXin Li FnType->getAs<RValueReferenceType>()) {
9772*67e74705SXin Li FnType = FnTypeRef->getPointeeType();
9773*67e74705SXin Li isRValueReference = true;
9774*67e74705SXin Li }
9775*67e74705SXin Li if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
9776*67e74705SXin Li FnType = FnTypePtr->getPointeeType();
9777*67e74705SXin Li isPointer = true;
9778*67e74705SXin Li }
9779*67e74705SXin Li // Desugar down to a function type.
9780*67e74705SXin Li FnType = QualType(FnType->getAs<FunctionType>(), 0);
9781*67e74705SXin Li // Reconstruct the pointer/reference as appropriate.
9782*67e74705SXin Li if (isPointer) FnType = S.Context.getPointerType(FnType);
9783*67e74705SXin Li if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
9784*67e74705SXin Li if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
9785*67e74705SXin Li
9786*67e74705SXin Li S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
9787*67e74705SXin Li << FnType;
9788*67e74705SXin Li }
9789*67e74705SXin Li
NoteBuiltinOperatorCandidate(Sema & S,StringRef Opc,SourceLocation OpLoc,OverloadCandidate * Cand)9790*67e74705SXin Li static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
9791*67e74705SXin Li SourceLocation OpLoc,
9792*67e74705SXin Li OverloadCandidate *Cand) {
9793*67e74705SXin Li assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
9794*67e74705SXin Li std::string TypeStr("operator");
9795*67e74705SXin Li TypeStr += Opc;
9796*67e74705SXin Li TypeStr += "(";
9797*67e74705SXin Li TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
9798*67e74705SXin Li if (Cand->NumConversions == 1) {
9799*67e74705SXin Li TypeStr += ")";
9800*67e74705SXin Li S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
9801*67e74705SXin Li } else {
9802*67e74705SXin Li TypeStr += ", ";
9803*67e74705SXin Li TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
9804*67e74705SXin Li TypeStr += ")";
9805*67e74705SXin Li S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
9806*67e74705SXin Li }
9807*67e74705SXin Li }
9808*67e74705SXin Li
NoteAmbiguousUserConversions(Sema & S,SourceLocation OpLoc,OverloadCandidate * Cand)9809*67e74705SXin Li static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
9810*67e74705SXin Li OverloadCandidate *Cand) {
9811*67e74705SXin Li unsigned NoOperands = Cand->NumConversions;
9812*67e74705SXin Li for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
9813*67e74705SXin Li const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
9814*67e74705SXin Li if (ICS.isBad()) break; // all meaningless after first invalid
9815*67e74705SXin Li if (!ICS.isAmbiguous()) continue;
9816*67e74705SXin Li
9817*67e74705SXin Li ICS.DiagnoseAmbiguousConversion(
9818*67e74705SXin Li S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
9819*67e74705SXin Li }
9820*67e74705SXin Li }
9821*67e74705SXin Li
GetLocationForCandidate(const OverloadCandidate * Cand)9822*67e74705SXin Li static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
9823*67e74705SXin Li if (Cand->Function)
9824*67e74705SXin Li return Cand->Function->getLocation();
9825*67e74705SXin Li if (Cand->IsSurrogate)
9826*67e74705SXin Li return Cand->Surrogate->getLocation();
9827*67e74705SXin Li return SourceLocation();
9828*67e74705SXin Li }
9829*67e74705SXin Li
RankDeductionFailure(const DeductionFailureInfo & DFI)9830*67e74705SXin Li static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
9831*67e74705SXin Li switch ((Sema::TemplateDeductionResult)DFI.Result) {
9832*67e74705SXin Li case Sema::TDK_Success:
9833*67e74705SXin Li llvm_unreachable("TDK_success while diagnosing bad deduction");
9834*67e74705SXin Li
9835*67e74705SXin Li case Sema::TDK_Invalid:
9836*67e74705SXin Li case Sema::TDK_Incomplete:
9837*67e74705SXin Li return 1;
9838*67e74705SXin Li
9839*67e74705SXin Li case Sema::TDK_Underqualified:
9840*67e74705SXin Li case Sema::TDK_Inconsistent:
9841*67e74705SXin Li return 2;
9842*67e74705SXin Li
9843*67e74705SXin Li case Sema::TDK_SubstitutionFailure:
9844*67e74705SXin Li case Sema::TDK_DeducedMismatch:
9845*67e74705SXin Li case Sema::TDK_NonDeducedMismatch:
9846*67e74705SXin Li case Sema::TDK_MiscellaneousDeductionFailure:
9847*67e74705SXin Li return 3;
9848*67e74705SXin Li
9849*67e74705SXin Li case Sema::TDK_InstantiationDepth:
9850*67e74705SXin Li case Sema::TDK_FailedOverloadResolution:
9851*67e74705SXin Li return 4;
9852*67e74705SXin Li
9853*67e74705SXin Li case Sema::TDK_InvalidExplicitArguments:
9854*67e74705SXin Li return 5;
9855*67e74705SXin Li
9856*67e74705SXin Li case Sema::TDK_TooManyArguments:
9857*67e74705SXin Li case Sema::TDK_TooFewArguments:
9858*67e74705SXin Li return 6;
9859*67e74705SXin Li }
9860*67e74705SXin Li llvm_unreachable("Unhandled deduction result");
9861*67e74705SXin Li }
9862*67e74705SXin Li
9863*67e74705SXin Li namespace {
9864*67e74705SXin Li struct CompareOverloadCandidatesForDisplay {
9865*67e74705SXin Li Sema &S;
9866*67e74705SXin Li SourceLocation Loc;
9867*67e74705SXin Li size_t NumArgs;
9868*67e74705SXin Li
CompareOverloadCandidatesForDisplay__anonac20a5290b11::CompareOverloadCandidatesForDisplay9869*67e74705SXin Li CompareOverloadCandidatesForDisplay(Sema &S, SourceLocation Loc, size_t nArgs)
9870*67e74705SXin Li : S(S), NumArgs(nArgs) {}
9871*67e74705SXin Li
operator ()__anonac20a5290b11::CompareOverloadCandidatesForDisplay9872*67e74705SXin Li bool operator()(const OverloadCandidate *L,
9873*67e74705SXin Li const OverloadCandidate *R) {
9874*67e74705SXin Li // Fast-path this check.
9875*67e74705SXin Li if (L == R) return false;
9876*67e74705SXin Li
9877*67e74705SXin Li // Order first by viability.
9878*67e74705SXin Li if (L->Viable) {
9879*67e74705SXin Li if (!R->Viable) return true;
9880*67e74705SXin Li
9881*67e74705SXin Li // TODO: introduce a tri-valued comparison for overload
9882*67e74705SXin Li // candidates. Would be more worthwhile if we had a sort
9883*67e74705SXin Li // that could exploit it.
9884*67e74705SXin Li if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
9885*67e74705SXin Li if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
9886*67e74705SXin Li } else if (R->Viable)
9887*67e74705SXin Li return false;
9888*67e74705SXin Li
9889*67e74705SXin Li assert(L->Viable == R->Viable);
9890*67e74705SXin Li
9891*67e74705SXin Li // Criteria by which we can sort non-viable candidates:
9892*67e74705SXin Li if (!L->Viable) {
9893*67e74705SXin Li // 1. Arity mismatches come after other candidates.
9894*67e74705SXin Li if (L->FailureKind == ovl_fail_too_many_arguments ||
9895*67e74705SXin Li L->FailureKind == ovl_fail_too_few_arguments) {
9896*67e74705SXin Li if (R->FailureKind == ovl_fail_too_many_arguments ||
9897*67e74705SXin Li R->FailureKind == ovl_fail_too_few_arguments) {
9898*67e74705SXin Li int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
9899*67e74705SXin Li int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
9900*67e74705SXin Li if (LDist == RDist) {
9901*67e74705SXin Li if (L->FailureKind == R->FailureKind)
9902*67e74705SXin Li // Sort non-surrogates before surrogates.
9903*67e74705SXin Li return !L->IsSurrogate && R->IsSurrogate;
9904*67e74705SXin Li // Sort candidates requiring fewer parameters than there were
9905*67e74705SXin Li // arguments given after candidates requiring more parameters
9906*67e74705SXin Li // than there were arguments given.
9907*67e74705SXin Li return L->FailureKind == ovl_fail_too_many_arguments;
9908*67e74705SXin Li }
9909*67e74705SXin Li return LDist < RDist;
9910*67e74705SXin Li }
9911*67e74705SXin Li return false;
9912*67e74705SXin Li }
9913*67e74705SXin Li if (R->FailureKind == ovl_fail_too_many_arguments ||
9914*67e74705SXin Li R->FailureKind == ovl_fail_too_few_arguments)
9915*67e74705SXin Li return true;
9916*67e74705SXin Li
9917*67e74705SXin Li // 2. Bad conversions come first and are ordered by the number
9918*67e74705SXin Li // of bad conversions and quality of good conversions.
9919*67e74705SXin Li if (L->FailureKind == ovl_fail_bad_conversion) {
9920*67e74705SXin Li if (R->FailureKind != ovl_fail_bad_conversion)
9921*67e74705SXin Li return true;
9922*67e74705SXin Li
9923*67e74705SXin Li // The conversion that can be fixed with a smaller number of changes,
9924*67e74705SXin Li // comes first.
9925*67e74705SXin Li unsigned numLFixes = L->Fix.NumConversionsFixed;
9926*67e74705SXin Li unsigned numRFixes = R->Fix.NumConversionsFixed;
9927*67e74705SXin Li numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
9928*67e74705SXin Li numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
9929*67e74705SXin Li if (numLFixes != numRFixes) {
9930*67e74705SXin Li return numLFixes < numRFixes;
9931*67e74705SXin Li }
9932*67e74705SXin Li
9933*67e74705SXin Li // If there's any ordering between the defined conversions...
9934*67e74705SXin Li // FIXME: this might not be transitive.
9935*67e74705SXin Li assert(L->NumConversions == R->NumConversions);
9936*67e74705SXin Li
9937*67e74705SXin Li int leftBetter = 0;
9938*67e74705SXin Li unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
9939*67e74705SXin Li for (unsigned E = L->NumConversions; I != E; ++I) {
9940*67e74705SXin Li switch (CompareImplicitConversionSequences(S, Loc,
9941*67e74705SXin Li L->Conversions[I],
9942*67e74705SXin Li R->Conversions[I])) {
9943*67e74705SXin Li case ImplicitConversionSequence::Better:
9944*67e74705SXin Li leftBetter++;
9945*67e74705SXin Li break;
9946*67e74705SXin Li
9947*67e74705SXin Li case ImplicitConversionSequence::Worse:
9948*67e74705SXin Li leftBetter--;
9949*67e74705SXin Li break;
9950*67e74705SXin Li
9951*67e74705SXin Li case ImplicitConversionSequence::Indistinguishable:
9952*67e74705SXin Li break;
9953*67e74705SXin Li }
9954*67e74705SXin Li }
9955*67e74705SXin Li if (leftBetter > 0) return true;
9956*67e74705SXin Li if (leftBetter < 0) return false;
9957*67e74705SXin Li
9958*67e74705SXin Li } else if (R->FailureKind == ovl_fail_bad_conversion)
9959*67e74705SXin Li return false;
9960*67e74705SXin Li
9961*67e74705SXin Li if (L->FailureKind == ovl_fail_bad_deduction) {
9962*67e74705SXin Li if (R->FailureKind != ovl_fail_bad_deduction)
9963*67e74705SXin Li return true;
9964*67e74705SXin Li
9965*67e74705SXin Li if (L->DeductionFailure.Result != R->DeductionFailure.Result)
9966*67e74705SXin Li return RankDeductionFailure(L->DeductionFailure)
9967*67e74705SXin Li < RankDeductionFailure(R->DeductionFailure);
9968*67e74705SXin Li } else if (R->FailureKind == ovl_fail_bad_deduction)
9969*67e74705SXin Li return false;
9970*67e74705SXin Li
9971*67e74705SXin Li // TODO: others?
9972*67e74705SXin Li }
9973*67e74705SXin Li
9974*67e74705SXin Li // Sort everything else by location.
9975*67e74705SXin Li SourceLocation LLoc = GetLocationForCandidate(L);
9976*67e74705SXin Li SourceLocation RLoc = GetLocationForCandidate(R);
9977*67e74705SXin Li
9978*67e74705SXin Li // Put candidates without locations (e.g. builtins) at the end.
9979*67e74705SXin Li if (LLoc.isInvalid()) return false;
9980*67e74705SXin Li if (RLoc.isInvalid()) return true;
9981*67e74705SXin Li
9982*67e74705SXin Li return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
9983*67e74705SXin Li }
9984*67e74705SXin Li };
9985*67e74705SXin Li }
9986*67e74705SXin Li
9987*67e74705SXin Li /// CompleteNonViableCandidate - Normally, overload resolution only
9988*67e74705SXin Li /// computes up to the first. Produces the FixIt set if possible.
CompleteNonViableCandidate(Sema & S,OverloadCandidate * Cand,ArrayRef<Expr * > Args)9989*67e74705SXin Li static void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
9990*67e74705SXin Li ArrayRef<Expr *> Args) {
9991*67e74705SXin Li assert(!Cand->Viable);
9992*67e74705SXin Li
9993*67e74705SXin Li // Don't do anything on failures other than bad conversion.
9994*67e74705SXin Li if (Cand->FailureKind != ovl_fail_bad_conversion) return;
9995*67e74705SXin Li
9996*67e74705SXin Li // We only want the FixIts if all the arguments can be corrected.
9997*67e74705SXin Li bool Unfixable = false;
9998*67e74705SXin Li // Use a implicit copy initialization to check conversion fixes.
9999*67e74705SXin Li Cand->Fix.setConversionChecker(TryCopyInitialization);
10000*67e74705SXin Li
10001*67e74705SXin Li // Skip forward to the first bad conversion.
10002*67e74705SXin Li unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
10003*67e74705SXin Li unsigned ConvCount = Cand->NumConversions;
10004*67e74705SXin Li while (true) {
10005*67e74705SXin Li assert(ConvIdx != ConvCount && "no bad conversion in candidate");
10006*67e74705SXin Li ConvIdx++;
10007*67e74705SXin Li if (Cand->Conversions[ConvIdx - 1].isBad()) {
10008*67e74705SXin Li Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
10009*67e74705SXin Li break;
10010*67e74705SXin Li }
10011*67e74705SXin Li }
10012*67e74705SXin Li
10013*67e74705SXin Li if (ConvIdx == ConvCount)
10014*67e74705SXin Li return;
10015*67e74705SXin Li
10016*67e74705SXin Li assert(!Cand->Conversions[ConvIdx].isInitialized() &&
10017*67e74705SXin Li "remaining conversion is initialized?");
10018*67e74705SXin Li
10019*67e74705SXin Li // FIXME: this should probably be preserved from the overload
10020*67e74705SXin Li // operation somehow.
10021*67e74705SXin Li bool SuppressUserConversions = false;
10022*67e74705SXin Li
10023*67e74705SXin Li const FunctionProtoType* Proto;
10024*67e74705SXin Li unsigned ArgIdx = ConvIdx;
10025*67e74705SXin Li
10026*67e74705SXin Li if (Cand->IsSurrogate) {
10027*67e74705SXin Li QualType ConvType
10028*67e74705SXin Li = Cand->Surrogate->getConversionType().getNonReferenceType();
10029*67e74705SXin Li if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
10030*67e74705SXin Li ConvType = ConvPtrType->getPointeeType();
10031*67e74705SXin Li Proto = ConvType->getAs<FunctionProtoType>();
10032*67e74705SXin Li ArgIdx--;
10033*67e74705SXin Li } else if (Cand->Function) {
10034*67e74705SXin Li Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
10035*67e74705SXin Li if (isa<CXXMethodDecl>(Cand->Function) &&
10036*67e74705SXin Li !isa<CXXConstructorDecl>(Cand->Function))
10037*67e74705SXin Li ArgIdx--;
10038*67e74705SXin Li } else {
10039*67e74705SXin Li // Builtin binary operator with a bad first conversion.
10040*67e74705SXin Li assert(ConvCount <= 3);
10041*67e74705SXin Li for (; ConvIdx != ConvCount; ++ConvIdx)
10042*67e74705SXin Li Cand->Conversions[ConvIdx]
10043*67e74705SXin Li = TryCopyInitialization(S, Args[ConvIdx],
10044*67e74705SXin Li Cand->BuiltinTypes.ParamTypes[ConvIdx],
10045*67e74705SXin Li SuppressUserConversions,
10046*67e74705SXin Li /*InOverloadResolution*/ true,
10047*67e74705SXin Li /*AllowObjCWritebackConversion=*/
10048*67e74705SXin Li S.getLangOpts().ObjCAutoRefCount);
10049*67e74705SXin Li return;
10050*67e74705SXin Li }
10051*67e74705SXin Li
10052*67e74705SXin Li // Fill in the rest of the conversions.
10053*67e74705SXin Li unsigned NumParams = Proto->getNumParams();
10054*67e74705SXin Li for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
10055*67e74705SXin Li if (ArgIdx < NumParams) {
10056*67e74705SXin Li Cand->Conversions[ConvIdx] = TryCopyInitialization(
10057*67e74705SXin Li S, Args[ArgIdx], Proto->getParamType(ArgIdx), SuppressUserConversions,
10058*67e74705SXin Li /*InOverloadResolution=*/true,
10059*67e74705SXin Li /*AllowObjCWritebackConversion=*/
10060*67e74705SXin Li S.getLangOpts().ObjCAutoRefCount);
10061*67e74705SXin Li // Store the FixIt in the candidate if it exists.
10062*67e74705SXin Li if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
10063*67e74705SXin Li Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
10064*67e74705SXin Li }
10065*67e74705SXin Li else
10066*67e74705SXin Li Cand->Conversions[ConvIdx].setEllipsis();
10067*67e74705SXin Li }
10068*67e74705SXin Li }
10069*67e74705SXin Li
10070*67e74705SXin Li /// PrintOverloadCandidates - When overload resolution fails, prints
10071*67e74705SXin Li /// diagnostic messages containing the candidates in the candidate
10072*67e74705SXin Li /// set.
NoteCandidates(Sema & S,OverloadCandidateDisplayKind OCD,ArrayRef<Expr * > Args,StringRef Opc,SourceLocation OpLoc)10073*67e74705SXin Li void OverloadCandidateSet::NoteCandidates(Sema &S,
10074*67e74705SXin Li OverloadCandidateDisplayKind OCD,
10075*67e74705SXin Li ArrayRef<Expr *> Args,
10076*67e74705SXin Li StringRef Opc,
10077*67e74705SXin Li SourceLocation OpLoc) {
10078*67e74705SXin Li // Sort the candidates by viability and position. Sorting directly would
10079*67e74705SXin Li // be prohibitive, so we make a set of pointers and sort those.
10080*67e74705SXin Li SmallVector<OverloadCandidate*, 32> Cands;
10081*67e74705SXin Li if (OCD == OCD_AllCandidates) Cands.reserve(size());
10082*67e74705SXin Li for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10083*67e74705SXin Li if (Cand->Viable)
10084*67e74705SXin Li Cands.push_back(Cand);
10085*67e74705SXin Li else if (OCD == OCD_AllCandidates) {
10086*67e74705SXin Li CompleteNonViableCandidate(S, Cand, Args);
10087*67e74705SXin Li if (Cand->Function || Cand->IsSurrogate)
10088*67e74705SXin Li Cands.push_back(Cand);
10089*67e74705SXin Li // Otherwise, this a non-viable builtin candidate. We do not, in general,
10090*67e74705SXin Li // want to list every possible builtin candidate.
10091*67e74705SXin Li }
10092*67e74705SXin Li }
10093*67e74705SXin Li
10094*67e74705SXin Li std::sort(Cands.begin(), Cands.end(),
10095*67e74705SXin Li CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size()));
10096*67e74705SXin Li
10097*67e74705SXin Li bool ReportedAmbiguousConversions = false;
10098*67e74705SXin Li
10099*67e74705SXin Li SmallVectorImpl<OverloadCandidate*>::iterator I, E;
10100*67e74705SXin Li const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10101*67e74705SXin Li unsigned CandsShown = 0;
10102*67e74705SXin Li for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10103*67e74705SXin Li OverloadCandidate *Cand = *I;
10104*67e74705SXin Li
10105*67e74705SXin Li // Set an arbitrary limit on the number of candidate functions we'll spam
10106*67e74705SXin Li // the user with. FIXME: This limit should depend on details of the
10107*67e74705SXin Li // candidate list.
10108*67e74705SXin Li if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
10109*67e74705SXin Li break;
10110*67e74705SXin Li }
10111*67e74705SXin Li ++CandsShown;
10112*67e74705SXin Li
10113*67e74705SXin Li if (Cand->Function)
10114*67e74705SXin Li NoteFunctionCandidate(S, Cand, Args.size(),
10115*67e74705SXin Li /*TakingCandidateAddress=*/false);
10116*67e74705SXin Li else if (Cand->IsSurrogate)
10117*67e74705SXin Li NoteSurrogateCandidate(S, Cand);
10118*67e74705SXin Li else {
10119*67e74705SXin Li assert(Cand->Viable &&
10120*67e74705SXin Li "Non-viable built-in candidates are not added to Cands.");
10121*67e74705SXin Li // Generally we only see ambiguities including viable builtin
10122*67e74705SXin Li // operators if overload resolution got screwed up by an
10123*67e74705SXin Li // ambiguous user-defined conversion.
10124*67e74705SXin Li //
10125*67e74705SXin Li // FIXME: It's quite possible for different conversions to see
10126*67e74705SXin Li // different ambiguities, though.
10127*67e74705SXin Li if (!ReportedAmbiguousConversions) {
10128*67e74705SXin Li NoteAmbiguousUserConversions(S, OpLoc, Cand);
10129*67e74705SXin Li ReportedAmbiguousConversions = true;
10130*67e74705SXin Li }
10131*67e74705SXin Li
10132*67e74705SXin Li // If this is a viable builtin, print it.
10133*67e74705SXin Li NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
10134*67e74705SXin Li }
10135*67e74705SXin Li }
10136*67e74705SXin Li
10137*67e74705SXin Li if (I != E)
10138*67e74705SXin Li S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
10139*67e74705SXin Li }
10140*67e74705SXin Li
10141*67e74705SXin Li static SourceLocation
GetLocationForCandidate(const TemplateSpecCandidate * Cand)10142*67e74705SXin Li GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
10143*67e74705SXin Li return Cand->Specialization ? Cand->Specialization->getLocation()
10144*67e74705SXin Li : SourceLocation();
10145*67e74705SXin Li }
10146*67e74705SXin Li
10147*67e74705SXin Li namespace {
10148*67e74705SXin Li struct CompareTemplateSpecCandidatesForDisplay {
10149*67e74705SXin Li Sema &S;
CompareTemplateSpecCandidatesForDisplay__anonac20a5290c11::CompareTemplateSpecCandidatesForDisplay10150*67e74705SXin Li CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
10151*67e74705SXin Li
operator ()__anonac20a5290c11::CompareTemplateSpecCandidatesForDisplay10152*67e74705SXin Li bool operator()(const TemplateSpecCandidate *L,
10153*67e74705SXin Li const TemplateSpecCandidate *R) {
10154*67e74705SXin Li // Fast-path this check.
10155*67e74705SXin Li if (L == R)
10156*67e74705SXin Li return false;
10157*67e74705SXin Li
10158*67e74705SXin Li // Assuming that both candidates are not matches...
10159*67e74705SXin Li
10160*67e74705SXin Li // Sort by the ranking of deduction failures.
10161*67e74705SXin Li if (L->DeductionFailure.Result != R->DeductionFailure.Result)
10162*67e74705SXin Li return RankDeductionFailure(L->DeductionFailure) <
10163*67e74705SXin Li RankDeductionFailure(R->DeductionFailure);
10164*67e74705SXin Li
10165*67e74705SXin Li // Sort everything else by location.
10166*67e74705SXin Li SourceLocation LLoc = GetLocationForCandidate(L);
10167*67e74705SXin Li SourceLocation RLoc = GetLocationForCandidate(R);
10168*67e74705SXin Li
10169*67e74705SXin Li // Put candidates without locations (e.g. builtins) at the end.
10170*67e74705SXin Li if (LLoc.isInvalid())
10171*67e74705SXin Li return false;
10172*67e74705SXin Li if (RLoc.isInvalid())
10173*67e74705SXin Li return true;
10174*67e74705SXin Li
10175*67e74705SXin Li return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
10176*67e74705SXin Li }
10177*67e74705SXin Li };
10178*67e74705SXin Li }
10179*67e74705SXin Li
10180*67e74705SXin Li /// Diagnose a template argument deduction failure.
10181*67e74705SXin Li /// We are treating these failures as overload failures due to bad
10182*67e74705SXin Li /// deductions.
NoteDeductionFailure(Sema & S,bool ForTakingAddress)10183*67e74705SXin Li void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
10184*67e74705SXin Li bool ForTakingAddress) {
10185*67e74705SXin Li DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
10186*67e74705SXin Li DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
10187*67e74705SXin Li }
10188*67e74705SXin Li
destroyCandidates()10189*67e74705SXin Li void TemplateSpecCandidateSet::destroyCandidates() {
10190*67e74705SXin Li for (iterator i = begin(), e = end(); i != e; ++i) {
10191*67e74705SXin Li i->DeductionFailure.Destroy();
10192*67e74705SXin Li }
10193*67e74705SXin Li }
10194*67e74705SXin Li
clear()10195*67e74705SXin Li void TemplateSpecCandidateSet::clear() {
10196*67e74705SXin Li destroyCandidates();
10197*67e74705SXin Li Candidates.clear();
10198*67e74705SXin Li }
10199*67e74705SXin Li
10200*67e74705SXin Li /// NoteCandidates - When no template specialization match is found, prints
10201*67e74705SXin Li /// diagnostic messages containing the non-matching specializations that form
10202*67e74705SXin Li /// the candidate set.
10203*67e74705SXin Li /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
10204*67e74705SXin Li /// OCD == OCD_AllCandidates and Cand->Viable == false.
NoteCandidates(Sema & S,SourceLocation Loc)10205*67e74705SXin Li void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
10206*67e74705SXin Li // Sort the candidates by position (assuming no candidate is a match).
10207*67e74705SXin Li // Sorting directly would be prohibitive, so we make a set of pointers
10208*67e74705SXin Li // and sort those.
10209*67e74705SXin Li SmallVector<TemplateSpecCandidate *, 32> Cands;
10210*67e74705SXin Li Cands.reserve(size());
10211*67e74705SXin Li for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
10212*67e74705SXin Li if (Cand->Specialization)
10213*67e74705SXin Li Cands.push_back(Cand);
10214*67e74705SXin Li // Otherwise, this is a non-matching builtin candidate. We do not,
10215*67e74705SXin Li // in general, want to list every possible builtin candidate.
10216*67e74705SXin Li }
10217*67e74705SXin Li
10218*67e74705SXin Li std::sort(Cands.begin(), Cands.end(),
10219*67e74705SXin Li CompareTemplateSpecCandidatesForDisplay(S));
10220*67e74705SXin Li
10221*67e74705SXin Li // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
10222*67e74705SXin Li // for generalization purposes (?).
10223*67e74705SXin Li const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
10224*67e74705SXin Li
10225*67e74705SXin Li SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
10226*67e74705SXin Li unsigned CandsShown = 0;
10227*67e74705SXin Li for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
10228*67e74705SXin Li TemplateSpecCandidate *Cand = *I;
10229*67e74705SXin Li
10230*67e74705SXin Li // Set an arbitrary limit on the number of candidates we'll spam
10231*67e74705SXin Li // the user with. FIXME: This limit should depend on details of the
10232*67e74705SXin Li // candidate list.
10233*67e74705SXin Li if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
10234*67e74705SXin Li break;
10235*67e74705SXin Li ++CandsShown;
10236*67e74705SXin Li
10237*67e74705SXin Li assert(Cand->Specialization &&
10238*67e74705SXin Li "Non-matching built-in candidates are not added to Cands.");
10239*67e74705SXin Li Cand->NoteDeductionFailure(S, ForTakingAddress);
10240*67e74705SXin Li }
10241*67e74705SXin Li
10242*67e74705SXin Li if (I != E)
10243*67e74705SXin Li S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
10244*67e74705SXin Li }
10245*67e74705SXin Li
10246*67e74705SXin Li // [PossiblyAFunctionType] --> [Return]
10247*67e74705SXin Li // NonFunctionType --> NonFunctionType
10248*67e74705SXin Li // R (A) --> R(A)
10249*67e74705SXin Li // R (*)(A) --> R (A)
10250*67e74705SXin Li // R (&)(A) --> R (A)
10251*67e74705SXin Li // R (S::*)(A) --> R (A)
ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType)10252*67e74705SXin Li QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
10253*67e74705SXin Li QualType Ret = PossiblyAFunctionType;
10254*67e74705SXin Li if (const PointerType *ToTypePtr =
10255*67e74705SXin Li PossiblyAFunctionType->getAs<PointerType>())
10256*67e74705SXin Li Ret = ToTypePtr->getPointeeType();
10257*67e74705SXin Li else if (const ReferenceType *ToTypeRef =
10258*67e74705SXin Li PossiblyAFunctionType->getAs<ReferenceType>())
10259*67e74705SXin Li Ret = ToTypeRef->getPointeeType();
10260*67e74705SXin Li else if (const MemberPointerType *MemTypePtr =
10261*67e74705SXin Li PossiblyAFunctionType->getAs<MemberPointerType>())
10262*67e74705SXin Li Ret = MemTypePtr->getPointeeType();
10263*67e74705SXin Li Ret =
10264*67e74705SXin Li Context.getCanonicalType(Ret).getUnqualifiedType();
10265*67e74705SXin Li return Ret;
10266*67e74705SXin Li }
10267*67e74705SXin Li
10268*67e74705SXin Li namespace {
10269*67e74705SXin Li // A helper class to help with address of function resolution
10270*67e74705SXin Li // - allows us to avoid passing around all those ugly parameters
10271*67e74705SXin Li class AddressOfFunctionResolver {
10272*67e74705SXin Li Sema& S;
10273*67e74705SXin Li Expr* SourceExpr;
10274*67e74705SXin Li const QualType& TargetType;
10275*67e74705SXin Li QualType TargetFunctionType; // Extracted function type from target type
10276*67e74705SXin Li
10277*67e74705SXin Li bool Complain;
10278*67e74705SXin Li //DeclAccessPair& ResultFunctionAccessPair;
10279*67e74705SXin Li ASTContext& Context;
10280*67e74705SXin Li
10281*67e74705SXin Li bool TargetTypeIsNonStaticMemberFunction;
10282*67e74705SXin Li bool FoundNonTemplateFunction;
10283*67e74705SXin Li bool StaticMemberFunctionFromBoundPointer;
10284*67e74705SXin Li bool HasComplained;
10285*67e74705SXin Li
10286*67e74705SXin Li OverloadExpr::FindResult OvlExprInfo;
10287*67e74705SXin Li OverloadExpr *OvlExpr;
10288*67e74705SXin Li TemplateArgumentListInfo OvlExplicitTemplateArgs;
10289*67e74705SXin Li SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
10290*67e74705SXin Li TemplateSpecCandidateSet FailedCandidates;
10291*67e74705SXin Li
10292*67e74705SXin Li public:
AddressOfFunctionResolver(Sema & S,Expr * SourceExpr,const QualType & TargetType,bool Complain)10293*67e74705SXin Li AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
10294*67e74705SXin Li const QualType &TargetType, bool Complain)
10295*67e74705SXin Li : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
10296*67e74705SXin Li Complain(Complain), Context(S.getASTContext()),
10297*67e74705SXin Li TargetTypeIsNonStaticMemberFunction(
10298*67e74705SXin Li !!TargetType->getAs<MemberPointerType>()),
10299*67e74705SXin Li FoundNonTemplateFunction(false),
10300*67e74705SXin Li StaticMemberFunctionFromBoundPointer(false),
10301*67e74705SXin Li HasComplained(false),
10302*67e74705SXin Li OvlExprInfo(OverloadExpr::find(SourceExpr)),
10303*67e74705SXin Li OvlExpr(OvlExprInfo.Expression),
10304*67e74705SXin Li FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
10305*67e74705SXin Li ExtractUnqualifiedFunctionTypeFromTargetType();
10306*67e74705SXin Li
10307*67e74705SXin Li if (TargetFunctionType->isFunctionType()) {
10308*67e74705SXin Li if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
10309*67e74705SXin Li if (!UME->isImplicitAccess() &&
10310*67e74705SXin Li !S.ResolveSingleFunctionTemplateSpecialization(UME))
10311*67e74705SXin Li StaticMemberFunctionFromBoundPointer = true;
10312*67e74705SXin Li } else if (OvlExpr->hasExplicitTemplateArgs()) {
10313*67e74705SXin Li DeclAccessPair dap;
10314*67e74705SXin Li if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
10315*67e74705SXin Li OvlExpr, false, &dap)) {
10316*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
10317*67e74705SXin Li if (!Method->isStatic()) {
10318*67e74705SXin Li // If the target type is a non-function type and the function found
10319*67e74705SXin Li // is a non-static member function, pretend as if that was the
10320*67e74705SXin Li // target, it's the only possible type to end up with.
10321*67e74705SXin Li TargetTypeIsNonStaticMemberFunction = true;
10322*67e74705SXin Li
10323*67e74705SXin Li // And skip adding the function if its not in the proper form.
10324*67e74705SXin Li // We'll diagnose this due to an empty set of functions.
10325*67e74705SXin Li if (!OvlExprInfo.HasFormOfMemberPointer)
10326*67e74705SXin Li return;
10327*67e74705SXin Li }
10328*67e74705SXin Li
10329*67e74705SXin Li Matches.push_back(std::make_pair(dap, Fn));
10330*67e74705SXin Li }
10331*67e74705SXin Li return;
10332*67e74705SXin Li }
10333*67e74705SXin Li
10334*67e74705SXin Li if (OvlExpr->hasExplicitTemplateArgs())
10335*67e74705SXin Li OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
10336*67e74705SXin Li
10337*67e74705SXin Li if (FindAllFunctionsThatMatchTargetTypeExactly()) {
10338*67e74705SXin Li // C++ [over.over]p4:
10339*67e74705SXin Li // If more than one function is selected, [...]
10340*67e74705SXin Li if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
10341*67e74705SXin Li if (FoundNonTemplateFunction)
10342*67e74705SXin Li EliminateAllTemplateMatches();
10343*67e74705SXin Li else
10344*67e74705SXin Li EliminateAllExceptMostSpecializedTemplate();
10345*67e74705SXin Li }
10346*67e74705SXin Li }
10347*67e74705SXin Li
10348*67e74705SXin Li if (S.getLangOpts().CUDA && Matches.size() > 1)
10349*67e74705SXin Li EliminateSuboptimalCudaMatches();
10350*67e74705SXin Li }
10351*67e74705SXin Li
hasComplained() const10352*67e74705SXin Li bool hasComplained() const { return HasComplained; }
10353*67e74705SXin Li
10354*67e74705SXin Li private:
candidateHasExactlyCorrectType(const FunctionDecl * FD)10355*67e74705SXin Li bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
10356*67e74705SXin Li QualType Discard;
10357*67e74705SXin Li return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
10358*67e74705SXin Li S.IsNoReturnConversion(FD->getType(), TargetFunctionType, Discard);
10359*67e74705SXin Li }
10360*67e74705SXin Li
10361*67e74705SXin Li /// \return true if A is considered a better overload candidate for the
10362*67e74705SXin Li /// desired type than B.
isBetterCandidate(const FunctionDecl * A,const FunctionDecl * B)10363*67e74705SXin Li bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
10364*67e74705SXin Li // If A doesn't have exactly the correct type, we don't want to classify it
10365*67e74705SXin Li // as "better" than anything else. This way, the user is required to
10366*67e74705SXin Li // disambiguate for us if there are multiple candidates and no exact match.
10367*67e74705SXin Li return candidateHasExactlyCorrectType(A) &&
10368*67e74705SXin Li (!candidateHasExactlyCorrectType(B) ||
10369*67e74705SXin Li compareEnableIfAttrs(S, A, B) == Comparison::Better);
10370*67e74705SXin Li }
10371*67e74705SXin Li
10372*67e74705SXin Li /// \return true if we were able to eliminate all but one overload candidate,
10373*67e74705SXin Li /// false otherwise.
eliminiateSuboptimalOverloadCandidates()10374*67e74705SXin Li bool eliminiateSuboptimalOverloadCandidates() {
10375*67e74705SXin Li // Same algorithm as overload resolution -- one pass to pick the "best",
10376*67e74705SXin Li // another pass to be sure that nothing is better than the best.
10377*67e74705SXin Li auto Best = Matches.begin();
10378*67e74705SXin Li for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
10379*67e74705SXin Li if (isBetterCandidate(I->second, Best->second))
10380*67e74705SXin Li Best = I;
10381*67e74705SXin Li
10382*67e74705SXin Li const FunctionDecl *BestFn = Best->second;
10383*67e74705SXin Li auto IsBestOrInferiorToBest = [this, BestFn](
10384*67e74705SXin Li const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
10385*67e74705SXin Li return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
10386*67e74705SXin Li };
10387*67e74705SXin Li
10388*67e74705SXin Li // Note: We explicitly leave Matches unmodified if there isn't a clear best
10389*67e74705SXin Li // option, so we can potentially give the user a better error
10390*67e74705SXin Li if (!std::all_of(Matches.begin(), Matches.end(), IsBestOrInferiorToBest))
10391*67e74705SXin Li return false;
10392*67e74705SXin Li Matches[0] = *Best;
10393*67e74705SXin Li Matches.resize(1);
10394*67e74705SXin Li return true;
10395*67e74705SXin Li }
10396*67e74705SXin Li
isTargetTypeAFunction() const10397*67e74705SXin Li bool isTargetTypeAFunction() const {
10398*67e74705SXin Li return TargetFunctionType->isFunctionType();
10399*67e74705SXin Li }
10400*67e74705SXin Li
10401*67e74705SXin Li // [ToType] [Return]
10402*67e74705SXin Li
10403*67e74705SXin Li // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
10404*67e74705SXin Li // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
10405*67e74705SXin Li // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
ExtractUnqualifiedFunctionTypeFromTargetType()10406*67e74705SXin Li void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
10407*67e74705SXin Li TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
10408*67e74705SXin Li }
10409*67e74705SXin Li
10410*67e74705SXin Li // return true if any matching specializations were found
AddMatchingTemplateFunction(FunctionTemplateDecl * FunctionTemplate,const DeclAccessPair & CurAccessFunPair)10411*67e74705SXin Li bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
10412*67e74705SXin Li const DeclAccessPair& CurAccessFunPair) {
10413*67e74705SXin Li if (CXXMethodDecl *Method
10414*67e74705SXin Li = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
10415*67e74705SXin Li // Skip non-static function templates when converting to pointer, and
10416*67e74705SXin Li // static when converting to member pointer.
10417*67e74705SXin Li if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10418*67e74705SXin Li return false;
10419*67e74705SXin Li }
10420*67e74705SXin Li else if (TargetTypeIsNonStaticMemberFunction)
10421*67e74705SXin Li return false;
10422*67e74705SXin Li
10423*67e74705SXin Li // C++ [over.over]p2:
10424*67e74705SXin Li // If the name is a function template, template argument deduction is
10425*67e74705SXin Li // done (14.8.2.2), and if the argument deduction succeeds, the
10426*67e74705SXin Li // resulting template argument list is used to generate a single
10427*67e74705SXin Li // function template specialization, which is added to the set of
10428*67e74705SXin Li // overloaded functions considered.
10429*67e74705SXin Li FunctionDecl *Specialization = nullptr;
10430*67e74705SXin Li TemplateDeductionInfo Info(FailedCandidates.getLocation());
10431*67e74705SXin Li if (Sema::TemplateDeductionResult Result
10432*67e74705SXin Li = S.DeduceTemplateArguments(FunctionTemplate,
10433*67e74705SXin Li &OvlExplicitTemplateArgs,
10434*67e74705SXin Li TargetFunctionType, Specialization,
10435*67e74705SXin Li Info, /*InOverloadResolution=*/true)) {
10436*67e74705SXin Li // Make a note of the failed deduction for diagnostics.
10437*67e74705SXin Li FailedCandidates.addCandidate()
10438*67e74705SXin Li .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
10439*67e74705SXin Li MakeDeductionFailureInfo(Context, Result, Info));
10440*67e74705SXin Li return false;
10441*67e74705SXin Li }
10442*67e74705SXin Li
10443*67e74705SXin Li // Template argument deduction ensures that we have an exact match or
10444*67e74705SXin Li // compatible pointer-to-function arguments that would be adjusted by ICS.
10445*67e74705SXin Li // This function template specicalization works.
10446*67e74705SXin Li assert(S.isSameOrCompatibleFunctionType(
10447*67e74705SXin Li Context.getCanonicalType(Specialization->getType()),
10448*67e74705SXin Li Context.getCanonicalType(TargetFunctionType)));
10449*67e74705SXin Li
10450*67e74705SXin Li if (!S.checkAddressOfFunctionIsAvailable(Specialization))
10451*67e74705SXin Li return false;
10452*67e74705SXin Li
10453*67e74705SXin Li Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
10454*67e74705SXin Li return true;
10455*67e74705SXin Li }
10456*67e74705SXin Li
AddMatchingNonTemplateFunction(NamedDecl * Fn,const DeclAccessPair & CurAccessFunPair)10457*67e74705SXin Li bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
10458*67e74705SXin Li const DeclAccessPair& CurAccessFunPair) {
10459*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10460*67e74705SXin Li // Skip non-static functions when converting to pointer, and static
10461*67e74705SXin Li // when converting to member pointer.
10462*67e74705SXin Li if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
10463*67e74705SXin Li return false;
10464*67e74705SXin Li }
10465*67e74705SXin Li else if (TargetTypeIsNonStaticMemberFunction)
10466*67e74705SXin Li return false;
10467*67e74705SXin Li
10468*67e74705SXin Li if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
10469*67e74705SXin Li if (S.getLangOpts().CUDA)
10470*67e74705SXin Li if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
10471*67e74705SXin Li if (!Caller->isImplicit() && S.CheckCUDATarget(Caller, FunDecl))
10472*67e74705SXin Li return false;
10473*67e74705SXin Li
10474*67e74705SXin Li // If any candidate has a placeholder return type, trigger its deduction
10475*67e74705SXin Li // now.
10476*67e74705SXin Li if (S.getLangOpts().CPlusPlus14 &&
10477*67e74705SXin Li FunDecl->getReturnType()->isUndeducedType() &&
10478*67e74705SXin Li S.DeduceReturnType(FunDecl, SourceExpr->getLocStart(), Complain)) {
10479*67e74705SXin Li HasComplained |= Complain;
10480*67e74705SXin Li return false;
10481*67e74705SXin Li }
10482*67e74705SXin Li
10483*67e74705SXin Li if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
10484*67e74705SXin Li return false;
10485*67e74705SXin Li
10486*67e74705SXin Li // If we're in C, we need to support types that aren't exactly identical.
10487*67e74705SXin Li if (!S.getLangOpts().CPlusPlus ||
10488*67e74705SXin Li candidateHasExactlyCorrectType(FunDecl)) {
10489*67e74705SXin Li Matches.push_back(std::make_pair(
10490*67e74705SXin Li CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
10491*67e74705SXin Li FoundNonTemplateFunction = true;
10492*67e74705SXin Li return true;
10493*67e74705SXin Li }
10494*67e74705SXin Li }
10495*67e74705SXin Li
10496*67e74705SXin Li return false;
10497*67e74705SXin Li }
10498*67e74705SXin Li
FindAllFunctionsThatMatchTargetTypeExactly()10499*67e74705SXin Li bool FindAllFunctionsThatMatchTargetTypeExactly() {
10500*67e74705SXin Li bool Ret = false;
10501*67e74705SXin Li
10502*67e74705SXin Li // If the overload expression doesn't have the form of a pointer to
10503*67e74705SXin Li // member, don't try to convert it to a pointer-to-member type.
10504*67e74705SXin Li if (IsInvalidFormOfPointerToMemberFunction())
10505*67e74705SXin Li return false;
10506*67e74705SXin Li
10507*67e74705SXin Li for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10508*67e74705SXin Li E = OvlExpr->decls_end();
10509*67e74705SXin Li I != E; ++I) {
10510*67e74705SXin Li // Look through any using declarations to find the underlying function.
10511*67e74705SXin Li NamedDecl *Fn = (*I)->getUnderlyingDecl();
10512*67e74705SXin Li
10513*67e74705SXin Li // C++ [over.over]p3:
10514*67e74705SXin Li // Non-member functions and static member functions match
10515*67e74705SXin Li // targets of type "pointer-to-function" or "reference-to-function."
10516*67e74705SXin Li // Nonstatic member functions match targets of
10517*67e74705SXin Li // type "pointer-to-member-function."
10518*67e74705SXin Li // Note that according to DR 247, the containing class does not matter.
10519*67e74705SXin Li if (FunctionTemplateDecl *FunctionTemplate
10520*67e74705SXin Li = dyn_cast<FunctionTemplateDecl>(Fn)) {
10521*67e74705SXin Li if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
10522*67e74705SXin Li Ret = true;
10523*67e74705SXin Li }
10524*67e74705SXin Li // If we have explicit template arguments supplied, skip non-templates.
10525*67e74705SXin Li else if (!OvlExpr->hasExplicitTemplateArgs() &&
10526*67e74705SXin Li AddMatchingNonTemplateFunction(Fn, I.getPair()))
10527*67e74705SXin Li Ret = true;
10528*67e74705SXin Li }
10529*67e74705SXin Li assert(Ret || Matches.empty());
10530*67e74705SXin Li return Ret;
10531*67e74705SXin Li }
10532*67e74705SXin Li
EliminateAllExceptMostSpecializedTemplate()10533*67e74705SXin Li void EliminateAllExceptMostSpecializedTemplate() {
10534*67e74705SXin Li // [...] and any given function template specialization F1 is
10535*67e74705SXin Li // eliminated if the set contains a second function template
10536*67e74705SXin Li // specialization whose function template is more specialized
10537*67e74705SXin Li // than the function template of F1 according to the partial
10538*67e74705SXin Li // ordering rules of 14.5.5.2.
10539*67e74705SXin Li
10540*67e74705SXin Li // The algorithm specified above is quadratic. We instead use a
10541*67e74705SXin Li // two-pass algorithm (similar to the one used to identify the
10542*67e74705SXin Li // best viable function in an overload set) that identifies the
10543*67e74705SXin Li // best function template (if it exists).
10544*67e74705SXin Li
10545*67e74705SXin Li UnresolvedSet<4> MatchesCopy; // TODO: avoid!
10546*67e74705SXin Li for (unsigned I = 0, E = Matches.size(); I != E; ++I)
10547*67e74705SXin Li MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
10548*67e74705SXin Li
10549*67e74705SXin Li // TODO: It looks like FailedCandidates does not serve much purpose
10550*67e74705SXin Li // here, since the no_viable diagnostic has index 0.
10551*67e74705SXin Li UnresolvedSetIterator Result = S.getMostSpecialized(
10552*67e74705SXin Li MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
10553*67e74705SXin Li SourceExpr->getLocStart(), S.PDiag(),
10554*67e74705SXin Li S.PDiag(diag::err_addr_ovl_ambiguous)
10555*67e74705SXin Li << Matches[0].second->getDeclName(),
10556*67e74705SXin Li S.PDiag(diag::note_ovl_candidate)
10557*67e74705SXin Li << (unsigned)oc_function_template,
10558*67e74705SXin Li Complain, TargetFunctionType);
10559*67e74705SXin Li
10560*67e74705SXin Li if (Result != MatchesCopy.end()) {
10561*67e74705SXin Li // Make it the first and only element
10562*67e74705SXin Li Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
10563*67e74705SXin Li Matches[0].second = cast<FunctionDecl>(*Result);
10564*67e74705SXin Li Matches.resize(1);
10565*67e74705SXin Li } else
10566*67e74705SXin Li HasComplained |= Complain;
10567*67e74705SXin Li }
10568*67e74705SXin Li
EliminateAllTemplateMatches()10569*67e74705SXin Li void EliminateAllTemplateMatches() {
10570*67e74705SXin Li // [...] any function template specializations in the set are
10571*67e74705SXin Li // eliminated if the set also contains a non-template function, [...]
10572*67e74705SXin Li for (unsigned I = 0, N = Matches.size(); I != N; ) {
10573*67e74705SXin Li if (Matches[I].second->getPrimaryTemplate() == nullptr)
10574*67e74705SXin Li ++I;
10575*67e74705SXin Li else {
10576*67e74705SXin Li Matches[I] = Matches[--N];
10577*67e74705SXin Li Matches.resize(N);
10578*67e74705SXin Li }
10579*67e74705SXin Li }
10580*67e74705SXin Li }
10581*67e74705SXin Li
EliminateSuboptimalCudaMatches()10582*67e74705SXin Li void EliminateSuboptimalCudaMatches() {
10583*67e74705SXin Li S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
10584*67e74705SXin Li }
10585*67e74705SXin Li
10586*67e74705SXin Li public:
ComplainNoMatchesFound() const10587*67e74705SXin Li void ComplainNoMatchesFound() const {
10588*67e74705SXin Li assert(Matches.empty());
10589*67e74705SXin Li S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
10590*67e74705SXin Li << OvlExpr->getName() << TargetFunctionType
10591*67e74705SXin Li << OvlExpr->getSourceRange();
10592*67e74705SXin Li if (FailedCandidates.empty())
10593*67e74705SXin Li S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10594*67e74705SXin Li /*TakingAddress=*/true);
10595*67e74705SXin Li else {
10596*67e74705SXin Li // We have some deduction failure messages. Use them to diagnose
10597*67e74705SXin Li // the function templates, and diagnose the non-template candidates
10598*67e74705SXin Li // normally.
10599*67e74705SXin Li for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
10600*67e74705SXin Li IEnd = OvlExpr->decls_end();
10601*67e74705SXin Li I != IEnd; ++I)
10602*67e74705SXin Li if (FunctionDecl *Fun =
10603*67e74705SXin Li dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
10604*67e74705SXin Li if (!functionHasPassObjectSizeParams(Fun))
10605*67e74705SXin Li S.NoteOverloadCandidate(*I, Fun, TargetFunctionType,
10606*67e74705SXin Li /*TakingAddress=*/true);
10607*67e74705SXin Li FailedCandidates.NoteCandidates(S, OvlExpr->getLocStart());
10608*67e74705SXin Li }
10609*67e74705SXin Li }
10610*67e74705SXin Li
IsInvalidFormOfPointerToMemberFunction() const10611*67e74705SXin Li bool IsInvalidFormOfPointerToMemberFunction() const {
10612*67e74705SXin Li return TargetTypeIsNonStaticMemberFunction &&
10613*67e74705SXin Li !OvlExprInfo.HasFormOfMemberPointer;
10614*67e74705SXin Li }
10615*67e74705SXin Li
ComplainIsInvalidFormOfPointerToMemberFunction() const10616*67e74705SXin Li void ComplainIsInvalidFormOfPointerToMemberFunction() const {
10617*67e74705SXin Li // TODO: Should we condition this on whether any functions might
10618*67e74705SXin Li // have matched, or is it more appropriate to do that in callers?
10619*67e74705SXin Li // TODO: a fixit wouldn't hurt.
10620*67e74705SXin Li S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
10621*67e74705SXin Li << TargetType << OvlExpr->getSourceRange();
10622*67e74705SXin Li }
10623*67e74705SXin Li
IsStaticMemberFunctionFromBoundPointer() const10624*67e74705SXin Li bool IsStaticMemberFunctionFromBoundPointer() const {
10625*67e74705SXin Li return StaticMemberFunctionFromBoundPointer;
10626*67e74705SXin Li }
10627*67e74705SXin Li
ComplainIsStaticMemberFunctionFromBoundPointer() const10628*67e74705SXin Li void ComplainIsStaticMemberFunctionFromBoundPointer() const {
10629*67e74705SXin Li S.Diag(OvlExpr->getLocStart(),
10630*67e74705SXin Li diag::err_invalid_form_pointer_member_function)
10631*67e74705SXin Li << OvlExpr->getSourceRange();
10632*67e74705SXin Li }
10633*67e74705SXin Li
ComplainOfInvalidConversion() const10634*67e74705SXin Li void ComplainOfInvalidConversion() const {
10635*67e74705SXin Li S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
10636*67e74705SXin Li << OvlExpr->getName() << TargetType;
10637*67e74705SXin Li }
10638*67e74705SXin Li
ComplainMultipleMatchesFound() const10639*67e74705SXin Li void ComplainMultipleMatchesFound() const {
10640*67e74705SXin Li assert(Matches.size() > 1);
10641*67e74705SXin Li S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
10642*67e74705SXin Li << OvlExpr->getName()
10643*67e74705SXin Li << OvlExpr->getSourceRange();
10644*67e74705SXin Li S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
10645*67e74705SXin Li /*TakingAddress=*/true);
10646*67e74705SXin Li }
10647*67e74705SXin Li
hadMultipleCandidates() const10648*67e74705SXin Li bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
10649*67e74705SXin Li
getNumMatches() const10650*67e74705SXin Li int getNumMatches() const { return Matches.size(); }
10651*67e74705SXin Li
getMatchingFunctionDecl() const10652*67e74705SXin Li FunctionDecl* getMatchingFunctionDecl() const {
10653*67e74705SXin Li if (Matches.size() != 1) return nullptr;
10654*67e74705SXin Li return Matches[0].second;
10655*67e74705SXin Li }
10656*67e74705SXin Li
getMatchingFunctionAccessPair() const10657*67e74705SXin Li const DeclAccessPair* getMatchingFunctionAccessPair() const {
10658*67e74705SXin Li if (Matches.size() != 1) return nullptr;
10659*67e74705SXin Li return &Matches[0].first;
10660*67e74705SXin Li }
10661*67e74705SXin Li };
10662*67e74705SXin Li }
10663*67e74705SXin Li
10664*67e74705SXin Li /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
10665*67e74705SXin Li /// an overloaded function (C++ [over.over]), where @p From is an
10666*67e74705SXin Li /// expression with overloaded function type and @p ToType is the type
10667*67e74705SXin Li /// we're trying to resolve to. For example:
10668*67e74705SXin Li ///
10669*67e74705SXin Li /// @code
10670*67e74705SXin Li /// int f(double);
10671*67e74705SXin Li /// int f(int);
10672*67e74705SXin Li ///
10673*67e74705SXin Li /// int (*pfd)(double) = f; // selects f(double)
10674*67e74705SXin Li /// @endcode
10675*67e74705SXin Li ///
10676*67e74705SXin Li /// This routine returns the resulting FunctionDecl if it could be
10677*67e74705SXin Li /// resolved, and NULL otherwise. When @p Complain is true, this
10678*67e74705SXin Li /// routine will emit diagnostics if there is an error.
10679*67e74705SXin Li FunctionDecl *
ResolveAddressOfOverloadedFunction(Expr * AddressOfExpr,QualType TargetType,bool Complain,DeclAccessPair & FoundResult,bool * pHadMultipleCandidates)10680*67e74705SXin Li Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
10681*67e74705SXin Li QualType TargetType,
10682*67e74705SXin Li bool Complain,
10683*67e74705SXin Li DeclAccessPair &FoundResult,
10684*67e74705SXin Li bool *pHadMultipleCandidates) {
10685*67e74705SXin Li assert(AddressOfExpr->getType() == Context.OverloadTy);
10686*67e74705SXin Li
10687*67e74705SXin Li AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
10688*67e74705SXin Li Complain);
10689*67e74705SXin Li int NumMatches = Resolver.getNumMatches();
10690*67e74705SXin Li FunctionDecl *Fn = nullptr;
10691*67e74705SXin Li bool ShouldComplain = Complain && !Resolver.hasComplained();
10692*67e74705SXin Li if (NumMatches == 0 && ShouldComplain) {
10693*67e74705SXin Li if (Resolver.IsInvalidFormOfPointerToMemberFunction())
10694*67e74705SXin Li Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
10695*67e74705SXin Li else
10696*67e74705SXin Li Resolver.ComplainNoMatchesFound();
10697*67e74705SXin Li }
10698*67e74705SXin Li else if (NumMatches > 1 && ShouldComplain)
10699*67e74705SXin Li Resolver.ComplainMultipleMatchesFound();
10700*67e74705SXin Li else if (NumMatches == 1) {
10701*67e74705SXin Li Fn = Resolver.getMatchingFunctionDecl();
10702*67e74705SXin Li assert(Fn);
10703*67e74705SXin Li FoundResult = *Resolver.getMatchingFunctionAccessPair();
10704*67e74705SXin Li if (Complain) {
10705*67e74705SXin Li if (Resolver.IsStaticMemberFunctionFromBoundPointer())
10706*67e74705SXin Li Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
10707*67e74705SXin Li else
10708*67e74705SXin Li CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
10709*67e74705SXin Li }
10710*67e74705SXin Li }
10711*67e74705SXin Li
10712*67e74705SXin Li if (pHadMultipleCandidates)
10713*67e74705SXin Li *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
10714*67e74705SXin Li return Fn;
10715*67e74705SXin Li }
10716*67e74705SXin Li
10717*67e74705SXin Li /// \brief Given an expression that refers to an overloaded function, try to
10718*67e74705SXin Li /// resolve that function to a single function that can have its address taken.
10719*67e74705SXin Li /// This will modify `Pair` iff it returns non-null.
10720*67e74705SXin Li ///
10721*67e74705SXin Li /// This routine can only realistically succeed if all but one candidates in the
10722*67e74705SXin Li /// overload set for SrcExpr cannot have their addresses taken.
10723*67e74705SXin Li FunctionDecl *
resolveAddressOfOnlyViableOverloadCandidate(Expr * E,DeclAccessPair & Pair)10724*67e74705SXin Li Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
10725*67e74705SXin Li DeclAccessPair &Pair) {
10726*67e74705SXin Li OverloadExpr::FindResult R = OverloadExpr::find(E);
10727*67e74705SXin Li OverloadExpr *Ovl = R.Expression;
10728*67e74705SXin Li FunctionDecl *Result = nullptr;
10729*67e74705SXin Li DeclAccessPair DAP;
10730*67e74705SXin Li // Don't use the AddressOfResolver because we're specifically looking for
10731*67e74705SXin Li // cases where we have one overload candidate that lacks
10732*67e74705SXin Li // enable_if/pass_object_size/...
10733*67e74705SXin Li for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
10734*67e74705SXin Li auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
10735*67e74705SXin Li if (!FD)
10736*67e74705SXin Li return nullptr;
10737*67e74705SXin Li
10738*67e74705SXin Li if (!checkAddressOfFunctionIsAvailable(FD))
10739*67e74705SXin Li continue;
10740*67e74705SXin Li
10741*67e74705SXin Li // We have more than one result; quit.
10742*67e74705SXin Li if (Result)
10743*67e74705SXin Li return nullptr;
10744*67e74705SXin Li DAP = I.getPair();
10745*67e74705SXin Li Result = FD;
10746*67e74705SXin Li }
10747*67e74705SXin Li
10748*67e74705SXin Li if (Result)
10749*67e74705SXin Li Pair = DAP;
10750*67e74705SXin Li return Result;
10751*67e74705SXin Li }
10752*67e74705SXin Li
10753*67e74705SXin Li /// \brief Given an overloaded function, tries to turn it into a non-overloaded
10754*67e74705SXin Li /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
10755*67e74705SXin Li /// will perform access checks, diagnose the use of the resultant decl, and, if
10756*67e74705SXin Li /// necessary, perform a function-to-pointer decay.
10757*67e74705SXin Li ///
10758*67e74705SXin Li /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
10759*67e74705SXin Li /// Otherwise, returns true. This may emit diagnostics and return true.
resolveAndFixAddressOfOnlyViableOverloadCandidate(ExprResult & SrcExpr)10760*67e74705SXin Li bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
10761*67e74705SXin Li ExprResult &SrcExpr) {
10762*67e74705SXin Li Expr *E = SrcExpr.get();
10763*67e74705SXin Li assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
10764*67e74705SXin Li
10765*67e74705SXin Li DeclAccessPair DAP;
10766*67e74705SXin Li FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
10767*67e74705SXin Li if (!Found)
10768*67e74705SXin Li return false;
10769*67e74705SXin Li
10770*67e74705SXin Li // Emitting multiple diagnostics for a function that is both inaccessible and
10771*67e74705SXin Li // unavailable is consistent with our behavior elsewhere. So, always check
10772*67e74705SXin Li // for both.
10773*67e74705SXin Li DiagnoseUseOfDecl(Found, E->getExprLoc());
10774*67e74705SXin Li CheckAddressOfMemberAccess(E, DAP);
10775*67e74705SXin Li Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
10776*67e74705SXin Li if (Fixed->getType()->isFunctionType())
10777*67e74705SXin Li SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
10778*67e74705SXin Li else
10779*67e74705SXin Li SrcExpr = Fixed;
10780*67e74705SXin Li return true;
10781*67e74705SXin Li }
10782*67e74705SXin Li
10783*67e74705SXin Li /// \brief Given an expression that refers to an overloaded function, try to
10784*67e74705SXin Li /// resolve that overloaded function expression down to a single function.
10785*67e74705SXin Li ///
10786*67e74705SXin Li /// This routine can only resolve template-ids that refer to a single function
10787*67e74705SXin Li /// template, where that template-id refers to a single template whose template
10788*67e74705SXin Li /// arguments are either provided by the template-id or have defaults,
10789*67e74705SXin Li /// as described in C++0x [temp.arg.explicit]p3.
10790*67e74705SXin Li ///
10791*67e74705SXin Li /// If no template-ids are found, no diagnostics are emitted and NULL is
10792*67e74705SXin Li /// returned.
10793*67e74705SXin Li FunctionDecl *
ResolveSingleFunctionTemplateSpecialization(OverloadExpr * ovl,bool Complain,DeclAccessPair * FoundResult)10794*67e74705SXin Li Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
10795*67e74705SXin Li bool Complain,
10796*67e74705SXin Li DeclAccessPair *FoundResult) {
10797*67e74705SXin Li // C++ [over.over]p1:
10798*67e74705SXin Li // [...] [Note: any redundant set of parentheses surrounding the
10799*67e74705SXin Li // overloaded function name is ignored (5.1). ]
10800*67e74705SXin Li // C++ [over.over]p1:
10801*67e74705SXin Li // [...] The overloaded function name can be preceded by the &
10802*67e74705SXin Li // operator.
10803*67e74705SXin Li
10804*67e74705SXin Li // If we didn't actually find any template-ids, we're done.
10805*67e74705SXin Li if (!ovl->hasExplicitTemplateArgs())
10806*67e74705SXin Li return nullptr;
10807*67e74705SXin Li
10808*67e74705SXin Li TemplateArgumentListInfo ExplicitTemplateArgs;
10809*67e74705SXin Li ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
10810*67e74705SXin Li TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
10811*67e74705SXin Li
10812*67e74705SXin Li // Look through all of the overloaded functions, searching for one
10813*67e74705SXin Li // whose type matches exactly.
10814*67e74705SXin Li FunctionDecl *Matched = nullptr;
10815*67e74705SXin Li for (UnresolvedSetIterator I = ovl->decls_begin(),
10816*67e74705SXin Li E = ovl->decls_end(); I != E; ++I) {
10817*67e74705SXin Li // C++0x [temp.arg.explicit]p3:
10818*67e74705SXin Li // [...] In contexts where deduction is done and fails, or in contexts
10819*67e74705SXin Li // where deduction is not done, if a template argument list is
10820*67e74705SXin Li // specified and it, along with any default template arguments,
10821*67e74705SXin Li // identifies a single function template specialization, then the
10822*67e74705SXin Li // template-id is an lvalue for the function template specialization.
10823*67e74705SXin Li FunctionTemplateDecl *FunctionTemplate
10824*67e74705SXin Li = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
10825*67e74705SXin Li
10826*67e74705SXin Li // C++ [over.over]p2:
10827*67e74705SXin Li // If the name is a function template, template argument deduction is
10828*67e74705SXin Li // done (14.8.2.2), and if the argument deduction succeeds, the
10829*67e74705SXin Li // resulting template argument list is used to generate a single
10830*67e74705SXin Li // function template specialization, which is added to the set of
10831*67e74705SXin Li // overloaded functions considered.
10832*67e74705SXin Li FunctionDecl *Specialization = nullptr;
10833*67e74705SXin Li TemplateDeductionInfo Info(FailedCandidates.getLocation());
10834*67e74705SXin Li if (TemplateDeductionResult Result
10835*67e74705SXin Li = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
10836*67e74705SXin Li Specialization, Info,
10837*67e74705SXin Li /*InOverloadResolution=*/true)) {
10838*67e74705SXin Li // Make a note of the failed deduction for diagnostics.
10839*67e74705SXin Li // TODO: Actually use the failed-deduction info?
10840*67e74705SXin Li FailedCandidates.addCandidate()
10841*67e74705SXin Li .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
10842*67e74705SXin Li MakeDeductionFailureInfo(Context, Result, Info));
10843*67e74705SXin Li continue;
10844*67e74705SXin Li }
10845*67e74705SXin Li
10846*67e74705SXin Li assert(Specialization && "no specialization and no error?");
10847*67e74705SXin Li
10848*67e74705SXin Li // Multiple matches; we can't resolve to a single declaration.
10849*67e74705SXin Li if (Matched) {
10850*67e74705SXin Li if (Complain) {
10851*67e74705SXin Li Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
10852*67e74705SXin Li << ovl->getName();
10853*67e74705SXin Li NoteAllOverloadCandidates(ovl);
10854*67e74705SXin Li }
10855*67e74705SXin Li return nullptr;
10856*67e74705SXin Li }
10857*67e74705SXin Li
10858*67e74705SXin Li Matched = Specialization;
10859*67e74705SXin Li if (FoundResult) *FoundResult = I.getPair();
10860*67e74705SXin Li }
10861*67e74705SXin Li
10862*67e74705SXin Li if (Matched && getLangOpts().CPlusPlus14 &&
10863*67e74705SXin Li Matched->getReturnType()->isUndeducedType() &&
10864*67e74705SXin Li DeduceReturnType(Matched, ovl->getExprLoc(), Complain))
10865*67e74705SXin Li return nullptr;
10866*67e74705SXin Li
10867*67e74705SXin Li return Matched;
10868*67e74705SXin Li }
10869*67e74705SXin Li
10870*67e74705SXin Li
10871*67e74705SXin Li
10872*67e74705SXin Li
10873*67e74705SXin Li // Resolve and fix an overloaded expression that can be resolved
10874*67e74705SXin Li // because it identifies a single function template specialization.
10875*67e74705SXin Li //
10876*67e74705SXin Li // Last three arguments should only be supplied if Complain = true
10877*67e74705SXin Li //
10878*67e74705SXin Li // Return true if it was logically possible to so resolve the
10879*67e74705SXin Li // expression, regardless of whether or not it succeeded. Always
10880*67e74705SXin Li // returns true if 'complain' is set.
ResolveAndFixSingleFunctionTemplateSpecialization(ExprResult & SrcExpr,bool doFunctionPointerConverion,bool complain,SourceRange OpRangeForComplaining,QualType DestTypeForComplaining,unsigned DiagIDForComplaining)10881*67e74705SXin Li bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
10882*67e74705SXin Li ExprResult &SrcExpr, bool doFunctionPointerConverion,
10883*67e74705SXin Li bool complain, SourceRange OpRangeForComplaining,
10884*67e74705SXin Li QualType DestTypeForComplaining,
10885*67e74705SXin Li unsigned DiagIDForComplaining) {
10886*67e74705SXin Li assert(SrcExpr.get()->getType() == Context.OverloadTy);
10887*67e74705SXin Li
10888*67e74705SXin Li OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
10889*67e74705SXin Li
10890*67e74705SXin Li DeclAccessPair found;
10891*67e74705SXin Li ExprResult SingleFunctionExpression;
10892*67e74705SXin Li if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
10893*67e74705SXin Li ovl.Expression, /*complain*/ false, &found)) {
10894*67e74705SXin Li if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
10895*67e74705SXin Li SrcExpr = ExprError();
10896*67e74705SXin Li return true;
10897*67e74705SXin Li }
10898*67e74705SXin Li
10899*67e74705SXin Li // It is only correct to resolve to an instance method if we're
10900*67e74705SXin Li // resolving a form that's permitted to be a pointer to member.
10901*67e74705SXin Li // Otherwise we'll end up making a bound member expression, which
10902*67e74705SXin Li // is illegal in all the contexts we resolve like this.
10903*67e74705SXin Li if (!ovl.HasFormOfMemberPointer &&
10904*67e74705SXin Li isa<CXXMethodDecl>(fn) &&
10905*67e74705SXin Li cast<CXXMethodDecl>(fn)->isInstance()) {
10906*67e74705SXin Li if (!complain) return false;
10907*67e74705SXin Li
10908*67e74705SXin Li Diag(ovl.Expression->getExprLoc(),
10909*67e74705SXin Li diag::err_bound_member_function)
10910*67e74705SXin Li << 0 << ovl.Expression->getSourceRange();
10911*67e74705SXin Li
10912*67e74705SXin Li // TODO: I believe we only end up here if there's a mix of
10913*67e74705SXin Li // static and non-static candidates (otherwise the expression
10914*67e74705SXin Li // would have 'bound member' type, not 'overload' type).
10915*67e74705SXin Li // Ideally we would note which candidate was chosen and why
10916*67e74705SXin Li // the static candidates were rejected.
10917*67e74705SXin Li SrcExpr = ExprError();
10918*67e74705SXin Li return true;
10919*67e74705SXin Li }
10920*67e74705SXin Li
10921*67e74705SXin Li // Fix the expression to refer to 'fn'.
10922*67e74705SXin Li SingleFunctionExpression =
10923*67e74705SXin Li FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
10924*67e74705SXin Li
10925*67e74705SXin Li // If desired, do function-to-pointer decay.
10926*67e74705SXin Li if (doFunctionPointerConverion) {
10927*67e74705SXin Li SingleFunctionExpression =
10928*67e74705SXin Li DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
10929*67e74705SXin Li if (SingleFunctionExpression.isInvalid()) {
10930*67e74705SXin Li SrcExpr = ExprError();
10931*67e74705SXin Li return true;
10932*67e74705SXin Li }
10933*67e74705SXin Li }
10934*67e74705SXin Li }
10935*67e74705SXin Li
10936*67e74705SXin Li if (!SingleFunctionExpression.isUsable()) {
10937*67e74705SXin Li if (complain) {
10938*67e74705SXin Li Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
10939*67e74705SXin Li << ovl.Expression->getName()
10940*67e74705SXin Li << DestTypeForComplaining
10941*67e74705SXin Li << OpRangeForComplaining
10942*67e74705SXin Li << ovl.Expression->getQualifierLoc().getSourceRange();
10943*67e74705SXin Li NoteAllOverloadCandidates(SrcExpr.get());
10944*67e74705SXin Li
10945*67e74705SXin Li SrcExpr = ExprError();
10946*67e74705SXin Li return true;
10947*67e74705SXin Li }
10948*67e74705SXin Li
10949*67e74705SXin Li return false;
10950*67e74705SXin Li }
10951*67e74705SXin Li
10952*67e74705SXin Li SrcExpr = SingleFunctionExpression;
10953*67e74705SXin Li return true;
10954*67e74705SXin Li }
10955*67e74705SXin Li
10956*67e74705SXin Li /// \brief Add a single candidate to the overload set.
AddOverloadedCallCandidate(Sema & S,DeclAccessPair FoundDecl,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading,bool KnownValid)10957*67e74705SXin Li static void AddOverloadedCallCandidate(Sema &S,
10958*67e74705SXin Li DeclAccessPair FoundDecl,
10959*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
10960*67e74705SXin Li ArrayRef<Expr *> Args,
10961*67e74705SXin Li OverloadCandidateSet &CandidateSet,
10962*67e74705SXin Li bool PartialOverloading,
10963*67e74705SXin Li bool KnownValid) {
10964*67e74705SXin Li NamedDecl *Callee = FoundDecl.getDecl();
10965*67e74705SXin Li if (isa<UsingShadowDecl>(Callee))
10966*67e74705SXin Li Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
10967*67e74705SXin Li
10968*67e74705SXin Li if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
10969*67e74705SXin Li if (ExplicitTemplateArgs) {
10970*67e74705SXin Li assert(!KnownValid && "Explicit template arguments?");
10971*67e74705SXin Li return;
10972*67e74705SXin Li }
10973*67e74705SXin Li S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
10974*67e74705SXin Li /*SuppressUsedConversions=*/false,
10975*67e74705SXin Li PartialOverloading);
10976*67e74705SXin Li return;
10977*67e74705SXin Li }
10978*67e74705SXin Li
10979*67e74705SXin Li if (FunctionTemplateDecl *FuncTemplate
10980*67e74705SXin Li = dyn_cast<FunctionTemplateDecl>(Callee)) {
10981*67e74705SXin Li S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
10982*67e74705SXin Li ExplicitTemplateArgs, Args, CandidateSet,
10983*67e74705SXin Li /*SuppressUsedConversions=*/false,
10984*67e74705SXin Li PartialOverloading);
10985*67e74705SXin Li return;
10986*67e74705SXin Li }
10987*67e74705SXin Li
10988*67e74705SXin Li assert(!KnownValid && "unhandled case in overloaded call candidate");
10989*67e74705SXin Li }
10990*67e74705SXin Li
10991*67e74705SXin Li /// \brief Add the overload candidates named by callee and/or found by argument
10992*67e74705SXin Li /// dependent lookup to the given overload set.
AddOverloadedCallCandidates(UnresolvedLookupExpr * ULE,ArrayRef<Expr * > Args,OverloadCandidateSet & CandidateSet,bool PartialOverloading)10993*67e74705SXin Li void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
10994*67e74705SXin Li ArrayRef<Expr *> Args,
10995*67e74705SXin Li OverloadCandidateSet &CandidateSet,
10996*67e74705SXin Li bool PartialOverloading) {
10997*67e74705SXin Li
10998*67e74705SXin Li #ifndef NDEBUG
10999*67e74705SXin Li // Verify that ArgumentDependentLookup is consistent with the rules
11000*67e74705SXin Li // in C++0x [basic.lookup.argdep]p3:
11001*67e74705SXin Li //
11002*67e74705SXin Li // Let X be the lookup set produced by unqualified lookup (3.4.1)
11003*67e74705SXin Li // and let Y be the lookup set produced by argument dependent
11004*67e74705SXin Li // lookup (defined as follows). If X contains
11005*67e74705SXin Li //
11006*67e74705SXin Li // -- a declaration of a class member, or
11007*67e74705SXin Li //
11008*67e74705SXin Li // -- a block-scope function declaration that is not a
11009*67e74705SXin Li // using-declaration, or
11010*67e74705SXin Li //
11011*67e74705SXin Li // -- a declaration that is neither a function or a function
11012*67e74705SXin Li // template
11013*67e74705SXin Li //
11014*67e74705SXin Li // then Y is empty.
11015*67e74705SXin Li
11016*67e74705SXin Li if (ULE->requiresADL()) {
11017*67e74705SXin Li for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11018*67e74705SXin Li E = ULE->decls_end(); I != E; ++I) {
11019*67e74705SXin Li assert(!(*I)->getDeclContext()->isRecord());
11020*67e74705SXin Li assert(isa<UsingShadowDecl>(*I) ||
11021*67e74705SXin Li !(*I)->getDeclContext()->isFunctionOrMethod());
11022*67e74705SXin Li assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
11023*67e74705SXin Li }
11024*67e74705SXin Li }
11025*67e74705SXin Li #endif
11026*67e74705SXin Li
11027*67e74705SXin Li // It would be nice to avoid this copy.
11028*67e74705SXin Li TemplateArgumentListInfo TABuffer;
11029*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11030*67e74705SXin Li if (ULE->hasExplicitTemplateArgs()) {
11031*67e74705SXin Li ULE->copyTemplateArgumentsInto(TABuffer);
11032*67e74705SXin Li ExplicitTemplateArgs = &TABuffer;
11033*67e74705SXin Li }
11034*67e74705SXin Li
11035*67e74705SXin Li for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
11036*67e74705SXin Li E = ULE->decls_end(); I != E; ++I)
11037*67e74705SXin Li AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
11038*67e74705SXin Li CandidateSet, PartialOverloading,
11039*67e74705SXin Li /*KnownValid*/ true);
11040*67e74705SXin Li
11041*67e74705SXin Li if (ULE->requiresADL())
11042*67e74705SXin Li AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
11043*67e74705SXin Li Args, ExplicitTemplateArgs,
11044*67e74705SXin Li CandidateSet, PartialOverloading);
11045*67e74705SXin Li }
11046*67e74705SXin Li
11047*67e74705SXin Li /// Determine whether a declaration with the specified name could be moved into
11048*67e74705SXin Li /// a different namespace.
canBeDeclaredInNamespace(const DeclarationName & Name)11049*67e74705SXin Li static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
11050*67e74705SXin Li switch (Name.getCXXOverloadedOperator()) {
11051*67e74705SXin Li case OO_New: case OO_Array_New:
11052*67e74705SXin Li case OO_Delete: case OO_Array_Delete:
11053*67e74705SXin Li return false;
11054*67e74705SXin Li
11055*67e74705SXin Li default:
11056*67e74705SXin Li return true;
11057*67e74705SXin Li }
11058*67e74705SXin Li }
11059*67e74705SXin Li
11060*67e74705SXin Li /// Attempt to recover from an ill-formed use of a non-dependent name in a
11061*67e74705SXin Li /// template, where the non-dependent name was declared after the template
11062*67e74705SXin Li /// was defined. This is common in code written for a compilers which do not
11063*67e74705SXin Li /// correctly implement two-stage name lookup.
11064*67e74705SXin Li ///
11065*67e74705SXin Li /// Returns true if a viable candidate was found and a diagnostic was issued.
11066*67e74705SXin Li static bool
DiagnoseTwoPhaseLookup(Sema & SemaRef,SourceLocation FnLoc,const CXXScopeSpec & SS,LookupResult & R,OverloadCandidateSet::CandidateSetKind CSK,TemplateArgumentListInfo * ExplicitTemplateArgs,ArrayRef<Expr * > Args,bool * DoDiagnoseEmptyLookup=nullptr)11067*67e74705SXin Li DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
11068*67e74705SXin Li const CXXScopeSpec &SS, LookupResult &R,
11069*67e74705SXin Li OverloadCandidateSet::CandidateSetKind CSK,
11070*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs,
11071*67e74705SXin Li ArrayRef<Expr *> Args,
11072*67e74705SXin Li bool *DoDiagnoseEmptyLookup = nullptr) {
11073*67e74705SXin Li if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
11074*67e74705SXin Li return false;
11075*67e74705SXin Li
11076*67e74705SXin Li for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
11077*67e74705SXin Li if (DC->isTransparentContext())
11078*67e74705SXin Li continue;
11079*67e74705SXin Li
11080*67e74705SXin Li SemaRef.LookupQualifiedName(R, DC);
11081*67e74705SXin Li
11082*67e74705SXin Li if (!R.empty()) {
11083*67e74705SXin Li R.suppressDiagnostics();
11084*67e74705SXin Li
11085*67e74705SXin Li if (isa<CXXRecordDecl>(DC)) {
11086*67e74705SXin Li // Don't diagnose names we find in classes; we get much better
11087*67e74705SXin Li // diagnostics for these from DiagnoseEmptyLookup.
11088*67e74705SXin Li R.clear();
11089*67e74705SXin Li if (DoDiagnoseEmptyLookup)
11090*67e74705SXin Li *DoDiagnoseEmptyLookup = true;
11091*67e74705SXin Li return false;
11092*67e74705SXin Li }
11093*67e74705SXin Li
11094*67e74705SXin Li OverloadCandidateSet Candidates(FnLoc, CSK);
11095*67e74705SXin Li for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
11096*67e74705SXin Li AddOverloadedCallCandidate(SemaRef, I.getPair(),
11097*67e74705SXin Li ExplicitTemplateArgs, Args,
11098*67e74705SXin Li Candidates, false, /*KnownValid*/ false);
11099*67e74705SXin Li
11100*67e74705SXin Li OverloadCandidateSet::iterator Best;
11101*67e74705SXin Li if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
11102*67e74705SXin Li // No viable functions. Don't bother the user with notes for functions
11103*67e74705SXin Li // which don't work and shouldn't be found anyway.
11104*67e74705SXin Li R.clear();
11105*67e74705SXin Li return false;
11106*67e74705SXin Li }
11107*67e74705SXin Li
11108*67e74705SXin Li // Find the namespaces where ADL would have looked, and suggest
11109*67e74705SXin Li // declaring the function there instead.
11110*67e74705SXin Li Sema::AssociatedNamespaceSet AssociatedNamespaces;
11111*67e74705SXin Li Sema::AssociatedClassSet AssociatedClasses;
11112*67e74705SXin Li SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
11113*67e74705SXin Li AssociatedNamespaces,
11114*67e74705SXin Li AssociatedClasses);
11115*67e74705SXin Li Sema::AssociatedNamespaceSet SuggestedNamespaces;
11116*67e74705SXin Li if (canBeDeclaredInNamespace(R.getLookupName())) {
11117*67e74705SXin Li DeclContext *Std = SemaRef.getStdNamespace();
11118*67e74705SXin Li for (Sema::AssociatedNamespaceSet::iterator
11119*67e74705SXin Li it = AssociatedNamespaces.begin(),
11120*67e74705SXin Li end = AssociatedNamespaces.end(); it != end; ++it) {
11121*67e74705SXin Li // Never suggest declaring a function within namespace 'std'.
11122*67e74705SXin Li if (Std && Std->Encloses(*it))
11123*67e74705SXin Li continue;
11124*67e74705SXin Li
11125*67e74705SXin Li // Never suggest declaring a function within a namespace with a
11126*67e74705SXin Li // reserved name, like __gnu_cxx.
11127*67e74705SXin Li NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
11128*67e74705SXin Li if (NS &&
11129*67e74705SXin Li NS->getQualifiedNameAsString().find("__") != std::string::npos)
11130*67e74705SXin Li continue;
11131*67e74705SXin Li
11132*67e74705SXin Li SuggestedNamespaces.insert(*it);
11133*67e74705SXin Li }
11134*67e74705SXin Li }
11135*67e74705SXin Li
11136*67e74705SXin Li SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
11137*67e74705SXin Li << R.getLookupName();
11138*67e74705SXin Li if (SuggestedNamespaces.empty()) {
11139*67e74705SXin Li SemaRef.Diag(Best->Function->getLocation(),
11140*67e74705SXin Li diag::note_not_found_by_two_phase_lookup)
11141*67e74705SXin Li << R.getLookupName() << 0;
11142*67e74705SXin Li } else if (SuggestedNamespaces.size() == 1) {
11143*67e74705SXin Li SemaRef.Diag(Best->Function->getLocation(),
11144*67e74705SXin Li diag::note_not_found_by_two_phase_lookup)
11145*67e74705SXin Li << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
11146*67e74705SXin Li } else {
11147*67e74705SXin Li // FIXME: It would be useful to list the associated namespaces here,
11148*67e74705SXin Li // but the diagnostics infrastructure doesn't provide a way to produce
11149*67e74705SXin Li // a localized representation of a list of items.
11150*67e74705SXin Li SemaRef.Diag(Best->Function->getLocation(),
11151*67e74705SXin Li diag::note_not_found_by_two_phase_lookup)
11152*67e74705SXin Li << R.getLookupName() << 2;
11153*67e74705SXin Li }
11154*67e74705SXin Li
11155*67e74705SXin Li // Try to recover by calling this function.
11156*67e74705SXin Li return true;
11157*67e74705SXin Li }
11158*67e74705SXin Li
11159*67e74705SXin Li R.clear();
11160*67e74705SXin Li }
11161*67e74705SXin Li
11162*67e74705SXin Li return false;
11163*67e74705SXin Li }
11164*67e74705SXin Li
11165*67e74705SXin Li /// Attempt to recover from ill-formed use of a non-dependent operator in a
11166*67e74705SXin Li /// template, where the non-dependent operator was declared after the template
11167*67e74705SXin Li /// was defined.
11168*67e74705SXin Li ///
11169*67e74705SXin Li /// Returns true if a viable candidate was found and a diagnostic was issued.
11170*67e74705SXin Li static bool
DiagnoseTwoPhaseOperatorLookup(Sema & SemaRef,OverloadedOperatorKind Op,SourceLocation OpLoc,ArrayRef<Expr * > Args)11171*67e74705SXin Li DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
11172*67e74705SXin Li SourceLocation OpLoc,
11173*67e74705SXin Li ArrayRef<Expr *> Args) {
11174*67e74705SXin Li DeclarationName OpName =
11175*67e74705SXin Li SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
11176*67e74705SXin Li LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
11177*67e74705SXin Li return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
11178*67e74705SXin Li OverloadCandidateSet::CSK_Operator,
11179*67e74705SXin Li /*ExplicitTemplateArgs=*/nullptr, Args);
11180*67e74705SXin Li }
11181*67e74705SXin Li
11182*67e74705SXin Li namespace {
11183*67e74705SXin Li class BuildRecoveryCallExprRAII {
11184*67e74705SXin Li Sema &SemaRef;
11185*67e74705SXin Li public:
BuildRecoveryCallExprRAII(Sema & S)11186*67e74705SXin Li BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
11187*67e74705SXin Li assert(SemaRef.IsBuildingRecoveryCallExpr == false);
11188*67e74705SXin Li SemaRef.IsBuildingRecoveryCallExpr = true;
11189*67e74705SXin Li }
11190*67e74705SXin Li
~BuildRecoveryCallExprRAII()11191*67e74705SXin Li ~BuildRecoveryCallExprRAII() {
11192*67e74705SXin Li SemaRef.IsBuildingRecoveryCallExpr = false;
11193*67e74705SXin Li }
11194*67e74705SXin Li };
11195*67e74705SXin Li
11196*67e74705SXin Li }
11197*67e74705SXin Li
11198*67e74705SXin Li static std::unique_ptr<CorrectionCandidateCallback>
MakeValidator(Sema & SemaRef,MemberExpr * ME,size_t NumArgs,bool HasTemplateArgs,bool AllowTypoCorrection)11199*67e74705SXin Li MakeValidator(Sema &SemaRef, MemberExpr *ME, size_t NumArgs,
11200*67e74705SXin Li bool HasTemplateArgs, bool AllowTypoCorrection) {
11201*67e74705SXin Li if (!AllowTypoCorrection)
11202*67e74705SXin Li return llvm::make_unique<NoTypoCorrectionCCC>();
11203*67e74705SXin Li return llvm::make_unique<FunctionCallFilterCCC>(SemaRef, NumArgs,
11204*67e74705SXin Li HasTemplateArgs, ME);
11205*67e74705SXin Li }
11206*67e74705SXin Li
11207*67e74705SXin Li /// Attempts to recover from a call where no functions were found.
11208*67e74705SXin Li ///
11209*67e74705SXin Li /// Returns true if new candidates were found.
11210*67e74705SXin Li static ExprResult
BuildRecoveryCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MutableArrayRef<Expr * > Args,SourceLocation RParenLoc,bool EmptyLookup,bool AllowTypoCorrection)11211*67e74705SXin Li BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11212*67e74705SXin Li UnresolvedLookupExpr *ULE,
11213*67e74705SXin Li SourceLocation LParenLoc,
11214*67e74705SXin Li MutableArrayRef<Expr *> Args,
11215*67e74705SXin Li SourceLocation RParenLoc,
11216*67e74705SXin Li bool EmptyLookup, bool AllowTypoCorrection) {
11217*67e74705SXin Li // Do not try to recover if it is already building a recovery call.
11218*67e74705SXin Li // This stops infinite loops for template instantiations like
11219*67e74705SXin Li //
11220*67e74705SXin Li // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
11221*67e74705SXin Li // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
11222*67e74705SXin Li //
11223*67e74705SXin Li if (SemaRef.IsBuildingRecoveryCallExpr)
11224*67e74705SXin Li return ExprError();
11225*67e74705SXin Li BuildRecoveryCallExprRAII RCE(SemaRef);
11226*67e74705SXin Li
11227*67e74705SXin Li CXXScopeSpec SS;
11228*67e74705SXin Li SS.Adopt(ULE->getQualifierLoc());
11229*67e74705SXin Li SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
11230*67e74705SXin Li
11231*67e74705SXin Li TemplateArgumentListInfo TABuffer;
11232*67e74705SXin Li TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
11233*67e74705SXin Li if (ULE->hasExplicitTemplateArgs()) {
11234*67e74705SXin Li ULE->copyTemplateArgumentsInto(TABuffer);
11235*67e74705SXin Li ExplicitTemplateArgs = &TABuffer;
11236*67e74705SXin Li }
11237*67e74705SXin Li
11238*67e74705SXin Li LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
11239*67e74705SXin Li Sema::LookupOrdinaryName);
11240*67e74705SXin Li bool DoDiagnoseEmptyLookup = EmptyLookup;
11241*67e74705SXin Li if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
11242*67e74705SXin Li OverloadCandidateSet::CSK_Normal,
11243*67e74705SXin Li ExplicitTemplateArgs, Args,
11244*67e74705SXin Li &DoDiagnoseEmptyLookup) &&
11245*67e74705SXin Li (!DoDiagnoseEmptyLookup || SemaRef.DiagnoseEmptyLookup(
11246*67e74705SXin Li S, SS, R,
11247*67e74705SXin Li MakeValidator(SemaRef, dyn_cast<MemberExpr>(Fn), Args.size(),
11248*67e74705SXin Li ExplicitTemplateArgs != nullptr, AllowTypoCorrection),
11249*67e74705SXin Li ExplicitTemplateArgs, Args)))
11250*67e74705SXin Li return ExprError();
11251*67e74705SXin Li
11252*67e74705SXin Li assert(!R.empty() && "lookup results empty despite recovery");
11253*67e74705SXin Li
11254*67e74705SXin Li // Build an implicit member call if appropriate. Just drop the
11255*67e74705SXin Li // casts and such from the call, we don't really care.
11256*67e74705SXin Li ExprResult NewFn = ExprError();
11257*67e74705SXin Li if ((*R.begin())->isCXXClassMember())
11258*67e74705SXin Li NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
11259*67e74705SXin Li ExplicitTemplateArgs, S);
11260*67e74705SXin Li else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
11261*67e74705SXin Li NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
11262*67e74705SXin Li ExplicitTemplateArgs);
11263*67e74705SXin Li else
11264*67e74705SXin Li NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
11265*67e74705SXin Li
11266*67e74705SXin Li if (NewFn.isInvalid())
11267*67e74705SXin Li return ExprError();
11268*67e74705SXin Li
11269*67e74705SXin Li // This shouldn't cause an infinite loop because we're giving it
11270*67e74705SXin Li // an expression with viable lookup results, which should never
11271*67e74705SXin Li // end up here.
11272*67e74705SXin Li return SemaRef.ActOnCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
11273*67e74705SXin Li MultiExprArg(Args.data(), Args.size()),
11274*67e74705SXin Li RParenLoc);
11275*67e74705SXin Li }
11276*67e74705SXin Li
11277*67e74705SXin Li /// \brief Constructs and populates an OverloadedCandidateSet from
11278*67e74705SXin Li /// the given function.
11279*67e74705SXin Li /// \returns true when an the ExprResult output parameter has been set.
buildOverloadedCallSet(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,MultiExprArg Args,SourceLocation RParenLoc,OverloadCandidateSet * CandidateSet,ExprResult * Result)11280*67e74705SXin Li bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
11281*67e74705SXin Li UnresolvedLookupExpr *ULE,
11282*67e74705SXin Li MultiExprArg Args,
11283*67e74705SXin Li SourceLocation RParenLoc,
11284*67e74705SXin Li OverloadCandidateSet *CandidateSet,
11285*67e74705SXin Li ExprResult *Result) {
11286*67e74705SXin Li #ifndef NDEBUG
11287*67e74705SXin Li if (ULE->requiresADL()) {
11288*67e74705SXin Li // To do ADL, we must have found an unqualified name.
11289*67e74705SXin Li assert(!ULE->getQualifier() && "qualified name with ADL");
11290*67e74705SXin Li
11291*67e74705SXin Li // We don't perform ADL for implicit declarations of builtins.
11292*67e74705SXin Li // Verify that this was correctly set up.
11293*67e74705SXin Li FunctionDecl *F;
11294*67e74705SXin Li if (ULE->decls_begin() + 1 == ULE->decls_end() &&
11295*67e74705SXin Li (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
11296*67e74705SXin Li F->getBuiltinID() && F->isImplicit())
11297*67e74705SXin Li llvm_unreachable("performing ADL for builtin");
11298*67e74705SXin Li
11299*67e74705SXin Li // We don't perform ADL in C.
11300*67e74705SXin Li assert(getLangOpts().CPlusPlus && "ADL enabled in C");
11301*67e74705SXin Li }
11302*67e74705SXin Li #endif
11303*67e74705SXin Li
11304*67e74705SXin Li UnbridgedCastsSet UnbridgedCasts;
11305*67e74705SXin Li if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
11306*67e74705SXin Li *Result = ExprError();
11307*67e74705SXin Li return true;
11308*67e74705SXin Li }
11309*67e74705SXin Li
11310*67e74705SXin Li // Add the functions denoted by the callee to the set of candidate
11311*67e74705SXin Li // functions, including those from argument-dependent lookup.
11312*67e74705SXin Li AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
11313*67e74705SXin Li
11314*67e74705SXin Li if (getLangOpts().MSVCCompat &&
11315*67e74705SXin Li CurContext->isDependentContext() && !isSFINAEContext() &&
11316*67e74705SXin Li (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
11317*67e74705SXin Li
11318*67e74705SXin Li OverloadCandidateSet::iterator Best;
11319*67e74705SXin Li if (CandidateSet->empty() ||
11320*67e74705SXin Li CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best) ==
11321*67e74705SXin Li OR_No_Viable_Function) {
11322*67e74705SXin Li // In Microsoft mode, if we are inside a template class member function then
11323*67e74705SXin Li // create a type dependent CallExpr. The goal is to postpone name lookup
11324*67e74705SXin Li // to instantiation time to be able to search into type dependent base
11325*67e74705SXin Li // classes.
11326*67e74705SXin Li CallExpr *CE = new (Context) CallExpr(
11327*67e74705SXin Li Context, Fn, Args, Context.DependentTy, VK_RValue, RParenLoc);
11328*67e74705SXin Li CE->setTypeDependent(true);
11329*67e74705SXin Li CE->setValueDependent(true);
11330*67e74705SXin Li CE->setInstantiationDependent(true);
11331*67e74705SXin Li *Result = CE;
11332*67e74705SXin Li return true;
11333*67e74705SXin Li }
11334*67e74705SXin Li }
11335*67e74705SXin Li
11336*67e74705SXin Li if (CandidateSet->empty())
11337*67e74705SXin Li return false;
11338*67e74705SXin Li
11339*67e74705SXin Li UnbridgedCasts.restore();
11340*67e74705SXin Li return false;
11341*67e74705SXin Li }
11342*67e74705SXin Li
11343*67e74705SXin Li /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
11344*67e74705SXin Li /// the completed call expression. If overload resolution fails, emits
11345*67e74705SXin Li /// diagnostics and returns ExprError()
FinishOverloadedCallExpr(Sema & SemaRef,Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,OverloadCandidateSet * CandidateSet,OverloadCandidateSet::iterator * Best,OverloadingResult OverloadResult,bool AllowTypoCorrection)11346*67e74705SXin Li static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
11347*67e74705SXin Li UnresolvedLookupExpr *ULE,
11348*67e74705SXin Li SourceLocation LParenLoc,
11349*67e74705SXin Li MultiExprArg Args,
11350*67e74705SXin Li SourceLocation RParenLoc,
11351*67e74705SXin Li Expr *ExecConfig,
11352*67e74705SXin Li OverloadCandidateSet *CandidateSet,
11353*67e74705SXin Li OverloadCandidateSet::iterator *Best,
11354*67e74705SXin Li OverloadingResult OverloadResult,
11355*67e74705SXin Li bool AllowTypoCorrection) {
11356*67e74705SXin Li if (CandidateSet->empty())
11357*67e74705SXin Li return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
11358*67e74705SXin Li RParenLoc, /*EmptyLookup=*/true,
11359*67e74705SXin Li AllowTypoCorrection);
11360*67e74705SXin Li
11361*67e74705SXin Li switch (OverloadResult) {
11362*67e74705SXin Li case OR_Success: {
11363*67e74705SXin Li FunctionDecl *FDecl = (*Best)->Function;
11364*67e74705SXin Li SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
11365*67e74705SXin Li if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
11366*67e74705SXin Li return ExprError();
11367*67e74705SXin Li Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11368*67e74705SXin Li return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11369*67e74705SXin Li ExecConfig);
11370*67e74705SXin Li }
11371*67e74705SXin Li
11372*67e74705SXin Li case OR_No_Viable_Function: {
11373*67e74705SXin Li // Try to recover by looking for viable functions which the user might
11374*67e74705SXin Li // have meant to call.
11375*67e74705SXin Li ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
11376*67e74705SXin Li Args, RParenLoc,
11377*67e74705SXin Li /*EmptyLookup=*/false,
11378*67e74705SXin Li AllowTypoCorrection);
11379*67e74705SXin Li if (!Recovery.isInvalid())
11380*67e74705SXin Li return Recovery;
11381*67e74705SXin Li
11382*67e74705SXin Li // If the user passes in a function that we can't take the address of, we
11383*67e74705SXin Li // generally end up emitting really bad error messages. Here, we attempt to
11384*67e74705SXin Li // emit better ones.
11385*67e74705SXin Li for (const Expr *Arg : Args) {
11386*67e74705SXin Li if (!Arg->getType()->isFunctionType())
11387*67e74705SXin Li continue;
11388*67e74705SXin Li if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
11389*67e74705SXin Li auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
11390*67e74705SXin Li if (FD &&
11391*67e74705SXin Li !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
11392*67e74705SXin Li Arg->getExprLoc()))
11393*67e74705SXin Li return ExprError();
11394*67e74705SXin Li }
11395*67e74705SXin Li }
11396*67e74705SXin Li
11397*67e74705SXin Li SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_no_viable_function_in_call)
11398*67e74705SXin Li << ULE->getName() << Fn->getSourceRange();
11399*67e74705SXin Li CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11400*67e74705SXin Li break;
11401*67e74705SXin Li }
11402*67e74705SXin Li
11403*67e74705SXin Li case OR_Ambiguous:
11404*67e74705SXin Li SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
11405*67e74705SXin Li << ULE->getName() << Fn->getSourceRange();
11406*67e74705SXin Li CandidateSet->NoteCandidates(SemaRef, OCD_ViableCandidates, Args);
11407*67e74705SXin Li break;
11408*67e74705SXin Li
11409*67e74705SXin Li case OR_Deleted: {
11410*67e74705SXin Li SemaRef.Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
11411*67e74705SXin Li << (*Best)->Function->isDeleted()
11412*67e74705SXin Li << ULE->getName()
11413*67e74705SXin Li << SemaRef.getDeletedOrUnavailableSuffix((*Best)->Function)
11414*67e74705SXin Li << Fn->getSourceRange();
11415*67e74705SXin Li CandidateSet->NoteCandidates(SemaRef, OCD_AllCandidates, Args);
11416*67e74705SXin Li
11417*67e74705SXin Li // We emitted an error for the unvailable/deleted function call but keep
11418*67e74705SXin Li // the call in the AST.
11419*67e74705SXin Li FunctionDecl *FDecl = (*Best)->Function;
11420*67e74705SXin Li Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
11421*67e74705SXin Li return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
11422*67e74705SXin Li ExecConfig);
11423*67e74705SXin Li }
11424*67e74705SXin Li }
11425*67e74705SXin Li
11426*67e74705SXin Li // Overload resolution failed.
11427*67e74705SXin Li return ExprError();
11428*67e74705SXin Li }
11429*67e74705SXin Li
markUnaddressableCandidatesUnviable(Sema & S,OverloadCandidateSet & CS)11430*67e74705SXin Li static void markUnaddressableCandidatesUnviable(Sema &S,
11431*67e74705SXin Li OverloadCandidateSet &CS) {
11432*67e74705SXin Li for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
11433*67e74705SXin Li if (I->Viable &&
11434*67e74705SXin Li !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
11435*67e74705SXin Li I->Viable = false;
11436*67e74705SXin Li I->FailureKind = ovl_fail_addr_not_available;
11437*67e74705SXin Li }
11438*67e74705SXin Li }
11439*67e74705SXin Li }
11440*67e74705SXin Li
11441*67e74705SXin Li /// BuildOverloadedCallExpr - Given the call expression that calls Fn
11442*67e74705SXin Li /// (which eventually refers to the declaration Func) and the call
11443*67e74705SXin Li /// arguments Args/NumArgs, attempt to resolve the function call down
11444*67e74705SXin Li /// to a specific function. If overload resolution succeeds, returns
11445*67e74705SXin Li /// the call expression produced by overload resolution.
11446*67e74705SXin Li /// Otherwise, emits diagnostics and returns ExprError.
BuildOverloadedCallExpr(Scope * S,Expr * Fn,UnresolvedLookupExpr * ULE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig,bool AllowTypoCorrection,bool CalleesAddressIsTaken)11447*67e74705SXin Li ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
11448*67e74705SXin Li UnresolvedLookupExpr *ULE,
11449*67e74705SXin Li SourceLocation LParenLoc,
11450*67e74705SXin Li MultiExprArg Args,
11451*67e74705SXin Li SourceLocation RParenLoc,
11452*67e74705SXin Li Expr *ExecConfig,
11453*67e74705SXin Li bool AllowTypoCorrection,
11454*67e74705SXin Li bool CalleesAddressIsTaken) {
11455*67e74705SXin Li OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
11456*67e74705SXin Li OverloadCandidateSet::CSK_Normal);
11457*67e74705SXin Li ExprResult result;
11458*67e74705SXin Li
11459*67e74705SXin Li if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
11460*67e74705SXin Li &result))
11461*67e74705SXin Li return result;
11462*67e74705SXin Li
11463*67e74705SXin Li // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
11464*67e74705SXin Li // functions that aren't addressible are considered unviable.
11465*67e74705SXin Li if (CalleesAddressIsTaken)
11466*67e74705SXin Li markUnaddressableCandidatesUnviable(*this, CandidateSet);
11467*67e74705SXin Li
11468*67e74705SXin Li OverloadCandidateSet::iterator Best;
11469*67e74705SXin Li OverloadingResult OverloadResult =
11470*67e74705SXin Li CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best);
11471*67e74705SXin Li
11472*67e74705SXin Li return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args,
11473*67e74705SXin Li RParenLoc, ExecConfig, &CandidateSet,
11474*67e74705SXin Li &Best, OverloadResult,
11475*67e74705SXin Li AllowTypoCorrection);
11476*67e74705SXin Li }
11477*67e74705SXin Li
IsOverloaded(const UnresolvedSetImpl & Functions)11478*67e74705SXin Li static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
11479*67e74705SXin Li return Functions.size() > 1 ||
11480*67e74705SXin Li (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
11481*67e74705SXin Li }
11482*67e74705SXin Li
11483*67e74705SXin Li /// \brief Create a unary operation that may resolve to an overloaded
11484*67e74705SXin Li /// operator.
11485*67e74705SXin Li ///
11486*67e74705SXin Li /// \param OpLoc The location of the operator itself (e.g., '*').
11487*67e74705SXin Li ///
11488*67e74705SXin Li /// \param Opc The UnaryOperatorKind that describes this operator.
11489*67e74705SXin Li ///
11490*67e74705SXin Li /// \param Fns The set of non-member functions that will be
11491*67e74705SXin Li /// considered by overload resolution. The caller needs to build this
11492*67e74705SXin Li /// set based on the context using, e.g.,
11493*67e74705SXin Li /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11494*67e74705SXin Li /// set should not contain any member functions; those will be added
11495*67e74705SXin Li /// by CreateOverloadedUnaryOp().
11496*67e74705SXin Li ///
11497*67e74705SXin Li /// \param Input The input argument.
11498*67e74705SXin Li ExprResult
CreateOverloadedUnaryOp(SourceLocation OpLoc,UnaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * Input)11499*67e74705SXin Li Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
11500*67e74705SXin Li const UnresolvedSetImpl &Fns,
11501*67e74705SXin Li Expr *Input) {
11502*67e74705SXin Li OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
11503*67e74705SXin Li assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
11504*67e74705SXin Li DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11505*67e74705SXin Li // TODO: provide better source location info.
11506*67e74705SXin Li DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11507*67e74705SXin Li
11508*67e74705SXin Li if (checkPlaceholderForOverload(*this, Input))
11509*67e74705SXin Li return ExprError();
11510*67e74705SXin Li
11511*67e74705SXin Li Expr *Args[2] = { Input, nullptr };
11512*67e74705SXin Li unsigned NumArgs = 1;
11513*67e74705SXin Li
11514*67e74705SXin Li // For post-increment and post-decrement, add the implicit '0' as
11515*67e74705SXin Li // the second argument, so that we know this is a post-increment or
11516*67e74705SXin Li // post-decrement.
11517*67e74705SXin Li if (Opc == UO_PostInc || Opc == UO_PostDec) {
11518*67e74705SXin Li llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
11519*67e74705SXin Li Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
11520*67e74705SXin Li SourceLocation());
11521*67e74705SXin Li NumArgs = 2;
11522*67e74705SXin Li }
11523*67e74705SXin Li
11524*67e74705SXin Li ArrayRef<Expr *> ArgsArray(Args, NumArgs);
11525*67e74705SXin Li
11526*67e74705SXin Li if (Input->isTypeDependent()) {
11527*67e74705SXin Li if (Fns.empty())
11528*67e74705SXin Li return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
11529*67e74705SXin Li VK_RValue, OK_Ordinary, OpLoc);
11530*67e74705SXin Li
11531*67e74705SXin Li CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11532*67e74705SXin Li UnresolvedLookupExpr *Fn
11533*67e74705SXin Li = UnresolvedLookupExpr::Create(Context, NamingClass,
11534*67e74705SXin Li NestedNameSpecifierLoc(), OpNameInfo,
11535*67e74705SXin Li /*ADL*/ true, IsOverloaded(Fns),
11536*67e74705SXin Li Fns.begin(), Fns.end());
11537*67e74705SXin Li return new (Context)
11538*67e74705SXin Li CXXOperatorCallExpr(Context, Op, Fn, ArgsArray, Context.DependentTy,
11539*67e74705SXin Li VK_RValue, OpLoc, false);
11540*67e74705SXin Li }
11541*67e74705SXin Li
11542*67e74705SXin Li // Build an empty overload set.
11543*67e74705SXin Li OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11544*67e74705SXin Li
11545*67e74705SXin Li // Add the candidates from the given function set.
11546*67e74705SXin Li AddFunctionCandidates(Fns, ArgsArray, CandidateSet);
11547*67e74705SXin Li
11548*67e74705SXin Li // Add operator candidates that are member functions.
11549*67e74705SXin Li AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11550*67e74705SXin Li
11551*67e74705SXin Li // Add candidates from ADL.
11552*67e74705SXin Li AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
11553*67e74705SXin Li /*ExplicitTemplateArgs*/nullptr,
11554*67e74705SXin Li CandidateSet);
11555*67e74705SXin Li
11556*67e74705SXin Li // Add builtin operator candidates.
11557*67e74705SXin Li AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
11558*67e74705SXin Li
11559*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
11560*67e74705SXin Li
11561*67e74705SXin Li // Perform overload resolution.
11562*67e74705SXin Li OverloadCandidateSet::iterator Best;
11563*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11564*67e74705SXin Li case OR_Success: {
11565*67e74705SXin Li // We found a built-in operator or an overloaded operator.
11566*67e74705SXin Li FunctionDecl *FnDecl = Best->Function;
11567*67e74705SXin Li
11568*67e74705SXin Li if (FnDecl) {
11569*67e74705SXin Li // We matched an overloaded operator. Build a call to that
11570*67e74705SXin Li // operator.
11571*67e74705SXin Li
11572*67e74705SXin Li // Convert the arguments.
11573*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11574*67e74705SXin Li CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
11575*67e74705SXin Li
11576*67e74705SXin Li ExprResult InputRes =
11577*67e74705SXin Li PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
11578*67e74705SXin Li Best->FoundDecl, Method);
11579*67e74705SXin Li if (InputRes.isInvalid())
11580*67e74705SXin Li return ExprError();
11581*67e74705SXin Li Input = InputRes.get();
11582*67e74705SXin Li } else {
11583*67e74705SXin Li // Convert the arguments.
11584*67e74705SXin Li ExprResult InputInit
11585*67e74705SXin Li = PerformCopyInitialization(InitializedEntity::InitializeParameter(
11586*67e74705SXin Li Context,
11587*67e74705SXin Li FnDecl->getParamDecl(0)),
11588*67e74705SXin Li SourceLocation(),
11589*67e74705SXin Li Input);
11590*67e74705SXin Li if (InputInit.isInvalid())
11591*67e74705SXin Li return ExprError();
11592*67e74705SXin Li Input = InputInit.get();
11593*67e74705SXin Li }
11594*67e74705SXin Li
11595*67e74705SXin Li // Build the actual expression node.
11596*67e74705SXin Li ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
11597*67e74705SXin Li HadMultipleCandidates, OpLoc);
11598*67e74705SXin Li if (FnExpr.isInvalid())
11599*67e74705SXin Li return ExprError();
11600*67e74705SXin Li
11601*67e74705SXin Li // Determine the result type.
11602*67e74705SXin Li QualType ResultTy = FnDecl->getReturnType();
11603*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11604*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
11605*67e74705SXin Li
11606*67e74705SXin Li Args[0] = Input;
11607*67e74705SXin Li CallExpr *TheCall =
11608*67e74705SXin Li new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(), ArgsArray,
11609*67e74705SXin Li ResultTy, VK, OpLoc, false);
11610*67e74705SXin Li
11611*67e74705SXin Li if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
11612*67e74705SXin Li return ExprError();
11613*67e74705SXin Li
11614*67e74705SXin Li return MaybeBindToTemporary(TheCall);
11615*67e74705SXin Li } else {
11616*67e74705SXin Li // We matched a built-in operator. Convert the arguments, then
11617*67e74705SXin Li // break out so that we will build the appropriate built-in
11618*67e74705SXin Li // operator node.
11619*67e74705SXin Li ExprResult InputRes =
11620*67e74705SXin Li PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
11621*67e74705SXin Li Best->Conversions[0], AA_Passing);
11622*67e74705SXin Li if (InputRes.isInvalid())
11623*67e74705SXin Li return ExprError();
11624*67e74705SXin Li Input = InputRes.get();
11625*67e74705SXin Li break;
11626*67e74705SXin Li }
11627*67e74705SXin Li }
11628*67e74705SXin Li
11629*67e74705SXin Li case OR_No_Viable_Function:
11630*67e74705SXin Li // This is an erroneous use of an operator which can be overloaded by
11631*67e74705SXin Li // a non-member function. Check for non-member operators which were
11632*67e74705SXin Li // defined too late to be candidates.
11633*67e74705SXin Li if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
11634*67e74705SXin Li // FIXME: Recover by calling the found function.
11635*67e74705SXin Li return ExprError();
11636*67e74705SXin Li
11637*67e74705SXin Li // No viable function; fall through to handling this as a
11638*67e74705SXin Li // built-in operator, which will produce an error message for us.
11639*67e74705SXin Li break;
11640*67e74705SXin Li
11641*67e74705SXin Li case OR_Ambiguous:
11642*67e74705SXin Li Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
11643*67e74705SXin Li << UnaryOperator::getOpcodeStr(Opc)
11644*67e74705SXin Li << Input->getType()
11645*67e74705SXin Li << Input->getSourceRange();
11646*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, ArgsArray,
11647*67e74705SXin Li UnaryOperator::getOpcodeStr(Opc), OpLoc);
11648*67e74705SXin Li return ExprError();
11649*67e74705SXin Li
11650*67e74705SXin Li case OR_Deleted:
11651*67e74705SXin Li Diag(OpLoc, diag::err_ovl_deleted_oper)
11652*67e74705SXin Li << Best->Function->isDeleted()
11653*67e74705SXin Li << UnaryOperator::getOpcodeStr(Opc)
11654*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
11655*67e74705SXin Li << Input->getSourceRange();
11656*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, ArgsArray,
11657*67e74705SXin Li UnaryOperator::getOpcodeStr(Opc), OpLoc);
11658*67e74705SXin Li return ExprError();
11659*67e74705SXin Li }
11660*67e74705SXin Li
11661*67e74705SXin Li // Either we found no viable overloaded operator or we matched a
11662*67e74705SXin Li // built-in operator. In either case, fall through to trying to
11663*67e74705SXin Li // build a built-in operation.
11664*67e74705SXin Li return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
11665*67e74705SXin Li }
11666*67e74705SXin Li
11667*67e74705SXin Li /// \brief Create a binary operation that may resolve to an overloaded
11668*67e74705SXin Li /// operator.
11669*67e74705SXin Li ///
11670*67e74705SXin Li /// \param OpLoc The location of the operator itself (e.g., '+').
11671*67e74705SXin Li ///
11672*67e74705SXin Li /// \param Opc The BinaryOperatorKind that describes this operator.
11673*67e74705SXin Li ///
11674*67e74705SXin Li /// \param Fns The set of non-member functions that will be
11675*67e74705SXin Li /// considered by overload resolution. The caller needs to build this
11676*67e74705SXin Li /// set based on the context using, e.g.,
11677*67e74705SXin Li /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
11678*67e74705SXin Li /// set should not contain any member functions; those will be added
11679*67e74705SXin Li /// by CreateOverloadedBinOp().
11680*67e74705SXin Li ///
11681*67e74705SXin Li /// \param LHS Left-hand argument.
11682*67e74705SXin Li /// \param RHS Right-hand argument.
11683*67e74705SXin Li ExprResult
CreateOverloadedBinOp(SourceLocation OpLoc,BinaryOperatorKind Opc,const UnresolvedSetImpl & Fns,Expr * LHS,Expr * RHS)11684*67e74705SXin Li Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
11685*67e74705SXin Li BinaryOperatorKind Opc,
11686*67e74705SXin Li const UnresolvedSetImpl &Fns,
11687*67e74705SXin Li Expr *LHS, Expr *RHS) {
11688*67e74705SXin Li Expr *Args[2] = { LHS, RHS };
11689*67e74705SXin Li LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
11690*67e74705SXin Li
11691*67e74705SXin Li OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
11692*67e74705SXin Li DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
11693*67e74705SXin Li
11694*67e74705SXin Li // If either side is type-dependent, create an appropriate dependent
11695*67e74705SXin Li // expression.
11696*67e74705SXin Li if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11697*67e74705SXin Li if (Fns.empty()) {
11698*67e74705SXin Li // If there are no functions to store, just build a dependent
11699*67e74705SXin Li // BinaryOperator or CompoundAssignment.
11700*67e74705SXin Li if (Opc <= BO_Assign || Opc > BO_OrAssign)
11701*67e74705SXin Li return new (Context) BinaryOperator(
11702*67e74705SXin Li Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
11703*67e74705SXin Li OpLoc, FPFeatures.fp_contract);
11704*67e74705SXin Li
11705*67e74705SXin Li return new (Context) CompoundAssignOperator(
11706*67e74705SXin Li Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
11707*67e74705SXin Li Context.DependentTy, Context.DependentTy, OpLoc,
11708*67e74705SXin Li FPFeatures.fp_contract);
11709*67e74705SXin Li }
11710*67e74705SXin Li
11711*67e74705SXin Li // FIXME: save results of ADL from here?
11712*67e74705SXin Li CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11713*67e74705SXin Li // TODO: provide better source location info in DNLoc component.
11714*67e74705SXin Li DeclarationNameInfo OpNameInfo(OpName, OpLoc);
11715*67e74705SXin Li UnresolvedLookupExpr *Fn
11716*67e74705SXin Li = UnresolvedLookupExpr::Create(Context, NamingClass,
11717*67e74705SXin Li NestedNameSpecifierLoc(), OpNameInfo,
11718*67e74705SXin Li /*ADL*/ true, IsOverloaded(Fns),
11719*67e74705SXin Li Fns.begin(), Fns.end());
11720*67e74705SXin Li return new (Context)
11721*67e74705SXin Li CXXOperatorCallExpr(Context, Op, Fn, Args, Context.DependentTy,
11722*67e74705SXin Li VK_RValue, OpLoc, FPFeatures.fp_contract);
11723*67e74705SXin Li }
11724*67e74705SXin Li
11725*67e74705SXin Li // Always do placeholder-like conversions on the RHS.
11726*67e74705SXin Li if (checkPlaceholderForOverload(*this, Args[1]))
11727*67e74705SXin Li return ExprError();
11728*67e74705SXin Li
11729*67e74705SXin Li // Do placeholder-like conversion on the LHS; note that we should
11730*67e74705SXin Li // not get here with a PseudoObject LHS.
11731*67e74705SXin Li assert(Args[0]->getObjectKind() != OK_ObjCProperty);
11732*67e74705SXin Li if (checkPlaceholderForOverload(*this, Args[0]))
11733*67e74705SXin Li return ExprError();
11734*67e74705SXin Li
11735*67e74705SXin Li // If this is the assignment operator, we only perform overload resolution
11736*67e74705SXin Li // if the left-hand side is a class or enumeration type. This is actually
11737*67e74705SXin Li // a hack. The standard requires that we do overload resolution between the
11738*67e74705SXin Li // various built-in candidates, but as DR507 points out, this can lead to
11739*67e74705SXin Li // problems. So we do it this way, which pretty much follows what GCC does.
11740*67e74705SXin Li // Note that we go the traditional code path for compound assignment forms.
11741*67e74705SXin Li if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
11742*67e74705SXin Li return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11743*67e74705SXin Li
11744*67e74705SXin Li // If this is the .* operator, which is not overloadable, just
11745*67e74705SXin Li // create a built-in binary operator.
11746*67e74705SXin Li if (Opc == BO_PtrMemD)
11747*67e74705SXin Li return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11748*67e74705SXin Li
11749*67e74705SXin Li // Build an empty overload set.
11750*67e74705SXin Li OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
11751*67e74705SXin Li
11752*67e74705SXin Li // Add the candidates from the given function set.
11753*67e74705SXin Li AddFunctionCandidates(Fns, Args, CandidateSet);
11754*67e74705SXin Li
11755*67e74705SXin Li // Add operator candidates that are member functions.
11756*67e74705SXin Li AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11757*67e74705SXin Li
11758*67e74705SXin Li // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
11759*67e74705SXin Li // performed for an assignment operator (nor for operator[] nor operator->,
11760*67e74705SXin Li // which don't get here).
11761*67e74705SXin Li if (Opc != BO_Assign)
11762*67e74705SXin Li AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
11763*67e74705SXin Li /*ExplicitTemplateArgs*/ nullptr,
11764*67e74705SXin Li CandidateSet);
11765*67e74705SXin Li
11766*67e74705SXin Li // Add builtin operator candidates.
11767*67e74705SXin Li AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
11768*67e74705SXin Li
11769*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
11770*67e74705SXin Li
11771*67e74705SXin Li // Perform overload resolution.
11772*67e74705SXin Li OverloadCandidateSet::iterator Best;
11773*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
11774*67e74705SXin Li case OR_Success: {
11775*67e74705SXin Li // We found a built-in operator or an overloaded operator.
11776*67e74705SXin Li FunctionDecl *FnDecl = Best->Function;
11777*67e74705SXin Li
11778*67e74705SXin Li if (FnDecl) {
11779*67e74705SXin Li // We matched an overloaded operator. Build a call to that
11780*67e74705SXin Li // operator.
11781*67e74705SXin Li
11782*67e74705SXin Li // Convert the arguments.
11783*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
11784*67e74705SXin Li // Best->Access is only meaningful for class members.
11785*67e74705SXin Li CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
11786*67e74705SXin Li
11787*67e74705SXin Li ExprResult Arg1 =
11788*67e74705SXin Li PerformCopyInitialization(
11789*67e74705SXin Li InitializedEntity::InitializeParameter(Context,
11790*67e74705SXin Li FnDecl->getParamDecl(0)),
11791*67e74705SXin Li SourceLocation(), Args[1]);
11792*67e74705SXin Li if (Arg1.isInvalid())
11793*67e74705SXin Li return ExprError();
11794*67e74705SXin Li
11795*67e74705SXin Li ExprResult Arg0 =
11796*67e74705SXin Li PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
11797*67e74705SXin Li Best->FoundDecl, Method);
11798*67e74705SXin Li if (Arg0.isInvalid())
11799*67e74705SXin Li return ExprError();
11800*67e74705SXin Li Args[0] = Arg0.getAs<Expr>();
11801*67e74705SXin Li Args[1] = RHS = Arg1.getAs<Expr>();
11802*67e74705SXin Li } else {
11803*67e74705SXin Li // Convert the arguments.
11804*67e74705SXin Li ExprResult Arg0 = PerformCopyInitialization(
11805*67e74705SXin Li InitializedEntity::InitializeParameter(Context,
11806*67e74705SXin Li FnDecl->getParamDecl(0)),
11807*67e74705SXin Li SourceLocation(), Args[0]);
11808*67e74705SXin Li if (Arg0.isInvalid())
11809*67e74705SXin Li return ExprError();
11810*67e74705SXin Li
11811*67e74705SXin Li ExprResult Arg1 =
11812*67e74705SXin Li PerformCopyInitialization(
11813*67e74705SXin Li InitializedEntity::InitializeParameter(Context,
11814*67e74705SXin Li FnDecl->getParamDecl(1)),
11815*67e74705SXin Li SourceLocation(), Args[1]);
11816*67e74705SXin Li if (Arg1.isInvalid())
11817*67e74705SXin Li return ExprError();
11818*67e74705SXin Li Args[0] = LHS = Arg0.getAs<Expr>();
11819*67e74705SXin Li Args[1] = RHS = Arg1.getAs<Expr>();
11820*67e74705SXin Li }
11821*67e74705SXin Li
11822*67e74705SXin Li // Build the actual expression node.
11823*67e74705SXin Li ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
11824*67e74705SXin Li Best->FoundDecl,
11825*67e74705SXin Li HadMultipleCandidates, OpLoc);
11826*67e74705SXin Li if (FnExpr.isInvalid())
11827*67e74705SXin Li return ExprError();
11828*67e74705SXin Li
11829*67e74705SXin Li // Determine the result type.
11830*67e74705SXin Li QualType ResultTy = FnDecl->getReturnType();
11831*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
11832*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
11833*67e74705SXin Li
11834*67e74705SXin Li CXXOperatorCallExpr *TheCall =
11835*67e74705SXin Li new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.get(),
11836*67e74705SXin Li Args, ResultTy, VK, OpLoc,
11837*67e74705SXin Li FPFeatures.fp_contract);
11838*67e74705SXin Li
11839*67e74705SXin Li if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
11840*67e74705SXin Li FnDecl))
11841*67e74705SXin Li return ExprError();
11842*67e74705SXin Li
11843*67e74705SXin Li ArrayRef<const Expr *> ArgsArray(Args, 2);
11844*67e74705SXin Li // Cut off the implicit 'this'.
11845*67e74705SXin Li if (isa<CXXMethodDecl>(FnDecl))
11846*67e74705SXin Li ArgsArray = ArgsArray.slice(1);
11847*67e74705SXin Li
11848*67e74705SXin Li // Check for a self move.
11849*67e74705SXin Li if (Op == OO_Equal)
11850*67e74705SXin Li DiagnoseSelfMove(Args[0], Args[1], OpLoc);
11851*67e74705SXin Li
11852*67e74705SXin Li checkCall(FnDecl, nullptr, ArgsArray, isa<CXXMethodDecl>(FnDecl), OpLoc,
11853*67e74705SXin Li TheCall->getSourceRange(), VariadicDoesNotApply);
11854*67e74705SXin Li
11855*67e74705SXin Li return MaybeBindToTemporary(TheCall);
11856*67e74705SXin Li } else {
11857*67e74705SXin Li // We matched a built-in operator. Convert the arguments, then
11858*67e74705SXin Li // break out so that we will build the appropriate built-in
11859*67e74705SXin Li // operator node.
11860*67e74705SXin Li ExprResult ArgsRes0 =
11861*67e74705SXin Li PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
11862*67e74705SXin Li Best->Conversions[0], AA_Passing);
11863*67e74705SXin Li if (ArgsRes0.isInvalid())
11864*67e74705SXin Li return ExprError();
11865*67e74705SXin Li Args[0] = ArgsRes0.get();
11866*67e74705SXin Li
11867*67e74705SXin Li ExprResult ArgsRes1 =
11868*67e74705SXin Li PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
11869*67e74705SXin Li Best->Conversions[1], AA_Passing);
11870*67e74705SXin Li if (ArgsRes1.isInvalid())
11871*67e74705SXin Li return ExprError();
11872*67e74705SXin Li Args[1] = ArgsRes1.get();
11873*67e74705SXin Li break;
11874*67e74705SXin Li }
11875*67e74705SXin Li }
11876*67e74705SXin Li
11877*67e74705SXin Li case OR_No_Viable_Function: {
11878*67e74705SXin Li // C++ [over.match.oper]p9:
11879*67e74705SXin Li // If the operator is the operator , [...] and there are no
11880*67e74705SXin Li // viable functions, then the operator is assumed to be the
11881*67e74705SXin Li // built-in operator and interpreted according to clause 5.
11882*67e74705SXin Li if (Opc == BO_Comma)
11883*67e74705SXin Li break;
11884*67e74705SXin Li
11885*67e74705SXin Li // For class as left operand for assignment or compound assigment
11886*67e74705SXin Li // operator do not fall through to handling in built-in, but report that
11887*67e74705SXin Li // no overloaded assignment operator found
11888*67e74705SXin Li ExprResult Result = ExprError();
11889*67e74705SXin Li if (Args[0]->getType()->isRecordType() &&
11890*67e74705SXin Li Opc >= BO_Assign && Opc <= BO_OrAssign) {
11891*67e74705SXin Li Diag(OpLoc, diag::err_ovl_no_viable_oper)
11892*67e74705SXin Li << BinaryOperator::getOpcodeStr(Opc)
11893*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11894*67e74705SXin Li if (Args[0]->getType()->isIncompleteType()) {
11895*67e74705SXin Li Diag(OpLoc, diag::note_assign_lhs_incomplete)
11896*67e74705SXin Li << Args[0]->getType()
11897*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11898*67e74705SXin Li }
11899*67e74705SXin Li } else {
11900*67e74705SXin Li // This is an erroneous use of an operator which can be overloaded by
11901*67e74705SXin Li // a non-member function. Check for non-member operators which were
11902*67e74705SXin Li // defined too late to be candidates.
11903*67e74705SXin Li if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
11904*67e74705SXin Li // FIXME: Recover by calling the found function.
11905*67e74705SXin Li return ExprError();
11906*67e74705SXin Li
11907*67e74705SXin Li // No viable function; try to create a built-in operation, which will
11908*67e74705SXin Li // produce an error. Then, show the non-viable candidates.
11909*67e74705SXin Li Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11910*67e74705SXin Li }
11911*67e74705SXin Li assert(Result.isInvalid() &&
11912*67e74705SXin Li "C++ binary operator overloading is missing candidates!");
11913*67e74705SXin Li if (Result.isInvalid())
11914*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11915*67e74705SXin Li BinaryOperator::getOpcodeStr(Opc), OpLoc);
11916*67e74705SXin Li return Result;
11917*67e74705SXin Li }
11918*67e74705SXin Li
11919*67e74705SXin Li case OR_Ambiguous:
11920*67e74705SXin Li Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary)
11921*67e74705SXin Li << BinaryOperator::getOpcodeStr(Opc)
11922*67e74705SXin Li << Args[0]->getType() << Args[1]->getType()
11923*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11924*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
11925*67e74705SXin Li BinaryOperator::getOpcodeStr(Opc), OpLoc);
11926*67e74705SXin Li return ExprError();
11927*67e74705SXin Li
11928*67e74705SXin Li case OR_Deleted:
11929*67e74705SXin Li if (isImplicitlyDeleted(Best->Function)) {
11930*67e74705SXin Li CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
11931*67e74705SXin Li Diag(OpLoc, diag::err_ovl_deleted_special_oper)
11932*67e74705SXin Li << Context.getRecordType(Method->getParent())
11933*67e74705SXin Li << getSpecialMember(Method);
11934*67e74705SXin Li
11935*67e74705SXin Li // The user probably meant to call this special member. Just
11936*67e74705SXin Li // explain why it's deleted.
11937*67e74705SXin Li NoteDeletedFunction(Method);
11938*67e74705SXin Li return ExprError();
11939*67e74705SXin Li } else {
11940*67e74705SXin Li Diag(OpLoc, diag::err_ovl_deleted_oper)
11941*67e74705SXin Li << Best->Function->isDeleted()
11942*67e74705SXin Li << BinaryOperator::getOpcodeStr(Opc)
11943*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
11944*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
11945*67e74705SXin Li }
11946*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
11947*67e74705SXin Li BinaryOperator::getOpcodeStr(Opc), OpLoc);
11948*67e74705SXin Li return ExprError();
11949*67e74705SXin Li }
11950*67e74705SXin Li
11951*67e74705SXin Li // We matched a built-in operator; build it.
11952*67e74705SXin Li return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
11953*67e74705SXin Li }
11954*67e74705SXin Li
11955*67e74705SXin Li ExprResult
CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,SourceLocation RLoc,Expr * Base,Expr * Idx)11956*67e74705SXin Li Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
11957*67e74705SXin Li SourceLocation RLoc,
11958*67e74705SXin Li Expr *Base, Expr *Idx) {
11959*67e74705SXin Li Expr *Args[2] = { Base, Idx };
11960*67e74705SXin Li DeclarationName OpName =
11961*67e74705SXin Li Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
11962*67e74705SXin Li
11963*67e74705SXin Li // If either side is type-dependent, create an appropriate dependent
11964*67e74705SXin Li // expression.
11965*67e74705SXin Li if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
11966*67e74705SXin Li
11967*67e74705SXin Li CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
11968*67e74705SXin Li // CHECKME: no 'operator' keyword?
11969*67e74705SXin Li DeclarationNameInfo OpNameInfo(OpName, LLoc);
11970*67e74705SXin Li OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
11971*67e74705SXin Li UnresolvedLookupExpr *Fn
11972*67e74705SXin Li = UnresolvedLookupExpr::Create(Context, NamingClass,
11973*67e74705SXin Li NestedNameSpecifierLoc(), OpNameInfo,
11974*67e74705SXin Li /*ADL*/ true, /*Overloaded*/ false,
11975*67e74705SXin Li UnresolvedSetIterator(),
11976*67e74705SXin Li UnresolvedSetIterator());
11977*67e74705SXin Li // Can't add any actual overloads yet
11978*67e74705SXin Li
11979*67e74705SXin Li return new (Context)
11980*67e74705SXin Li CXXOperatorCallExpr(Context, OO_Subscript, Fn, Args,
11981*67e74705SXin Li Context.DependentTy, VK_RValue, RLoc, false);
11982*67e74705SXin Li }
11983*67e74705SXin Li
11984*67e74705SXin Li // Handle placeholders on both operands.
11985*67e74705SXin Li if (checkPlaceholderForOverload(*this, Args[0]))
11986*67e74705SXin Li return ExprError();
11987*67e74705SXin Li if (checkPlaceholderForOverload(*this, Args[1]))
11988*67e74705SXin Li return ExprError();
11989*67e74705SXin Li
11990*67e74705SXin Li // Build an empty overload set.
11991*67e74705SXin Li OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
11992*67e74705SXin Li
11993*67e74705SXin Li // Subscript can only be overloaded as a member function.
11994*67e74705SXin Li
11995*67e74705SXin Li // Add operator candidates that are member functions.
11996*67e74705SXin Li AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
11997*67e74705SXin Li
11998*67e74705SXin Li // Add builtin operator candidates.
11999*67e74705SXin Li AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
12000*67e74705SXin Li
12001*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
12002*67e74705SXin Li
12003*67e74705SXin Li // Perform overload resolution.
12004*67e74705SXin Li OverloadCandidateSet::iterator Best;
12005*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
12006*67e74705SXin Li case OR_Success: {
12007*67e74705SXin Li // We found a built-in operator or an overloaded operator.
12008*67e74705SXin Li FunctionDecl *FnDecl = Best->Function;
12009*67e74705SXin Li
12010*67e74705SXin Li if (FnDecl) {
12011*67e74705SXin Li // We matched an overloaded operator. Build a call to that
12012*67e74705SXin Li // operator.
12013*67e74705SXin Li
12014*67e74705SXin Li CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
12015*67e74705SXin Li
12016*67e74705SXin Li // Convert the arguments.
12017*67e74705SXin Li CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
12018*67e74705SXin Li ExprResult Arg0 =
12019*67e74705SXin Li PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
12020*67e74705SXin Li Best->FoundDecl, Method);
12021*67e74705SXin Li if (Arg0.isInvalid())
12022*67e74705SXin Li return ExprError();
12023*67e74705SXin Li Args[0] = Arg0.get();
12024*67e74705SXin Li
12025*67e74705SXin Li // Convert the arguments.
12026*67e74705SXin Li ExprResult InputInit
12027*67e74705SXin Li = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12028*67e74705SXin Li Context,
12029*67e74705SXin Li FnDecl->getParamDecl(0)),
12030*67e74705SXin Li SourceLocation(),
12031*67e74705SXin Li Args[1]);
12032*67e74705SXin Li if (InputInit.isInvalid())
12033*67e74705SXin Li return ExprError();
12034*67e74705SXin Li
12035*67e74705SXin Li Args[1] = InputInit.getAs<Expr>();
12036*67e74705SXin Li
12037*67e74705SXin Li // Build the actual expression node.
12038*67e74705SXin Li DeclarationNameInfo OpLocInfo(OpName, LLoc);
12039*67e74705SXin Li OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
12040*67e74705SXin Li ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
12041*67e74705SXin Li Best->FoundDecl,
12042*67e74705SXin Li HadMultipleCandidates,
12043*67e74705SXin Li OpLocInfo.getLoc(),
12044*67e74705SXin Li OpLocInfo.getInfo());
12045*67e74705SXin Li if (FnExpr.isInvalid())
12046*67e74705SXin Li return ExprError();
12047*67e74705SXin Li
12048*67e74705SXin Li // Determine the result type
12049*67e74705SXin Li QualType ResultTy = FnDecl->getReturnType();
12050*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12051*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
12052*67e74705SXin Li
12053*67e74705SXin Li CXXOperatorCallExpr *TheCall =
12054*67e74705SXin Li new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
12055*67e74705SXin Li FnExpr.get(), Args,
12056*67e74705SXin Li ResultTy, VK, RLoc,
12057*67e74705SXin Li false);
12058*67e74705SXin Li
12059*67e74705SXin Li if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
12060*67e74705SXin Li return ExprError();
12061*67e74705SXin Li
12062*67e74705SXin Li return MaybeBindToTemporary(TheCall);
12063*67e74705SXin Li } else {
12064*67e74705SXin Li // We matched a built-in operator. Convert the arguments, then
12065*67e74705SXin Li // break out so that we will build the appropriate built-in
12066*67e74705SXin Li // operator node.
12067*67e74705SXin Li ExprResult ArgsRes0 =
12068*67e74705SXin Li PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
12069*67e74705SXin Li Best->Conversions[0], AA_Passing);
12070*67e74705SXin Li if (ArgsRes0.isInvalid())
12071*67e74705SXin Li return ExprError();
12072*67e74705SXin Li Args[0] = ArgsRes0.get();
12073*67e74705SXin Li
12074*67e74705SXin Li ExprResult ArgsRes1 =
12075*67e74705SXin Li PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
12076*67e74705SXin Li Best->Conversions[1], AA_Passing);
12077*67e74705SXin Li if (ArgsRes1.isInvalid())
12078*67e74705SXin Li return ExprError();
12079*67e74705SXin Li Args[1] = ArgsRes1.get();
12080*67e74705SXin Li
12081*67e74705SXin Li break;
12082*67e74705SXin Li }
12083*67e74705SXin Li }
12084*67e74705SXin Li
12085*67e74705SXin Li case OR_No_Viable_Function: {
12086*67e74705SXin Li if (CandidateSet.empty())
12087*67e74705SXin Li Diag(LLoc, diag::err_ovl_no_oper)
12088*67e74705SXin Li << Args[0]->getType() << /*subscript*/ 0
12089*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12090*67e74705SXin Li else
12091*67e74705SXin Li Diag(LLoc, diag::err_ovl_no_viable_subscript)
12092*67e74705SXin Li << Args[0]->getType()
12093*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12094*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12095*67e74705SXin Li "[]", LLoc);
12096*67e74705SXin Li return ExprError();
12097*67e74705SXin Li }
12098*67e74705SXin Li
12099*67e74705SXin Li case OR_Ambiguous:
12100*67e74705SXin Li Diag(LLoc, diag::err_ovl_ambiguous_oper_binary)
12101*67e74705SXin Li << "[]"
12102*67e74705SXin Li << Args[0]->getType() << Args[1]->getType()
12103*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12104*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
12105*67e74705SXin Li "[]", LLoc);
12106*67e74705SXin Li return ExprError();
12107*67e74705SXin Li
12108*67e74705SXin Li case OR_Deleted:
12109*67e74705SXin Li Diag(LLoc, diag::err_ovl_deleted_oper)
12110*67e74705SXin Li << Best->Function->isDeleted() << "[]"
12111*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
12112*67e74705SXin Li << Args[0]->getSourceRange() << Args[1]->getSourceRange();
12113*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
12114*67e74705SXin Li "[]", LLoc);
12115*67e74705SXin Li return ExprError();
12116*67e74705SXin Li }
12117*67e74705SXin Li
12118*67e74705SXin Li // We matched a built-in operator; build it.
12119*67e74705SXin Li return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
12120*67e74705SXin Li }
12121*67e74705SXin Li
12122*67e74705SXin Li /// BuildCallToMemberFunction - Build a call to a member
12123*67e74705SXin Li /// function. MemExpr is the expression that refers to the member
12124*67e74705SXin Li /// function (and includes the object parameter), Args/NumArgs are the
12125*67e74705SXin Li /// arguments to the function call (not including the object
12126*67e74705SXin Li /// parameter). The caller needs to validate that the member
12127*67e74705SXin Li /// expression refers to a non-static member function or an overloaded
12128*67e74705SXin Li /// member function.
12129*67e74705SXin Li ExprResult
BuildCallToMemberFunction(Scope * S,Expr * MemExprE,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)12130*67e74705SXin Li Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
12131*67e74705SXin Li SourceLocation LParenLoc,
12132*67e74705SXin Li MultiExprArg Args,
12133*67e74705SXin Li SourceLocation RParenLoc) {
12134*67e74705SXin Li assert(MemExprE->getType() == Context.BoundMemberTy ||
12135*67e74705SXin Li MemExprE->getType() == Context.OverloadTy);
12136*67e74705SXin Li
12137*67e74705SXin Li // Dig out the member expression. This holds both the object
12138*67e74705SXin Li // argument and the member function we're referring to.
12139*67e74705SXin Li Expr *NakedMemExpr = MemExprE->IgnoreParens();
12140*67e74705SXin Li
12141*67e74705SXin Li // Determine whether this is a call to a pointer-to-member function.
12142*67e74705SXin Li if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
12143*67e74705SXin Li assert(op->getType() == Context.BoundMemberTy);
12144*67e74705SXin Li assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
12145*67e74705SXin Li
12146*67e74705SXin Li QualType fnType =
12147*67e74705SXin Li op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
12148*67e74705SXin Li
12149*67e74705SXin Li const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
12150*67e74705SXin Li QualType resultType = proto->getCallResultType(Context);
12151*67e74705SXin Li ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
12152*67e74705SXin Li
12153*67e74705SXin Li // Check that the object type isn't more qualified than the
12154*67e74705SXin Li // member function we're calling.
12155*67e74705SXin Li Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
12156*67e74705SXin Li
12157*67e74705SXin Li QualType objectType = op->getLHS()->getType();
12158*67e74705SXin Li if (op->getOpcode() == BO_PtrMemI)
12159*67e74705SXin Li objectType = objectType->castAs<PointerType>()->getPointeeType();
12160*67e74705SXin Li Qualifiers objectQuals = objectType.getQualifiers();
12161*67e74705SXin Li
12162*67e74705SXin Li Qualifiers difference = objectQuals - funcQuals;
12163*67e74705SXin Li difference.removeObjCGCAttr();
12164*67e74705SXin Li difference.removeAddressSpace();
12165*67e74705SXin Li if (difference) {
12166*67e74705SXin Li std::string qualsString = difference.getAsString();
12167*67e74705SXin Li Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
12168*67e74705SXin Li << fnType.getUnqualifiedType()
12169*67e74705SXin Li << qualsString
12170*67e74705SXin Li << (qualsString.find(' ') == std::string::npos ? 1 : 2);
12171*67e74705SXin Li }
12172*67e74705SXin Li
12173*67e74705SXin Li CXXMemberCallExpr *call
12174*67e74705SXin Li = new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12175*67e74705SXin Li resultType, valueKind, RParenLoc);
12176*67e74705SXin Li
12177*67e74705SXin Li if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getLocStart(),
12178*67e74705SXin Li call, nullptr))
12179*67e74705SXin Li return ExprError();
12180*67e74705SXin Li
12181*67e74705SXin Li if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
12182*67e74705SXin Li return ExprError();
12183*67e74705SXin Li
12184*67e74705SXin Li if (CheckOtherCall(call, proto))
12185*67e74705SXin Li return ExprError();
12186*67e74705SXin Li
12187*67e74705SXin Li return MaybeBindToTemporary(call);
12188*67e74705SXin Li }
12189*67e74705SXin Li
12190*67e74705SXin Li if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
12191*67e74705SXin Li return new (Context)
12192*67e74705SXin Li CallExpr(Context, MemExprE, Args, Context.VoidTy, VK_RValue, RParenLoc);
12193*67e74705SXin Li
12194*67e74705SXin Li UnbridgedCastsSet UnbridgedCasts;
12195*67e74705SXin Li if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12196*67e74705SXin Li return ExprError();
12197*67e74705SXin Li
12198*67e74705SXin Li MemberExpr *MemExpr;
12199*67e74705SXin Li CXXMethodDecl *Method = nullptr;
12200*67e74705SXin Li DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
12201*67e74705SXin Li NestedNameSpecifier *Qualifier = nullptr;
12202*67e74705SXin Li if (isa<MemberExpr>(NakedMemExpr)) {
12203*67e74705SXin Li MemExpr = cast<MemberExpr>(NakedMemExpr);
12204*67e74705SXin Li Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
12205*67e74705SXin Li FoundDecl = MemExpr->getFoundDecl();
12206*67e74705SXin Li Qualifier = MemExpr->getQualifier();
12207*67e74705SXin Li UnbridgedCasts.restore();
12208*67e74705SXin Li } else {
12209*67e74705SXin Li UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
12210*67e74705SXin Li Qualifier = UnresExpr->getQualifier();
12211*67e74705SXin Li
12212*67e74705SXin Li QualType ObjectType = UnresExpr->getBaseType();
12213*67e74705SXin Li Expr::Classification ObjectClassification
12214*67e74705SXin Li = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
12215*67e74705SXin Li : UnresExpr->getBase()->Classify(Context);
12216*67e74705SXin Li
12217*67e74705SXin Li // Add overload candidates
12218*67e74705SXin Li OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
12219*67e74705SXin Li OverloadCandidateSet::CSK_Normal);
12220*67e74705SXin Li
12221*67e74705SXin Li // FIXME: avoid copy.
12222*67e74705SXin Li TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
12223*67e74705SXin Li if (UnresExpr->hasExplicitTemplateArgs()) {
12224*67e74705SXin Li UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
12225*67e74705SXin Li TemplateArgs = &TemplateArgsBuffer;
12226*67e74705SXin Li }
12227*67e74705SXin Li
12228*67e74705SXin Li for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
12229*67e74705SXin Li E = UnresExpr->decls_end(); I != E; ++I) {
12230*67e74705SXin Li
12231*67e74705SXin Li NamedDecl *Func = *I;
12232*67e74705SXin Li CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
12233*67e74705SXin Li if (isa<UsingShadowDecl>(Func))
12234*67e74705SXin Li Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
12235*67e74705SXin Li
12236*67e74705SXin Li
12237*67e74705SXin Li // Microsoft supports direct constructor calls.
12238*67e74705SXin Li if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
12239*67e74705SXin Li AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
12240*67e74705SXin Li Args, CandidateSet);
12241*67e74705SXin Li } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
12242*67e74705SXin Li // If explicit template arguments were provided, we can't call a
12243*67e74705SXin Li // non-template member function.
12244*67e74705SXin Li if (TemplateArgs)
12245*67e74705SXin Li continue;
12246*67e74705SXin Li
12247*67e74705SXin Li AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
12248*67e74705SXin Li ObjectClassification, Args, CandidateSet,
12249*67e74705SXin Li /*SuppressUserConversions=*/false);
12250*67e74705SXin Li } else {
12251*67e74705SXin Li AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
12252*67e74705SXin Li I.getPair(), ActingDC, TemplateArgs,
12253*67e74705SXin Li ObjectType, ObjectClassification,
12254*67e74705SXin Li Args, CandidateSet,
12255*67e74705SXin Li /*SuppressUsedConversions=*/false);
12256*67e74705SXin Li }
12257*67e74705SXin Li }
12258*67e74705SXin Li
12259*67e74705SXin Li DeclarationName DeclName = UnresExpr->getMemberName();
12260*67e74705SXin Li
12261*67e74705SXin Li UnbridgedCasts.restore();
12262*67e74705SXin Li
12263*67e74705SXin Li OverloadCandidateSet::iterator Best;
12264*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
12265*67e74705SXin Li Best)) {
12266*67e74705SXin Li case OR_Success:
12267*67e74705SXin Li Method = cast<CXXMethodDecl>(Best->Function);
12268*67e74705SXin Li FoundDecl = Best->FoundDecl;
12269*67e74705SXin Li CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
12270*67e74705SXin Li if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
12271*67e74705SXin Li return ExprError();
12272*67e74705SXin Li // If FoundDecl is different from Method (such as if one is a template
12273*67e74705SXin Li // and the other a specialization), make sure DiagnoseUseOfDecl is
12274*67e74705SXin Li // called on both.
12275*67e74705SXin Li // FIXME: This would be more comprehensively addressed by modifying
12276*67e74705SXin Li // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
12277*67e74705SXin Li // being used.
12278*67e74705SXin Li if (Method != FoundDecl.getDecl() &&
12279*67e74705SXin Li DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
12280*67e74705SXin Li return ExprError();
12281*67e74705SXin Li break;
12282*67e74705SXin Li
12283*67e74705SXin Li case OR_No_Viable_Function:
12284*67e74705SXin Li Diag(UnresExpr->getMemberLoc(),
12285*67e74705SXin Li diag::err_ovl_no_viable_member_function_in_call)
12286*67e74705SXin Li << DeclName << MemExprE->getSourceRange();
12287*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12288*67e74705SXin Li // FIXME: Leaking incoming expressions!
12289*67e74705SXin Li return ExprError();
12290*67e74705SXin Li
12291*67e74705SXin Li case OR_Ambiguous:
12292*67e74705SXin Li Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
12293*67e74705SXin Li << DeclName << MemExprE->getSourceRange();
12294*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12295*67e74705SXin Li // FIXME: Leaking incoming expressions!
12296*67e74705SXin Li return ExprError();
12297*67e74705SXin Li
12298*67e74705SXin Li case OR_Deleted:
12299*67e74705SXin Li Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
12300*67e74705SXin Li << Best->Function->isDeleted()
12301*67e74705SXin Li << DeclName
12302*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
12303*67e74705SXin Li << MemExprE->getSourceRange();
12304*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12305*67e74705SXin Li // FIXME: Leaking incoming expressions!
12306*67e74705SXin Li return ExprError();
12307*67e74705SXin Li }
12308*67e74705SXin Li
12309*67e74705SXin Li MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
12310*67e74705SXin Li
12311*67e74705SXin Li // If overload resolution picked a static member, build a
12312*67e74705SXin Li // non-member call based on that function.
12313*67e74705SXin Li if (Method->isStatic()) {
12314*67e74705SXin Li return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
12315*67e74705SXin Li RParenLoc);
12316*67e74705SXin Li }
12317*67e74705SXin Li
12318*67e74705SXin Li MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
12319*67e74705SXin Li }
12320*67e74705SXin Li
12321*67e74705SXin Li QualType ResultType = Method->getReturnType();
12322*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultType);
12323*67e74705SXin Li ResultType = ResultType.getNonLValueExprType(Context);
12324*67e74705SXin Li
12325*67e74705SXin Li assert(Method && "Member call to something that isn't a method?");
12326*67e74705SXin Li CXXMemberCallExpr *TheCall =
12327*67e74705SXin Li new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
12328*67e74705SXin Li ResultType, VK, RParenLoc);
12329*67e74705SXin Li
12330*67e74705SXin Li // (CUDA B.1): Check for invalid calls between targets.
12331*67e74705SXin Li if (getLangOpts().CUDA) {
12332*67e74705SXin Li if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) {
12333*67e74705SXin Li if (CheckCUDATarget(Caller, Method)) {
12334*67e74705SXin Li Diag(MemExpr->getMemberLoc(), diag::err_ref_bad_target)
12335*67e74705SXin Li << IdentifyCUDATarget(Method) << Method->getIdentifier()
12336*67e74705SXin Li << IdentifyCUDATarget(Caller);
12337*67e74705SXin Li return ExprError();
12338*67e74705SXin Li }
12339*67e74705SXin Li }
12340*67e74705SXin Li }
12341*67e74705SXin Li
12342*67e74705SXin Li // Check for a valid return type.
12343*67e74705SXin Li if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
12344*67e74705SXin Li TheCall, Method))
12345*67e74705SXin Li return ExprError();
12346*67e74705SXin Li
12347*67e74705SXin Li // Convert the object argument (for a non-static member function call).
12348*67e74705SXin Li // We only need to do this if there was actually an overload; otherwise
12349*67e74705SXin Li // it was done at lookup.
12350*67e74705SXin Li if (!Method->isStatic()) {
12351*67e74705SXin Li ExprResult ObjectArg =
12352*67e74705SXin Li PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
12353*67e74705SXin Li FoundDecl, Method);
12354*67e74705SXin Li if (ObjectArg.isInvalid())
12355*67e74705SXin Li return ExprError();
12356*67e74705SXin Li MemExpr->setBase(ObjectArg.get());
12357*67e74705SXin Li }
12358*67e74705SXin Li
12359*67e74705SXin Li // Convert the rest of the arguments
12360*67e74705SXin Li const FunctionProtoType *Proto =
12361*67e74705SXin Li Method->getType()->getAs<FunctionProtoType>();
12362*67e74705SXin Li if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
12363*67e74705SXin Li RParenLoc))
12364*67e74705SXin Li return ExprError();
12365*67e74705SXin Li
12366*67e74705SXin Li DiagnoseSentinelCalls(Method, LParenLoc, Args);
12367*67e74705SXin Li
12368*67e74705SXin Li if (CheckFunctionCall(Method, TheCall, Proto))
12369*67e74705SXin Li return ExprError();
12370*67e74705SXin Li
12371*67e74705SXin Li // In the case the method to call was not selected by the overloading
12372*67e74705SXin Li // resolution process, we still need to handle the enable_if attribute. Do
12373*67e74705SXin Li // that here, so it will not hide previous -- and more relevant -- errors
12374*67e74705SXin Li if (isa<MemberExpr>(NakedMemExpr)) {
12375*67e74705SXin Li if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
12376*67e74705SXin Li Diag(MemExprE->getLocStart(),
12377*67e74705SXin Li diag::err_ovl_no_viable_member_function_in_call)
12378*67e74705SXin Li << Method << Method->getSourceRange();
12379*67e74705SXin Li Diag(Method->getLocation(),
12380*67e74705SXin Li diag::note_ovl_candidate_disabled_by_enable_if_attr)
12381*67e74705SXin Li << Attr->getCond()->getSourceRange() << Attr->getMessage();
12382*67e74705SXin Li return ExprError();
12383*67e74705SXin Li }
12384*67e74705SXin Li }
12385*67e74705SXin Li
12386*67e74705SXin Li if ((isa<CXXConstructorDecl>(CurContext) ||
12387*67e74705SXin Li isa<CXXDestructorDecl>(CurContext)) &&
12388*67e74705SXin Li TheCall->getMethodDecl()->isPure()) {
12389*67e74705SXin Li const CXXMethodDecl *MD = TheCall->getMethodDecl();
12390*67e74705SXin Li
12391*67e74705SXin Li if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
12392*67e74705SXin Li MemExpr->performsVirtualDispatch(getLangOpts())) {
12393*67e74705SXin Li Diag(MemExpr->getLocStart(),
12394*67e74705SXin Li diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
12395*67e74705SXin Li << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
12396*67e74705SXin Li << MD->getParent()->getDeclName();
12397*67e74705SXin Li
12398*67e74705SXin Li Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
12399*67e74705SXin Li if (getLangOpts().AppleKext)
12400*67e74705SXin Li Diag(MemExpr->getLocStart(),
12401*67e74705SXin Li diag::note_pure_qualified_call_kext)
12402*67e74705SXin Li << MD->getParent()->getDeclName()
12403*67e74705SXin Li << MD->getDeclName();
12404*67e74705SXin Li }
12405*67e74705SXin Li }
12406*67e74705SXin Li
12407*67e74705SXin Li if (CXXDestructorDecl *DD =
12408*67e74705SXin Li dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
12409*67e74705SXin Li // a->A::f() doesn't go through the vtable, except in AppleKext mode.
12410*67e74705SXin Li bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
12411*67e74705SXin Li CheckVirtualDtorCall(DD, MemExpr->getLocStart(), /*IsDelete=*/false,
12412*67e74705SXin Li CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
12413*67e74705SXin Li MemExpr->getMemberLoc());
12414*67e74705SXin Li }
12415*67e74705SXin Li
12416*67e74705SXin Li return MaybeBindToTemporary(TheCall);
12417*67e74705SXin Li }
12418*67e74705SXin Li
12419*67e74705SXin Li /// BuildCallToObjectOfClassType - Build a call to an object of class
12420*67e74705SXin Li /// type (C++ [over.call.object]), which can end up invoking an
12421*67e74705SXin Li /// overloaded function call operator (@c operator()) or performing a
12422*67e74705SXin Li /// user-defined conversion on the object argument.
12423*67e74705SXin Li ExprResult
BuildCallToObjectOfClassType(Scope * S,Expr * Obj,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc)12424*67e74705SXin Li Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
12425*67e74705SXin Li SourceLocation LParenLoc,
12426*67e74705SXin Li MultiExprArg Args,
12427*67e74705SXin Li SourceLocation RParenLoc) {
12428*67e74705SXin Li if (checkPlaceholderForOverload(*this, Obj))
12429*67e74705SXin Li return ExprError();
12430*67e74705SXin Li ExprResult Object = Obj;
12431*67e74705SXin Li
12432*67e74705SXin Li UnbridgedCastsSet UnbridgedCasts;
12433*67e74705SXin Li if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
12434*67e74705SXin Li return ExprError();
12435*67e74705SXin Li
12436*67e74705SXin Li assert(Object.get()->getType()->isRecordType() &&
12437*67e74705SXin Li "Requires object type argument");
12438*67e74705SXin Li const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
12439*67e74705SXin Li
12440*67e74705SXin Li // C++ [over.call.object]p1:
12441*67e74705SXin Li // If the primary-expression E in the function call syntax
12442*67e74705SXin Li // evaluates to a class object of type "cv T", then the set of
12443*67e74705SXin Li // candidate functions includes at least the function call
12444*67e74705SXin Li // operators of T. The function call operators of T are obtained by
12445*67e74705SXin Li // ordinary lookup of the name operator() in the context of
12446*67e74705SXin Li // (E).operator().
12447*67e74705SXin Li OverloadCandidateSet CandidateSet(LParenLoc,
12448*67e74705SXin Li OverloadCandidateSet::CSK_Operator);
12449*67e74705SXin Li DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
12450*67e74705SXin Li
12451*67e74705SXin Li if (RequireCompleteType(LParenLoc, Object.get()->getType(),
12452*67e74705SXin Li diag::err_incomplete_object_call, Object.get()))
12453*67e74705SXin Li return true;
12454*67e74705SXin Li
12455*67e74705SXin Li LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
12456*67e74705SXin Li LookupQualifiedName(R, Record->getDecl());
12457*67e74705SXin Li R.suppressDiagnostics();
12458*67e74705SXin Li
12459*67e74705SXin Li for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12460*67e74705SXin Li Oper != OperEnd; ++Oper) {
12461*67e74705SXin Li AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
12462*67e74705SXin Li Object.get()->Classify(Context),
12463*67e74705SXin Li Args, CandidateSet,
12464*67e74705SXin Li /*SuppressUserConversions=*/ false);
12465*67e74705SXin Li }
12466*67e74705SXin Li
12467*67e74705SXin Li // C++ [over.call.object]p2:
12468*67e74705SXin Li // In addition, for each (non-explicit in C++0x) conversion function
12469*67e74705SXin Li // declared in T of the form
12470*67e74705SXin Li //
12471*67e74705SXin Li // operator conversion-type-id () cv-qualifier;
12472*67e74705SXin Li //
12473*67e74705SXin Li // where cv-qualifier is the same cv-qualification as, or a
12474*67e74705SXin Li // greater cv-qualification than, cv, and where conversion-type-id
12475*67e74705SXin Li // denotes the type "pointer to function of (P1,...,Pn) returning
12476*67e74705SXin Li // R", or the type "reference to pointer to function of
12477*67e74705SXin Li // (P1,...,Pn) returning R", or the type "reference to function
12478*67e74705SXin Li // of (P1,...,Pn) returning R", a surrogate call function [...]
12479*67e74705SXin Li // is also considered as a candidate function. Similarly,
12480*67e74705SXin Li // surrogate call functions are added to the set of candidate
12481*67e74705SXin Li // functions for each conversion function declared in an
12482*67e74705SXin Li // accessible base class provided the function is not hidden
12483*67e74705SXin Li // within T by another intervening declaration.
12484*67e74705SXin Li const auto &Conversions =
12485*67e74705SXin Li cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
12486*67e74705SXin Li for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
12487*67e74705SXin Li NamedDecl *D = *I;
12488*67e74705SXin Li CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
12489*67e74705SXin Li if (isa<UsingShadowDecl>(D))
12490*67e74705SXin Li D = cast<UsingShadowDecl>(D)->getTargetDecl();
12491*67e74705SXin Li
12492*67e74705SXin Li // Skip over templated conversion functions; they aren't
12493*67e74705SXin Li // surrogates.
12494*67e74705SXin Li if (isa<FunctionTemplateDecl>(D))
12495*67e74705SXin Li continue;
12496*67e74705SXin Li
12497*67e74705SXin Li CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
12498*67e74705SXin Li if (!Conv->isExplicit()) {
12499*67e74705SXin Li // Strip the reference type (if any) and then the pointer type (if
12500*67e74705SXin Li // any) to get down to what might be a function type.
12501*67e74705SXin Li QualType ConvType = Conv->getConversionType().getNonReferenceType();
12502*67e74705SXin Li if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
12503*67e74705SXin Li ConvType = ConvPtrType->getPointeeType();
12504*67e74705SXin Li
12505*67e74705SXin Li if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
12506*67e74705SXin Li {
12507*67e74705SXin Li AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
12508*67e74705SXin Li Object.get(), Args, CandidateSet);
12509*67e74705SXin Li }
12510*67e74705SXin Li }
12511*67e74705SXin Li }
12512*67e74705SXin Li
12513*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
12514*67e74705SXin Li
12515*67e74705SXin Li // Perform overload resolution.
12516*67e74705SXin Li OverloadCandidateSet::iterator Best;
12517*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
12518*67e74705SXin Li Best)) {
12519*67e74705SXin Li case OR_Success:
12520*67e74705SXin Li // Overload resolution succeeded; we'll build the appropriate call
12521*67e74705SXin Li // below.
12522*67e74705SXin Li break;
12523*67e74705SXin Li
12524*67e74705SXin Li case OR_No_Viable_Function:
12525*67e74705SXin Li if (CandidateSet.empty())
12526*67e74705SXin Li Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
12527*67e74705SXin Li << Object.get()->getType() << /*call*/ 1
12528*67e74705SXin Li << Object.get()->getSourceRange();
12529*67e74705SXin Li else
12530*67e74705SXin Li Diag(Object.get()->getLocStart(),
12531*67e74705SXin Li diag::err_ovl_no_viable_object_call)
12532*67e74705SXin Li << Object.get()->getType() << Object.get()->getSourceRange();
12533*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12534*67e74705SXin Li break;
12535*67e74705SXin Li
12536*67e74705SXin Li case OR_Ambiguous:
12537*67e74705SXin Li Diag(Object.get()->getLocStart(),
12538*67e74705SXin Li diag::err_ovl_ambiguous_object_call)
12539*67e74705SXin Li << Object.get()->getType() << Object.get()->getSourceRange();
12540*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12541*67e74705SXin Li break;
12542*67e74705SXin Li
12543*67e74705SXin Li case OR_Deleted:
12544*67e74705SXin Li Diag(Object.get()->getLocStart(),
12545*67e74705SXin Li diag::err_ovl_deleted_object_call)
12546*67e74705SXin Li << Best->Function->isDeleted()
12547*67e74705SXin Li << Object.get()->getType()
12548*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
12549*67e74705SXin Li << Object.get()->getSourceRange();
12550*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12551*67e74705SXin Li break;
12552*67e74705SXin Li }
12553*67e74705SXin Li
12554*67e74705SXin Li if (Best == CandidateSet.end())
12555*67e74705SXin Li return true;
12556*67e74705SXin Li
12557*67e74705SXin Li UnbridgedCasts.restore();
12558*67e74705SXin Li
12559*67e74705SXin Li if (Best->Function == nullptr) {
12560*67e74705SXin Li // Since there is no function declaration, this is one of the
12561*67e74705SXin Li // surrogate candidates. Dig out the conversion function.
12562*67e74705SXin Li CXXConversionDecl *Conv
12563*67e74705SXin Li = cast<CXXConversionDecl>(
12564*67e74705SXin Li Best->Conversions[0].UserDefined.ConversionFunction);
12565*67e74705SXin Li
12566*67e74705SXin Li CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
12567*67e74705SXin Li Best->FoundDecl);
12568*67e74705SXin Li if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
12569*67e74705SXin Li return ExprError();
12570*67e74705SXin Li assert(Conv == Best->FoundDecl.getDecl() &&
12571*67e74705SXin Li "Found Decl & conversion-to-functionptr should be same, right?!");
12572*67e74705SXin Li // We selected one of the surrogate functions that converts the
12573*67e74705SXin Li // object parameter to a function pointer. Perform the conversion
12574*67e74705SXin Li // on the object argument, then let ActOnCallExpr finish the job.
12575*67e74705SXin Li
12576*67e74705SXin Li // Create an implicit member expr to refer to the conversion operator.
12577*67e74705SXin Li // and then call it.
12578*67e74705SXin Li ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
12579*67e74705SXin Li Conv, HadMultipleCandidates);
12580*67e74705SXin Li if (Call.isInvalid())
12581*67e74705SXin Li return ExprError();
12582*67e74705SXin Li // Record usage of conversion in an implicit cast.
12583*67e74705SXin Li Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
12584*67e74705SXin Li CK_UserDefinedConversion, Call.get(),
12585*67e74705SXin Li nullptr, VK_RValue);
12586*67e74705SXin Li
12587*67e74705SXin Li return ActOnCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
12588*67e74705SXin Li }
12589*67e74705SXin Li
12590*67e74705SXin Li CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
12591*67e74705SXin Li
12592*67e74705SXin Li // We found an overloaded operator(). Build a CXXOperatorCallExpr
12593*67e74705SXin Li // that calls this method, using Object for the implicit object
12594*67e74705SXin Li // parameter and passing along the remaining arguments.
12595*67e74705SXin Li CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12596*67e74705SXin Li
12597*67e74705SXin Li // An error diagnostic has already been printed when parsing the declaration.
12598*67e74705SXin Li if (Method->isInvalidDecl())
12599*67e74705SXin Li return ExprError();
12600*67e74705SXin Li
12601*67e74705SXin Li const FunctionProtoType *Proto =
12602*67e74705SXin Li Method->getType()->getAs<FunctionProtoType>();
12603*67e74705SXin Li
12604*67e74705SXin Li unsigned NumParams = Proto->getNumParams();
12605*67e74705SXin Li
12606*67e74705SXin Li DeclarationNameInfo OpLocInfo(
12607*67e74705SXin Li Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
12608*67e74705SXin Li OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
12609*67e74705SXin Li ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12610*67e74705SXin Li HadMultipleCandidates,
12611*67e74705SXin Li OpLocInfo.getLoc(),
12612*67e74705SXin Li OpLocInfo.getInfo());
12613*67e74705SXin Li if (NewFn.isInvalid())
12614*67e74705SXin Li return true;
12615*67e74705SXin Li
12616*67e74705SXin Li // Build the full argument list for the method call (the implicit object
12617*67e74705SXin Li // parameter is placed at the beginning of the list).
12618*67e74705SXin Li std::unique_ptr<Expr * []> MethodArgs(new Expr *[Args.size() + 1]);
12619*67e74705SXin Li MethodArgs[0] = Object.get();
12620*67e74705SXin Li std::copy(Args.begin(), Args.end(), &MethodArgs[1]);
12621*67e74705SXin Li
12622*67e74705SXin Li // Once we've built TheCall, all of the expressions are properly
12623*67e74705SXin Li // owned.
12624*67e74705SXin Li QualType ResultTy = Method->getReturnType();
12625*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12626*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
12627*67e74705SXin Li
12628*67e74705SXin Li CXXOperatorCallExpr *TheCall = new (Context)
12629*67e74705SXin Li CXXOperatorCallExpr(Context, OO_Call, NewFn.get(),
12630*67e74705SXin Li llvm::makeArrayRef(MethodArgs.get(), Args.size() + 1),
12631*67e74705SXin Li ResultTy, VK, RParenLoc, false);
12632*67e74705SXin Li MethodArgs.reset();
12633*67e74705SXin Li
12634*67e74705SXin Li if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
12635*67e74705SXin Li return true;
12636*67e74705SXin Li
12637*67e74705SXin Li // We may have default arguments. If so, we need to allocate more
12638*67e74705SXin Li // slots in the call for them.
12639*67e74705SXin Li if (Args.size() < NumParams)
12640*67e74705SXin Li TheCall->setNumArgs(Context, NumParams + 1);
12641*67e74705SXin Li
12642*67e74705SXin Li bool IsError = false;
12643*67e74705SXin Li
12644*67e74705SXin Li // Initialize the implicit object parameter.
12645*67e74705SXin Li ExprResult ObjRes =
12646*67e74705SXin Li PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
12647*67e74705SXin Li Best->FoundDecl, Method);
12648*67e74705SXin Li if (ObjRes.isInvalid())
12649*67e74705SXin Li IsError = true;
12650*67e74705SXin Li else
12651*67e74705SXin Li Object = ObjRes;
12652*67e74705SXin Li TheCall->setArg(0, Object.get());
12653*67e74705SXin Li
12654*67e74705SXin Li // Check the argument types.
12655*67e74705SXin Li for (unsigned i = 0; i != NumParams; i++) {
12656*67e74705SXin Li Expr *Arg;
12657*67e74705SXin Li if (i < Args.size()) {
12658*67e74705SXin Li Arg = Args[i];
12659*67e74705SXin Li
12660*67e74705SXin Li // Pass the argument.
12661*67e74705SXin Li
12662*67e74705SXin Li ExprResult InputInit
12663*67e74705SXin Li = PerformCopyInitialization(InitializedEntity::InitializeParameter(
12664*67e74705SXin Li Context,
12665*67e74705SXin Li Method->getParamDecl(i)),
12666*67e74705SXin Li SourceLocation(), Arg);
12667*67e74705SXin Li
12668*67e74705SXin Li IsError |= InputInit.isInvalid();
12669*67e74705SXin Li Arg = InputInit.getAs<Expr>();
12670*67e74705SXin Li } else {
12671*67e74705SXin Li ExprResult DefArg
12672*67e74705SXin Li = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
12673*67e74705SXin Li if (DefArg.isInvalid()) {
12674*67e74705SXin Li IsError = true;
12675*67e74705SXin Li break;
12676*67e74705SXin Li }
12677*67e74705SXin Li
12678*67e74705SXin Li Arg = DefArg.getAs<Expr>();
12679*67e74705SXin Li }
12680*67e74705SXin Li
12681*67e74705SXin Li TheCall->setArg(i + 1, Arg);
12682*67e74705SXin Li }
12683*67e74705SXin Li
12684*67e74705SXin Li // If this is a variadic call, handle args passed through "...".
12685*67e74705SXin Li if (Proto->isVariadic()) {
12686*67e74705SXin Li // Promote the arguments (C99 6.5.2.2p7).
12687*67e74705SXin Li for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
12688*67e74705SXin Li ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
12689*67e74705SXin Li nullptr);
12690*67e74705SXin Li IsError |= Arg.isInvalid();
12691*67e74705SXin Li TheCall->setArg(i + 1, Arg.get());
12692*67e74705SXin Li }
12693*67e74705SXin Li }
12694*67e74705SXin Li
12695*67e74705SXin Li if (IsError) return true;
12696*67e74705SXin Li
12697*67e74705SXin Li DiagnoseSentinelCalls(Method, LParenLoc, Args);
12698*67e74705SXin Li
12699*67e74705SXin Li if (CheckFunctionCall(Method, TheCall, Proto))
12700*67e74705SXin Li return true;
12701*67e74705SXin Li
12702*67e74705SXin Li return MaybeBindToTemporary(TheCall);
12703*67e74705SXin Li }
12704*67e74705SXin Li
12705*67e74705SXin Li /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
12706*67e74705SXin Li /// (if one exists), where @c Base is an expression of class type and
12707*67e74705SXin Li /// @c Member is the name of the member we're trying to find.
12708*67e74705SXin Li ExprResult
BuildOverloadedArrowExpr(Scope * S,Expr * Base,SourceLocation OpLoc,bool * NoArrowOperatorFound)12709*67e74705SXin Li Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
12710*67e74705SXin Li bool *NoArrowOperatorFound) {
12711*67e74705SXin Li assert(Base->getType()->isRecordType() &&
12712*67e74705SXin Li "left-hand side must have class type");
12713*67e74705SXin Li
12714*67e74705SXin Li if (checkPlaceholderForOverload(*this, Base))
12715*67e74705SXin Li return ExprError();
12716*67e74705SXin Li
12717*67e74705SXin Li SourceLocation Loc = Base->getExprLoc();
12718*67e74705SXin Li
12719*67e74705SXin Li // C++ [over.ref]p1:
12720*67e74705SXin Li //
12721*67e74705SXin Li // [...] An expression x->m is interpreted as (x.operator->())->m
12722*67e74705SXin Li // for a class object x of type T if T::operator->() exists and if
12723*67e74705SXin Li // the operator is selected as the best match function by the
12724*67e74705SXin Li // overload resolution mechanism (13.3).
12725*67e74705SXin Li DeclarationName OpName =
12726*67e74705SXin Li Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
12727*67e74705SXin Li OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
12728*67e74705SXin Li const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
12729*67e74705SXin Li
12730*67e74705SXin Li if (RequireCompleteType(Loc, Base->getType(),
12731*67e74705SXin Li diag::err_typecheck_incomplete_tag, Base))
12732*67e74705SXin Li return ExprError();
12733*67e74705SXin Li
12734*67e74705SXin Li LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
12735*67e74705SXin Li LookupQualifiedName(R, BaseRecord->getDecl());
12736*67e74705SXin Li R.suppressDiagnostics();
12737*67e74705SXin Li
12738*67e74705SXin Li for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
12739*67e74705SXin Li Oper != OperEnd; ++Oper) {
12740*67e74705SXin Li AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
12741*67e74705SXin Li None, CandidateSet, /*SuppressUserConversions=*/false);
12742*67e74705SXin Li }
12743*67e74705SXin Li
12744*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
12745*67e74705SXin Li
12746*67e74705SXin Li // Perform overload resolution.
12747*67e74705SXin Li OverloadCandidateSet::iterator Best;
12748*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
12749*67e74705SXin Li case OR_Success:
12750*67e74705SXin Li // Overload resolution succeeded; we'll build the call below.
12751*67e74705SXin Li break;
12752*67e74705SXin Li
12753*67e74705SXin Li case OR_No_Viable_Function:
12754*67e74705SXin Li if (CandidateSet.empty()) {
12755*67e74705SXin Li QualType BaseType = Base->getType();
12756*67e74705SXin Li if (NoArrowOperatorFound) {
12757*67e74705SXin Li // Report this specific error to the caller instead of emitting a
12758*67e74705SXin Li // diagnostic, as requested.
12759*67e74705SXin Li *NoArrowOperatorFound = true;
12760*67e74705SXin Li return ExprError();
12761*67e74705SXin Li }
12762*67e74705SXin Li Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
12763*67e74705SXin Li << BaseType << Base->getSourceRange();
12764*67e74705SXin Li if (BaseType->isRecordType() && !BaseType->isPointerType()) {
12765*67e74705SXin Li Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
12766*67e74705SXin Li << FixItHint::CreateReplacement(OpLoc, ".");
12767*67e74705SXin Li }
12768*67e74705SXin Li } else
12769*67e74705SXin Li Diag(OpLoc, diag::err_ovl_no_viable_oper)
12770*67e74705SXin Li << "operator->" << Base->getSourceRange();
12771*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12772*67e74705SXin Li return ExprError();
12773*67e74705SXin Li
12774*67e74705SXin Li case OR_Ambiguous:
12775*67e74705SXin Li Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
12776*67e74705SXin Li << "->" << Base->getType() << Base->getSourceRange();
12777*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
12778*67e74705SXin Li return ExprError();
12779*67e74705SXin Li
12780*67e74705SXin Li case OR_Deleted:
12781*67e74705SXin Li Diag(OpLoc, diag::err_ovl_deleted_oper)
12782*67e74705SXin Li << Best->Function->isDeleted()
12783*67e74705SXin Li << "->"
12784*67e74705SXin Li << getDeletedOrUnavailableSuffix(Best->Function)
12785*67e74705SXin Li << Base->getSourceRange();
12786*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
12787*67e74705SXin Li return ExprError();
12788*67e74705SXin Li }
12789*67e74705SXin Li
12790*67e74705SXin Li CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
12791*67e74705SXin Li
12792*67e74705SXin Li // Convert the object parameter.
12793*67e74705SXin Li CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
12794*67e74705SXin Li ExprResult BaseResult =
12795*67e74705SXin Li PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
12796*67e74705SXin Li Best->FoundDecl, Method);
12797*67e74705SXin Li if (BaseResult.isInvalid())
12798*67e74705SXin Li return ExprError();
12799*67e74705SXin Li Base = BaseResult.get();
12800*67e74705SXin Li
12801*67e74705SXin Li // Build the operator call.
12802*67e74705SXin Li ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
12803*67e74705SXin Li HadMultipleCandidates, OpLoc);
12804*67e74705SXin Li if (FnExpr.isInvalid())
12805*67e74705SXin Li return ExprError();
12806*67e74705SXin Li
12807*67e74705SXin Li QualType ResultTy = Method->getReturnType();
12808*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12809*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
12810*67e74705SXin Li CXXOperatorCallExpr *TheCall =
12811*67e74705SXin Li new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.get(),
12812*67e74705SXin Li Base, ResultTy, VK, OpLoc, false);
12813*67e74705SXin Li
12814*67e74705SXin Li if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
12815*67e74705SXin Li return ExprError();
12816*67e74705SXin Li
12817*67e74705SXin Li return MaybeBindToTemporary(TheCall);
12818*67e74705SXin Li }
12819*67e74705SXin Li
12820*67e74705SXin Li /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
12821*67e74705SXin Li /// a literal operator described by the provided lookup results.
BuildLiteralOperatorCall(LookupResult & R,DeclarationNameInfo & SuffixInfo,ArrayRef<Expr * > Args,SourceLocation LitEndLoc,TemplateArgumentListInfo * TemplateArgs)12822*67e74705SXin Li ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
12823*67e74705SXin Li DeclarationNameInfo &SuffixInfo,
12824*67e74705SXin Li ArrayRef<Expr*> Args,
12825*67e74705SXin Li SourceLocation LitEndLoc,
12826*67e74705SXin Li TemplateArgumentListInfo *TemplateArgs) {
12827*67e74705SXin Li SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
12828*67e74705SXin Li
12829*67e74705SXin Li OverloadCandidateSet CandidateSet(UDSuffixLoc,
12830*67e74705SXin Li OverloadCandidateSet::CSK_Normal);
12831*67e74705SXin Li AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, TemplateArgs,
12832*67e74705SXin Li /*SuppressUserConversions=*/true);
12833*67e74705SXin Li
12834*67e74705SXin Li bool HadMultipleCandidates = (CandidateSet.size() > 1);
12835*67e74705SXin Li
12836*67e74705SXin Li // Perform overload resolution. This will usually be trivial, but might need
12837*67e74705SXin Li // to perform substitutions for a literal operator template.
12838*67e74705SXin Li OverloadCandidateSet::iterator Best;
12839*67e74705SXin Li switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
12840*67e74705SXin Li case OR_Success:
12841*67e74705SXin Li case OR_Deleted:
12842*67e74705SXin Li break;
12843*67e74705SXin Li
12844*67e74705SXin Li case OR_No_Viable_Function:
12845*67e74705SXin Li Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
12846*67e74705SXin Li << R.getLookupName();
12847*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
12848*67e74705SXin Li return ExprError();
12849*67e74705SXin Li
12850*67e74705SXin Li case OR_Ambiguous:
12851*67e74705SXin Li Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
12852*67e74705SXin Li CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
12853*67e74705SXin Li return ExprError();
12854*67e74705SXin Li }
12855*67e74705SXin Li
12856*67e74705SXin Li FunctionDecl *FD = Best->Function;
12857*67e74705SXin Li ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
12858*67e74705SXin Li HadMultipleCandidates,
12859*67e74705SXin Li SuffixInfo.getLoc(),
12860*67e74705SXin Li SuffixInfo.getInfo());
12861*67e74705SXin Li if (Fn.isInvalid())
12862*67e74705SXin Li return true;
12863*67e74705SXin Li
12864*67e74705SXin Li // Check the argument types. This should almost always be a no-op, except
12865*67e74705SXin Li // that array-to-pointer decay is applied to string literals.
12866*67e74705SXin Li Expr *ConvArgs[2];
12867*67e74705SXin Li for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
12868*67e74705SXin Li ExprResult InputInit = PerformCopyInitialization(
12869*67e74705SXin Li InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
12870*67e74705SXin Li SourceLocation(), Args[ArgIdx]);
12871*67e74705SXin Li if (InputInit.isInvalid())
12872*67e74705SXin Li return true;
12873*67e74705SXin Li ConvArgs[ArgIdx] = InputInit.get();
12874*67e74705SXin Li }
12875*67e74705SXin Li
12876*67e74705SXin Li QualType ResultTy = FD->getReturnType();
12877*67e74705SXin Li ExprValueKind VK = Expr::getValueKindForType(ResultTy);
12878*67e74705SXin Li ResultTy = ResultTy.getNonLValueExprType(Context);
12879*67e74705SXin Li
12880*67e74705SXin Li UserDefinedLiteral *UDL =
12881*67e74705SXin Li new (Context) UserDefinedLiteral(Context, Fn.get(),
12882*67e74705SXin Li llvm::makeArrayRef(ConvArgs, Args.size()),
12883*67e74705SXin Li ResultTy, VK, LitEndLoc, UDSuffixLoc);
12884*67e74705SXin Li
12885*67e74705SXin Li if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
12886*67e74705SXin Li return ExprError();
12887*67e74705SXin Li
12888*67e74705SXin Li if (CheckFunctionCall(FD, UDL, nullptr))
12889*67e74705SXin Li return ExprError();
12890*67e74705SXin Li
12891*67e74705SXin Li return MaybeBindToTemporary(UDL);
12892*67e74705SXin Li }
12893*67e74705SXin Li
12894*67e74705SXin Li /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
12895*67e74705SXin Li /// given LookupResult is non-empty, it is assumed to describe a member which
12896*67e74705SXin Li /// will be invoked. Otherwise, the function will be found via argument
12897*67e74705SXin Li /// dependent lookup.
12898*67e74705SXin Li /// CallExpr is set to a valid expression and FRS_Success returned on success,
12899*67e74705SXin Li /// otherwise CallExpr is set to ExprError() and some non-success value
12900*67e74705SXin Li /// is returned.
12901*67e74705SXin Li Sema::ForRangeStatus
BuildForRangeBeginEndCall(SourceLocation Loc,SourceLocation RangeLoc,const DeclarationNameInfo & NameInfo,LookupResult & MemberLookup,OverloadCandidateSet * CandidateSet,Expr * Range,ExprResult * CallExpr)12902*67e74705SXin Li Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
12903*67e74705SXin Li SourceLocation RangeLoc,
12904*67e74705SXin Li const DeclarationNameInfo &NameInfo,
12905*67e74705SXin Li LookupResult &MemberLookup,
12906*67e74705SXin Li OverloadCandidateSet *CandidateSet,
12907*67e74705SXin Li Expr *Range, ExprResult *CallExpr) {
12908*67e74705SXin Li Scope *S = nullptr;
12909*67e74705SXin Li
12910*67e74705SXin Li CandidateSet->clear();
12911*67e74705SXin Li if (!MemberLookup.empty()) {
12912*67e74705SXin Li ExprResult MemberRef =
12913*67e74705SXin Li BuildMemberReferenceExpr(Range, Range->getType(), Loc,
12914*67e74705SXin Li /*IsPtr=*/false, CXXScopeSpec(),
12915*67e74705SXin Li /*TemplateKWLoc=*/SourceLocation(),
12916*67e74705SXin Li /*FirstQualifierInScope=*/nullptr,
12917*67e74705SXin Li MemberLookup,
12918*67e74705SXin Li /*TemplateArgs=*/nullptr, S);
12919*67e74705SXin Li if (MemberRef.isInvalid()) {
12920*67e74705SXin Li *CallExpr = ExprError();
12921*67e74705SXin Li return FRS_DiagnosticIssued;
12922*67e74705SXin Li }
12923*67e74705SXin Li *CallExpr = ActOnCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
12924*67e74705SXin Li if (CallExpr->isInvalid()) {
12925*67e74705SXin Li *CallExpr = ExprError();
12926*67e74705SXin Li return FRS_DiagnosticIssued;
12927*67e74705SXin Li }
12928*67e74705SXin Li } else {
12929*67e74705SXin Li UnresolvedSet<0> FoundNames;
12930*67e74705SXin Li UnresolvedLookupExpr *Fn =
12931*67e74705SXin Li UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
12932*67e74705SXin Li NestedNameSpecifierLoc(), NameInfo,
12933*67e74705SXin Li /*NeedsADL=*/true, /*Overloaded=*/false,
12934*67e74705SXin Li FoundNames.begin(), FoundNames.end());
12935*67e74705SXin Li
12936*67e74705SXin Li bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
12937*67e74705SXin Li CandidateSet, CallExpr);
12938*67e74705SXin Li if (CandidateSet->empty() || CandidateSetError) {
12939*67e74705SXin Li *CallExpr = ExprError();
12940*67e74705SXin Li return FRS_NoViableFunction;
12941*67e74705SXin Li }
12942*67e74705SXin Li OverloadCandidateSet::iterator Best;
12943*67e74705SXin Li OverloadingResult OverloadResult =
12944*67e74705SXin Li CandidateSet->BestViableFunction(*this, Fn->getLocStart(), Best);
12945*67e74705SXin Li
12946*67e74705SXin Li if (OverloadResult == OR_No_Viable_Function) {
12947*67e74705SXin Li *CallExpr = ExprError();
12948*67e74705SXin Li return FRS_NoViableFunction;
12949*67e74705SXin Li }
12950*67e74705SXin Li *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
12951*67e74705SXin Li Loc, nullptr, CandidateSet, &Best,
12952*67e74705SXin Li OverloadResult,
12953*67e74705SXin Li /*AllowTypoCorrection=*/false);
12954*67e74705SXin Li if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
12955*67e74705SXin Li *CallExpr = ExprError();
12956*67e74705SXin Li return FRS_DiagnosticIssued;
12957*67e74705SXin Li }
12958*67e74705SXin Li }
12959*67e74705SXin Li return FRS_Success;
12960*67e74705SXin Li }
12961*67e74705SXin Li
12962*67e74705SXin Li
12963*67e74705SXin Li /// FixOverloadedFunctionReference - E is an expression that refers to
12964*67e74705SXin Li /// a C++ overloaded function (possibly with some parentheses and
12965*67e74705SXin Li /// perhaps a '&' around it). We have resolved the overloaded function
12966*67e74705SXin Li /// to the function declaration Fn, so patch up the expression E to
12967*67e74705SXin Li /// refer (possibly indirectly) to Fn. Returns the new expr.
FixOverloadedFunctionReference(Expr * E,DeclAccessPair Found,FunctionDecl * Fn)12968*67e74705SXin Li Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
12969*67e74705SXin Li FunctionDecl *Fn) {
12970*67e74705SXin Li if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
12971*67e74705SXin Li Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
12972*67e74705SXin Li Found, Fn);
12973*67e74705SXin Li if (SubExpr == PE->getSubExpr())
12974*67e74705SXin Li return PE;
12975*67e74705SXin Li
12976*67e74705SXin Li return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
12977*67e74705SXin Li }
12978*67e74705SXin Li
12979*67e74705SXin Li if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12980*67e74705SXin Li Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
12981*67e74705SXin Li Found, Fn);
12982*67e74705SXin Li assert(Context.hasSameType(ICE->getSubExpr()->getType(),
12983*67e74705SXin Li SubExpr->getType()) &&
12984*67e74705SXin Li "Implicit cast type cannot be determined from overload");
12985*67e74705SXin Li assert(ICE->path_empty() && "fixing up hierarchy conversion?");
12986*67e74705SXin Li if (SubExpr == ICE->getSubExpr())
12987*67e74705SXin Li return ICE;
12988*67e74705SXin Li
12989*67e74705SXin Li return ImplicitCastExpr::Create(Context, ICE->getType(),
12990*67e74705SXin Li ICE->getCastKind(),
12991*67e74705SXin Li SubExpr, nullptr,
12992*67e74705SXin Li ICE->getValueKind());
12993*67e74705SXin Li }
12994*67e74705SXin Li
12995*67e74705SXin Li if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
12996*67e74705SXin Li assert(UnOp->getOpcode() == UO_AddrOf &&
12997*67e74705SXin Li "Can only take the address of an overloaded function");
12998*67e74705SXin Li if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
12999*67e74705SXin Li if (Method->isStatic()) {
13000*67e74705SXin Li // Do nothing: static member functions aren't any different
13001*67e74705SXin Li // from non-member functions.
13002*67e74705SXin Li } else {
13003*67e74705SXin Li // Fix the subexpression, which really has to be an
13004*67e74705SXin Li // UnresolvedLookupExpr holding an overloaded member function
13005*67e74705SXin Li // or template.
13006*67e74705SXin Li Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13007*67e74705SXin Li Found, Fn);
13008*67e74705SXin Li if (SubExpr == UnOp->getSubExpr())
13009*67e74705SXin Li return UnOp;
13010*67e74705SXin Li
13011*67e74705SXin Li assert(isa<DeclRefExpr>(SubExpr)
13012*67e74705SXin Li && "fixed to something other than a decl ref");
13013*67e74705SXin Li assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
13014*67e74705SXin Li && "fixed to a member ref with no nested name qualifier");
13015*67e74705SXin Li
13016*67e74705SXin Li // We have taken the address of a pointer to member
13017*67e74705SXin Li // function. Perform the computation here so that we get the
13018*67e74705SXin Li // appropriate pointer to member type.
13019*67e74705SXin Li QualType ClassType
13020*67e74705SXin Li = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
13021*67e74705SXin Li QualType MemPtrType
13022*67e74705SXin Li = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
13023*67e74705SXin Li // Under the MS ABI, lock down the inheritance model now.
13024*67e74705SXin Li if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13025*67e74705SXin Li (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
13026*67e74705SXin Li
13027*67e74705SXin Li return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
13028*67e74705SXin Li VK_RValue, OK_Ordinary,
13029*67e74705SXin Li UnOp->getOperatorLoc());
13030*67e74705SXin Li }
13031*67e74705SXin Li }
13032*67e74705SXin Li Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
13033*67e74705SXin Li Found, Fn);
13034*67e74705SXin Li if (SubExpr == UnOp->getSubExpr())
13035*67e74705SXin Li return UnOp;
13036*67e74705SXin Li
13037*67e74705SXin Li return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
13038*67e74705SXin Li Context.getPointerType(SubExpr->getType()),
13039*67e74705SXin Li VK_RValue, OK_Ordinary,
13040*67e74705SXin Li UnOp->getOperatorLoc());
13041*67e74705SXin Li }
13042*67e74705SXin Li
13043*67e74705SXin Li if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13044*67e74705SXin Li // FIXME: avoid copy.
13045*67e74705SXin Li TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13046*67e74705SXin Li if (ULE->hasExplicitTemplateArgs()) {
13047*67e74705SXin Li ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
13048*67e74705SXin Li TemplateArgs = &TemplateArgsBuffer;
13049*67e74705SXin Li }
13050*67e74705SXin Li
13051*67e74705SXin Li DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13052*67e74705SXin Li ULE->getQualifierLoc(),
13053*67e74705SXin Li ULE->getTemplateKeywordLoc(),
13054*67e74705SXin Li Fn,
13055*67e74705SXin Li /*enclosing*/ false, // FIXME?
13056*67e74705SXin Li ULE->getNameLoc(),
13057*67e74705SXin Li Fn->getType(),
13058*67e74705SXin Li VK_LValue,
13059*67e74705SXin Li Found.getDecl(),
13060*67e74705SXin Li TemplateArgs);
13061*67e74705SXin Li MarkDeclRefReferenced(DRE);
13062*67e74705SXin Li DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
13063*67e74705SXin Li return DRE;
13064*67e74705SXin Li }
13065*67e74705SXin Li
13066*67e74705SXin Li if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
13067*67e74705SXin Li // FIXME: avoid copy.
13068*67e74705SXin Li TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
13069*67e74705SXin Li if (MemExpr->hasExplicitTemplateArgs()) {
13070*67e74705SXin Li MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
13071*67e74705SXin Li TemplateArgs = &TemplateArgsBuffer;
13072*67e74705SXin Li }
13073*67e74705SXin Li
13074*67e74705SXin Li Expr *Base;
13075*67e74705SXin Li
13076*67e74705SXin Li // If we're filling in a static method where we used to have an
13077*67e74705SXin Li // implicit member access, rewrite to a simple decl ref.
13078*67e74705SXin Li if (MemExpr->isImplicitAccess()) {
13079*67e74705SXin Li if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13080*67e74705SXin Li DeclRefExpr *DRE = DeclRefExpr::Create(Context,
13081*67e74705SXin Li MemExpr->getQualifierLoc(),
13082*67e74705SXin Li MemExpr->getTemplateKeywordLoc(),
13083*67e74705SXin Li Fn,
13084*67e74705SXin Li /*enclosing*/ false,
13085*67e74705SXin Li MemExpr->getMemberLoc(),
13086*67e74705SXin Li Fn->getType(),
13087*67e74705SXin Li VK_LValue,
13088*67e74705SXin Li Found.getDecl(),
13089*67e74705SXin Li TemplateArgs);
13090*67e74705SXin Li MarkDeclRefReferenced(DRE);
13091*67e74705SXin Li DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
13092*67e74705SXin Li return DRE;
13093*67e74705SXin Li } else {
13094*67e74705SXin Li SourceLocation Loc = MemExpr->getMemberLoc();
13095*67e74705SXin Li if (MemExpr->getQualifier())
13096*67e74705SXin Li Loc = MemExpr->getQualifierLoc().getBeginLoc();
13097*67e74705SXin Li CheckCXXThisCapture(Loc);
13098*67e74705SXin Li Base = new (Context) CXXThisExpr(Loc,
13099*67e74705SXin Li MemExpr->getBaseType(),
13100*67e74705SXin Li /*isImplicit=*/true);
13101*67e74705SXin Li }
13102*67e74705SXin Li } else
13103*67e74705SXin Li Base = MemExpr->getBase();
13104*67e74705SXin Li
13105*67e74705SXin Li ExprValueKind valueKind;
13106*67e74705SXin Li QualType type;
13107*67e74705SXin Li if (cast<CXXMethodDecl>(Fn)->isStatic()) {
13108*67e74705SXin Li valueKind = VK_LValue;
13109*67e74705SXin Li type = Fn->getType();
13110*67e74705SXin Li } else {
13111*67e74705SXin Li valueKind = VK_RValue;
13112*67e74705SXin Li type = Context.BoundMemberTy;
13113*67e74705SXin Li }
13114*67e74705SXin Li
13115*67e74705SXin Li MemberExpr *ME = MemberExpr::Create(
13116*67e74705SXin Li Context, Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
13117*67e74705SXin Li MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
13118*67e74705SXin Li MemExpr->getMemberNameInfo(), TemplateArgs, type, valueKind,
13119*67e74705SXin Li OK_Ordinary);
13120*67e74705SXin Li ME->setHadMultipleCandidates(true);
13121*67e74705SXin Li MarkMemberReferenced(ME);
13122*67e74705SXin Li return ME;
13123*67e74705SXin Li }
13124*67e74705SXin Li
13125*67e74705SXin Li llvm_unreachable("Invalid reference to overloaded function");
13126*67e74705SXin Li }
13127*67e74705SXin Li
FixOverloadedFunctionReference(ExprResult E,DeclAccessPair Found,FunctionDecl * Fn)13128*67e74705SXin Li ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
13129*67e74705SXin Li DeclAccessPair Found,
13130*67e74705SXin Li FunctionDecl *Fn) {
13131*67e74705SXin Li return FixOverloadedFunctionReference(E.get(), Found, Fn);
13132*67e74705SXin Li }
13133