1*a62be085SSadaf Ebrahimi #include "strings/numbers.h"
2*a62be085SSadaf Ebrahimi
3*a62be085SSadaf Ebrahimi #include <float.h> // for FLT_DIG
4*a62be085SSadaf Ebrahimi #include <cassert>
5*a62be085SSadaf Ebrahimi #include <memory>
6*a62be085SSadaf Ebrahimi
7*a62be085SSadaf Ebrahimi #include "strings/ascii_ctype.h"
8*a62be085SSadaf Ebrahimi
9*a62be085SSadaf Ebrahimi namespace dynamic_depth {
10*a62be085SSadaf Ebrahimi namespace strings {
11*a62be085SSadaf Ebrahimi namespace {
12*a62be085SSadaf Ebrahimi
13*a62be085SSadaf Ebrahimi // Represents integer values of digits.
14*a62be085SSadaf Ebrahimi // Uses 36 to indicate an invalid character since we support
15*a62be085SSadaf Ebrahimi // bases up to 36.
16*a62be085SSadaf Ebrahimi static const int8 kAsciiToInt[256] = {
17*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
18*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
19*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
20*a62be085SSadaf Ebrahimi 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
21*a62be085SSadaf Ebrahimi 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
22*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
23*a62be085SSadaf Ebrahimi 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
24*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
25*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
26*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
27*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
28*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
29*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
30*a62be085SSadaf Ebrahimi 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
31*a62be085SSadaf Ebrahimi
32*a62be085SSadaf Ebrahimi // Parse the sign and optional hex or oct prefix in text.
safe_parse_sign_and_base(string * text,int * base_ptr,bool * negative_ptr)33*a62be085SSadaf Ebrahimi inline bool safe_parse_sign_and_base(string* text /*inout*/,
34*a62be085SSadaf Ebrahimi int* base_ptr /*inout*/,
35*a62be085SSadaf Ebrahimi bool* negative_ptr /*output*/) {
36*a62be085SSadaf Ebrahimi if (text->data() == NULL) {
37*a62be085SSadaf Ebrahimi return false;
38*a62be085SSadaf Ebrahimi }
39*a62be085SSadaf Ebrahimi
40*a62be085SSadaf Ebrahimi const char* start = text->data();
41*a62be085SSadaf Ebrahimi const char* end = start + text->size();
42*a62be085SSadaf Ebrahimi int base = *base_ptr;
43*a62be085SSadaf Ebrahimi
44*a62be085SSadaf Ebrahimi // Consume whitespace.
45*a62be085SSadaf Ebrahimi while (start < end && ascii_isspace(start[0])) {
46*a62be085SSadaf Ebrahimi ++start;
47*a62be085SSadaf Ebrahimi }
48*a62be085SSadaf Ebrahimi while (start < end && ascii_isspace(end[-1])) {
49*a62be085SSadaf Ebrahimi --end;
50*a62be085SSadaf Ebrahimi }
51*a62be085SSadaf Ebrahimi if (start >= end) {
52*a62be085SSadaf Ebrahimi return false;
53*a62be085SSadaf Ebrahimi }
54*a62be085SSadaf Ebrahimi
55*a62be085SSadaf Ebrahimi // Consume sign.
56*a62be085SSadaf Ebrahimi *negative_ptr = (start[0] == '-');
57*a62be085SSadaf Ebrahimi if (*negative_ptr || start[0] == '+') {
58*a62be085SSadaf Ebrahimi ++start;
59*a62be085SSadaf Ebrahimi if (start >= end) {
60*a62be085SSadaf Ebrahimi return false;
61*a62be085SSadaf Ebrahimi }
62*a62be085SSadaf Ebrahimi }
63*a62be085SSadaf Ebrahimi
64*a62be085SSadaf Ebrahimi // Consume base-dependent prefix.
65*a62be085SSadaf Ebrahimi // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
66*a62be085SSadaf Ebrahimi // base 16: "0x" -> base 16
67*a62be085SSadaf Ebrahimi // Also validate the base.
68*a62be085SSadaf Ebrahimi if (base == 0) {
69*a62be085SSadaf Ebrahimi if (end - start >= 2 && start[0] == '0' &&
70*a62be085SSadaf Ebrahimi (start[1] == 'x' || start[1] == 'X')) {
71*a62be085SSadaf Ebrahimi base = 16;
72*a62be085SSadaf Ebrahimi start += 2;
73*a62be085SSadaf Ebrahimi if (start >= end) {
74*a62be085SSadaf Ebrahimi // "0x" with no digits after is invalid.
75*a62be085SSadaf Ebrahimi return false;
76*a62be085SSadaf Ebrahimi }
77*a62be085SSadaf Ebrahimi } else if (end - start >= 1 && start[0] == '0') {
78*a62be085SSadaf Ebrahimi base = 8;
79*a62be085SSadaf Ebrahimi start += 1;
80*a62be085SSadaf Ebrahimi } else {
81*a62be085SSadaf Ebrahimi base = 10;
82*a62be085SSadaf Ebrahimi }
83*a62be085SSadaf Ebrahimi } else if (base == 16) {
84*a62be085SSadaf Ebrahimi if (end - start >= 2 && start[0] == '0' &&
85*a62be085SSadaf Ebrahimi (start[1] == 'x' || start[1] == 'X')) {
86*a62be085SSadaf Ebrahimi start += 2;
87*a62be085SSadaf Ebrahimi if (start >= end) {
88*a62be085SSadaf Ebrahimi // "0x" with no digits after is invalid.
89*a62be085SSadaf Ebrahimi return false;
90*a62be085SSadaf Ebrahimi }
91*a62be085SSadaf Ebrahimi }
92*a62be085SSadaf Ebrahimi } else if (base >= 2 && base <= 36) {
93*a62be085SSadaf Ebrahimi // okay
94*a62be085SSadaf Ebrahimi } else {
95*a62be085SSadaf Ebrahimi return false;
96*a62be085SSadaf Ebrahimi }
97*a62be085SSadaf Ebrahimi text->assign(start, end - start);
98*a62be085SSadaf Ebrahimi *base_ptr = base;
99*a62be085SSadaf Ebrahimi return true;
100*a62be085SSadaf Ebrahimi }
101*a62be085SSadaf Ebrahimi
102*a62be085SSadaf Ebrahimi // Consume digits.
103*a62be085SSadaf Ebrahimi //
104*a62be085SSadaf Ebrahimi // The classic loop:
105*a62be085SSadaf Ebrahimi //
106*a62be085SSadaf Ebrahimi // for each digit
107*a62be085SSadaf Ebrahimi // value = value * base + digit
108*a62be085SSadaf Ebrahimi // value *= sign
109*a62be085SSadaf Ebrahimi //
110*a62be085SSadaf Ebrahimi // The classic loop needs overflow checking. It also fails on the most
111*a62be085SSadaf Ebrahimi // negative integer, -2147483648 in 32-bit two's complement representation.
112*a62be085SSadaf Ebrahimi //
113*a62be085SSadaf Ebrahimi // My improved loop:
114*a62be085SSadaf Ebrahimi //
115*a62be085SSadaf Ebrahimi // if (!negative)
116*a62be085SSadaf Ebrahimi // for each digit
117*a62be085SSadaf Ebrahimi // value = value * base
118*a62be085SSadaf Ebrahimi // value = value + digit
119*a62be085SSadaf Ebrahimi // else
120*a62be085SSadaf Ebrahimi // for each digit
121*a62be085SSadaf Ebrahimi // value = value * base
122*a62be085SSadaf Ebrahimi // value = value - digit
123*a62be085SSadaf Ebrahimi //
124*a62be085SSadaf Ebrahimi // Overflow checking becomes simple.
125*a62be085SSadaf Ebrahimi
126*a62be085SSadaf Ebrahimi // Lookup tables per IntType:
127*a62be085SSadaf Ebrahimi // vmax/base and vmin/base are precomputed because division costs at least 8ns.
128*a62be085SSadaf Ebrahimi // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
129*a62be085SSadaf Ebrahimi // struct of arrays) would probably be better in terms of d-cache for the most
130*a62be085SSadaf Ebrahimi // commonly used bases.
131*a62be085SSadaf Ebrahimi template <typename IntType>
132*a62be085SSadaf Ebrahimi struct LookupTables {
133*a62be085SSadaf Ebrahimi static const IntType kVmaxOverBase[];
134*a62be085SSadaf Ebrahimi static const IntType kVminOverBase[];
135*a62be085SSadaf Ebrahimi };
136*a62be085SSadaf Ebrahimi
137*a62be085SSadaf Ebrahimi // An array initializer macro for X/base where base in [0, 36].
138*a62be085SSadaf Ebrahimi // However, note that lookups for base in [0, 1] should never happen because
139*a62be085SSadaf Ebrahimi // base has been validated to be in [2, 36] by safe_parse_sign_and_base().
140*a62be085SSadaf Ebrahimi #define X_OVER_BASE_INITIALIZER(X) \
141*a62be085SSadaf Ebrahimi { \
142*a62be085SSadaf Ebrahimi 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, \
143*a62be085SSadaf Ebrahimi X / 8, X / 9, X / 10, X / 11, X / 12, X / 13, X / 14, X / 15, \
144*a62be085SSadaf Ebrahimi X / 16, X / 17, X / 18, X / 19, X / 20, X / 21, X / 22, X / 23, \
145*a62be085SSadaf Ebrahimi X / 24, X / 25, X / 26, X / 27, X / 28, X / 29, X / 30, X / 31, \
146*a62be085SSadaf Ebrahimi X / 32, X / 33, X / 34, X / 35, X / 36, \
147*a62be085SSadaf Ebrahimi };
148*a62be085SSadaf Ebrahimi
149*a62be085SSadaf Ebrahimi template <typename IntType>
150*a62be085SSadaf Ebrahimi const IntType LookupTables<IntType>::kVmaxOverBase[] =
151*a62be085SSadaf Ebrahimi X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
152*a62be085SSadaf Ebrahimi
153*a62be085SSadaf Ebrahimi template <typename IntType>
154*a62be085SSadaf Ebrahimi const IntType LookupTables<IntType>::kVminOverBase[] =
155*a62be085SSadaf Ebrahimi X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
156*a62be085SSadaf Ebrahimi
157*a62be085SSadaf Ebrahimi #undef X_OVER_BASE_INITIALIZER
158*a62be085SSadaf Ebrahimi
159*a62be085SSadaf Ebrahimi template <typename IntType>
safe_parse_positive_int(const string & text,int base,IntType * value_p)160*a62be085SSadaf Ebrahimi inline bool safe_parse_positive_int(const string& text, int base,
161*a62be085SSadaf Ebrahimi IntType* value_p) {
162*a62be085SSadaf Ebrahimi IntType value = 0;
163*a62be085SSadaf Ebrahimi const IntType vmax = std::numeric_limits<IntType>::max();
164*a62be085SSadaf Ebrahimi assert(vmax > 0);
165*a62be085SSadaf Ebrahimi assert(vmax >= base);
166*a62be085SSadaf Ebrahimi const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
167*a62be085SSadaf Ebrahimi const char* start = text.data();
168*a62be085SSadaf Ebrahimi const char* end = start + text.size();
169*a62be085SSadaf Ebrahimi // loop over digits
170*a62be085SSadaf Ebrahimi for (; start < end; ++start) {
171*a62be085SSadaf Ebrahimi unsigned char c = static_cast<unsigned char>(start[0]);
172*a62be085SSadaf Ebrahimi int digit = kAsciiToInt[c];
173*a62be085SSadaf Ebrahimi if (digit >= base) {
174*a62be085SSadaf Ebrahimi *value_p = value;
175*a62be085SSadaf Ebrahimi return false;
176*a62be085SSadaf Ebrahimi }
177*a62be085SSadaf Ebrahimi if (value > vmax_over_base) {
178*a62be085SSadaf Ebrahimi *value_p = vmax;
179*a62be085SSadaf Ebrahimi return false;
180*a62be085SSadaf Ebrahimi }
181*a62be085SSadaf Ebrahimi value *= base;
182*a62be085SSadaf Ebrahimi if (value > vmax - digit) {
183*a62be085SSadaf Ebrahimi *value_p = vmax;
184*a62be085SSadaf Ebrahimi return false;
185*a62be085SSadaf Ebrahimi }
186*a62be085SSadaf Ebrahimi value += digit;
187*a62be085SSadaf Ebrahimi }
188*a62be085SSadaf Ebrahimi *value_p = value;
189*a62be085SSadaf Ebrahimi return true;
190*a62be085SSadaf Ebrahimi }
191*a62be085SSadaf Ebrahimi
192*a62be085SSadaf Ebrahimi template <typename IntType>
safe_parse_negative_int(const string & text,int base,IntType * value_p)193*a62be085SSadaf Ebrahimi inline bool safe_parse_negative_int(const string& text, int base,
194*a62be085SSadaf Ebrahimi IntType* value_p) {
195*a62be085SSadaf Ebrahimi IntType value = 0;
196*a62be085SSadaf Ebrahimi const IntType vmin = std::numeric_limits<IntType>::min();
197*a62be085SSadaf Ebrahimi assert(vmin < 0);
198*a62be085SSadaf Ebrahimi assert(vmin <= 0 - base);
199*a62be085SSadaf Ebrahimi IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
200*a62be085SSadaf Ebrahimi // 2003 c++ standard [expr.mul]
201*a62be085SSadaf Ebrahimi // "... the sign of the remainder is implementation-defined."
202*a62be085SSadaf Ebrahimi // Although (vmin/base)*base + vmin%base is always vmin.
203*a62be085SSadaf Ebrahimi // 2011 c++ standard tightens the spec but we cannot rely on it.
204*a62be085SSadaf Ebrahimi // TODO(junyer): Handle this in the lookup table generation.
205*a62be085SSadaf Ebrahimi if (vmin % base > 0) {
206*a62be085SSadaf Ebrahimi vmin_over_base += 1;
207*a62be085SSadaf Ebrahimi }
208*a62be085SSadaf Ebrahimi const char* start = text.data();
209*a62be085SSadaf Ebrahimi const char* end = start + text.size();
210*a62be085SSadaf Ebrahimi // loop over digits
211*a62be085SSadaf Ebrahimi for (; start < end; ++start) {
212*a62be085SSadaf Ebrahimi unsigned char c = static_cast<unsigned char>(start[0]);
213*a62be085SSadaf Ebrahimi int digit = kAsciiToInt[c];
214*a62be085SSadaf Ebrahimi if (digit >= base) {
215*a62be085SSadaf Ebrahimi *value_p = value;
216*a62be085SSadaf Ebrahimi return false;
217*a62be085SSadaf Ebrahimi }
218*a62be085SSadaf Ebrahimi if (value < vmin_over_base) {
219*a62be085SSadaf Ebrahimi *value_p = vmin;
220*a62be085SSadaf Ebrahimi return false;
221*a62be085SSadaf Ebrahimi }
222*a62be085SSadaf Ebrahimi value *= base;
223*a62be085SSadaf Ebrahimi if (value < vmin + digit) {
224*a62be085SSadaf Ebrahimi *value_p = vmin;
225*a62be085SSadaf Ebrahimi return false;
226*a62be085SSadaf Ebrahimi }
227*a62be085SSadaf Ebrahimi value -= digit;
228*a62be085SSadaf Ebrahimi }
229*a62be085SSadaf Ebrahimi *value_p = value;
230*a62be085SSadaf Ebrahimi return true;
231*a62be085SSadaf Ebrahimi }
232*a62be085SSadaf Ebrahimi
233*a62be085SSadaf Ebrahimi // Input format based on POSIX.1-2008 strtol
234*a62be085SSadaf Ebrahimi // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
235*a62be085SSadaf Ebrahimi template <typename IntType>
safe_int_internal(const string & text,IntType * value_p,int base)236*a62be085SSadaf Ebrahimi inline bool safe_int_internal(const string& text, IntType* value_p, int base) {
237*a62be085SSadaf Ebrahimi *value_p = 0;
238*a62be085SSadaf Ebrahimi bool negative;
239*a62be085SSadaf Ebrahimi string text_copy(text);
240*a62be085SSadaf Ebrahimi if (!safe_parse_sign_and_base(&text_copy, &base, &negative)) {
241*a62be085SSadaf Ebrahimi return false;
242*a62be085SSadaf Ebrahimi }
243*a62be085SSadaf Ebrahimi if (!negative) {
244*a62be085SSadaf Ebrahimi return safe_parse_positive_int(text_copy, base, value_p);
245*a62be085SSadaf Ebrahimi } else {
246*a62be085SSadaf Ebrahimi return safe_parse_negative_int(text_copy, base, value_p);
247*a62be085SSadaf Ebrahimi }
248*a62be085SSadaf Ebrahimi }
249*a62be085SSadaf Ebrahimi
250*a62be085SSadaf Ebrahimi template <typename IntType>
safe_uint_internal(const string & text,IntType * value_p,int base)251*a62be085SSadaf Ebrahimi inline bool safe_uint_internal(const string& text, IntType* value_p, int base) {
252*a62be085SSadaf Ebrahimi *value_p = 0;
253*a62be085SSadaf Ebrahimi bool negative;
254*a62be085SSadaf Ebrahimi string text_copy(text);
255*a62be085SSadaf Ebrahimi if (!safe_parse_sign_and_base(&text_copy, &base, &negative) || negative) {
256*a62be085SSadaf Ebrahimi return false;
257*a62be085SSadaf Ebrahimi }
258*a62be085SSadaf Ebrahimi return safe_parse_positive_int(text_copy, base, value_p);
259*a62be085SSadaf Ebrahimi }
260*a62be085SSadaf Ebrahimi
261*a62be085SSadaf Ebrahimi // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
262*a62be085SSadaf Ebrahimi // range 0 <= i < 100, and buf must have space for two characters. Example:
263*a62be085SSadaf Ebrahimi // char buf[2];
264*a62be085SSadaf Ebrahimi // PutTwoDigits(42, buf);
265*a62be085SSadaf Ebrahimi // // buf[0] == '4'
266*a62be085SSadaf Ebrahimi // // buf[1] == '2'
PutTwoDigits(size_t i,char * buf)267*a62be085SSadaf Ebrahimi inline void PutTwoDigits(size_t i, char* buf) {
268*a62be085SSadaf Ebrahimi static const char two_ASCII_digits[100][2] = {
269*a62be085SSadaf Ebrahimi {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
270*a62be085SSadaf Ebrahimi {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
271*a62be085SSadaf Ebrahimi {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
272*a62be085SSadaf Ebrahimi {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
273*a62be085SSadaf Ebrahimi {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
274*a62be085SSadaf Ebrahimi {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
275*a62be085SSadaf Ebrahimi {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
276*a62be085SSadaf Ebrahimi {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
277*a62be085SSadaf Ebrahimi {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
278*a62be085SSadaf Ebrahimi {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
279*a62be085SSadaf Ebrahimi {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
280*a62be085SSadaf Ebrahimi {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
281*a62be085SSadaf Ebrahimi {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
282*a62be085SSadaf Ebrahimi {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
283*a62be085SSadaf Ebrahimi {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
284*a62be085SSadaf Ebrahimi {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
285*a62be085SSadaf Ebrahimi {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
286*a62be085SSadaf Ebrahimi assert(i < 100);
287*a62be085SSadaf Ebrahimi memcpy(buf, two_ASCII_digits[i], 2);
288*a62be085SSadaf Ebrahimi }
289*a62be085SSadaf Ebrahimi
290*a62be085SSadaf Ebrahimi } // anonymous namespace
291*a62be085SSadaf Ebrahimi
292*a62be085SSadaf Ebrahimi // ----------------------------------------------------------------------
293*a62be085SSadaf Ebrahimi // FastInt32ToBufferLeft()
294*a62be085SSadaf Ebrahimi // FastUInt32ToBufferLeft()
295*a62be085SSadaf Ebrahimi // FastInt64ToBufferLeft()
296*a62be085SSadaf Ebrahimi // FastUInt64ToBufferLeft()
297*a62be085SSadaf Ebrahimi //
298*a62be085SSadaf Ebrahimi // Like the Fast*ToBuffer() functions above, these are intended for speed.
299*a62be085SSadaf Ebrahimi // Unlike the Fast*ToBuffer() functions, however, these functions write
300*a62be085SSadaf Ebrahimi // their output to the beginning of the buffer (hence the name, as the
301*a62be085SSadaf Ebrahimi // output is left-aligned). The caller is responsible for ensuring that
302*a62be085SSadaf Ebrahimi // the buffer has enough space to hold the output.
303*a62be085SSadaf Ebrahimi //
304*a62be085SSadaf Ebrahimi // Returns a pointer to the end of the string (i.e. the null character
305*a62be085SSadaf Ebrahimi // terminating the string).
306*a62be085SSadaf Ebrahimi // ----------------------------------------------------------------------
307*a62be085SSadaf Ebrahimi
308*a62be085SSadaf Ebrahimi // Used to optimize printing a decimal number's final digit.
309*a62be085SSadaf Ebrahimi const char one_ASCII_final_digits[10][2]{
310*a62be085SSadaf Ebrahimi {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
311*a62be085SSadaf Ebrahimi {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
312*a62be085SSadaf Ebrahimi };
313*a62be085SSadaf Ebrahimi
FastUInt32ToBufferLeft(uint32 u,char * buffer)314*a62be085SSadaf Ebrahimi char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
315*a62be085SSadaf Ebrahimi uint32 digits;
316*a62be085SSadaf Ebrahimi // The idea of this implementation is to trim the number of divides to as few
317*a62be085SSadaf Ebrahimi // as possible, and also reducing memory stores and branches, by going in
318*a62be085SSadaf Ebrahimi // steps of two digits at a time rather than one whenever possible.
319*a62be085SSadaf Ebrahimi // The huge-number case is first, in the hopes that the compiler will output
320*a62be085SSadaf Ebrahimi // that case in one branch-free block of code, and only output conditional
321*a62be085SSadaf Ebrahimi // branches into it from below.
322*a62be085SSadaf Ebrahimi if (u >= 1000000000) { // >= 1,000,000,000
323*a62be085SSadaf Ebrahimi digits = u / 100000000; // 100,000,000
324*a62be085SSadaf Ebrahimi u -= digits * 100000000;
325*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
326*a62be085SSadaf Ebrahimi buffer += 2;
327*a62be085SSadaf Ebrahimi lt100_000_000:
328*a62be085SSadaf Ebrahimi digits = u / 1000000; // 1,000,000
329*a62be085SSadaf Ebrahimi u -= digits * 1000000;
330*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
331*a62be085SSadaf Ebrahimi buffer += 2;
332*a62be085SSadaf Ebrahimi lt1_000_000:
333*a62be085SSadaf Ebrahimi digits = u / 10000; // 10,000
334*a62be085SSadaf Ebrahimi u -= digits * 10000;
335*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
336*a62be085SSadaf Ebrahimi buffer += 2;
337*a62be085SSadaf Ebrahimi lt10_000:
338*a62be085SSadaf Ebrahimi digits = u / 100;
339*a62be085SSadaf Ebrahimi u -= digits * 100;
340*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
341*a62be085SSadaf Ebrahimi buffer += 2;
342*a62be085SSadaf Ebrahimi lt100:
343*a62be085SSadaf Ebrahimi digits = u;
344*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
345*a62be085SSadaf Ebrahimi buffer += 2;
346*a62be085SSadaf Ebrahimi *buffer = 0;
347*a62be085SSadaf Ebrahimi return buffer;
348*a62be085SSadaf Ebrahimi }
349*a62be085SSadaf Ebrahimi
350*a62be085SSadaf Ebrahimi if (u < 100) {
351*a62be085SSadaf Ebrahimi digits = u;
352*a62be085SSadaf Ebrahimi if (u >= 10) goto lt100;
353*a62be085SSadaf Ebrahimi memcpy(buffer, one_ASCII_final_digits[u], 2);
354*a62be085SSadaf Ebrahimi return buffer + 1;
355*a62be085SSadaf Ebrahimi }
356*a62be085SSadaf Ebrahimi if (u < 10000) { // 10,000
357*a62be085SSadaf Ebrahimi if (u >= 1000) goto lt10_000;
358*a62be085SSadaf Ebrahimi digits = u / 100;
359*a62be085SSadaf Ebrahimi u -= digits * 100;
360*a62be085SSadaf Ebrahimi *buffer++ = '0' + digits;
361*a62be085SSadaf Ebrahimi goto lt100;
362*a62be085SSadaf Ebrahimi }
363*a62be085SSadaf Ebrahimi if (u < 1000000) { // 1,000,000
364*a62be085SSadaf Ebrahimi if (u >= 100000) goto lt1_000_000;
365*a62be085SSadaf Ebrahimi digits = u / 10000; // 10,000
366*a62be085SSadaf Ebrahimi u -= digits * 10000;
367*a62be085SSadaf Ebrahimi *buffer++ = '0' + digits;
368*a62be085SSadaf Ebrahimi goto lt10_000;
369*a62be085SSadaf Ebrahimi }
370*a62be085SSadaf Ebrahimi if (u < 100000000) { // 100,000,000
371*a62be085SSadaf Ebrahimi if (u >= 10000000) goto lt100_000_000;
372*a62be085SSadaf Ebrahimi digits = u / 1000000; // 1,000,000
373*a62be085SSadaf Ebrahimi u -= digits * 1000000;
374*a62be085SSadaf Ebrahimi *buffer++ = '0' + digits;
375*a62be085SSadaf Ebrahimi goto lt1_000_000;
376*a62be085SSadaf Ebrahimi }
377*a62be085SSadaf Ebrahimi // we already know that u < 1,000,000,000
378*a62be085SSadaf Ebrahimi digits = u / 100000000; // 100,000,000
379*a62be085SSadaf Ebrahimi u -= digits * 100000000;
380*a62be085SSadaf Ebrahimi *buffer++ = '0' + digits;
381*a62be085SSadaf Ebrahimi goto lt100_000_000;
382*a62be085SSadaf Ebrahimi }
383*a62be085SSadaf Ebrahimi
FastInt32ToBufferLeft(int32 i,char * buffer)384*a62be085SSadaf Ebrahimi char* FastInt32ToBufferLeft(int32 i, char* buffer) {
385*a62be085SSadaf Ebrahimi uint32 u = i;
386*a62be085SSadaf Ebrahimi if (i < 0) {
387*a62be085SSadaf Ebrahimi *buffer++ = '-';
388*a62be085SSadaf Ebrahimi // We need to do the negation in modular (i.e., "unsigned")
389*a62be085SSadaf Ebrahimi // arithmetic; MSVC++ apprently warns for plain "-u", so
390*a62be085SSadaf Ebrahimi // we write the equivalent expression "0 - u" instead.
391*a62be085SSadaf Ebrahimi u = 0 - u;
392*a62be085SSadaf Ebrahimi }
393*a62be085SSadaf Ebrahimi return FastUInt32ToBufferLeft(u, buffer);
394*a62be085SSadaf Ebrahimi }
395*a62be085SSadaf Ebrahimi
FastUInt64ToBufferLeft(uint64 u64,char * buffer)396*a62be085SSadaf Ebrahimi char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
397*a62be085SSadaf Ebrahimi uint32 u32 = static_cast<uint32>(u64);
398*a62be085SSadaf Ebrahimi if (u32 == u64) return FastUInt32ToBufferLeft(u32, buffer);
399*a62be085SSadaf Ebrahimi
400*a62be085SSadaf Ebrahimi // Here we know u64 has at least 10 decimal digits.
401*a62be085SSadaf Ebrahimi uint64 top_1to11 = u64 / 1000000000;
402*a62be085SSadaf Ebrahimi u32 = static_cast<uint32>(u64 - top_1to11 * 1000000000);
403*a62be085SSadaf Ebrahimi uint32 top_1to11_32 = static_cast<uint32>(top_1to11);
404*a62be085SSadaf Ebrahimi
405*a62be085SSadaf Ebrahimi if (top_1to11_32 == top_1to11) {
406*a62be085SSadaf Ebrahimi buffer = FastUInt32ToBufferLeft(top_1to11_32, buffer);
407*a62be085SSadaf Ebrahimi } else {
408*a62be085SSadaf Ebrahimi // top_1to11 has more than 32 bits too; print it in two steps.
409*a62be085SSadaf Ebrahimi uint32 top_8to9 = static_cast<uint32>(top_1to11 / 100);
410*a62be085SSadaf Ebrahimi uint32 mid_2 = static_cast<uint32>(top_1to11 - top_8to9 * 100);
411*a62be085SSadaf Ebrahimi buffer = FastUInt32ToBufferLeft(top_8to9, buffer);
412*a62be085SSadaf Ebrahimi PutTwoDigits(mid_2, buffer);
413*a62be085SSadaf Ebrahimi buffer += 2;
414*a62be085SSadaf Ebrahimi }
415*a62be085SSadaf Ebrahimi
416*a62be085SSadaf Ebrahimi // We have only 9 digits now, again the maximum uint32 can handle fully.
417*a62be085SSadaf Ebrahimi uint32 digits = u32 / 10000000; // 10,000,000
418*a62be085SSadaf Ebrahimi u32 -= digits * 10000000;
419*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
420*a62be085SSadaf Ebrahimi buffer += 2;
421*a62be085SSadaf Ebrahimi digits = u32 / 100000; // 100,000
422*a62be085SSadaf Ebrahimi u32 -= digits * 100000;
423*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
424*a62be085SSadaf Ebrahimi buffer += 2;
425*a62be085SSadaf Ebrahimi digits = u32 / 1000; // 1,000
426*a62be085SSadaf Ebrahimi u32 -= digits * 1000;
427*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
428*a62be085SSadaf Ebrahimi buffer += 2;
429*a62be085SSadaf Ebrahimi digits = u32 / 10;
430*a62be085SSadaf Ebrahimi u32 -= digits * 10;
431*a62be085SSadaf Ebrahimi PutTwoDigits(digits, buffer);
432*a62be085SSadaf Ebrahimi buffer += 2;
433*a62be085SSadaf Ebrahimi memcpy(buffer, one_ASCII_final_digits[u32], 2);
434*a62be085SSadaf Ebrahimi return buffer + 1;
435*a62be085SSadaf Ebrahimi }
436*a62be085SSadaf Ebrahimi
FastInt64ToBufferLeft(int64 i,char * buffer)437*a62be085SSadaf Ebrahimi char* FastInt64ToBufferLeft(int64 i, char* buffer) {
438*a62be085SSadaf Ebrahimi uint64 u = i;
439*a62be085SSadaf Ebrahimi if (i < 0) {
440*a62be085SSadaf Ebrahimi *buffer++ = '-';
441*a62be085SSadaf Ebrahimi u = 0 - u;
442*a62be085SSadaf Ebrahimi }
443*a62be085SSadaf Ebrahimi return FastUInt64ToBufferLeft(u, buffer);
444*a62be085SSadaf Ebrahimi }
445*a62be085SSadaf Ebrahimi
safe_strto32_base(const string & text,int32 * value,int base)446*a62be085SSadaf Ebrahimi bool safe_strto32_base(const string& text, int32* value, int base) {
447*a62be085SSadaf Ebrahimi return safe_int_internal<int32>(text, value, base);
448*a62be085SSadaf Ebrahimi }
449*a62be085SSadaf Ebrahimi
safe_strto64_base(const string & text,int64 * value,int base)450*a62be085SSadaf Ebrahimi bool safe_strto64_base(const string& text, int64* value, int base) {
451*a62be085SSadaf Ebrahimi return safe_int_internal<int64>(text, value, base);
452*a62be085SSadaf Ebrahimi }
453*a62be085SSadaf Ebrahimi
safe_strtou32_base(const string & text,uint32 * value,int base)454*a62be085SSadaf Ebrahimi bool safe_strtou32_base(const string& text, uint32* value, int base) {
455*a62be085SSadaf Ebrahimi return safe_uint_internal<uint32>(text, value, base);
456*a62be085SSadaf Ebrahimi }
457*a62be085SSadaf Ebrahimi
safe_strtou64_base(const string & text,uint64 * value,int base)458*a62be085SSadaf Ebrahimi bool safe_strtou64_base(const string& text, uint64* value, int base) {
459*a62be085SSadaf Ebrahimi return safe_uint_internal<uint64>(text, value, base);
460*a62be085SSadaf Ebrahimi }
461*a62be085SSadaf Ebrahimi
safe_strtof(const string & piece,float * value)462*a62be085SSadaf Ebrahimi bool safe_strtof(const string& piece, float* value) {
463*a62be085SSadaf Ebrahimi *value = 0.0;
464*a62be085SSadaf Ebrahimi if (piece.empty()) return false;
465*a62be085SSadaf Ebrahimi char buf[32];
466*a62be085SSadaf Ebrahimi std::unique_ptr<char[]> bigbuf;
467*a62be085SSadaf Ebrahimi char* str = buf;
468*a62be085SSadaf Ebrahimi if (piece.size() > sizeof(buf) - 1) {
469*a62be085SSadaf Ebrahimi bigbuf.reset(new char[piece.size() + 1]);
470*a62be085SSadaf Ebrahimi str = bigbuf.get();
471*a62be085SSadaf Ebrahimi }
472*a62be085SSadaf Ebrahimi memcpy(str, piece.data(), piece.size());
473*a62be085SSadaf Ebrahimi str[piece.size()] = '\0';
474*a62be085SSadaf Ebrahimi
475*a62be085SSadaf Ebrahimi char* endptr;
476*a62be085SSadaf Ebrahimi #ifdef COMPILER_MSVC // has no strtof()
477*a62be085SSadaf Ebrahimi *value = strtod(str, &endptr);
478*a62be085SSadaf Ebrahimi #else
479*a62be085SSadaf Ebrahimi *value = strtof(str, &endptr);
480*a62be085SSadaf Ebrahimi #endif
481*a62be085SSadaf Ebrahimi if (endptr != str) {
482*a62be085SSadaf Ebrahimi while (ascii_isspace(*endptr)) ++endptr;
483*a62be085SSadaf Ebrahimi }
484*a62be085SSadaf Ebrahimi // Ignore range errors from strtod/strtof.
485*a62be085SSadaf Ebrahimi // The values it returns on underflow and
486*a62be085SSadaf Ebrahimi // overflow are the right fallback in a
487*a62be085SSadaf Ebrahimi // robust setting.
488*a62be085SSadaf Ebrahimi return *str != '\0' && *endptr == '\0';
489*a62be085SSadaf Ebrahimi }
490*a62be085SSadaf Ebrahimi
safe_strtod(const string & piece,double * value)491*a62be085SSadaf Ebrahimi bool safe_strtod(const string& piece, double* value) {
492*a62be085SSadaf Ebrahimi *value = 0.0;
493*a62be085SSadaf Ebrahimi if (piece.empty()) return false;
494*a62be085SSadaf Ebrahimi char buf[32];
495*a62be085SSadaf Ebrahimi std::unique_ptr<char[]> bigbuf;
496*a62be085SSadaf Ebrahimi char* str = buf;
497*a62be085SSadaf Ebrahimi if (piece.size() > sizeof(buf) - 1) {
498*a62be085SSadaf Ebrahimi bigbuf.reset(new char[piece.size() + 1]);
499*a62be085SSadaf Ebrahimi str = bigbuf.get();
500*a62be085SSadaf Ebrahimi }
501*a62be085SSadaf Ebrahimi memcpy(str, piece.data(), piece.size());
502*a62be085SSadaf Ebrahimi str[piece.size()] = '\0';
503*a62be085SSadaf Ebrahimi
504*a62be085SSadaf Ebrahimi char* endptr;
505*a62be085SSadaf Ebrahimi *value = strtod(str, &endptr);
506*a62be085SSadaf Ebrahimi if (endptr != str) {
507*a62be085SSadaf Ebrahimi while (ascii_isspace(*endptr)) ++endptr;
508*a62be085SSadaf Ebrahimi }
509*a62be085SSadaf Ebrahimi // Ignore range errors from strtod. The values it
510*a62be085SSadaf Ebrahimi // returns on underflow and overflow are the right
511*a62be085SSadaf Ebrahimi // fallback in a robust setting.
512*a62be085SSadaf Ebrahimi return *str != '\0' && *endptr == '\0';
513*a62be085SSadaf Ebrahimi }
514*a62be085SSadaf Ebrahimi
SimpleFtoa(float value)515*a62be085SSadaf Ebrahimi string SimpleFtoa(float value) {
516*a62be085SSadaf Ebrahimi char buffer[kFastToBufferSize];
517*a62be085SSadaf Ebrahimi return FloatToBuffer(value, buffer);
518*a62be085SSadaf Ebrahimi }
519*a62be085SSadaf Ebrahimi
FloatToBuffer(float value,char * buffer)520*a62be085SSadaf Ebrahimi char* FloatToBuffer(float value, char* buffer) {
521*a62be085SSadaf Ebrahimi // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
522*a62be085SSadaf Ebrahimi // platforms these days. Just in case some system exists where FLT_DIG
523*a62be085SSadaf Ebrahimi // is significantly larger -- and risks overflowing our buffer -- we have
524*a62be085SSadaf Ebrahimi // this assert.
525*a62be085SSadaf Ebrahimi assert(FLT_DIG < 10);
526*a62be085SSadaf Ebrahimi
527*a62be085SSadaf Ebrahimi int snprintf_result =
528*a62be085SSadaf Ebrahimi snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value);
529*a62be085SSadaf Ebrahimi
530*a62be085SSadaf Ebrahimi // The snprintf should never overflow because the buffer is significantly
531*a62be085SSadaf Ebrahimi // larger than the precision we asked for.
532*a62be085SSadaf Ebrahimi assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
533*a62be085SSadaf Ebrahimi
534*a62be085SSadaf Ebrahimi float parsed_value;
535*a62be085SSadaf Ebrahimi if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
536*a62be085SSadaf Ebrahimi snprintf_result =
537*a62be085SSadaf Ebrahimi snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 2, value);
538*a62be085SSadaf Ebrahimi
539*a62be085SSadaf Ebrahimi // Should never overflow; see above.
540*a62be085SSadaf Ebrahimi assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
541*a62be085SSadaf Ebrahimi }
542*a62be085SSadaf Ebrahimi return buffer;
543*a62be085SSadaf Ebrahimi }
544*a62be085SSadaf Ebrahimi
545*a62be085SSadaf Ebrahimi } // namespace strings
546*a62be085SSadaf Ebrahimi } // namespace dynamic_depth
547