xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/AngleAxis.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #ifndef EIGEN_ANGLEAXIS_H
11*bf2c3715SXin Li #define EIGEN_ANGLEAXIS_H
12*bf2c3715SXin Li 
13*bf2c3715SXin Li namespace Eigen {
14*bf2c3715SXin Li 
15*bf2c3715SXin Li /** \geometry_module \ingroup Geometry_Module
16*bf2c3715SXin Li   *
17*bf2c3715SXin Li   * \class AngleAxis
18*bf2c3715SXin Li   *
19*bf2c3715SXin Li   * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
20*bf2c3715SXin Li   *
21*bf2c3715SXin Li   * \param _Scalar the scalar type, i.e., the type of the coefficients.
22*bf2c3715SXin Li   *
23*bf2c3715SXin Li   * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized.
24*bf2c3715SXin Li   *
25*bf2c3715SXin Li   * The following two typedefs are provided for convenience:
26*bf2c3715SXin Li   * \li \c AngleAxisf for \c float
27*bf2c3715SXin Li   * \li \c AngleAxisd for \c double
28*bf2c3715SXin Li   *
29*bf2c3715SXin Li   * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
30*bf2c3715SXin Li   * mimic Euler-angles. Here is an example:
31*bf2c3715SXin Li   * \include AngleAxis_mimic_euler.cpp
32*bf2c3715SXin Li   * Output: \verbinclude AngleAxis_mimic_euler.out
33*bf2c3715SXin Li   *
34*bf2c3715SXin Li   * \note This class is not aimed to be used to store a rotation transformation,
35*bf2c3715SXin Li   * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
36*bf2c3715SXin Li   * and transformation objects.
37*bf2c3715SXin Li   *
38*bf2c3715SXin Li   * \sa class Quaternion, class Transform, MatrixBase::UnitX()
39*bf2c3715SXin Li   */
40*bf2c3715SXin Li 
41*bf2c3715SXin Li namespace internal {
42*bf2c3715SXin Li template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
43*bf2c3715SXin Li {
44*bf2c3715SXin Li   typedef _Scalar Scalar;
45*bf2c3715SXin Li };
46*bf2c3715SXin Li }
47*bf2c3715SXin Li 
48*bf2c3715SXin Li template<typename _Scalar>
49*bf2c3715SXin Li class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
50*bf2c3715SXin Li {
51*bf2c3715SXin Li   typedef RotationBase<AngleAxis<_Scalar>,3> Base;
52*bf2c3715SXin Li 
53*bf2c3715SXin Li public:
54*bf2c3715SXin Li 
55*bf2c3715SXin Li   using Base::operator*;
56*bf2c3715SXin Li 
57*bf2c3715SXin Li   enum { Dim = 3 };
58*bf2c3715SXin Li   /** the scalar type of the coefficients */
59*bf2c3715SXin Li   typedef _Scalar Scalar;
60*bf2c3715SXin Li   typedef Matrix<Scalar,3,3> Matrix3;
61*bf2c3715SXin Li   typedef Matrix<Scalar,3,1> Vector3;
62*bf2c3715SXin Li   typedef Quaternion<Scalar> QuaternionType;
63*bf2c3715SXin Li 
64*bf2c3715SXin Li protected:
65*bf2c3715SXin Li 
66*bf2c3715SXin Li   Vector3 m_axis;
67*bf2c3715SXin Li   Scalar m_angle;
68*bf2c3715SXin Li 
69*bf2c3715SXin Li public:
70*bf2c3715SXin Li 
71*bf2c3715SXin Li   /** Default constructor without initialization. */
72*bf2c3715SXin Li   EIGEN_DEVICE_FUNC AngleAxis() {}
73*bf2c3715SXin Li   /** Constructs and initialize the angle-axis rotation from an \a angle in radian
74*bf2c3715SXin Li     * and an \a axis which \b must \b be \b normalized.
75*bf2c3715SXin Li     *
76*bf2c3715SXin Li     * \warning If the \a axis vector is not normalized, then the angle-axis object
77*bf2c3715SXin Li     *          represents an invalid rotation. */
78*bf2c3715SXin Li   template<typename Derived>
79*bf2c3715SXin Li   EIGEN_DEVICE_FUNC
80*bf2c3715SXin Li   inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
81*bf2c3715SXin Li   /** Constructs and initialize the angle-axis rotation from a quaternion \a q.
82*bf2c3715SXin Li     * This function implicitly normalizes the quaternion \a q.
83*bf2c3715SXin Li     */
84*bf2c3715SXin Li   template<typename QuatDerived>
85*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
86*bf2c3715SXin Li   /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
87*bf2c3715SXin Li   template<typename Derived>
88*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
89*bf2c3715SXin Li 
90*bf2c3715SXin Li   /** \returns the value of the rotation angle in radian */
91*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; }
92*bf2c3715SXin Li   /** \returns a read-write reference to the stored angle in radian */
93*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; }
94*bf2c3715SXin Li 
95*bf2c3715SXin Li   /** \returns the rotation axis */
96*bf2c3715SXin Li   EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; }
97*bf2c3715SXin Li   /** \returns a read-write reference to the stored rotation axis.
98*bf2c3715SXin Li     *
99*bf2c3715SXin Li     * \warning The rotation axis must remain a \b unit vector.
100*bf2c3715SXin Li     */
101*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; }
102*bf2c3715SXin Li 
103*bf2c3715SXin Li   /** Concatenates two rotations */
104*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const
105*bf2c3715SXin Li   { return QuaternionType(*this) * QuaternionType(other); }
106*bf2c3715SXin Li 
107*bf2c3715SXin Li   /** Concatenates two rotations */
108*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const
109*bf2c3715SXin Li   { return QuaternionType(*this) * other; }
110*bf2c3715SXin Li 
111*bf2c3715SXin Li   /** Concatenates two rotations */
112*bf2c3715SXin Li   friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
113*bf2c3715SXin Li   { return a * QuaternionType(b); }
114*bf2c3715SXin Li 
115*bf2c3715SXin Li   /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
116*bf2c3715SXin Li   EIGEN_DEVICE_FUNC AngleAxis inverse() const
117*bf2c3715SXin Li   { return AngleAxis(-m_angle, m_axis); }
118*bf2c3715SXin Li 
119*bf2c3715SXin Li   template<class QuatDerived>
120*bf2c3715SXin Li   EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
121*bf2c3715SXin Li   template<typename Derived>
122*bf2c3715SXin Li   EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m);
123*bf2c3715SXin Li 
124*bf2c3715SXin Li   template<typename Derived>
125*bf2c3715SXin Li   EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
126*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const;
127*bf2c3715SXin Li 
128*bf2c3715SXin Li   /** \returns \c *this with scalar type casted to \a NewScalarType
129*bf2c3715SXin Li     *
130*bf2c3715SXin Li     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
131*bf2c3715SXin Li     * then this function smartly returns a const reference to \c *this.
132*bf2c3715SXin Li     */
133*bf2c3715SXin Li   template<typename NewScalarType>
134*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
135*bf2c3715SXin Li   { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
136*bf2c3715SXin Li 
137*bf2c3715SXin Li   /** Copy constructor with scalar type conversion */
138*bf2c3715SXin Li   template<typename OtherScalarType>
139*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
140*bf2c3715SXin Li   {
141*bf2c3715SXin Li     m_axis = other.axis().template cast<Scalar>();
142*bf2c3715SXin Li     m_angle = Scalar(other.angle());
143*bf2c3715SXin Li   }
144*bf2c3715SXin Li 
145*bf2c3715SXin Li   EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
146*bf2c3715SXin Li 
147*bf2c3715SXin Li   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
148*bf2c3715SXin Li     * determined by \a prec.
149*bf2c3715SXin Li     *
150*bf2c3715SXin Li     * \sa MatrixBase::isApprox() */
151*bf2c3715SXin Li   EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
152*bf2c3715SXin Li   { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
153*bf2c3715SXin Li };
154*bf2c3715SXin Li 
155*bf2c3715SXin Li /** \ingroup Geometry_Module
156*bf2c3715SXin Li   * single precision angle-axis type */
157*bf2c3715SXin Li typedef AngleAxis<float> AngleAxisf;
158*bf2c3715SXin Li /** \ingroup Geometry_Module
159*bf2c3715SXin Li   * double precision angle-axis type */
160*bf2c3715SXin Li typedef AngleAxis<double> AngleAxisd;
161*bf2c3715SXin Li 
162*bf2c3715SXin Li /** Set \c *this from a \b unit quaternion.
163*bf2c3715SXin Li   *
164*bf2c3715SXin Li   * The resulting axis is normalized, and the computed angle is in the [0,pi] range.
165*bf2c3715SXin Li   *
166*bf2c3715SXin Li   * This function implicitly normalizes the quaternion \a q.
167*bf2c3715SXin Li   */
168*bf2c3715SXin Li template<typename Scalar>
169*bf2c3715SXin Li template<typename QuatDerived>
170*bf2c3715SXin Li EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
171*bf2c3715SXin Li {
172*bf2c3715SXin Li   EIGEN_USING_STD(atan2)
173*bf2c3715SXin Li   EIGEN_USING_STD(abs)
174*bf2c3715SXin Li   Scalar n = q.vec().norm();
175*bf2c3715SXin Li   if(n<NumTraits<Scalar>::epsilon())
176*bf2c3715SXin Li     n = q.vec().stableNorm();
177*bf2c3715SXin Li 
178*bf2c3715SXin Li   if (n != Scalar(0))
179*bf2c3715SXin Li   {
180*bf2c3715SXin Li     m_angle = Scalar(2)*atan2(n, abs(q.w()));
181*bf2c3715SXin Li     if(q.w() < Scalar(0))
182*bf2c3715SXin Li       n = -n;
183*bf2c3715SXin Li     m_axis  = q.vec() / n;
184*bf2c3715SXin Li   }
185*bf2c3715SXin Li   else
186*bf2c3715SXin Li   {
187*bf2c3715SXin Li     m_angle = Scalar(0);
188*bf2c3715SXin Li     m_axis << Scalar(1), Scalar(0), Scalar(0);
189*bf2c3715SXin Li   }
190*bf2c3715SXin Li   return *this;
191*bf2c3715SXin Li }
192*bf2c3715SXin Li 
193*bf2c3715SXin Li /** Set \c *this from a 3x3 rotation matrix \a mat.
194*bf2c3715SXin Li   */
195*bf2c3715SXin Li template<typename Scalar>
196*bf2c3715SXin Li template<typename Derived>
197*bf2c3715SXin Li EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
198*bf2c3715SXin Li {
199*bf2c3715SXin Li   // Since a direct conversion would not be really faster,
200*bf2c3715SXin Li   // let's use the robust Quaternion implementation:
201*bf2c3715SXin Li   return *this = QuaternionType(mat);
202*bf2c3715SXin Li }
203*bf2c3715SXin Li 
204*bf2c3715SXin Li /**
205*bf2c3715SXin Li * \brief Sets \c *this from a 3x3 rotation matrix.
206*bf2c3715SXin Li **/
207*bf2c3715SXin Li template<typename Scalar>
208*bf2c3715SXin Li template<typename Derived>
209*bf2c3715SXin Li EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
210*bf2c3715SXin Li {
211*bf2c3715SXin Li   return *this = QuaternionType(mat);
212*bf2c3715SXin Li }
213*bf2c3715SXin Li 
214*bf2c3715SXin Li /** Constructs and \returns an equivalent 3x3 rotation matrix.
215*bf2c3715SXin Li   */
216*bf2c3715SXin Li template<typename Scalar>
217*bf2c3715SXin Li typename AngleAxis<Scalar>::Matrix3
218*bf2c3715SXin Li EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const
219*bf2c3715SXin Li {
220*bf2c3715SXin Li   EIGEN_USING_STD(sin)
221*bf2c3715SXin Li   EIGEN_USING_STD(cos)
222*bf2c3715SXin Li   Matrix3 res;
223*bf2c3715SXin Li   Vector3 sin_axis  = sin(m_angle) * m_axis;
224*bf2c3715SXin Li   Scalar c = cos(m_angle);
225*bf2c3715SXin Li   Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
226*bf2c3715SXin Li 
227*bf2c3715SXin Li   Scalar tmp;
228*bf2c3715SXin Li   tmp = cos1_axis.x() * m_axis.y();
229*bf2c3715SXin Li   res.coeffRef(0,1) = tmp - sin_axis.z();
230*bf2c3715SXin Li   res.coeffRef(1,0) = tmp + sin_axis.z();
231*bf2c3715SXin Li 
232*bf2c3715SXin Li   tmp = cos1_axis.x() * m_axis.z();
233*bf2c3715SXin Li   res.coeffRef(0,2) = tmp + sin_axis.y();
234*bf2c3715SXin Li   res.coeffRef(2,0) = tmp - sin_axis.y();
235*bf2c3715SXin Li 
236*bf2c3715SXin Li   tmp = cos1_axis.y() * m_axis.z();
237*bf2c3715SXin Li   res.coeffRef(1,2) = tmp - sin_axis.x();
238*bf2c3715SXin Li   res.coeffRef(2,1) = tmp + sin_axis.x();
239*bf2c3715SXin Li 
240*bf2c3715SXin Li   res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
241*bf2c3715SXin Li 
242*bf2c3715SXin Li   return res;
243*bf2c3715SXin Li }
244*bf2c3715SXin Li 
245*bf2c3715SXin Li } // end namespace Eigen
246*bf2c3715SXin Li 
247*bf2c3715SXin Li #endif // EIGEN_ANGLEAXIS_H
248