1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library 2*bf2c3715SXin Li // for linear algebra. 3*bf2c3715SXin Li // 4*bf2c3715SXin Li // Copyright (C) 2008-2010 Gael Guennebaud <[email protected]> 5*bf2c3715SXin Li // Copyright (C) 2009 Mathieu Gautier <[email protected]> 6*bf2c3715SXin Li // 7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla 8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed 9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10*bf2c3715SXin Li 11*bf2c3715SXin Li #ifndef EIGEN_QUATERNION_H 12*bf2c3715SXin Li #define EIGEN_QUATERNION_H 13*bf2c3715SXin Li namespace Eigen { 14*bf2c3715SXin Li 15*bf2c3715SXin Li 16*bf2c3715SXin Li /*************************************************************************** 17*bf2c3715SXin Li * Definition of QuaternionBase<Derived> 18*bf2c3715SXin Li * The implementation is at the end of the file 19*bf2c3715SXin Li ***************************************************************************/ 20*bf2c3715SXin Li 21*bf2c3715SXin Li namespace internal { 22*bf2c3715SXin Li template<typename Other, 23*bf2c3715SXin Li int OtherRows=Other::RowsAtCompileTime, 24*bf2c3715SXin Li int OtherCols=Other::ColsAtCompileTime> 25*bf2c3715SXin Li struct quaternionbase_assign_impl; 26*bf2c3715SXin Li } 27*bf2c3715SXin Li 28*bf2c3715SXin Li /** \geometry_module \ingroup Geometry_Module 29*bf2c3715SXin Li * \class QuaternionBase 30*bf2c3715SXin Li * \brief Base class for quaternion expressions 31*bf2c3715SXin Li * \tparam Derived derived type (CRTP) 32*bf2c3715SXin Li * \sa class Quaternion 33*bf2c3715SXin Li */ 34*bf2c3715SXin Li template<class Derived> 35*bf2c3715SXin Li class QuaternionBase : public RotationBase<Derived, 3> 36*bf2c3715SXin Li { 37*bf2c3715SXin Li public: 38*bf2c3715SXin Li typedef RotationBase<Derived, 3> Base; 39*bf2c3715SXin Li 40*bf2c3715SXin Li using Base::operator*; 41*bf2c3715SXin Li using Base::derived; 42*bf2c3715SXin Li 43*bf2c3715SXin Li typedef typename internal::traits<Derived>::Scalar Scalar; 44*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar; 45*bf2c3715SXin Li typedef typename internal::traits<Derived>::Coefficients Coefficients; 46*bf2c3715SXin Li typedef typename Coefficients::CoeffReturnType CoeffReturnType; 47*bf2c3715SXin Li typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit), 48*bf2c3715SXin Li Scalar&, CoeffReturnType>::type NonConstCoeffReturnType; 49*bf2c3715SXin Li 50*bf2c3715SXin Li 51*bf2c3715SXin Li enum { 52*bf2c3715SXin Li Flags = Eigen::internal::traits<Derived>::Flags 53*bf2c3715SXin Li }; 54*bf2c3715SXin Li 55*bf2c3715SXin Li // typedef typename Matrix<Scalar,4,1> Coefficients; 56*bf2c3715SXin Li /** the type of a 3D vector */ 57*bf2c3715SXin Li typedef Matrix<Scalar,3,1> Vector3; 58*bf2c3715SXin Li /** the equivalent rotation matrix type */ 59*bf2c3715SXin Li typedef Matrix<Scalar,3,3> Matrix3; 60*bf2c3715SXin Li /** the equivalent angle-axis type */ 61*bf2c3715SXin Li typedef AngleAxis<Scalar> AngleAxisType; 62*bf2c3715SXin Li 63*bf2c3715SXin Li 64*bf2c3715SXin Li 65*bf2c3715SXin Li /** \returns the \c x coefficient */ x()66*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } 67*bf2c3715SXin Li /** \returns the \c y coefficient */ y()68*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } 69*bf2c3715SXin Li /** \returns the \c z coefficient */ z()70*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } 71*bf2c3715SXin Li /** \returns the \c w coefficient */ w()72*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } 73*bf2c3715SXin Li 74*bf2c3715SXin Li /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ x()75*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } 76*bf2c3715SXin Li /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ y()77*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } 78*bf2c3715SXin Li /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ z()79*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } 80*bf2c3715SXin Li /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ w()81*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } 82*bf2c3715SXin Li 83*bf2c3715SXin Li /** \returns a read-only vector expression of the imaginary part (x,y,z) */ vec()84*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } 85*bf2c3715SXin Li 86*bf2c3715SXin Li /** \returns a vector expression of the imaginary part (x,y,z) */ vec()87*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } 88*bf2c3715SXin Li 89*bf2c3715SXin Li /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ coeffs()90*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } 91*bf2c3715SXin Li 92*bf2c3715SXin Li /** \returns a vector expression of the coefficients (x,y,z,w) */ coeffs()93*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } 94*bf2c3715SXin Li 95*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); 96*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); 97*bf2c3715SXin Li 98*bf2c3715SXin Li // disabled this copy operator as it is giving very strange compilation errors when compiling 99*bf2c3715SXin Li // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's 100*bf2c3715SXin Li // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase 101*bf2c3715SXin Li // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. 102*bf2c3715SXin Li // Derived& operator=(const QuaternionBase& other) 103*bf2c3715SXin Li // { return operator=<Derived>(other); } 104*bf2c3715SXin Li 105*bf2c3715SXin Li EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); 106*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); 107*bf2c3715SXin Li 108*bf2c3715SXin Li /** \returns a quaternion representing an identity rotation 109*bf2c3715SXin Li * \sa MatrixBase::Identity() 110*bf2c3715SXin Li */ Identity()111*bf2c3715SXin Li EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); } 112*bf2c3715SXin Li 113*bf2c3715SXin Li /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() 114*bf2c3715SXin Li */ setIdentity()115*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; } 116*bf2c3715SXin Li 117*bf2c3715SXin Li /** \returns the squared norm of the quaternion's coefficients 118*bf2c3715SXin Li * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() 119*bf2c3715SXin Li */ squaredNorm()120*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } 121*bf2c3715SXin Li 122*bf2c3715SXin Li /** \returns the norm of the quaternion's coefficients 123*bf2c3715SXin Li * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() 124*bf2c3715SXin Li */ norm()125*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } 126*bf2c3715SXin Li 127*bf2c3715SXin Li /** Normalizes the quaternion \c *this 128*bf2c3715SXin Li * \sa normalized(), MatrixBase::normalize() */ normalize()129*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } 130*bf2c3715SXin Li /** \returns a normalized copy of \c *this 131*bf2c3715SXin Li * \sa normalize(), MatrixBase::normalized() */ normalized()132*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } 133*bf2c3715SXin Li 134*bf2c3715SXin Li /** \returns the dot product of \c *this and \a other 135*bf2c3715SXin Li * Geometrically speaking, the dot product of two unit quaternions 136*bf2c3715SXin Li * corresponds to the cosine of half the angle between the two rotations. 137*bf2c3715SXin Li * \sa angularDistance() 138*bf2c3715SXin Li */ dot(const QuaternionBase<OtherDerived> & other)139*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } 140*bf2c3715SXin Li 141*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; 142*bf2c3715SXin Li 143*bf2c3715SXin Li /** \returns an equivalent 3x3 rotation matrix */ 144*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; 145*bf2c3715SXin Li 146*bf2c3715SXin Li /** \returns the quaternion which transform \a a into \a b through a rotation */ 147*bf2c3715SXin Li template<typename Derived1, typename Derived2> 148*bf2c3715SXin Li EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); 149*bf2c3715SXin Li 150*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; 151*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); 152*bf2c3715SXin Li 153*bf2c3715SXin Li /** \returns the quaternion describing the inverse rotation */ 154*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; 155*bf2c3715SXin Li 156*bf2c3715SXin Li /** \returns the conjugated quaternion */ 157*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; 158*bf2c3715SXin Li 159*bf2c3715SXin Li template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; 160*bf2c3715SXin Li 161*bf2c3715SXin Li /** \returns true if each coefficients of \c *this and \a other are all exactly equal. 162*bf2c3715SXin Li * \warning When using floating point scalar values you probably should rather use a 163*bf2c3715SXin Li * fuzzy comparison such as isApprox() 164*bf2c3715SXin Li * \sa isApprox(), operator!= */ 165*bf2c3715SXin Li template<class OtherDerived> 166*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const 167*bf2c3715SXin Li { return coeffs() == other.coeffs(); } 168*bf2c3715SXin Li 169*bf2c3715SXin Li /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. 170*bf2c3715SXin Li * \warning When using floating point scalar values you probably should rather use a 171*bf2c3715SXin Li * fuzzy comparison such as isApprox() 172*bf2c3715SXin Li * \sa isApprox(), operator== */ 173*bf2c3715SXin Li template<class OtherDerived> 174*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const 175*bf2c3715SXin Li { return coeffs() != other.coeffs(); } 176*bf2c3715SXin Li 177*bf2c3715SXin Li /** \returns \c true if \c *this is approximately equal to \a other, within the precision 178*bf2c3715SXin Li * determined by \a prec. 179*bf2c3715SXin Li * 180*bf2c3715SXin Li * \sa MatrixBase::isApprox() */ 181*bf2c3715SXin Li template<class OtherDerived> 182*bf2c3715SXin Li EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const 183*bf2c3715SXin Li { return coeffs().isApprox(other.coeffs(), prec); } 184*bf2c3715SXin Li 185*bf2c3715SXin Li /** return the result vector of \a v through the rotation*/ 186*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; 187*bf2c3715SXin Li 188*bf2c3715SXin Li #ifdef EIGEN_PARSED_BY_DOXYGEN 189*bf2c3715SXin Li /** \returns \c *this with scalar type casted to \a NewScalarType 190*bf2c3715SXin Li * 191*bf2c3715SXin Li * Note that if \a NewScalarType is equal to the current scalar type of \c *this 192*bf2c3715SXin Li * then this function smartly returns a const reference to \c *this. 193*bf2c3715SXin Li */ 194*bf2c3715SXin Li template<typename NewScalarType> 195*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const; 196*bf2c3715SXin Li 197*bf2c3715SXin Li #else 198*bf2c3715SXin Li 199*bf2c3715SXin Li template<typename NewScalarType> 200*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline cast()201*bf2c3715SXin Li typename internal::enable_if<internal::is_same<Scalar,NewScalarType>::value,const Derived&>::type cast() const 202*bf2c3715SXin Li { 203*bf2c3715SXin Li return derived(); 204*bf2c3715SXin Li } 205*bf2c3715SXin Li 206*bf2c3715SXin Li template<typename NewScalarType> 207*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline cast()208*bf2c3715SXin Li typename internal::enable_if<!internal::is_same<Scalar,NewScalarType>::value,Quaternion<NewScalarType> >::type cast() const 209*bf2c3715SXin Li { 210*bf2c3715SXin Li return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>()); 211*bf2c3715SXin Li } 212*bf2c3715SXin Li #endif 213*bf2c3715SXin Li 214*bf2c3715SXin Li #ifndef EIGEN_NO_IO 215*bf2c3715SXin Li friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) { 216*bf2c3715SXin Li s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" << " + " << q.w(); 217*bf2c3715SXin Li return s; 218*bf2c3715SXin Li } 219*bf2c3715SXin Li #endif 220*bf2c3715SXin Li 221*bf2c3715SXin Li #ifdef EIGEN_QUATERNIONBASE_PLUGIN 222*bf2c3715SXin Li # include EIGEN_QUATERNIONBASE_PLUGIN 223*bf2c3715SXin Li #endif 224*bf2c3715SXin Li protected: 225*bf2c3715SXin Li EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) 226*bf2c3715SXin Li EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) 227*bf2c3715SXin Li }; 228*bf2c3715SXin Li 229*bf2c3715SXin Li /*************************************************************************** 230*bf2c3715SXin Li * Definition/implementation of Quaternion<Scalar> 231*bf2c3715SXin Li ***************************************************************************/ 232*bf2c3715SXin Li 233*bf2c3715SXin Li /** \geometry_module \ingroup Geometry_Module 234*bf2c3715SXin Li * 235*bf2c3715SXin Li * \class Quaternion 236*bf2c3715SXin Li * 237*bf2c3715SXin Li * \brief The quaternion class used to represent 3D orientations and rotations 238*bf2c3715SXin Li * 239*bf2c3715SXin Li * \tparam _Scalar the scalar type, i.e., the type of the coefficients 240*bf2c3715SXin Li * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. 241*bf2c3715SXin Li * 242*bf2c3715SXin Li * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of 243*bf2c3715SXin Li * orientations and rotations of objects in three dimensions. Compared to other representations 244*bf2c3715SXin Li * like Euler angles or 3x3 matrices, quaternions offer the following advantages: 245*bf2c3715SXin Li * \li \b compact storage (4 scalars) 246*bf2c3715SXin Li * \li \b efficient to compose (28 flops), 247*bf2c3715SXin Li * \li \b stable spherical interpolation 248*bf2c3715SXin Li * 249*bf2c3715SXin Li * The following two typedefs are provided for convenience: 250*bf2c3715SXin Li * \li \c Quaternionf for \c float 251*bf2c3715SXin Li * \li \c Quaterniond for \c double 252*bf2c3715SXin Li * 253*bf2c3715SXin Li * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. 254*bf2c3715SXin Li * 255*bf2c3715SXin Li * \sa class AngleAxis, class Transform 256*bf2c3715SXin Li */ 257*bf2c3715SXin Li 258*bf2c3715SXin Li namespace internal { 259*bf2c3715SXin Li template<typename _Scalar,int _Options> 260*bf2c3715SXin Li struct traits<Quaternion<_Scalar,_Options> > 261*bf2c3715SXin Li { 262*bf2c3715SXin Li typedef Quaternion<_Scalar,_Options> PlainObject; 263*bf2c3715SXin Li typedef _Scalar Scalar; 264*bf2c3715SXin Li typedef Matrix<_Scalar,4,1,_Options> Coefficients; 265*bf2c3715SXin Li enum{ 266*bf2c3715SXin Li Alignment = internal::traits<Coefficients>::Alignment, 267*bf2c3715SXin Li Flags = LvalueBit 268*bf2c3715SXin Li }; 269*bf2c3715SXin Li }; 270*bf2c3715SXin Li } 271*bf2c3715SXin Li 272*bf2c3715SXin Li template<typename _Scalar, int _Options> 273*bf2c3715SXin Li class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > 274*bf2c3715SXin Li { 275*bf2c3715SXin Li public: 276*bf2c3715SXin Li typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; 277*bf2c3715SXin Li enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 }; 278*bf2c3715SXin Li 279*bf2c3715SXin Li typedef _Scalar Scalar; 280*bf2c3715SXin Li 281*bf2c3715SXin Li EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) 282*bf2c3715SXin Li using Base::operator*=; 283*bf2c3715SXin Li 284*bf2c3715SXin Li typedef typename internal::traits<Quaternion>::Coefficients Coefficients; 285*bf2c3715SXin Li typedef typename Base::AngleAxisType AngleAxisType; 286*bf2c3715SXin Li 287*bf2c3715SXin Li /** Default constructor leaving the quaternion uninitialized. */ 288*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion() {} 289*bf2c3715SXin Li 290*bf2c3715SXin Li /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from 291*bf2c3715SXin Li * its four coefficients \a w, \a x, \a y and \a z. 292*bf2c3715SXin Li * 293*bf2c3715SXin Li * \warning Note the order of the arguments: the real \a w coefficient first, 294*bf2c3715SXin Li * while internally the coefficients are stored in the following order: 295*bf2c3715SXin Li * [\c x, \c y, \c z, \c w] 296*bf2c3715SXin Li */ 297*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} 298*bf2c3715SXin Li 299*bf2c3715SXin Li /** Constructs and initialize a quaternion from the array data */ 300*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} 301*bf2c3715SXin Li 302*bf2c3715SXin Li /** Copy constructor */ 303*bf2c3715SXin Li template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } 304*bf2c3715SXin Li 305*bf2c3715SXin Li /** Constructs and initializes a quaternion from the angle-axis \a aa */ 306*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } 307*bf2c3715SXin Li 308*bf2c3715SXin Li /** Constructs and initializes a quaternion from either: 309*bf2c3715SXin Li * - a rotation matrix expression, 310*bf2c3715SXin Li * - a 4D vector expression representing quaternion coefficients. 311*bf2c3715SXin Li */ 312*bf2c3715SXin Li template<typename Derived> 313*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } 314*bf2c3715SXin Li 315*bf2c3715SXin Li /** Explicit copy constructor with scalar conversion */ 316*bf2c3715SXin Li template<typename OtherScalar, int OtherOptions> 317*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) 318*bf2c3715SXin Li { m_coeffs = other.coeffs().template cast<Scalar>(); } 319*bf2c3715SXin Li 320*bf2c3715SXin Li #if EIGEN_HAS_RVALUE_REFERENCES 321*bf2c3715SXin Li // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. 322*bf2c3715SXin Li /** Default move constructor */ 323*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) 324*bf2c3715SXin Li : m_coeffs(std::move(other.coeffs())) 325*bf2c3715SXin Li {} 326*bf2c3715SXin Li 327*bf2c3715SXin Li /** Default move assignment operator */ 328*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) 329*bf2c3715SXin Li { 330*bf2c3715SXin Li m_coeffs = std::move(other.coeffs()); 331*bf2c3715SXin Li return *this; 332*bf2c3715SXin Li } 333*bf2c3715SXin Li #endif 334*bf2c3715SXin Li 335*bf2c3715SXin Li EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); 336*bf2c3715SXin Li 337*bf2c3715SXin Li template<typename Derived1, typename Derived2> 338*bf2c3715SXin Li EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); 339*bf2c3715SXin Li 340*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;} 341*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} 342*bf2c3715SXin Li 343*bf2c3715SXin Li EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) 344*bf2c3715SXin Li 345*bf2c3715SXin Li #ifdef EIGEN_QUATERNION_PLUGIN 346*bf2c3715SXin Li # include EIGEN_QUATERNION_PLUGIN 347*bf2c3715SXin Li #endif 348*bf2c3715SXin Li 349*bf2c3715SXin Li protected: 350*bf2c3715SXin Li Coefficients m_coeffs; 351*bf2c3715SXin Li 352*bf2c3715SXin Li #ifndef EIGEN_PARSED_BY_DOXYGEN 353*bf2c3715SXin Li static EIGEN_STRONG_INLINE void _check_template_params() 354*bf2c3715SXin Li { 355*bf2c3715SXin Li EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, 356*bf2c3715SXin Li INVALID_MATRIX_TEMPLATE_PARAMETERS) 357*bf2c3715SXin Li } 358*bf2c3715SXin Li #endif 359*bf2c3715SXin Li }; 360*bf2c3715SXin Li 361*bf2c3715SXin Li /** \ingroup Geometry_Module 362*bf2c3715SXin Li * single precision quaternion type */ 363*bf2c3715SXin Li typedef Quaternion<float> Quaternionf; 364*bf2c3715SXin Li /** \ingroup Geometry_Module 365*bf2c3715SXin Li * double precision quaternion type */ 366*bf2c3715SXin Li typedef Quaternion<double> Quaterniond; 367*bf2c3715SXin Li 368*bf2c3715SXin Li /*************************************************************************** 369*bf2c3715SXin Li * Specialization of Map<Quaternion<Scalar>> 370*bf2c3715SXin Li ***************************************************************************/ 371*bf2c3715SXin Li 372*bf2c3715SXin Li namespace internal { 373*bf2c3715SXin Li template<typename _Scalar, int _Options> 374*bf2c3715SXin Li struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > 375*bf2c3715SXin Li { 376*bf2c3715SXin Li typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; 377*bf2c3715SXin Li }; 378*bf2c3715SXin Li } 379*bf2c3715SXin Li 380*bf2c3715SXin Li namespace internal { 381*bf2c3715SXin Li template<typename _Scalar, int _Options> 382*bf2c3715SXin Li struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > 383*bf2c3715SXin Li { 384*bf2c3715SXin Li typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; 385*bf2c3715SXin Li typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; 386*bf2c3715SXin Li enum { 387*bf2c3715SXin Li Flags = TraitsBase::Flags & ~LvalueBit 388*bf2c3715SXin Li }; 389*bf2c3715SXin Li }; 390*bf2c3715SXin Li } 391*bf2c3715SXin Li 392*bf2c3715SXin Li /** \ingroup Geometry_Module 393*bf2c3715SXin Li * \brief Quaternion expression mapping a constant memory buffer 394*bf2c3715SXin Li * 395*bf2c3715SXin Li * \tparam _Scalar the type of the Quaternion coefficients 396*bf2c3715SXin Li * \tparam _Options see class Map 397*bf2c3715SXin Li * 398*bf2c3715SXin Li * This is a specialization of class Map for Quaternion. This class allows to view 399*bf2c3715SXin Li * a 4 scalar memory buffer as an Eigen's Quaternion object. 400*bf2c3715SXin Li * 401*bf2c3715SXin Li * \sa class Map, class Quaternion, class QuaternionBase 402*bf2c3715SXin Li */ 403*bf2c3715SXin Li template<typename _Scalar, int _Options> 404*bf2c3715SXin Li class Map<const Quaternion<_Scalar>, _Options > 405*bf2c3715SXin Li : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > 406*bf2c3715SXin Li { 407*bf2c3715SXin Li public: 408*bf2c3715SXin Li typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; 409*bf2c3715SXin Li 410*bf2c3715SXin Li typedef _Scalar Scalar; 411*bf2c3715SXin Li typedef typename internal::traits<Map>::Coefficients Coefficients; 412*bf2c3715SXin Li EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) 413*bf2c3715SXin Li using Base::operator*=; 414*bf2c3715SXin Li 415*bf2c3715SXin Li /** Constructs a Mapped Quaternion object from the pointer \a coeffs 416*bf2c3715SXin Li * 417*bf2c3715SXin Li * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: 418*bf2c3715SXin Li * \code *coeffs == {x, y, z, w} \endcode 419*bf2c3715SXin Li * 420*bf2c3715SXin Li * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ 421*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} 422*bf2c3715SXin Li 423*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;} 424*bf2c3715SXin Li 425*bf2c3715SXin Li protected: 426*bf2c3715SXin Li const Coefficients m_coeffs; 427*bf2c3715SXin Li }; 428*bf2c3715SXin Li 429*bf2c3715SXin Li /** \ingroup Geometry_Module 430*bf2c3715SXin Li * \brief Expression of a quaternion from a memory buffer 431*bf2c3715SXin Li * 432*bf2c3715SXin Li * \tparam _Scalar the type of the Quaternion coefficients 433*bf2c3715SXin Li * \tparam _Options see class Map 434*bf2c3715SXin Li * 435*bf2c3715SXin Li * This is a specialization of class Map for Quaternion. This class allows to view 436*bf2c3715SXin Li * a 4 scalar memory buffer as an Eigen's Quaternion object. 437*bf2c3715SXin Li * 438*bf2c3715SXin Li * \sa class Map, class Quaternion, class QuaternionBase 439*bf2c3715SXin Li */ 440*bf2c3715SXin Li template<typename _Scalar, int _Options> 441*bf2c3715SXin Li class Map<Quaternion<_Scalar>, _Options > 442*bf2c3715SXin Li : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > 443*bf2c3715SXin Li { 444*bf2c3715SXin Li public: 445*bf2c3715SXin Li typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; 446*bf2c3715SXin Li 447*bf2c3715SXin Li typedef _Scalar Scalar; 448*bf2c3715SXin Li typedef typename internal::traits<Map>::Coefficients Coefficients; 449*bf2c3715SXin Li EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) 450*bf2c3715SXin Li using Base::operator*=; 451*bf2c3715SXin Li 452*bf2c3715SXin Li /** Constructs a Mapped Quaternion object from the pointer \a coeffs 453*bf2c3715SXin Li * 454*bf2c3715SXin Li * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: 455*bf2c3715SXin Li * \code *coeffs == {x, y, z, w} \endcode 456*bf2c3715SXin Li * 457*bf2c3715SXin Li * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ 458*bf2c3715SXin Li EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} 459*bf2c3715SXin Li 460*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } 461*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } 462*bf2c3715SXin Li 463*bf2c3715SXin Li protected: 464*bf2c3715SXin Li Coefficients m_coeffs; 465*bf2c3715SXin Li }; 466*bf2c3715SXin Li 467*bf2c3715SXin Li /** \ingroup Geometry_Module 468*bf2c3715SXin Li * Map an unaligned array of single precision scalars as a quaternion */ 469*bf2c3715SXin Li typedef Map<Quaternion<float>, 0> QuaternionMapf; 470*bf2c3715SXin Li /** \ingroup Geometry_Module 471*bf2c3715SXin Li * Map an unaligned array of double precision scalars as a quaternion */ 472*bf2c3715SXin Li typedef Map<Quaternion<double>, 0> QuaternionMapd; 473*bf2c3715SXin Li /** \ingroup Geometry_Module 474*bf2c3715SXin Li * Map a 16-byte aligned array of single precision scalars as a quaternion */ 475*bf2c3715SXin Li typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; 476*bf2c3715SXin Li /** \ingroup Geometry_Module 477*bf2c3715SXin Li * Map a 16-byte aligned array of double precision scalars as a quaternion */ 478*bf2c3715SXin Li typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; 479*bf2c3715SXin Li 480*bf2c3715SXin Li /*************************************************************************** 481*bf2c3715SXin Li * Implementation of QuaternionBase methods 482*bf2c3715SXin Li ***************************************************************************/ 483*bf2c3715SXin Li 484*bf2c3715SXin Li // Generic Quaternion * Quaternion product 485*bf2c3715SXin Li // This product can be specialized for a given architecture via the Arch template argument. 486*bf2c3715SXin Li namespace internal { 487*bf2c3715SXin Li template<int Arch, class Derived1, class Derived2, typename Scalar> struct quat_product 488*bf2c3715SXin Li { 489*bf2c3715SXin Li EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ 490*bf2c3715SXin Li return Quaternion<Scalar> 491*bf2c3715SXin Li ( 492*bf2c3715SXin Li a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), 493*bf2c3715SXin Li a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), 494*bf2c3715SXin Li a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), 495*bf2c3715SXin Li a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() 496*bf2c3715SXin Li ); 497*bf2c3715SXin Li } 498*bf2c3715SXin Li }; 499*bf2c3715SXin Li } 500*bf2c3715SXin Li 501*bf2c3715SXin Li /** \returns the concatenation of two rotations as a quaternion-quaternion product */ 502*bf2c3715SXin Li template <class Derived> 503*bf2c3715SXin Li template <class OtherDerived> 504*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> 505*bf2c3715SXin Li QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const 506*bf2c3715SXin Li { 507*bf2c3715SXin Li EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), 508*bf2c3715SXin Li YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 509*bf2c3715SXin Li return internal::quat_product<Architecture::Target, Derived, OtherDerived, 510*bf2c3715SXin Li typename internal::traits<Derived>::Scalar>::run(*this, other); 511*bf2c3715SXin Li } 512*bf2c3715SXin Li 513*bf2c3715SXin Li /** \sa operator*(Quaternion) */ 514*bf2c3715SXin Li template <class Derived> 515*bf2c3715SXin Li template <class OtherDerived> 516*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) 517*bf2c3715SXin Li { 518*bf2c3715SXin Li derived() = derived() * other.derived(); 519*bf2c3715SXin Li return derived(); 520*bf2c3715SXin Li } 521*bf2c3715SXin Li 522*bf2c3715SXin Li /** Rotation of a vector by a quaternion. 523*bf2c3715SXin Li * \remarks If the quaternion is used to rotate several points (>1) 524*bf2c3715SXin Li * then it is much more efficient to first convert it to a 3x3 Matrix. 525*bf2c3715SXin Li * Comparison of the operation cost for n transformations: 526*bf2c3715SXin Li * - Quaternion2: 30n 527*bf2c3715SXin Li * - Via a Matrix3: 24 + 15n 528*bf2c3715SXin Li */ 529*bf2c3715SXin Li template <class Derived> 530*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 531*bf2c3715SXin Li QuaternionBase<Derived>::_transformVector(const Vector3& v) const 532*bf2c3715SXin Li { 533*bf2c3715SXin Li // Note that this algorithm comes from the optimization by hand 534*bf2c3715SXin Li // of the conversion to a Matrix followed by a Matrix/Vector product. 535*bf2c3715SXin Li // It appears to be much faster than the common algorithm found 536*bf2c3715SXin Li // in the literature (30 versus 39 flops). It also requires two 537*bf2c3715SXin Li // Vector3 as temporaries. 538*bf2c3715SXin Li Vector3 uv = this->vec().cross(v); 539*bf2c3715SXin Li uv += uv; 540*bf2c3715SXin Li return v + this->w() * uv + this->vec().cross(uv); 541*bf2c3715SXin Li } 542*bf2c3715SXin Li 543*bf2c3715SXin Li template<class Derived> 544*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) 545*bf2c3715SXin Li { 546*bf2c3715SXin Li coeffs() = other.coeffs(); 547*bf2c3715SXin Li return derived(); 548*bf2c3715SXin Li } 549*bf2c3715SXin Li 550*bf2c3715SXin Li template<class Derived> 551*bf2c3715SXin Li template<class OtherDerived> 552*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) 553*bf2c3715SXin Li { 554*bf2c3715SXin Li coeffs() = other.coeffs(); 555*bf2c3715SXin Li return derived(); 556*bf2c3715SXin Li } 557*bf2c3715SXin Li 558*bf2c3715SXin Li /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this 559*bf2c3715SXin Li */ 560*bf2c3715SXin Li template<class Derived> 561*bf2c3715SXin Li EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) 562*bf2c3715SXin Li { 563*bf2c3715SXin Li EIGEN_USING_STD(cos) 564*bf2c3715SXin Li EIGEN_USING_STD(sin) 565*bf2c3715SXin Li Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings 566*bf2c3715SXin Li this->w() = cos(ha); 567*bf2c3715SXin Li this->vec() = sin(ha) * aa.axis(); 568*bf2c3715SXin Li return derived(); 569*bf2c3715SXin Li } 570*bf2c3715SXin Li 571*bf2c3715SXin Li /** Set \c *this from the expression \a xpr: 572*bf2c3715SXin Li * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion 573*bf2c3715SXin Li * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix 574*bf2c3715SXin Li * and \a xpr is converted to a quaternion 575*bf2c3715SXin Li */ 576*bf2c3715SXin Li 577*bf2c3715SXin Li template<class Derived> 578*bf2c3715SXin Li template<class MatrixDerived> 579*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) 580*bf2c3715SXin Li { 581*bf2c3715SXin Li EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), 582*bf2c3715SXin Li YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 583*bf2c3715SXin Li internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); 584*bf2c3715SXin Li return derived(); 585*bf2c3715SXin Li } 586*bf2c3715SXin Li 587*bf2c3715SXin Li /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to 588*bf2c3715SXin Li * be normalized, otherwise the result is undefined. 589*bf2c3715SXin Li */ 590*bf2c3715SXin Li template<class Derived> 591*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 592*bf2c3715SXin Li QuaternionBase<Derived>::toRotationMatrix(void) const 593*bf2c3715SXin Li { 594*bf2c3715SXin Li // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) 595*bf2c3715SXin Li // if not inlined then the cost of the return by value is huge ~ +35%, 596*bf2c3715SXin Li // however, not inlining this function is an order of magnitude slower, so 597*bf2c3715SXin Li // it has to be inlined, and so the return by value is not an issue 598*bf2c3715SXin Li Matrix3 res; 599*bf2c3715SXin Li 600*bf2c3715SXin Li const Scalar tx = Scalar(2)*this->x(); 601*bf2c3715SXin Li const Scalar ty = Scalar(2)*this->y(); 602*bf2c3715SXin Li const Scalar tz = Scalar(2)*this->z(); 603*bf2c3715SXin Li const Scalar twx = tx*this->w(); 604*bf2c3715SXin Li const Scalar twy = ty*this->w(); 605*bf2c3715SXin Li const Scalar twz = tz*this->w(); 606*bf2c3715SXin Li const Scalar txx = tx*this->x(); 607*bf2c3715SXin Li const Scalar txy = ty*this->x(); 608*bf2c3715SXin Li const Scalar txz = tz*this->x(); 609*bf2c3715SXin Li const Scalar tyy = ty*this->y(); 610*bf2c3715SXin Li const Scalar tyz = tz*this->y(); 611*bf2c3715SXin Li const Scalar tzz = tz*this->z(); 612*bf2c3715SXin Li 613*bf2c3715SXin Li res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); 614*bf2c3715SXin Li res.coeffRef(0,1) = txy-twz; 615*bf2c3715SXin Li res.coeffRef(0,2) = txz+twy; 616*bf2c3715SXin Li res.coeffRef(1,0) = txy+twz; 617*bf2c3715SXin Li res.coeffRef(1,1) = Scalar(1)-(txx+tzz); 618*bf2c3715SXin Li res.coeffRef(1,2) = tyz-twx; 619*bf2c3715SXin Li res.coeffRef(2,0) = txz-twy; 620*bf2c3715SXin Li res.coeffRef(2,1) = tyz+twx; 621*bf2c3715SXin Li res.coeffRef(2,2) = Scalar(1)-(txx+tyy); 622*bf2c3715SXin Li 623*bf2c3715SXin Li return res; 624*bf2c3715SXin Li } 625*bf2c3715SXin Li 626*bf2c3715SXin Li /** Sets \c *this to be a quaternion representing a rotation between 627*bf2c3715SXin Li * the two arbitrary vectors \a a and \a b. In other words, the built 628*bf2c3715SXin Li * rotation represent a rotation sending the line of direction \a a 629*bf2c3715SXin Li * to the line of direction \a b, both lines passing through the origin. 630*bf2c3715SXin Li * 631*bf2c3715SXin Li * \returns a reference to \c *this. 632*bf2c3715SXin Li * 633*bf2c3715SXin Li * Note that the two input vectors do \b not have to be normalized, and 634*bf2c3715SXin Li * do not need to have the same norm. 635*bf2c3715SXin Li */ 636*bf2c3715SXin Li template<class Derived> 637*bf2c3715SXin Li template<typename Derived1, typename Derived2> 638*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) 639*bf2c3715SXin Li { 640*bf2c3715SXin Li EIGEN_USING_STD(sqrt) 641*bf2c3715SXin Li Vector3 v0 = a.normalized(); 642*bf2c3715SXin Li Vector3 v1 = b.normalized(); 643*bf2c3715SXin Li Scalar c = v1.dot(v0); 644*bf2c3715SXin Li 645*bf2c3715SXin Li // if dot == -1, vectors are nearly opposites 646*bf2c3715SXin Li // => accurately compute the rotation axis by computing the 647*bf2c3715SXin Li // intersection of the two planes. This is done by solving: 648*bf2c3715SXin Li // x^T v0 = 0 649*bf2c3715SXin Li // x^T v1 = 0 650*bf2c3715SXin Li // under the constraint: 651*bf2c3715SXin Li // ||x|| = 1 652*bf2c3715SXin Li // which yields a singular value problem 653*bf2c3715SXin Li if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) 654*bf2c3715SXin Li { 655*bf2c3715SXin Li c = numext::maxi(c,Scalar(-1)); 656*bf2c3715SXin Li Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); 657*bf2c3715SXin Li JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); 658*bf2c3715SXin Li Vector3 axis = svd.matrixV().col(2); 659*bf2c3715SXin Li 660*bf2c3715SXin Li Scalar w2 = (Scalar(1)+c)*Scalar(0.5); 661*bf2c3715SXin Li this->w() = sqrt(w2); 662*bf2c3715SXin Li this->vec() = axis * sqrt(Scalar(1) - w2); 663*bf2c3715SXin Li return derived(); 664*bf2c3715SXin Li } 665*bf2c3715SXin Li Vector3 axis = v0.cross(v1); 666*bf2c3715SXin Li Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); 667*bf2c3715SXin Li Scalar invs = Scalar(1)/s; 668*bf2c3715SXin Li this->vec() = axis * invs; 669*bf2c3715SXin Li this->w() = s * Scalar(0.5); 670*bf2c3715SXin Li 671*bf2c3715SXin Li return derived(); 672*bf2c3715SXin Li } 673*bf2c3715SXin Li 674*bf2c3715SXin Li /** \returns a random unit quaternion following a uniform distribution law on SO(3) 675*bf2c3715SXin Li * 676*bf2c3715SXin Li * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html 677*bf2c3715SXin Li */ 678*bf2c3715SXin Li template<typename Scalar, int Options> 679*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom() 680*bf2c3715SXin Li { 681*bf2c3715SXin Li EIGEN_USING_STD(sqrt) 682*bf2c3715SXin Li EIGEN_USING_STD(sin) 683*bf2c3715SXin Li EIGEN_USING_STD(cos) 684*bf2c3715SXin Li const Scalar u1 = internal::random<Scalar>(0, 1), 685*bf2c3715SXin Li u2 = internal::random<Scalar>(0, 2*EIGEN_PI), 686*bf2c3715SXin Li u3 = internal::random<Scalar>(0, 2*EIGEN_PI); 687*bf2c3715SXin Li const Scalar a = sqrt(Scalar(1) - u1), 688*bf2c3715SXin Li b = sqrt(u1); 689*bf2c3715SXin Li return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); 690*bf2c3715SXin Li } 691*bf2c3715SXin Li 692*bf2c3715SXin Li 693*bf2c3715SXin Li /** Returns a quaternion representing a rotation between 694*bf2c3715SXin Li * the two arbitrary vectors \a a and \a b. In other words, the built 695*bf2c3715SXin Li * rotation represent a rotation sending the line of direction \a a 696*bf2c3715SXin Li * to the line of direction \a b, both lines passing through the origin. 697*bf2c3715SXin Li * 698*bf2c3715SXin Li * \returns resulting quaternion 699*bf2c3715SXin Li * 700*bf2c3715SXin Li * Note that the two input vectors do \b not have to be normalized, and 701*bf2c3715SXin Li * do not need to have the same norm. 702*bf2c3715SXin Li */ 703*bf2c3715SXin Li template<typename Scalar, int Options> 704*bf2c3715SXin Li template<typename Derived1, typename Derived2> 705*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) 706*bf2c3715SXin Li { 707*bf2c3715SXin Li Quaternion quat; 708*bf2c3715SXin Li quat.setFromTwoVectors(a, b); 709*bf2c3715SXin Li return quat; 710*bf2c3715SXin Li } 711*bf2c3715SXin Li 712*bf2c3715SXin Li 713*bf2c3715SXin Li /** \returns the multiplicative inverse of \c *this 714*bf2c3715SXin Li * Note that in most cases, i.e., if you simply want the opposite rotation, 715*bf2c3715SXin Li * and/or the quaternion is normalized, then it is enough to use the conjugate. 716*bf2c3715SXin Li * 717*bf2c3715SXin Li * \sa QuaternionBase::conjugate() 718*bf2c3715SXin Li */ 719*bf2c3715SXin Li template <class Derived> 720*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const 721*bf2c3715SXin Li { 722*bf2c3715SXin Li // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? 723*bf2c3715SXin Li Scalar n2 = this->squaredNorm(); 724*bf2c3715SXin Li if (n2 > Scalar(0)) 725*bf2c3715SXin Li return Quaternion<Scalar>(conjugate().coeffs() / n2); 726*bf2c3715SXin Li else 727*bf2c3715SXin Li { 728*bf2c3715SXin Li // return an invalid result to flag the error 729*bf2c3715SXin Li return Quaternion<Scalar>(Coefficients::Zero()); 730*bf2c3715SXin Li } 731*bf2c3715SXin Li } 732*bf2c3715SXin Li 733*bf2c3715SXin Li // Generic conjugate of a Quaternion 734*bf2c3715SXin Li namespace internal { 735*bf2c3715SXin Li template<int Arch, class Derived, typename Scalar> struct quat_conj 736*bf2c3715SXin Li { 737*bf2c3715SXin Li EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){ 738*bf2c3715SXin Li return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z()); 739*bf2c3715SXin Li } 740*bf2c3715SXin Li }; 741*bf2c3715SXin Li } 742*bf2c3715SXin Li 743*bf2c3715SXin Li /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse 744*bf2c3715SXin Li * if the quaternion is normalized. 745*bf2c3715SXin Li * The conjugate of a quaternion represents the opposite rotation. 746*bf2c3715SXin Li * 747*bf2c3715SXin Li * \sa Quaternion2::inverse() 748*bf2c3715SXin Li */ 749*bf2c3715SXin Li template <class Derived> 750*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> 751*bf2c3715SXin Li QuaternionBase<Derived>::conjugate() const 752*bf2c3715SXin Li { 753*bf2c3715SXin Li return internal::quat_conj<Architecture::Target, Derived, 754*bf2c3715SXin Li typename internal::traits<Derived>::Scalar>::run(*this); 755*bf2c3715SXin Li 756*bf2c3715SXin Li } 757*bf2c3715SXin Li 758*bf2c3715SXin Li /** \returns the angle (in radian) between two rotations 759*bf2c3715SXin Li * \sa dot() 760*bf2c3715SXin Li */ 761*bf2c3715SXin Li template <class Derived> 762*bf2c3715SXin Li template <class OtherDerived> 763*bf2c3715SXin Li EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar 764*bf2c3715SXin Li QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const 765*bf2c3715SXin Li { 766*bf2c3715SXin Li EIGEN_USING_STD(atan2) 767*bf2c3715SXin Li Quaternion<Scalar> d = (*this) * other.conjugate(); 768*bf2c3715SXin Li return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) ); 769*bf2c3715SXin Li } 770*bf2c3715SXin Li 771*bf2c3715SXin Li 772*bf2c3715SXin Li 773*bf2c3715SXin Li /** \returns the spherical linear interpolation between the two quaternions 774*bf2c3715SXin Li * \c *this and \a other at the parameter \a t in [0;1]. 775*bf2c3715SXin Li * 776*bf2c3715SXin Li * This represents an interpolation for a constant motion between \c *this and \a other, 777*bf2c3715SXin Li * see also http://en.wikipedia.org/wiki/Slerp. 778*bf2c3715SXin Li */ 779*bf2c3715SXin Li template <class Derived> 780*bf2c3715SXin Li template <class OtherDerived> 781*bf2c3715SXin Li EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> 782*bf2c3715SXin Li QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const 783*bf2c3715SXin Li { 784*bf2c3715SXin Li EIGEN_USING_STD(acos) 785*bf2c3715SXin Li EIGEN_USING_STD(sin) 786*bf2c3715SXin Li const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); 787*bf2c3715SXin Li Scalar d = this->dot(other); 788*bf2c3715SXin Li Scalar absD = numext::abs(d); 789*bf2c3715SXin Li 790*bf2c3715SXin Li Scalar scale0; 791*bf2c3715SXin Li Scalar scale1; 792*bf2c3715SXin Li 793*bf2c3715SXin Li if(absD>=one) 794*bf2c3715SXin Li { 795*bf2c3715SXin Li scale0 = Scalar(1) - t; 796*bf2c3715SXin Li scale1 = t; 797*bf2c3715SXin Li } 798*bf2c3715SXin Li else 799*bf2c3715SXin Li { 800*bf2c3715SXin Li // theta is the angle between the 2 quaternions 801*bf2c3715SXin Li Scalar theta = acos(absD); 802*bf2c3715SXin Li Scalar sinTheta = sin(theta); 803*bf2c3715SXin Li 804*bf2c3715SXin Li scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; 805*bf2c3715SXin Li scale1 = sin( ( t * theta) ) / sinTheta; 806*bf2c3715SXin Li } 807*bf2c3715SXin Li if(d<Scalar(0)) scale1 = -scale1; 808*bf2c3715SXin Li 809*bf2c3715SXin Li return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); 810*bf2c3715SXin Li } 811*bf2c3715SXin Li 812*bf2c3715SXin Li namespace internal { 813*bf2c3715SXin Li 814*bf2c3715SXin Li // set from a rotation matrix 815*bf2c3715SXin Li template<typename Other> 816*bf2c3715SXin Li struct quaternionbase_assign_impl<Other,3,3> 817*bf2c3715SXin Li { 818*bf2c3715SXin Li typedef typename Other::Scalar Scalar; 819*bf2c3715SXin Li template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) 820*bf2c3715SXin Li { 821*bf2c3715SXin Li const typename internal::nested_eval<Other,2>::type mat(a_mat); 822*bf2c3715SXin Li EIGEN_USING_STD(sqrt) 823*bf2c3715SXin Li // This algorithm comes from "Quaternion Calculus and Fast Animation", 824*bf2c3715SXin Li // Ken Shoemake, 1987 SIGGRAPH course notes 825*bf2c3715SXin Li Scalar t = mat.trace(); 826*bf2c3715SXin Li if (t > Scalar(0)) 827*bf2c3715SXin Li { 828*bf2c3715SXin Li t = sqrt(t + Scalar(1.0)); 829*bf2c3715SXin Li q.w() = Scalar(0.5)*t; 830*bf2c3715SXin Li t = Scalar(0.5)/t; 831*bf2c3715SXin Li q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; 832*bf2c3715SXin Li q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; 833*bf2c3715SXin Li q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; 834*bf2c3715SXin Li } 835*bf2c3715SXin Li else 836*bf2c3715SXin Li { 837*bf2c3715SXin Li Index i = 0; 838*bf2c3715SXin Li if (mat.coeff(1,1) > mat.coeff(0,0)) 839*bf2c3715SXin Li i = 1; 840*bf2c3715SXin Li if (mat.coeff(2,2) > mat.coeff(i,i)) 841*bf2c3715SXin Li i = 2; 842*bf2c3715SXin Li Index j = (i+1)%3; 843*bf2c3715SXin Li Index k = (j+1)%3; 844*bf2c3715SXin Li 845*bf2c3715SXin Li t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); 846*bf2c3715SXin Li q.coeffs().coeffRef(i) = Scalar(0.5) * t; 847*bf2c3715SXin Li t = Scalar(0.5)/t; 848*bf2c3715SXin Li q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; 849*bf2c3715SXin Li q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; 850*bf2c3715SXin Li q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; 851*bf2c3715SXin Li } 852*bf2c3715SXin Li } 853*bf2c3715SXin Li }; 854*bf2c3715SXin Li 855*bf2c3715SXin Li // set from a vector of coefficients assumed to be a quaternion 856*bf2c3715SXin Li template<typename Other> 857*bf2c3715SXin Li struct quaternionbase_assign_impl<Other,4,1> 858*bf2c3715SXin Li { 859*bf2c3715SXin Li typedef typename Other::Scalar Scalar; 860*bf2c3715SXin Li template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) 861*bf2c3715SXin Li { 862*bf2c3715SXin Li q.coeffs() = vec; 863*bf2c3715SXin Li } 864*bf2c3715SXin Li }; 865*bf2c3715SXin Li 866*bf2c3715SXin Li } // end namespace internal 867*bf2c3715SXin Li 868*bf2c3715SXin Li } // end namespace Eigen 869*bf2c3715SXin Li 870*bf2c3715SXin Li #endif // EIGEN_QUATERNION_H 871