xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/Rotation2D.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #ifndef EIGEN_ROTATION2D_H
11*bf2c3715SXin Li #define EIGEN_ROTATION2D_H
12*bf2c3715SXin Li 
13*bf2c3715SXin Li namespace Eigen {
14*bf2c3715SXin Li 
15*bf2c3715SXin Li /** \geometry_module \ingroup Geometry_Module
16*bf2c3715SXin Li   *
17*bf2c3715SXin Li   * \class Rotation2D
18*bf2c3715SXin Li   *
19*bf2c3715SXin Li   * \brief Represents a rotation/orientation in a 2 dimensional space.
20*bf2c3715SXin Li   *
21*bf2c3715SXin Li   * \tparam _Scalar the scalar type, i.e., the type of the coefficients
22*bf2c3715SXin Li   *
23*bf2c3715SXin Li   * This class is equivalent to a single scalar representing a counter clock wise rotation
24*bf2c3715SXin Li   * as a single angle in radian. It provides some additional features such as the automatic
25*bf2c3715SXin Li   * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
26*bf2c3715SXin Li   * interface to Quaternion in order to facilitate the writing of generic algorithms
27*bf2c3715SXin Li   * dealing with rotations.
28*bf2c3715SXin Li   *
29*bf2c3715SXin Li   * \sa class Quaternion, class Transform
30*bf2c3715SXin Li   */
31*bf2c3715SXin Li 
32*bf2c3715SXin Li namespace internal {
33*bf2c3715SXin Li 
34*bf2c3715SXin Li template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
35*bf2c3715SXin Li {
36*bf2c3715SXin Li   typedef _Scalar Scalar;
37*bf2c3715SXin Li };
38*bf2c3715SXin Li } // end namespace internal
39*bf2c3715SXin Li 
40*bf2c3715SXin Li template<typename _Scalar>
41*bf2c3715SXin Li class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
42*bf2c3715SXin Li {
43*bf2c3715SXin Li   typedef RotationBase<Rotation2D<_Scalar>,2> Base;
44*bf2c3715SXin Li 
45*bf2c3715SXin Li public:
46*bf2c3715SXin Li 
47*bf2c3715SXin Li   using Base::operator*;
48*bf2c3715SXin Li 
49*bf2c3715SXin Li   enum { Dim = 2 };
50*bf2c3715SXin Li   /** the scalar type of the coefficients */
51*bf2c3715SXin Li   typedef _Scalar Scalar;
52*bf2c3715SXin Li   typedef Matrix<Scalar,2,1> Vector2;
53*bf2c3715SXin Li   typedef Matrix<Scalar,2,2> Matrix2;
54*bf2c3715SXin Li 
55*bf2c3715SXin Li protected:
56*bf2c3715SXin Li 
57*bf2c3715SXin Li   Scalar m_angle;
58*bf2c3715SXin Li 
59*bf2c3715SXin Li public:
60*bf2c3715SXin Li 
61*bf2c3715SXin Li   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
62*bf2c3715SXin Li   EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
63*bf2c3715SXin Li 
64*bf2c3715SXin Li   /** Default constructor wihtout initialization. The represented rotation is undefined. */
65*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Rotation2D() {}
66*bf2c3715SXin Li 
67*bf2c3715SXin Li   /** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
68*bf2c3715SXin Li     *
69*bf2c3715SXin Li     * \sa fromRotationMatrix()
70*bf2c3715SXin Li     */
71*bf2c3715SXin Li   template<typename Derived>
72*bf2c3715SXin Li   EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
73*bf2c3715SXin Li   {
74*bf2c3715SXin Li     fromRotationMatrix(m.derived());
75*bf2c3715SXin Li   }
76*bf2c3715SXin Li 
77*bf2c3715SXin Li   /** \returns the rotation angle */
78*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
79*bf2c3715SXin Li 
80*bf2c3715SXin Li   /** \returns a read-write reference to the rotation angle */
81*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
82*bf2c3715SXin Li 
83*bf2c3715SXin Li   /** \returns the rotation angle in [0,2pi] */
84*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
85*bf2c3715SXin Li     Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
86*bf2c3715SXin Li     return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
87*bf2c3715SXin Li   }
88*bf2c3715SXin Li 
89*bf2c3715SXin Li   /** \returns the rotation angle in [-pi,pi] */
90*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
91*bf2c3715SXin Li     Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
92*bf2c3715SXin Li     if(tmp>Scalar(EIGEN_PI))       tmp -= Scalar(2*EIGEN_PI);
93*bf2c3715SXin Li     else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
94*bf2c3715SXin Li     return tmp;
95*bf2c3715SXin Li   }
96*bf2c3715SXin Li 
97*bf2c3715SXin Li   /** \returns the inverse rotation */
98*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
99*bf2c3715SXin Li 
100*bf2c3715SXin Li   /** Concatenates two rotations */
101*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
102*bf2c3715SXin Li   { return Rotation2D(m_angle + other.m_angle); }
103*bf2c3715SXin Li 
104*bf2c3715SXin Li   /** Concatenates two rotations */
105*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
106*bf2c3715SXin Li   { m_angle += other.m_angle; return *this; }
107*bf2c3715SXin Li 
108*bf2c3715SXin Li   /** Applies the rotation to a 2D vector */
109*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
110*bf2c3715SXin Li   { return toRotationMatrix() * vec; }
111*bf2c3715SXin Li 
112*bf2c3715SXin Li   template<typename Derived>
113*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
114*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
115*bf2c3715SXin Li 
116*bf2c3715SXin Li   /** Set \c *this from a 2x2 rotation matrix \a mat.
117*bf2c3715SXin Li     * In other words, this function extract the rotation angle from the rotation matrix.
118*bf2c3715SXin Li     *
119*bf2c3715SXin Li     * This method is an alias for fromRotationMatrix()
120*bf2c3715SXin Li     *
121*bf2c3715SXin Li     * \sa fromRotationMatrix()
122*bf2c3715SXin Li     */
123*bf2c3715SXin Li   template<typename Derived>
124*bf2c3715SXin Li   EIGEN_DEVICE_FUNC Rotation2D& operator=(const  MatrixBase<Derived>& m)
125*bf2c3715SXin Li   { return fromRotationMatrix(m.derived()); }
126*bf2c3715SXin Li 
127*bf2c3715SXin Li   /** \returns the spherical interpolation between \c *this and \a other using
128*bf2c3715SXin Li     * parameter \a t. It is in fact equivalent to a linear interpolation.
129*bf2c3715SXin Li     */
130*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
131*bf2c3715SXin Li   {
132*bf2c3715SXin Li     Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
133*bf2c3715SXin Li     return Rotation2D(m_angle + dist*t);
134*bf2c3715SXin Li   }
135*bf2c3715SXin Li 
136*bf2c3715SXin Li   /** \returns \c *this with scalar type casted to \a NewScalarType
137*bf2c3715SXin Li     *
138*bf2c3715SXin Li     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
139*bf2c3715SXin Li     * then this function smartly returns a const reference to \c *this.
140*bf2c3715SXin Li     */
141*bf2c3715SXin Li   template<typename NewScalarType>
142*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
143*bf2c3715SXin Li   { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
144*bf2c3715SXin Li 
145*bf2c3715SXin Li   /** Copy constructor with scalar type conversion */
146*bf2c3715SXin Li   template<typename OtherScalarType>
147*bf2c3715SXin Li   EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
148*bf2c3715SXin Li   {
149*bf2c3715SXin Li     m_angle = Scalar(other.angle());
150*bf2c3715SXin Li   }
151*bf2c3715SXin Li 
152*bf2c3715SXin Li   EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
153*bf2c3715SXin Li 
154*bf2c3715SXin Li   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
155*bf2c3715SXin Li     * determined by \a prec.
156*bf2c3715SXin Li     *
157*bf2c3715SXin Li     * \sa MatrixBase::isApprox() */
158*bf2c3715SXin Li   EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
159*bf2c3715SXin Li   { return internal::isApprox(m_angle,other.m_angle, prec); }
160*bf2c3715SXin Li 
161*bf2c3715SXin Li };
162*bf2c3715SXin Li 
163*bf2c3715SXin Li /** \ingroup Geometry_Module
164*bf2c3715SXin Li   * single precision 2D rotation type */
165*bf2c3715SXin Li typedef Rotation2D<float> Rotation2Df;
166*bf2c3715SXin Li /** \ingroup Geometry_Module
167*bf2c3715SXin Li   * double precision 2D rotation type */
168*bf2c3715SXin Li typedef Rotation2D<double> Rotation2Dd;
169*bf2c3715SXin Li 
170*bf2c3715SXin Li /** Set \c *this from a 2x2 rotation matrix \a mat.
171*bf2c3715SXin Li   * In other words, this function extract the rotation angle
172*bf2c3715SXin Li   * from the rotation matrix.
173*bf2c3715SXin Li   */
174*bf2c3715SXin Li template<typename Scalar>
175*bf2c3715SXin Li template<typename Derived>
176*bf2c3715SXin Li EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
177*bf2c3715SXin Li {
178*bf2c3715SXin Li   EIGEN_USING_STD(atan2)
179*bf2c3715SXin Li   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
180*bf2c3715SXin Li   m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
181*bf2c3715SXin Li   return *this;
182*bf2c3715SXin Li }
183*bf2c3715SXin Li 
184*bf2c3715SXin Li /** Constructs and \returns an equivalent 2x2 rotation matrix.
185*bf2c3715SXin Li   */
186*bf2c3715SXin Li template<typename Scalar>
187*bf2c3715SXin Li typename Rotation2D<Scalar>::Matrix2
188*bf2c3715SXin Li EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
189*bf2c3715SXin Li {
190*bf2c3715SXin Li   EIGEN_USING_STD(sin)
191*bf2c3715SXin Li   EIGEN_USING_STD(cos)
192*bf2c3715SXin Li   Scalar sinA = sin(m_angle);
193*bf2c3715SXin Li   Scalar cosA = cos(m_angle);
194*bf2c3715SXin Li   return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
195*bf2c3715SXin Li }
196*bf2c3715SXin Li 
197*bf2c3715SXin Li } // end namespace Eigen
198*bf2c3715SXin Li 
199*bf2c3715SXin Li #endif // EIGEN_ROTATION2D_H
200