xref: /aosp_15_r20/external/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2011-2014 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #ifndef EIGEN_BASIC_PRECONDITIONERS_H
11*bf2c3715SXin Li #define EIGEN_BASIC_PRECONDITIONERS_H
12*bf2c3715SXin Li 
13*bf2c3715SXin Li namespace Eigen {
14*bf2c3715SXin Li 
15*bf2c3715SXin Li /** \ingroup IterativeLinearSolvers_Module
16*bf2c3715SXin Li   * \brief A preconditioner based on the digonal entries
17*bf2c3715SXin Li   *
18*bf2c3715SXin Li   * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
19*bf2c3715SXin Li   * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
20*bf2c3715SXin Li     \code
21*bf2c3715SXin Li     A.diagonal().asDiagonal() . x = b
22*bf2c3715SXin Li     \endcode
23*bf2c3715SXin Li   *
24*bf2c3715SXin Li   * \tparam _Scalar the type of the scalar.
25*bf2c3715SXin Li   *
26*bf2c3715SXin Li   * \implsparsesolverconcept
27*bf2c3715SXin Li   *
28*bf2c3715SXin Li   * This preconditioner is suitable for both selfadjoint and general problems.
29*bf2c3715SXin Li   * The diagonal entries are pre-inverted and stored into a dense vector.
30*bf2c3715SXin Li   *
31*bf2c3715SXin Li   * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
32*bf2c3715SXin Li   *
33*bf2c3715SXin Li   * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient
34*bf2c3715SXin Li   */
35*bf2c3715SXin Li template <typename _Scalar>
36*bf2c3715SXin Li class DiagonalPreconditioner
37*bf2c3715SXin Li {
38*bf2c3715SXin Li     typedef _Scalar Scalar;
39*bf2c3715SXin Li     typedef Matrix<Scalar,Dynamic,1> Vector;
40*bf2c3715SXin Li   public:
41*bf2c3715SXin Li     typedef typename Vector::StorageIndex StorageIndex;
42*bf2c3715SXin Li     enum {
43*bf2c3715SXin Li       ColsAtCompileTime = Dynamic,
44*bf2c3715SXin Li       MaxColsAtCompileTime = Dynamic
45*bf2c3715SXin Li     };
46*bf2c3715SXin Li 
DiagonalPreconditioner()47*bf2c3715SXin Li     DiagonalPreconditioner() : m_isInitialized(false) {}
48*bf2c3715SXin Li 
49*bf2c3715SXin Li     template<typename MatType>
DiagonalPreconditioner(const MatType & mat)50*bf2c3715SXin Li     explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols())
51*bf2c3715SXin Li     {
52*bf2c3715SXin Li       compute(mat);
53*bf2c3715SXin Li     }
54*bf2c3715SXin Li 
rows()55*bf2c3715SXin Li     EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_invdiag.size(); }
cols()56*bf2c3715SXin Li     EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_invdiag.size(); }
57*bf2c3715SXin Li 
58*bf2c3715SXin Li     template<typename MatType>
analyzePattern(const MatType &)59*bf2c3715SXin Li     DiagonalPreconditioner& analyzePattern(const MatType& )
60*bf2c3715SXin Li     {
61*bf2c3715SXin Li       return *this;
62*bf2c3715SXin Li     }
63*bf2c3715SXin Li 
64*bf2c3715SXin Li     template<typename MatType>
factorize(const MatType & mat)65*bf2c3715SXin Li     DiagonalPreconditioner& factorize(const MatType& mat)
66*bf2c3715SXin Li     {
67*bf2c3715SXin Li       m_invdiag.resize(mat.cols());
68*bf2c3715SXin Li       for(int j=0; j<mat.outerSize(); ++j)
69*bf2c3715SXin Li       {
70*bf2c3715SXin Li         typename MatType::InnerIterator it(mat,j);
71*bf2c3715SXin Li         while(it && it.index()!=j) ++it;
72*bf2c3715SXin Li         if(it && it.index()==j && it.value()!=Scalar(0))
73*bf2c3715SXin Li           m_invdiag(j) = Scalar(1)/it.value();
74*bf2c3715SXin Li         else
75*bf2c3715SXin Li           m_invdiag(j) = Scalar(1);
76*bf2c3715SXin Li       }
77*bf2c3715SXin Li       m_isInitialized = true;
78*bf2c3715SXin Li       return *this;
79*bf2c3715SXin Li     }
80*bf2c3715SXin Li 
81*bf2c3715SXin Li     template<typename MatType>
compute(const MatType & mat)82*bf2c3715SXin Li     DiagonalPreconditioner& compute(const MatType& mat)
83*bf2c3715SXin Li     {
84*bf2c3715SXin Li       return factorize(mat);
85*bf2c3715SXin Li     }
86*bf2c3715SXin Li 
87*bf2c3715SXin Li     /** \internal */
88*bf2c3715SXin Li     template<typename Rhs, typename Dest>
_solve_impl(const Rhs & b,Dest & x)89*bf2c3715SXin Li     void _solve_impl(const Rhs& b, Dest& x) const
90*bf2c3715SXin Li     {
91*bf2c3715SXin Li       x = m_invdiag.array() * b.array() ;
92*bf2c3715SXin Li     }
93*bf2c3715SXin Li 
94*bf2c3715SXin Li     template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs>
solve(const MatrixBase<Rhs> & b)95*bf2c3715SXin Li     solve(const MatrixBase<Rhs>& b) const
96*bf2c3715SXin Li     {
97*bf2c3715SXin Li       eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
98*bf2c3715SXin Li       eigen_assert(m_invdiag.size()==b.rows()
99*bf2c3715SXin Li                 && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
100*bf2c3715SXin Li       return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived());
101*bf2c3715SXin Li     }
102*bf2c3715SXin Li 
info()103*bf2c3715SXin Li     ComputationInfo info() { return Success; }
104*bf2c3715SXin Li 
105*bf2c3715SXin Li   protected:
106*bf2c3715SXin Li     Vector m_invdiag;
107*bf2c3715SXin Li     bool m_isInitialized;
108*bf2c3715SXin Li };
109*bf2c3715SXin Li 
110*bf2c3715SXin Li /** \ingroup IterativeLinearSolvers_Module
111*bf2c3715SXin Li   * \brief Jacobi preconditioner for LeastSquaresConjugateGradient
112*bf2c3715SXin Li   *
113*bf2c3715SXin Li   * This class allows to approximately solve for A' A x  = A' b problems assuming A' A is a diagonal matrix.
114*bf2c3715SXin Li   * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
115*bf2c3715SXin Li     \code
116*bf2c3715SXin Li     (A.adjoint() * A).diagonal().asDiagonal() * x = b
117*bf2c3715SXin Li     \endcode
118*bf2c3715SXin Li   *
119*bf2c3715SXin Li   * \tparam _Scalar the type of the scalar.
120*bf2c3715SXin Li   *
121*bf2c3715SXin Li   * \implsparsesolverconcept
122*bf2c3715SXin Li   *
123*bf2c3715SXin Li   * The diagonal entries are pre-inverted and stored into a dense vector.
124*bf2c3715SXin Li   *
125*bf2c3715SXin Li   * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner
126*bf2c3715SXin Li   */
127*bf2c3715SXin Li template <typename _Scalar>
128*bf2c3715SXin Li class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<_Scalar>
129*bf2c3715SXin Li {
130*bf2c3715SXin Li     typedef _Scalar Scalar;
131*bf2c3715SXin Li     typedef typename NumTraits<Scalar>::Real RealScalar;
132*bf2c3715SXin Li     typedef DiagonalPreconditioner<_Scalar> Base;
133*bf2c3715SXin Li     using Base::m_invdiag;
134*bf2c3715SXin Li   public:
135*bf2c3715SXin Li 
LeastSquareDiagonalPreconditioner()136*bf2c3715SXin Li     LeastSquareDiagonalPreconditioner() : Base() {}
137*bf2c3715SXin Li 
138*bf2c3715SXin Li     template<typename MatType>
LeastSquareDiagonalPreconditioner(const MatType & mat)139*bf2c3715SXin Li     explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base()
140*bf2c3715SXin Li     {
141*bf2c3715SXin Li       compute(mat);
142*bf2c3715SXin Li     }
143*bf2c3715SXin Li 
144*bf2c3715SXin Li     template<typename MatType>
analyzePattern(const MatType &)145*bf2c3715SXin Li     LeastSquareDiagonalPreconditioner& analyzePattern(const MatType& )
146*bf2c3715SXin Li     {
147*bf2c3715SXin Li       return *this;
148*bf2c3715SXin Li     }
149*bf2c3715SXin Li 
150*bf2c3715SXin Li     template<typename MatType>
factorize(const MatType & mat)151*bf2c3715SXin Li     LeastSquareDiagonalPreconditioner& factorize(const MatType& mat)
152*bf2c3715SXin Li     {
153*bf2c3715SXin Li       // Compute the inverse squared-norm of each column of mat
154*bf2c3715SXin Li       m_invdiag.resize(mat.cols());
155*bf2c3715SXin Li       if(MatType::IsRowMajor)
156*bf2c3715SXin Li       {
157*bf2c3715SXin Li         m_invdiag.setZero();
158*bf2c3715SXin Li         for(Index j=0; j<mat.outerSize(); ++j)
159*bf2c3715SXin Li         {
160*bf2c3715SXin Li           for(typename MatType::InnerIterator it(mat,j); it; ++it)
161*bf2c3715SXin Li             m_invdiag(it.index()) += numext::abs2(it.value());
162*bf2c3715SXin Li         }
163*bf2c3715SXin Li         for(Index j=0; j<mat.cols(); ++j)
164*bf2c3715SXin Li           if(numext::real(m_invdiag(j))>RealScalar(0))
165*bf2c3715SXin Li             m_invdiag(j) = RealScalar(1)/numext::real(m_invdiag(j));
166*bf2c3715SXin Li       }
167*bf2c3715SXin Li       else
168*bf2c3715SXin Li       {
169*bf2c3715SXin Li         for(Index j=0; j<mat.outerSize(); ++j)
170*bf2c3715SXin Li         {
171*bf2c3715SXin Li           RealScalar sum = mat.col(j).squaredNorm();
172*bf2c3715SXin Li           if(sum>RealScalar(0))
173*bf2c3715SXin Li             m_invdiag(j) = RealScalar(1)/sum;
174*bf2c3715SXin Li           else
175*bf2c3715SXin Li             m_invdiag(j) = RealScalar(1);
176*bf2c3715SXin Li         }
177*bf2c3715SXin Li       }
178*bf2c3715SXin Li       Base::m_isInitialized = true;
179*bf2c3715SXin Li       return *this;
180*bf2c3715SXin Li     }
181*bf2c3715SXin Li 
182*bf2c3715SXin Li     template<typename MatType>
compute(const MatType & mat)183*bf2c3715SXin Li     LeastSquareDiagonalPreconditioner& compute(const MatType& mat)
184*bf2c3715SXin Li     {
185*bf2c3715SXin Li       return factorize(mat);
186*bf2c3715SXin Li     }
187*bf2c3715SXin Li 
info()188*bf2c3715SXin Li     ComputationInfo info() { return Success; }
189*bf2c3715SXin Li 
190*bf2c3715SXin Li   protected:
191*bf2c3715SXin Li };
192*bf2c3715SXin Li 
193*bf2c3715SXin Li /** \ingroup IterativeLinearSolvers_Module
194*bf2c3715SXin Li   * \brief A naive preconditioner which approximates any matrix as the identity matrix
195*bf2c3715SXin Li   *
196*bf2c3715SXin Li   * \implsparsesolverconcept
197*bf2c3715SXin Li   *
198*bf2c3715SXin Li   * \sa class DiagonalPreconditioner
199*bf2c3715SXin Li   */
200*bf2c3715SXin Li class IdentityPreconditioner
201*bf2c3715SXin Li {
202*bf2c3715SXin Li   public:
203*bf2c3715SXin Li 
IdentityPreconditioner()204*bf2c3715SXin Li     IdentityPreconditioner() {}
205*bf2c3715SXin Li 
206*bf2c3715SXin Li     template<typename MatrixType>
IdentityPreconditioner(const MatrixType &)207*bf2c3715SXin Li     explicit IdentityPreconditioner(const MatrixType& ) {}
208*bf2c3715SXin Li 
209*bf2c3715SXin Li     template<typename MatrixType>
analyzePattern(const MatrixType &)210*bf2c3715SXin Li     IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; }
211*bf2c3715SXin Li 
212*bf2c3715SXin Li     template<typename MatrixType>
factorize(const MatrixType &)213*bf2c3715SXin Li     IdentityPreconditioner& factorize(const MatrixType& ) { return *this; }
214*bf2c3715SXin Li 
215*bf2c3715SXin Li     template<typename MatrixType>
compute(const MatrixType &)216*bf2c3715SXin Li     IdentityPreconditioner& compute(const MatrixType& ) { return *this; }
217*bf2c3715SXin Li 
218*bf2c3715SXin Li     template<typename Rhs>
solve(const Rhs & b)219*bf2c3715SXin Li     inline const Rhs& solve(const Rhs& b) const { return b; }
220*bf2c3715SXin Li 
info()221*bf2c3715SXin Li     ComputationInfo info() { return Success; }
222*bf2c3715SXin Li };
223*bf2c3715SXin Li 
224*bf2c3715SXin Li } // end namespace Eigen
225*bf2c3715SXin Li 
226*bf2c3715SXin Li #endif // EIGEN_BASIC_PRECONDITIONERS_H
227