xref: /aosp_15_r20/external/eigen/bench/eig33.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2010 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li // The computeRoots function included in this is based on materials
11*bf2c3715SXin Li // covered by the following copyright and license:
12*bf2c3715SXin Li //
13*bf2c3715SXin Li // Geometric Tools, LLC
14*bf2c3715SXin Li // Copyright (c) 1998-2010
15*bf2c3715SXin Li // Distributed under the Boost Software License, Version 1.0.
16*bf2c3715SXin Li //
17*bf2c3715SXin Li // Permission is hereby granted, free of charge, to any person or organization
18*bf2c3715SXin Li // obtaining a copy of the software and accompanying documentation covered by
19*bf2c3715SXin Li // this license (the "Software") to use, reproduce, display, distribute,
20*bf2c3715SXin Li // execute, and transmit the Software, and to prepare derivative works of the
21*bf2c3715SXin Li // Software, and to permit third-parties to whom the Software is furnished to
22*bf2c3715SXin Li // do so, all subject to the following:
23*bf2c3715SXin Li //
24*bf2c3715SXin Li // The copyright notices in the Software and this entire statement, including
25*bf2c3715SXin Li // the above license grant, this restriction and the following disclaimer,
26*bf2c3715SXin Li // must be included in all copies of the Software, in whole or in part, and
27*bf2c3715SXin Li // all derivative works of the Software, unless such copies or derivative
28*bf2c3715SXin Li // works are solely in the form of machine-executable object code generated by
29*bf2c3715SXin Li // a source language processor.
30*bf2c3715SXin Li //
31*bf2c3715SXin Li // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32*bf2c3715SXin Li // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33*bf2c3715SXin Li // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34*bf2c3715SXin Li // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35*bf2c3715SXin Li // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36*bf2c3715SXin Li // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37*bf2c3715SXin Li // DEALINGS IN THE SOFTWARE.
38*bf2c3715SXin Li 
39*bf2c3715SXin Li #include <iostream>
40*bf2c3715SXin Li #include <Eigen/Core>
41*bf2c3715SXin Li #include <Eigen/Eigenvalues>
42*bf2c3715SXin Li #include <Eigen/Geometry>
43*bf2c3715SXin Li #include <bench/BenchTimer.h>
44*bf2c3715SXin Li 
45*bf2c3715SXin Li using namespace Eigen;
46*bf2c3715SXin Li using namespace std;
47*bf2c3715SXin Li 
48*bf2c3715SXin Li template<typename Matrix, typename Roots>
computeRoots(const Matrix & m,Roots & roots)49*bf2c3715SXin Li inline void computeRoots(const Matrix& m, Roots& roots)
50*bf2c3715SXin Li {
51*bf2c3715SXin Li   typedef typename Matrix::Scalar Scalar;
52*bf2c3715SXin Li   const Scalar s_inv3 = 1.0/3.0;
53*bf2c3715SXin Li   const Scalar s_sqrt3 = std::sqrt(Scalar(3.0));
54*bf2c3715SXin Li 
55*bf2c3715SXin Li   // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
56*bf2c3715SXin Li   // eigenvalues are the roots to this equation, all guaranteed to be
57*bf2c3715SXin Li   // real-valued, because the matrix is symmetric.
58*bf2c3715SXin Li   Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
59*bf2c3715SXin Li   Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
60*bf2c3715SXin Li   Scalar c2 = m(0,0) + m(1,1) + m(2,2);
61*bf2c3715SXin Li 
62*bf2c3715SXin Li   // Construct the parameters used in classifying the roots of the equation
63*bf2c3715SXin Li   // and in solving the equation for the roots in closed form.
64*bf2c3715SXin Li   Scalar c2_over_3 = c2*s_inv3;
65*bf2c3715SXin Li   Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
66*bf2c3715SXin Li   if (a_over_3 > Scalar(0))
67*bf2c3715SXin Li     a_over_3 = Scalar(0);
68*bf2c3715SXin Li 
69*bf2c3715SXin Li   Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
70*bf2c3715SXin Li 
71*bf2c3715SXin Li   Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
72*bf2c3715SXin Li   if (q > Scalar(0))
73*bf2c3715SXin Li     q = Scalar(0);
74*bf2c3715SXin Li 
75*bf2c3715SXin Li   // Compute the eigenvalues by solving for the roots of the polynomial.
76*bf2c3715SXin Li   Scalar rho = std::sqrt(-a_over_3);
77*bf2c3715SXin Li   Scalar theta = std::atan2(std::sqrt(-q),half_b)*s_inv3;
78*bf2c3715SXin Li   Scalar cos_theta = std::cos(theta);
79*bf2c3715SXin Li   Scalar sin_theta = std::sin(theta);
80*bf2c3715SXin Li   roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
81*bf2c3715SXin Li   roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
82*bf2c3715SXin Li   roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
83*bf2c3715SXin Li }
84*bf2c3715SXin Li 
85*bf2c3715SXin Li template<typename Matrix, typename Vector>
eigen33(const Matrix & mat,Matrix & evecs,Vector & evals)86*bf2c3715SXin Li void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
87*bf2c3715SXin Li {
88*bf2c3715SXin Li   typedef typename Matrix::Scalar Scalar;
89*bf2c3715SXin Li   // Scale the matrix so its entries are in [-1,1].  The scaling is applied
90*bf2c3715SXin Li   // only when at least one matrix entry has magnitude larger than 1.
91*bf2c3715SXin Li 
92*bf2c3715SXin Li   Scalar shift = mat.trace()/3;
93*bf2c3715SXin Li   Matrix scaledMat = mat;
94*bf2c3715SXin Li   scaledMat.diagonal().array() -= shift;
95*bf2c3715SXin Li   Scalar scale = scaledMat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
96*bf2c3715SXin Li   scale = std::max(scale,Scalar(1));
97*bf2c3715SXin Li   scaledMat/=scale;
98*bf2c3715SXin Li 
99*bf2c3715SXin Li   // Compute the eigenvalues
100*bf2c3715SXin Li //   scaledMat.setZero();
101*bf2c3715SXin Li   computeRoots(scaledMat,evals);
102*bf2c3715SXin Li 
103*bf2c3715SXin Li   // compute the eigen vectors
104*bf2c3715SXin Li   // **here we assume 3 different eigenvalues**
105*bf2c3715SXin Li 
106*bf2c3715SXin Li   // "optimized version" which appears to be slower with gcc!
107*bf2c3715SXin Li //     Vector base;
108*bf2c3715SXin Li //     Scalar alpha, beta;
109*bf2c3715SXin Li //     base <<   scaledMat(1,0) * scaledMat(2,1),
110*bf2c3715SXin Li //               scaledMat(1,0) * scaledMat(2,0),
111*bf2c3715SXin Li //              -scaledMat(1,0) * scaledMat(1,0);
112*bf2c3715SXin Li //     for(int k=0; k<2; ++k)
113*bf2c3715SXin Li //     {
114*bf2c3715SXin Li //       alpha = scaledMat(0,0) - evals(k);
115*bf2c3715SXin Li //       beta  = scaledMat(1,1) - evals(k);
116*bf2c3715SXin Li //       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
117*bf2c3715SXin Li //     }
118*bf2c3715SXin Li //     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
119*bf2c3715SXin Li 
120*bf2c3715SXin Li //   // naive version
121*bf2c3715SXin Li //   Matrix tmp;
122*bf2c3715SXin Li //   tmp = scaledMat;
123*bf2c3715SXin Li //   tmp.diagonal().array() -= evals(0);
124*bf2c3715SXin Li //   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
125*bf2c3715SXin Li //
126*bf2c3715SXin Li //   tmp = scaledMat;
127*bf2c3715SXin Li //   tmp.diagonal().array() -= evals(1);
128*bf2c3715SXin Li //   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
129*bf2c3715SXin Li //
130*bf2c3715SXin Li //   tmp = scaledMat;
131*bf2c3715SXin Li //   tmp.diagonal().array() -= evals(2);
132*bf2c3715SXin Li //   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
133*bf2c3715SXin Li 
134*bf2c3715SXin Li   // a more stable version:
135*bf2c3715SXin Li   if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
136*bf2c3715SXin Li   {
137*bf2c3715SXin Li     evecs.setIdentity();
138*bf2c3715SXin Li   }
139*bf2c3715SXin Li   else
140*bf2c3715SXin Li   {
141*bf2c3715SXin Li     Matrix tmp;
142*bf2c3715SXin Li     tmp = scaledMat;
143*bf2c3715SXin Li     tmp.diagonal ().array () -= evals (2);
144*bf2c3715SXin Li     evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
145*bf2c3715SXin Li 
146*bf2c3715SXin Li     tmp = scaledMat;
147*bf2c3715SXin Li     tmp.diagonal ().array () -= evals (1);
148*bf2c3715SXin Li     evecs.col(1) = tmp.row (0).cross(tmp.row (1));
149*bf2c3715SXin Li     Scalar n1 = evecs.col(1).norm();
150*bf2c3715SXin Li     if(n1<=Eigen::NumTraits<Scalar>::epsilon())
151*bf2c3715SXin Li       evecs.col(1) = evecs.col(2).unitOrthogonal();
152*bf2c3715SXin Li     else
153*bf2c3715SXin Li       evecs.col(1) /= n1;
154*bf2c3715SXin Li 
155*bf2c3715SXin Li     // make sure that evecs[1] is orthogonal to evecs[2]
156*bf2c3715SXin Li     evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
157*bf2c3715SXin Li     evecs.col(0) = evecs.col(2).cross(evecs.col(1));
158*bf2c3715SXin Li   }
159*bf2c3715SXin Li 
160*bf2c3715SXin Li   // Rescale back to the original size.
161*bf2c3715SXin Li   evals *= scale;
162*bf2c3715SXin Li   evals.array()+=shift;
163*bf2c3715SXin Li }
164*bf2c3715SXin Li 
main()165*bf2c3715SXin Li int main()
166*bf2c3715SXin Li {
167*bf2c3715SXin Li   BenchTimer t;
168*bf2c3715SXin Li   int tries = 10;
169*bf2c3715SXin Li   int rep = 400000;
170*bf2c3715SXin Li   typedef Matrix3d Mat;
171*bf2c3715SXin Li   typedef Vector3d Vec;
172*bf2c3715SXin Li   Mat A = Mat::Random(3,3);
173*bf2c3715SXin Li   A = A.adjoint() * A;
174*bf2c3715SXin Li //   Mat Q = A.householderQr().householderQ();
175*bf2c3715SXin Li //   A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose();
176*bf2c3715SXin Li 
177*bf2c3715SXin Li   SelfAdjointEigenSolver<Mat> eig(A);
178*bf2c3715SXin Li   BENCH(t, tries, rep, eig.compute(A));
179*bf2c3715SXin Li   std::cout << "Eigen iterative:  " << t.best() << "s\n";
180*bf2c3715SXin Li 
181*bf2c3715SXin Li   BENCH(t, tries, rep, eig.computeDirect(A));
182*bf2c3715SXin Li   std::cout << "Eigen direct   :  " << t.best() << "s\n";
183*bf2c3715SXin Li 
184*bf2c3715SXin Li   Mat evecs;
185*bf2c3715SXin Li   Vec evals;
186*bf2c3715SXin Li   BENCH(t, tries, rep, eigen33(A,evecs,evals));
187*bf2c3715SXin Li   std::cout << "Direct: " << t.best() << "s\n\n";
188*bf2c3715SXin Li 
189*bf2c3715SXin Li //   std::cerr << "Eigenvalue/eigenvector diffs:\n";
190*bf2c3715SXin Li //   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
191*bf2c3715SXin Li //   for(int k=0;k<3;++k)
192*bf2c3715SXin Li //     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
193*bf2c3715SXin Li //       evecs.col(k) = -evecs.col(k);
194*bf2c3715SXin Li //   std::cerr << evecs - eig.eigenvectors() << "\n\n";
195*bf2c3715SXin Li }
196