1*bf2c3715SXin Li /* ctbmv.f -- translated by f2c (version 20100827).
2*bf2c3715SXin Li You must link the resulting object file with libf2c:
3*bf2c3715SXin Li on Microsoft Windows system, link with libf2c.lib;
4*bf2c3715SXin Li on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5*bf2c3715SXin Li or, if you install libf2c.a in a standard place, with -lf2c -lm
6*bf2c3715SXin Li -- in that order, at the end of the command line, as in
7*bf2c3715SXin Li cc *.o -lf2c -lm
8*bf2c3715SXin Li Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9*bf2c3715SXin Li
10*bf2c3715SXin Li http://www.netlib.org/f2c/libf2c.zip
11*bf2c3715SXin Li */
12*bf2c3715SXin Li
13*bf2c3715SXin Li #include "datatypes.h"
14*bf2c3715SXin Li
ctbmv_(char * uplo,char * trans,char * diag,integer * n,integer * k,complex * a,integer * lda,complex * x,integer * incx,ftnlen uplo_len,ftnlen trans_len,ftnlen diag_len)15*bf2c3715SXin Li /* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
16*bf2c3715SXin Li integer *k, complex *a, integer *lda, complex *x, integer *incx,
17*bf2c3715SXin Li ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li /* System generated locals */
20*bf2c3715SXin Li integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
21*bf2c3715SXin Li complex q__1, q__2, q__3;
22*bf2c3715SXin Li
23*bf2c3715SXin Li /* Builtin functions */
24*bf2c3715SXin Li void r_cnjg(complex *, complex *);
25*bf2c3715SXin Li
26*bf2c3715SXin Li /* Local variables */
27*bf2c3715SXin Li integer i__, j, l, ix, jx, kx, info;
28*bf2c3715SXin Li complex temp;
29*bf2c3715SXin Li extern logical lsame_(char *, char *, ftnlen, ftnlen);
30*bf2c3715SXin Li integer kplus1;
31*bf2c3715SXin Li extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
32*bf2c3715SXin Li logical noconj, nounit;
33*bf2c3715SXin Li
34*bf2c3715SXin Li /* .. Scalar Arguments .. */
35*bf2c3715SXin Li /* .. */
36*bf2c3715SXin Li /* .. Array Arguments .. */
37*bf2c3715SXin Li /* .. */
38*bf2c3715SXin Li
39*bf2c3715SXin Li /* Purpose */
40*bf2c3715SXin Li /* ======= */
41*bf2c3715SXin Li
42*bf2c3715SXin Li /* CTBMV performs one of the matrix-vector operations */
43*bf2c3715SXin Li
44*bf2c3715SXin Li /* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
45*bf2c3715SXin Li
46*bf2c3715SXin Li /* where x is an n element vector and A is an n by n unit, or non-unit, */
47*bf2c3715SXin Li /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
48*bf2c3715SXin Li
49*bf2c3715SXin Li /* Arguments */
50*bf2c3715SXin Li /* ========== */
51*bf2c3715SXin Li
52*bf2c3715SXin Li /* UPLO - CHARACTER*1. */
53*bf2c3715SXin Li /* On entry, UPLO specifies whether the matrix is an upper or */
54*bf2c3715SXin Li /* lower triangular matrix as follows: */
55*bf2c3715SXin Li
56*bf2c3715SXin Li /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
57*bf2c3715SXin Li
58*bf2c3715SXin Li /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
59*bf2c3715SXin Li
60*bf2c3715SXin Li /* Unchanged on exit. */
61*bf2c3715SXin Li
62*bf2c3715SXin Li /* TRANS - CHARACTER*1. */
63*bf2c3715SXin Li /* On entry, TRANS specifies the operation to be performed as */
64*bf2c3715SXin Li /* follows: */
65*bf2c3715SXin Li
66*bf2c3715SXin Li /* TRANS = 'N' or 'n' x := A*x. */
67*bf2c3715SXin Li
68*bf2c3715SXin Li /* TRANS = 'T' or 't' x := A'*x. */
69*bf2c3715SXin Li
70*bf2c3715SXin Li /* TRANS = 'C' or 'c' x := conjg( A' )*x. */
71*bf2c3715SXin Li
72*bf2c3715SXin Li /* Unchanged on exit. */
73*bf2c3715SXin Li
74*bf2c3715SXin Li /* DIAG - CHARACTER*1. */
75*bf2c3715SXin Li /* On entry, DIAG specifies whether or not A is unit */
76*bf2c3715SXin Li /* triangular as follows: */
77*bf2c3715SXin Li
78*bf2c3715SXin Li /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
79*bf2c3715SXin Li
80*bf2c3715SXin Li /* DIAG = 'N' or 'n' A is not assumed to be unit */
81*bf2c3715SXin Li /* triangular. */
82*bf2c3715SXin Li
83*bf2c3715SXin Li /* Unchanged on exit. */
84*bf2c3715SXin Li
85*bf2c3715SXin Li /* N - INTEGER. */
86*bf2c3715SXin Li /* On entry, N specifies the order of the matrix A. */
87*bf2c3715SXin Li /* N must be at least zero. */
88*bf2c3715SXin Li /* Unchanged on exit. */
89*bf2c3715SXin Li
90*bf2c3715SXin Li /* K - INTEGER. */
91*bf2c3715SXin Li /* On entry with UPLO = 'U' or 'u', K specifies the number of */
92*bf2c3715SXin Li /* super-diagonals of the matrix A. */
93*bf2c3715SXin Li /* On entry with UPLO = 'L' or 'l', K specifies the number of */
94*bf2c3715SXin Li /* sub-diagonals of the matrix A. */
95*bf2c3715SXin Li /* K must satisfy 0 .le. K. */
96*bf2c3715SXin Li /* Unchanged on exit. */
97*bf2c3715SXin Li
98*bf2c3715SXin Li /* A - COMPLEX array of DIMENSION ( LDA, n ). */
99*bf2c3715SXin Li /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
100*bf2c3715SXin Li /* by n part of the array A must contain the upper triangular */
101*bf2c3715SXin Li /* band part of the matrix of coefficients, supplied column by */
102*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row */
103*bf2c3715SXin Li /* ( k + 1 ) of the array, the first super-diagonal starting at */
104*bf2c3715SXin Li /* position 2 in row k, and so on. The top left k by k triangle */
105*bf2c3715SXin Li /* of the array A is not referenced. */
106*bf2c3715SXin Li /* The following program segment will transfer an upper */
107*bf2c3715SXin Li /* triangular band matrix from conventional full matrix storage */
108*bf2c3715SXin Li /* to band storage: */
109*bf2c3715SXin Li
110*bf2c3715SXin Li /* DO 20, J = 1, N */
111*bf2c3715SXin Li /* M = K + 1 - J */
112*bf2c3715SXin Li /* DO 10, I = MAX( 1, J - K ), J */
113*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
114*bf2c3715SXin Li /* 10 CONTINUE */
115*bf2c3715SXin Li /* 20 CONTINUE */
116*bf2c3715SXin Li
117*bf2c3715SXin Li /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
118*bf2c3715SXin Li /* by n part of the array A must contain the lower triangular */
119*bf2c3715SXin Li /* band part of the matrix of coefficients, supplied column by */
120*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row 1 of */
121*bf2c3715SXin Li /* the array, the first sub-diagonal starting at position 1 in */
122*bf2c3715SXin Li /* row 2, and so on. The bottom right k by k triangle of the */
123*bf2c3715SXin Li /* array A is not referenced. */
124*bf2c3715SXin Li /* The following program segment will transfer a lower */
125*bf2c3715SXin Li /* triangular band matrix from conventional full matrix storage */
126*bf2c3715SXin Li /* to band storage: */
127*bf2c3715SXin Li
128*bf2c3715SXin Li /* DO 20, J = 1, N */
129*bf2c3715SXin Li /* M = 1 - J */
130*bf2c3715SXin Li /* DO 10, I = J, MIN( N, J + K ) */
131*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
132*bf2c3715SXin Li /* 10 CONTINUE */
133*bf2c3715SXin Li /* 20 CONTINUE */
134*bf2c3715SXin Li
135*bf2c3715SXin Li /* Note that when DIAG = 'U' or 'u' the elements of the array A */
136*bf2c3715SXin Li /* corresponding to the diagonal elements of the matrix are not */
137*bf2c3715SXin Li /* referenced, but are assumed to be unity. */
138*bf2c3715SXin Li /* Unchanged on exit. */
139*bf2c3715SXin Li
140*bf2c3715SXin Li /* LDA - INTEGER. */
141*bf2c3715SXin Li /* On entry, LDA specifies the first dimension of A as declared */
142*bf2c3715SXin Li /* in the calling (sub) program. LDA must be at least */
143*bf2c3715SXin Li /* ( k + 1 ). */
144*bf2c3715SXin Li /* Unchanged on exit. */
145*bf2c3715SXin Li
146*bf2c3715SXin Li /* X - COMPLEX array of dimension at least */
147*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCX ) ). */
148*bf2c3715SXin Li /* Before entry, the incremented array X must contain the n */
149*bf2c3715SXin Li /* element vector x. On exit, X is overwritten with the */
150*bf2c3715SXin Li /* transformed vector x. */
151*bf2c3715SXin Li
152*bf2c3715SXin Li /* INCX - INTEGER. */
153*bf2c3715SXin Li /* On entry, INCX specifies the increment for the elements of */
154*bf2c3715SXin Li /* X. INCX must not be zero. */
155*bf2c3715SXin Li /* Unchanged on exit. */
156*bf2c3715SXin Li
157*bf2c3715SXin Li /* Further Details */
158*bf2c3715SXin Li /* =============== */
159*bf2c3715SXin Li
160*bf2c3715SXin Li /* Level 2 Blas routine. */
161*bf2c3715SXin Li
162*bf2c3715SXin Li /* -- Written on 22-October-1986. */
163*bf2c3715SXin Li /* Jack Dongarra, Argonne National Lab. */
164*bf2c3715SXin Li /* Jeremy Du Croz, Nag Central Office. */
165*bf2c3715SXin Li /* Sven Hammarling, Nag Central Office. */
166*bf2c3715SXin Li /* Richard Hanson, Sandia National Labs. */
167*bf2c3715SXin Li
168*bf2c3715SXin Li /* ===================================================================== */
169*bf2c3715SXin Li
170*bf2c3715SXin Li /* .. Parameters .. */
171*bf2c3715SXin Li /* .. */
172*bf2c3715SXin Li /* .. Local Scalars .. */
173*bf2c3715SXin Li /* .. */
174*bf2c3715SXin Li /* .. External Functions .. */
175*bf2c3715SXin Li /* .. */
176*bf2c3715SXin Li /* .. External Subroutines .. */
177*bf2c3715SXin Li /* .. */
178*bf2c3715SXin Li /* .. Intrinsic Functions .. */
179*bf2c3715SXin Li /* .. */
180*bf2c3715SXin Li
181*bf2c3715SXin Li /* Test the input parameters. */
182*bf2c3715SXin Li
183*bf2c3715SXin Li /* Parameter adjustments */
184*bf2c3715SXin Li a_dim1 = *lda;
185*bf2c3715SXin Li a_offset = 1 + a_dim1;
186*bf2c3715SXin Li a -= a_offset;
187*bf2c3715SXin Li --x;
188*bf2c3715SXin Li
189*bf2c3715SXin Li /* Function Body */
190*bf2c3715SXin Li info = 0;
191*bf2c3715SXin Li if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
192*bf2c3715SXin Li ftnlen)1, (ftnlen)1)) {
193*bf2c3715SXin Li info = 1;
194*bf2c3715SXin Li } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
195*bf2c3715SXin Li "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
196*bf2c3715SXin Li ftnlen)1)) {
197*bf2c3715SXin Li info = 2;
198*bf2c3715SXin Li } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
199*bf2c3715SXin Li "N", (ftnlen)1, (ftnlen)1)) {
200*bf2c3715SXin Li info = 3;
201*bf2c3715SXin Li } else if (*n < 0) {
202*bf2c3715SXin Li info = 4;
203*bf2c3715SXin Li } else if (*k < 0) {
204*bf2c3715SXin Li info = 5;
205*bf2c3715SXin Li } else if (*lda < *k + 1) {
206*bf2c3715SXin Li info = 7;
207*bf2c3715SXin Li } else if (*incx == 0) {
208*bf2c3715SXin Li info = 9;
209*bf2c3715SXin Li }
210*bf2c3715SXin Li if (info != 0) {
211*bf2c3715SXin Li xerbla_("CTBMV ", &info, (ftnlen)6);
212*bf2c3715SXin Li return 0;
213*bf2c3715SXin Li }
214*bf2c3715SXin Li
215*bf2c3715SXin Li /* Quick return if possible. */
216*bf2c3715SXin Li
217*bf2c3715SXin Li if (*n == 0) {
218*bf2c3715SXin Li return 0;
219*bf2c3715SXin Li }
220*bf2c3715SXin Li
221*bf2c3715SXin Li noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
222*bf2c3715SXin Li nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
223*bf2c3715SXin Li
224*bf2c3715SXin Li /* Set up the start point in X if the increment is not unity. This */
225*bf2c3715SXin Li /* will be ( N - 1 )*INCX too small for descending loops. */
226*bf2c3715SXin Li
227*bf2c3715SXin Li if (*incx <= 0) {
228*bf2c3715SXin Li kx = 1 - (*n - 1) * *incx;
229*bf2c3715SXin Li } else if (*incx != 1) {
230*bf2c3715SXin Li kx = 1;
231*bf2c3715SXin Li }
232*bf2c3715SXin Li
233*bf2c3715SXin Li /* Start the operations. In this version the elements of A are */
234*bf2c3715SXin Li /* accessed sequentially with one pass through A. */
235*bf2c3715SXin Li
236*bf2c3715SXin Li if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
237*bf2c3715SXin Li
238*bf2c3715SXin Li /* Form x := A*x. */
239*bf2c3715SXin Li
240*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
241*bf2c3715SXin Li kplus1 = *k + 1;
242*bf2c3715SXin Li if (*incx == 1) {
243*bf2c3715SXin Li i__1 = *n;
244*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
245*bf2c3715SXin Li i__2 = j;
246*bf2c3715SXin Li if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
247*bf2c3715SXin Li i__2 = j;
248*bf2c3715SXin Li temp.r = x[i__2].r, temp.i = x[i__2].i;
249*bf2c3715SXin Li l = kplus1 - j;
250*bf2c3715SXin Li /* Computing MAX */
251*bf2c3715SXin Li i__2 = 1, i__3 = j - *k;
252*bf2c3715SXin Li i__4 = j - 1;
253*bf2c3715SXin Li for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
254*bf2c3715SXin Li i__2 = i__;
255*bf2c3715SXin Li i__3 = i__;
256*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
257*bf2c3715SXin Li q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
258*bf2c3715SXin Li q__2.i = temp.r * a[i__5].i + temp.i * a[
259*bf2c3715SXin Li i__5].r;
260*bf2c3715SXin Li q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
261*bf2c3715SXin Li q__2.i;
262*bf2c3715SXin Li x[i__2].r = q__1.r, x[i__2].i = q__1.i;
263*bf2c3715SXin Li /* L10: */
264*bf2c3715SXin Li }
265*bf2c3715SXin Li if (nounit) {
266*bf2c3715SXin Li i__4 = j;
267*bf2c3715SXin Li i__2 = j;
268*bf2c3715SXin Li i__3 = kplus1 + j * a_dim1;
269*bf2c3715SXin Li q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
270*bf2c3715SXin Li i__3].i, q__1.i = x[i__2].r * a[i__3].i +
271*bf2c3715SXin Li x[i__2].i * a[i__3].r;
272*bf2c3715SXin Li x[i__4].r = q__1.r, x[i__4].i = q__1.i;
273*bf2c3715SXin Li }
274*bf2c3715SXin Li }
275*bf2c3715SXin Li /* L20: */
276*bf2c3715SXin Li }
277*bf2c3715SXin Li } else {
278*bf2c3715SXin Li jx = kx;
279*bf2c3715SXin Li i__1 = *n;
280*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
281*bf2c3715SXin Li i__4 = jx;
282*bf2c3715SXin Li if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
283*bf2c3715SXin Li i__4 = jx;
284*bf2c3715SXin Li temp.r = x[i__4].r, temp.i = x[i__4].i;
285*bf2c3715SXin Li ix = kx;
286*bf2c3715SXin Li l = kplus1 - j;
287*bf2c3715SXin Li /* Computing MAX */
288*bf2c3715SXin Li i__4 = 1, i__2 = j - *k;
289*bf2c3715SXin Li i__3 = j - 1;
290*bf2c3715SXin Li for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
291*bf2c3715SXin Li i__4 = ix;
292*bf2c3715SXin Li i__2 = ix;
293*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
294*bf2c3715SXin Li q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
295*bf2c3715SXin Li q__2.i = temp.r * a[i__5].i + temp.i * a[
296*bf2c3715SXin Li i__5].r;
297*bf2c3715SXin Li q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
298*bf2c3715SXin Li q__2.i;
299*bf2c3715SXin Li x[i__4].r = q__1.r, x[i__4].i = q__1.i;
300*bf2c3715SXin Li ix += *incx;
301*bf2c3715SXin Li /* L30: */
302*bf2c3715SXin Li }
303*bf2c3715SXin Li if (nounit) {
304*bf2c3715SXin Li i__3 = jx;
305*bf2c3715SXin Li i__4 = jx;
306*bf2c3715SXin Li i__2 = kplus1 + j * a_dim1;
307*bf2c3715SXin Li q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
308*bf2c3715SXin Li i__2].i, q__1.i = x[i__4].r * a[i__2].i +
309*bf2c3715SXin Li x[i__4].i * a[i__2].r;
310*bf2c3715SXin Li x[i__3].r = q__1.r, x[i__3].i = q__1.i;
311*bf2c3715SXin Li }
312*bf2c3715SXin Li }
313*bf2c3715SXin Li jx += *incx;
314*bf2c3715SXin Li if (j > *k) {
315*bf2c3715SXin Li kx += *incx;
316*bf2c3715SXin Li }
317*bf2c3715SXin Li /* L40: */
318*bf2c3715SXin Li }
319*bf2c3715SXin Li }
320*bf2c3715SXin Li } else {
321*bf2c3715SXin Li if (*incx == 1) {
322*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
323*bf2c3715SXin Li i__1 = j;
324*bf2c3715SXin Li if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
325*bf2c3715SXin Li i__1 = j;
326*bf2c3715SXin Li temp.r = x[i__1].r, temp.i = x[i__1].i;
327*bf2c3715SXin Li l = 1 - j;
328*bf2c3715SXin Li /* Computing MIN */
329*bf2c3715SXin Li i__1 = *n, i__3 = j + *k;
330*bf2c3715SXin Li i__4 = j + 1;
331*bf2c3715SXin Li for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
332*bf2c3715SXin Li i__1 = i__;
333*bf2c3715SXin Li i__3 = i__;
334*bf2c3715SXin Li i__2 = l + i__ + j * a_dim1;
335*bf2c3715SXin Li q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
336*bf2c3715SXin Li q__2.i = temp.r * a[i__2].i + temp.i * a[
337*bf2c3715SXin Li i__2].r;
338*bf2c3715SXin Li q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
339*bf2c3715SXin Li q__2.i;
340*bf2c3715SXin Li x[i__1].r = q__1.r, x[i__1].i = q__1.i;
341*bf2c3715SXin Li /* L50: */
342*bf2c3715SXin Li }
343*bf2c3715SXin Li if (nounit) {
344*bf2c3715SXin Li i__4 = j;
345*bf2c3715SXin Li i__1 = j;
346*bf2c3715SXin Li i__3 = j * a_dim1 + 1;
347*bf2c3715SXin Li q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
348*bf2c3715SXin Li i__3].i, q__1.i = x[i__1].r * a[i__3].i +
349*bf2c3715SXin Li x[i__1].i * a[i__3].r;
350*bf2c3715SXin Li x[i__4].r = q__1.r, x[i__4].i = q__1.i;
351*bf2c3715SXin Li }
352*bf2c3715SXin Li }
353*bf2c3715SXin Li /* L60: */
354*bf2c3715SXin Li }
355*bf2c3715SXin Li } else {
356*bf2c3715SXin Li kx += (*n - 1) * *incx;
357*bf2c3715SXin Li jx = kx;
358*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
359*bf2c3715SXin Li i__4 = jx;
360*bf2c3715SXin Li if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
361*bf2c3715SXin Li i__4 = jx;
362*bf2c3715SXin Li temp.r = x[i__4].r, temp.i = x[i__4].i;
363*bf2c3715SXin Li ix = kx;
364*bf2c3715SXin Li l = 1 - j;
365*bf2c3715SXin Li /* Computing MIN */
366*bf2c3715SXin Li i__4 = *n, i__1 = j + *k;
367*bf2c3715SXin Li i__3 = j + 1;
368*bf2c3715SXin Li for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
369*bf2c3715SXin Li i__4 = ix;
370*bf2c3715SXin Li i__1 = ix;
371*bf2c3715SXin Li i__2 = l + i__ + j * a_dim1;
372*bf2c3715SXin Li q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
373*bf2c3715SXin Li q__2.i = temp.r * a[i__2].i + temp.i * a[
374*bf2c3715SXin Li i__2].r;
375*bf2c3715SXin Li q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
376*bf2c3715SXin Li q__2.i;
377*bf2c3715SXin Li x[i__4].r = q__1.r, x[i__4].i = q__1.i;
378*bf2c3715SXin Li ix -= *incx;
379*bf2c3715SXin Li /* L70: */
380*bf2c3715SXin Li }
381*bf2c3715SXin Li if (nounit) {
382*bf2c3715SXin Li i__3 = jx;
383*bf2c3715SXin Li i__4 = jx;
384*bf2c3715SXin Li i__1 = j * a_dim1 + 1;
385*bf2c3715SXin Li q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
386*bf2c3715SXin Li i__1].i, q__1.i = x[i__4].r * a[i__1].i +
387*bf2c3715SXin Li x[i__4].i * a[i__1].r;
388*bf2c3715SXin Li x[i__3].r = q__1.r, x[i__3].i = q__1.i;
389*bf2c3715SXin Li }
390*bf2c3715SXin Li }
391*bf2c3715SXin Li jx -= *incx;
392*bf2c3715SXin Li if (*n - j >= *k) {
393*bf2c3715SXin Li kx -= *incx;
394*bf2c3715SXin Li }
395*bf2c3715SXin Li /* L80: */
396*bf2c3715SXin Li }
397*bf2c3715SXin Li }
398*bf2c3715SXin Li }
399*bf2c3715SXin Li } else {
400*bf2c3715SXin Li
401*bf2c3715SXin Li /* Form x := A'*x or x := conjg( A' )*x. */
402*bf2c3715SXin Li
403*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
404*bf2c3715SXin Li kplus1 = *k + 1;
405*bf2c3715SXin Li if (*incx == 1) {
406*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
407*bf2c3715SXin Li i__3 = j;
408*bf2c3715SXin Li temp.r = x[i__3].r, temp.i = x[i__3].i;
409*bf2c3715SXin Li l = kplus1 - j;
410*bf2c3715SXin Li if (noconj) {
411*bf2c3715SXin Li if (nounit) {
412*bf2c3715SXin Li i__3 = kplus1 + j * a_dim1;
413*bf2c3715SXin Li q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
414*bf2c3715SXin Li q__1.i = temp.r * a[i__3].i + temp.i * a[
415*bf2c3715SXin Li i__3].r;
416*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
417*bf2c3715SXin Li }
418*bf2c3715SXin Li /* Computing MAX */
419*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
420*bf2c3715SXin Li i__3 = max(i__4,i__1);
421*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
422*bf2c3715SXin Li i__4 = l + i__ + j * a_dim1;
423*bf2c3715SXin Li i__1 = i__;
424*bf2c3715SXin Li q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
425*bf2c3715SXin Li i__1].i, q__2.i = a[i__4].r * x[i__1].i +
426*bf2c3715SXin Li a[i__4].i * x[i__1].r;
427*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
428*bf2c3715SXin Li q__2.i;
429*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
430*bf2c3715SXin Li /* L90: */
431*bf2c3715SXin Li }
432*bf2c3715SXin Li } else {
433*bf2c3715SXin Li if (nounit) {
434*bf2c3715SXin Li r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
435*bf2c3715SXin Li q__1.r = temp.r * q__2.r - temp.i * q__2.i,
436*bf2c3715SXin Li q__1.i = temp.r * q__2.i + temp.i *
437*bf2c3715SXin Li q__2.r;
438*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
439*bf2c3715SXin Li }
440*bf2c3715SXin Li /* Computing MAX */
441*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
442*bf2c3715SXin Li i__3 = max(i__4,i__1);
443*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
444*bf2c3715SXin Li r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
445*bf2c3715SXin Li i__4 = i__;
446*bf2c3715SXin Li q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
447*bf2c3715SXin Li q__2.i = q__3.r * x[i__4].i + q__3.i * x[
448*bf2c3715SXin Li i__4].r;
449*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
450*bf2c3715SXin Li q__2.i;
451*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
452*bf2c3715SXin Li /* L100: */
453*bf2c3715SXin Li }
454*bf2c3715SXin Li }
455*bf2c3715SXin Li i__3 = j;
456*bf2c3715SXin Li x[i__3].r = temp.r, x[i__3].i = temp.i;
457*bf2c3715SXin Li /* L110: */
458*bf2c3715SXin Li }
459*bf2c3715SXin Li } else {
460*bf2c3715SXin Li kx += (*n - 1) * *incx;
461*bf2c3715SXin Li jx = kx;
462*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
463*bf2c3715SXin Li i__3 = jx;
464*bf2c3715SXin Li temp.r = x[i__3].r, temp.i = x[i__3].i;
465*bf2c3715SXin Li kx -= *incx;
466*bf2c3715SXin Li ix = kx;
467*bf2c3715SXin Li l = kplus1 - j;
468*bf2c3715SXin Li if (noconj) {
469*bf2c3715SXin Li if (nounit) {
470*bf2c3715SXin Li i__3 = kplus1 + j * a_dim1;
471*bf2c3715SXin Li q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
472*bf2c3715SXin Li q__1.i = temp.r * a[i__3].i + temp.i * a[
473*bf2c3715SXin Li i__3].r;
474*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
475*bf2c3715SXin Li }
476*bf2c3715SXin Li /* Computing MAX */
477*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
478*bf2c3715SXin Li i__3 = max(i__4,i__1);
479*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
480*bf2c3715SXin Li i__4 = l + i__ + j * a_dim1;
481*bf2c3715SXin Li i__1 = ix;
482*bf2c3715SXin Li q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
483*bf2c3715SXin Li i__1].i, q__2.i = a[i__4].r * x[i__1].i +
484*bf2c3715SXin Li a[i__4].i * x[i__1].r;
485*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
486*bf2c3715SXin Li q__2.i;
487*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
488*bf2c3715SXin Li ix -= *incx;
489*bf2c3715SXin Li /* L120: */
490*bf2c3715SXin Li }
491*bf2c3715SXin Li } else {
492*bf2c3715SXin Li if (nounit) {
493*bf2c3715SXin Li r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
494*bf2c3715SXin Li q__1.r = temp.r * q__2.r - temp.i * q__2.i,
495*bf2c3715SXin Li q__1.i = temp.r * q__2.i + temp.i *
496*bf2c3715SXin Li q__2.r;
497*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
498*bf2c3715SXin Li }
499*bf2c3715SXin Li /* Computing MAX */
500*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
501*bf2c3715SXin Li i__3 = max(i__4,i__1);
502*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
503*bf2c3715SXin Li r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
504*bf2c3715SXin Li i__4 = ix;
505*bf2c3715SXin Li q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
506*bf2c3715SXin Li q__2.i = q__3.r * x[i__4].i + q__3.i * x[
507*bf2c3715SXin Li i__4].r;
508*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
509*bf2c3715SXin Li q__2.i;
510*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
511*bf2c3715SXin Li ix -= *incx;
512*bf2c3715SXin Li /* L130: */
513*bf2c3715SXin Li }
514*bf2c3715SXin Li }
515*bf2c3715SXin Li i__3 = jx;
516*bf2c3715SXin Li x[i__3].r = temp.r, x[i__3].i = temp.i;
517*bf2c3715SXin Li jx -= *incx;
518*bf2c3715SXin Li /* L140: */
519*bf2c3715SXin Li }
520*bf2c3715SXin Li }
521*bf2c3715SXin Li } else {
522*bf2c3715SXin Li if (*incx == 1) {
523*bf2c3715SXin Li i__3 = *n;
524*bf2c3715SXin Li for (j = 1; j <= i__3; ++j) {
525*bf2c3715SXin Li i__4 = j;
526*bf2c3715SXin Li temp.r = x[i__4].r, temp.i = x[i__4].i;
527*bf2c3715SXin Li l = 1 - j;
528*bf2c3715SXin Li if (noconj) {
529*bf2c3715SXin Li if (nounit) {
530*bf2c3715SXin Li i__4 = j * a_dim1 + 1;
531*bf2c3715SXin Li q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
532*bf2c3715SXin Li q__1.i = temp.r * a[i__4].i + temp.i * a[
533*bf2c3715SXin Li i__4].r;
534*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
535*bf2c3715SXin Li }
536*bf2c3715SXin Li /* Computing MIN */
537*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
538*bf2c3715SXin Li i__4 = min(i__1,i__2);
539*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
540*bf2c3715SXin Li i__1 = l + i__ + j * a_dim1;
541*bf2c3715SXin Li i__2 = i__;
542*bf2c3715SXin Li q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
543*bf2c3715SXin Li i__2].i, q__2.i = a[i__1].r * x[i__2].i +
544*bf2c3715SXin Li a[i__1].i * x[i__2].r;
545*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
546*bf2c3715SXin Li q__2.i;
547*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
548*bf2c3715SXin Li /* L150: */
549*bf2c3715SXin Li }
550*bf2c3715SXin Li } else {
551*bf2c3715SXin Li if (nounit) {
552*bf2c3715SXin Li r_cnjg(&q__2, &a[j * a_dim1 + 1]);
553*bf2c3715SXin Li q__1.r = temp.r * q__2.r - temp.i * q__2.i,
554*bf2c3715SXin Li q__1.i = temp.r * q__2.i + temp.i *
555*bf2c3715SXin Li q__2.r;
556*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
557*bf2c3715SXin Li }
558*bf2c3715SXin Li /* Computing MIN */
559*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
560*bf2c3715SXin Li i__4 = min(i__1,i__2);
561*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
562*bf2c3715SXin Li r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
563*bf2c3715SXin Li i__1 = i__;
564*bf2c3715SXin Li q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
565*bf2c3715SXin Li q__2.i = q__3.r * x[i__1].i + q__3.i * x[
566*bf2c3715SXin Li i__1].r;
567*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
568*bf2c3715SXin Li q__2.i;
569*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
570*bf2c3715SXin Li /* L160: */
571*bf2c3715SXin Li }
572*bf2c3715SXin Li }
573*bf2c3715SXin Li i__4 = j;
574*bf2c3715SXin Li x[i__4].r = temp.r, x[i__4].i = temp.i;
575*bf2c3715SXin Li /* L170: */
576*bf2c3715SXin Li }
577*bf2c3715SXin Li } else {
578*bf2c3715SXin Li jx = kx;
579*bf2c3715SXin Li i__3 = *n;
580*bf2c3715SXin Li for (j = 1; j <= i__3; ++j) {
581*bf2c3715SXin Li i__4 = jx;
582*bf2c3715SXin Li temp.r = x[i__4].r, temp.i = x[i__4].i;
583*bf2c3715SXin Li kx += *incx;
584*bf2c3715SXin Li ix = kx;
585*bf2c3715SXin Li l = 1 - j;
586*bf2c3715SXin Li if (noconj) {
587*bf2c3715SXin Li if (nounit) {
588*bf2c3715SXin Li i__4 = j * a_dim1 + 1;
589*bf2c3715SXin Li q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
590*bf2c3715SXin Li q__1.i = temp.r * a[i__4].i + temp.i * a[
591*bf2c3715SXin Li i__4].r;
592*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
593*bf2c3715SXin Li }
594*bf2c3715SXin Li /* Computing MIN */
595*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
596*bf2c3715SXin Li i__4 = min(i__1,i__2);
597*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
598*bf2c3715SXin Li i__1 = l + i__ + j * a_dim1;
599*bf2c3715SXin Li i__2 = ix;
600*bf2c3715SXin Li q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
601*bf2c3715SXin Li i__2].i, q__2.i = a[i__1].r * x[i__2].i +
602*bf2c3715SXin Li a[i__1].i * x[i__2].r;
603*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
604*bf2c3715SXin Li q__2.i;
605*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
606*bf2c3715SXin Li ix += *incx;
607*bf2c3715SXin Li /* L180: */
608*bf2c3715SXin Li }
609*bf2c3715SXin Li } else {
610*bf2c3715SXin Li if (nounit) {
611*bf2c3715SXin Li r_cnjg(&q__2, &a[j * a_dim1 + 1]);
612*bf2c3715SXin Li q__1.r = temp.r * q__2.r - temp.i * q__2.i,
613*bf2c3715SXin Li q__1.i = temp.r * q__2.i + temp.i *
614*bf2c3715SXin Li q__2.r;
615*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
616*bf2c3715SXin Li }
617*bf2c3715SXin Li /* Computing MIN */
618*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
619*bf2c3715SXin Li i__4 = min(i__1,i__2);
620*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
621*bf2c3715SXin Li r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
622*bf2c3715SXin Li i__1 = ix;
623*bf2c3715SXin Li q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
624*bf2c3715SXin Li q__2.i = q__3.r * x[i__1].i + q__3.i * x[
625*bf2c3715SXin Li i__1].r;
626*bf2c3715SXin Li q__1.r = temp.r + q__2.r, q__1.i = temp.i +
627*bf2c3715SXin Li q__2.i;
628*bf2c3715SXin Li temp.r = q__1.r, temp.i = q__1.i;
629*bf2c3715SXin Li ix += *incx;
630*bf2c3715SXin Li /* L190: */
631*bf2c3715SXin Li }
632*bf2c3715SXin Li }
633*bf2c3715SXin Li i__4 = jx;
634*bf2c3715SXin Li x[i__4].r = temp.r, x[i__4].i = temp.i;
635*bf2c3715SXin Li jx += *incx;
636*bf2c3715SXin Li /* L200: */
637*bf2c3715SXin Li }
638*bf2c3715SXin Li }
639*bf2c3715SXin Li }
640*bf2c3715SXin Li }
641*bf2c3715SXin Li
642*bf2c3715SXin Li return 0;
643*bf2c3715SXin Li
644*bf2c3715SXin Li /* End of CTBMV . */
645*bf2c3715SXin Li
646*bf2c3715SXin Li } /* ctbmv_ */
647*bf2c3715SXin Li
648