1*bf2c3715SXin Linamespace Eigen { 2*bf2c3715SXin Li 3*bf2c3715SXin Li/** \eigenManualPage TutorialReductionsVisitorsBroadcasting Reductions, visitors and broadcasting 4*bf2c3715SXin Li 5*bf2c3715SXin LiThis page explains Eigen's reductions, visitors and broadcasting and how they are used with 6*bf2c3715SXin Li\link MatrixBase matrices \endlink and \link ArrayBase arrays \endlink. 7*bf2c3715SXin Li 8*bf2c3715SXin Li\eigenAutoToc 9*bf2c3715SXin Li 10*bf2c3715SXin Li\section TutorialReductionsVisitorsBroadcastingReductions Reductions 11*bf2c3715SXin LiIn Eigen, a reduction is a function taking a matrix or array, and returning a single 12*bf2c3715SXin Liscalar value. One of the most used reductions is \link DenseBase::sum() .sum() \endlink, 13*bf2c3715SXin Lireturning the sum of all the coefficients inside a given matrix or array. 14*bf2c3715SXin Li 15*bf2c3715SXin Li<table class="example"> 16*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 17*bf2c3715SXin Li<tr><td> 18*bf2c3715SXin Li\include tut_arithmetic_redux_basic.cpp 19*bf2c3715SXin Li</td> 20*bf2c3715SXin Li<td> 21*bf2c3715SXin Li\verbinclude tut_arithmetic_redux_basic.out 22*bf2c3715SXin Li</td></tr></table> 23*bf2c3715SXin Li 24*bf2c3715SXin LiThe \em trace of a matrix, as returned by the function \c trace(), is the sum of the diagonal coefficients and can equivalently be computed <tt>a.diagonal().sum()</tt>. 25*bf2c3715SXin Li 26*bf2c3715SXin Li 27*bf2c3715SXin Li\subsection TutorialReductionsVisitorsBroadcastingReductionsNorm Norm computations 28*bf2c3715SXin Li 29*bf2c3715SXin LiThe (Euclidean a.k.a. \f$\ell^2\f$) squared norm of a vector can be obtained \link MatrixBase::squaredNorm() squaredNorm() \endlink. It is equal to the dot product of the vector by itself, and equivalently to the sum of squared absolute values of its coefficients. 30*bf2c3715SXin Li 31*bf2c3715SXin LiEigen also provides the \link MatrixBase::norm() norm() \endlink method, which returns the square root of \link MatrixBase::squaredNorm() squaredNorm() \endlink. 32*bf2c3715SXin Li 33*bf2c3715SXin LiThese operations can also operate on matrices; in that case, a n-by-p matrix is seen as a vector of size (n*p), so for example the \link MatrixBase::norm() norm() \endlink method returns the "Frobenius" or "Hilbert-Schmidt" norm. We refrain from speaking of the \f$\ell^2\f$ norm of a matrix because that can mean different things. 34*bf2c3715SXin Li 35*bf2c3715SXin LiIf you want other coefficient-wise \f$\ell^p\f$ norms, use the \link MatrixBase::lpNorm lpNorm<p>() \endlink method. The template parameter \a p can take the special value \a Infinity if you want the \f$\ell^\infty\f$ norm, which is the maximum of the absolute values of the coefficients. 36*bf2c3715SXin Li 37*bf2c3715SXin LiThe following example demonstrates these methods. 38*bf2c3715SXin Li 39*bf2c3715SXin Li<table class="example"> 40*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 41*bf2c3715SXin Li<tr><td> 42*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_reductions_norm.cpp 43*bf2c3715SXin Li</td> 44*bf2c3715SXin Li<td> 45*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_reductions_norm.out 46*bf2c3715SXin Li</td></tr></table> 47*bf2c3715SXin Li 48*bf2c3715SXin Li\b Operator \b norm: The 1-norm and \f$\infty\f$-norm <a href="https://en.wikipedia.org/wiki/Operator_norm">matrix operator norms</a> can easily be computed as follows: 49*bf2c3715SXin Li<table class="example"> 50*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 51*bf2c3715SXin Li<tr><td> 52*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_reductions_operatornorm.cpp 53*bf2c3715SXin Li</td> 54*bf2c3715SXin Li<td> 55*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_reductions_operatornorm.out 56*bf2c3715SXin Li</td></tr></table> 57*bf2c3715SXin LiSee below for more explanations on the syntax of these expressions. 58*bf2c3715SXin Li 59*bf2c3715SXin Li\subsection TutorialReductionsVisitorsBroadcastingReductionsBool Boolean reductions 60*bf2c3715SXin Li 61*bf2c3715SXin LiThe following reductions operate on boolean values: 62*bf2c3715SXin Li - \link DenseBase::all() all() \endlink returns \b true if all of the coefficients in a given Matrix or Array evaluate to \b true . 63*bf2c3715SXin Li - \link DenseBase::any() any() \endlink returns \b true if at least one of the coefficients in a given Matrix or Array evaluates to \b true . 64*bf2c3715SXin Li - \link DenseBase::count() count() \endlink returns the number of coefficients in a given Matrix or Array that evaluate to \b true. 65*bf2c3715SXin Li 66*bf2c3715SXin LiThese are typically used in conjunction with the coefficient-wise comparison and equality operators provided by Array. For instance, <tt>array > 0</tt> is an %Array of the same size as \c array , with \b true at those positions where the corresponding coefficient of \c array is positive. Thus, <tt>(array > 0).all()</tt> tests whether all coefficients of \c array are positive. This can be seen in the following example: 67*bf2c3715SXin Li 68*bf2c3715SXin Li<table class="example"> 69*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 70*bf2c3715SXin Li<tr><td> 71*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_reductions_bool.cpp 72*bf2c3715SXin Li</td> 73*bf2c3715SXin Li<td> 74*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_reductions_bool.out 75*bf2c3715SXin Li</td></tr></table> 76*bf2c3715SXin Li 77*bf2c3715SXin Li\subsection TutorialReductionsVisitorsBroadcastingReductionsUserdefined User defined reductions 78*bf2c3715SXin Li 79*bf2c3715SXin LiTODO 80*bf2c3715SXin Li 81*bf2c3715SXin LiIn the meantime you can have a look at the DenseBase::redux() function. 82*bf2c3715SXin Li 83*bf2c3715SXin Li\section TutorialReductionsVisitorsBroadcastingVisitors Visitors 84*bf2c3715SXin LiVisitors are useful when one wants to obtain the location of a coefficient inside 85*bf2c3715SXin Lia Matrix or Array. The simplest examples are 86*bf2c3715SXin Li\link MatrixBase::maxCoeff() maxCoeff(&x,&y) \endlink and 87*bf2c3715SXin Li\link MatrixBase::minCoeff() minCoeff(&x,&y)\endlink, which can be used to find 88*bf2c3715SXin Lithe location of the greatest or smallest coefficient in a Matrix or 89*bf2c3715SXin LiArray. 90*bf2c3715SXin Li 91*bf2c3715SXin LiThe arguments passed to a visitor are pointers to the variables where the 92*bf2c3715SXin Lirow and column position are to be stored. These variables should be of type 93*bf2c3715SXin Li\link Eigen::Index Index \endlink, as shown below: 94*bf2c3715SXin Li 95*bf2c3715SXin Li<table class="example"> 96*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 97*bf2c3715SXin Li<tr><td> 98*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_visitors.cpp 99*bf2c3715SXin Li</td> 100*bf2c3715SXin Li<td> 101*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_visitors.out 102*bf2c3715SXin Li</td></tr></table> 103*bf2c3715SXin Li 104*bf2c3715SXin LiBoth functions also return the value of the minimum or maximum coefficient. 105*bf2c3715SXin Li 106*bf2c3715SXin Li\section TutorialReductionsVisitorsBroadcastingPartialReductions Partial reductions 107*bf2c3715SXin LiPartial reductions are reductions that can operate column- or row-wise on a Matrix or 108*bf2c3715SXin LiArray, applying the reduction operation on each column or row and 109*bf2c3715SXin Lireturning a column or row vector with the corresponding values. Partial reductions are applied 110*bf2c3715SXin Liwith \link DenseBase::colwise() colwise() \endlink or \link DenseBase::rowwise() rowwise() \endlink. 111*bf2c3715SXin Li 112*bf2c3715SXin LiA simple example is obtaining the maximum of the elements 113*bf2c3715SXin Liin each column in a given matrix, storing the result in a row vector: 114*bf2c3715SXin Li 115*bf2c3715SXin Li<table class="example"> 116*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 117*bf2c3715SXin Li<tr><td> 118*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_colwise.cpp 119*bf2c3715SXin Li</td> 120*bf2c3715SXin Li<td> 121*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_colwise.out 122*bf2c3715SXin Li</td></tr></table> 123*bf2c3715SXin Li 124*bf2c3715SXin LiThe same operation can be performed row-wise: 125*bf2c3715SXin Li 126*bf2c3715SXin Li<table class="example"> 127*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 128*bf2c3715SXin Li<tr><td> 129*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_rowwise.cpp 130*bf2c3715SXin Li</td> 131*bf2c3715SXin Li<td> 132*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_rowwise.out 133*bf2c3715SXin Li</td></tr></table> 134*bf2c3715SXin Li 135*bf2c3715SXin Li<b>Note that column-wise operations return a row vector, while row-wise operations return a column vector.</b> 136*bf2c3715SXin Li 137*bf2c3715SXin Li\subsection TutorialReductionsVisitorsBroadcastingPartialReductionsCombined Combining partial reductions with other operations 138*bf2c3715SXin LiIt is also possible to use the result of a partial reduction to do further processing. 139*bf2c3715SXin LiHere is another example that finds the column whose sum of elements is the maximum 140*bf2c3715SXin Li within a matrix. With column-wise partial reductions this can be coded as: 141*bf2c3715SXin Li 142*bf2c3715SXin Li<table class="example"> 143*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 144*bf2c3715SXin Li<tr><td> 145*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_maxnorm.cpp 146*bf2c3715SXin Li</td> 147*bf2c3715SXin Li<td> 148*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_maxnorm.out 149*bf2c3715SXin Li</td></tr></table> 150*bf2c3715SXin Li 151*bf2c3715SXin LiThe previous example applies the \link DenseBase::sum() sum() \endlink reduction on each column 152*bf2c3715SXin Lithough the \link DenseBase::colwise() colwise() \endlink visitor, obtaining a new matrix whose 153*bf2c3715SXin Lisize is 1x4. 154*bf2c3715SXin Li 155*bf2c3715SXin LiTherefore, if 156*bf2c3715SXin Li\f[ 157*bf2c3715SXin Li\mbox{m} = \begin{bmatrix} 1 & 2 & 6 & 9 \\ 158*bf2c3715SXin Li 3 & 1 & 7 & 2 \end{bmatrix} 159*bf2c3715SXin Li\f] 160*bf2c3715SXin Li 161*bf2c3715SXin Lithen 162*bf2c3715SXin Li 163*bf2c3715SXin Li\f[ 164*bf2c3715SXin Li\mbox{m.colwise().sum()} = \begin{bmatrix} 4 & 3 & 13 & 11 \end{bmatrix} 165*bf2c3715SXin Li\f] 166*bf2c3715SXin Li 167*bf2c3715SXin LiThe \link DenseBase::maxCoeff() maxCoeff() \endlink reduction is finally applied 168*bf2c3715SXin Lito obtain the column index where the maximum sum is found, 169*bf2c3715SXin Liwhich is the column index 2 (third column) in this case. 170*bf2c3715SXin Li 171*bf2c3715SXin Li 172*bf2c3715SXin Li\section TutorialReductionsVisitorsBroadcastingBroadcasting Broadcasting 173*bf2c3715SXin LiThe concept behind broadcasting is similar to partial reductions, with the difference that broadcasting 174*bf2c3715SXin Liconstructs an expression where a vector (column or row) is interpreted as a matrix by replicating it in 175*bf2c3715SXin Lione direction. 176*bf2c3715SXin Li 177*bf2c3715SXin LiA simple example is to add a certain column vector to each column in a matrix. 178*bf2c3715SXin LiThis can be accomplished with: 179*bf2c3715SXin Li 180*bf2c3715SXin Li<table class="example"> 181*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 182*bf2c3715SXin Li<tr><td> 183*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple.cpp 184*bf2c3715SXin Li</td> 185*bf2c3715SXin Li<td> 186*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple.out 187*bf2c3715SXin Li</td></tr></table> 188*bf2c3715SXin Li 189*bf2c3715SXin LiWe can interpret the instruction <tt>mat.colwise() += v</tt> in two equivalent ways. It adds the vector \c v 190*bf2c3715SXin Lito every column of the matrix. Alternatively, it can be interpreted as repeating the vector \c v four times to 191*bf2c3715SXin Liform a four-by-two matrix which is then added to \c mat: 192*bf2c3715SXin Li\f[ 193*bf2c3715SXin Li\begin{bmatrix} 1 & 2 & 6 & 9 \\ 3 & 1 & 7 & 2 \end{bmatrix} 194*bf2c3715SXin Li+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} 195*bf2c3715SXin Li= \begin{bmatrix} 1 & 2 & 6 & 9 \\ 4 & 2 & 8 & 3 \end{bmatrix}. 196*bf2c3715SXin Li\f] 197*bf2c3715SXin LiThe operators <tt>-=</tt>, <tt>+</tt> and <tt>-</tt> can also be used column-wise and row-wise. On arrays, we 198*bf2c3715SXin Lican also use the operators <tt>*=</tt>, <tt>/=</tt>, <tt>*</tt> and <tt>/</tt> to perform coefficient-wise 199*bf2c3715SXin Limultiplication and division column-wise or row-wise. These operators are not available on matrices because it 200*bf2c3715SXin Liis not clear what they would do. If you want multiply column 0 of a matrix \c mat with \c v(0), column 1 with 201*bf2c3715SXin Li\c v(1), and so on, then use <tt>mat = mat * v.asDiagonal()</tt>. 202*bf2c3715SXin Li 203*bf2c3715SXin LiIt is important to point out that the vector to be added column-wise or row-wise must be of type Vector, 204*bf2c3715SXin Liand cannot be a Matrix. If this is not met then you will get compile-time error. This also means that 205*bf2c3715SXin Libroadcasting operations can only be applied with an object of type Vector, when operating with Matrix. 206*bf2c3715SXin LiThe same applies for the Array class, where the equivalent for VectorXf is ArrayXf. As always, you should 207*bf2c3715SXin Linot mix arrays and matrices in the same expression. 208*bf2c3715SXin Li 209*bf2c3715SXin LiTo perform the same operation row-wise we can do: 210*bf2c3715SXin Li 211*bf2c3715SXin Li<table class="example"> 212*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 213*bf2c3715SXin Li<tr><td> 214*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple_rowwise.cpp 215*bf2c3715SXin Li</td> 216*bf2c3715SXin Li<td> 217*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_broadcast_simple_rowwise.out 218*bf2c3715SXin Li</td></tr></table> 219*bf2c3715SXin Li 220*bf2c3715SXin Li\subsection TutorialReductionsVisitorsBroadcastingBroadcastingCombined Combining broadcasting with other operations 221*bf2c3715SXin LiBroadcasting can also be combined with other operations, such as Matrix or Array operations, 222*bf2c3715SXin Lireductions and partial reductions. 223*bf2c3715SXin Li 224*bf2c3715SXin LiNow that broadcasting, reductions and partial reductions have been introduced, we can dive into a more advanced example that finds 225*bf2c3715SXin Lithe nearest neighbour of a vector <tt>v</tt> within the columns of matrix <tt>m</tt>. The Euclidean distance will be used in this example, 226*bf2c3715SXin Licomputing the squared Euclidean distance with the partial reduction named \link MatrixBase::squaredNorm() squaredNorm() \endlink: 227*bf2c3715SXin Li 228*bf2c3715SXin Li<table class="example"> 229*bf2c3715SXin Li<tr><th>Example:</th><th>Output:</th></tr> 230*bf2c3715SXin Li<tr><td> 231*bf2c3715SXin Li\include Tutorial_ReductionsVisitorsBroadcasting_broadcast_1nn.cpp 232*bf2c3715SXin Li</td> 233*bf2c3715SXin Li<td> 234*bf2c3715SXin Li\verbinclude Tutorial_ReductionsVisitorsBroadcasting_broadcast_1nn.out 235*bf2c3715SXin Li</td></tr></table> 236*bf2c3715SXin Li 237*bf2c3715SXin LiThe line that does the job is 238*bf2c3715SXin Li\code 239*bf2c3715SXin Li (m.colwise() - v).colwise().squaredNorm().minCoeff(&index); 240*bf2c3715SXin Li\endcode 241*bf2c3715SXin Li 242*bf2c3715SXin LiWe will go step by step to understand what is happening: 243*bf2c3715SXin Li 244*bf2c3715SXin Li - <tt>m.colwise() - v</tt> is a broadcasting operation, subtracting <tt>v</tt> from each column in <tt>m</tt>. The result of this operation 245*bf2c3715SXin Liis a new matrix whose size is the same as matrix <tt>m</tt>: \f[ 246*bf2c3715SXin Li \mbox{m.colwise() - v} = 247*bf2c3715SXin Li \begin{bmatrix} 248*bf2c3715SXin Li -1 & 21 & 4 & 7 \\ 249*bf2c3715SXin Li 0 & 8 & 4 & -1 250*bf2c3715SXin Li \end{bmatrix} 251*bf2c3715SXin Li\f] 252*bf2c3715SXin Li 253*bf2c3715SXin Li - <tt>(m.colwise() - v).colwise().squaredNorm()</tt> is a partial reduction, computing the squared norm column-wise. The result of 254*bf2c3715SXin Lithis operation is a row vector where each coefficient is the squared Euclidean distance between each column in <tt>m</tt> and <tt>v</tt>: \f[ 255*bf2c3715SXin Li \mbox{(m.colwise() - v).colwise().squaredNorm()} = 256*bf2c3715SXin Li \begin{bmatrix} 257*bf2c3715SXin Li 1 & 505 & 32 & 50 258*bf2c3715SXin Li \end{bmatrix} 259*bf2c3715SXin Li\f] 260*bf2c3715SXin Li 261*bf2c3715SXin Li - Finally, <tt>minCoeff(&index)</tt> is used to obtain the index of the column in <tt>m</tt> that is closest to <tt>v</tt> in terms of Euclidean 262*bf2c3715SXin Lidistance. 263*bf2c3715SXin Li 264*bf2c3715SXin Li*/ 265*bf2c3715SXin Li 266*bf2c3715SXin Li} 267