1*bf2c3715SXin Li MatrixXcf A = MatrixXcf::Random(4,4); 2*bf2c3715SXin Li cout << "Here is a random 4x4 matrix, A:" << endl << A << endl << endl; 3*bf2c3715SXin Li 4*bf2c3715SXin Li ComplexEigenSolver<MatrixXcf> ces; 5*bf2c3715SXin Li ces.compute(A); 6*bf2c3715SXin Li cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl; 7*bf2c3715SXin Li cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl; 8*bf2c3715SXin Li 9*bf2c3715SXin Li complex<float> lambda = ces.eigenvalues()[0]; 10*bf2c3715SXin Li cout << "Consider the first eigenvalue, lambda = " << lambda << endl; 11*bf2c3715SXin Li VectorXcf v = ces.eigenvectors().col(0); 12*bf2c3715SXin Li cout << "If v is the corresponding eigenvector, then lambda * v = " << endl << lambda * v << endl; 13*bf2c3715SXin Li cout << "... and A * v = " << endl << A * v << endl << endl; 14*bf2c3715SXin Li 15*bf2c3715SXin Li cout << "Finally, V * D * V^(-1) = " << endl 16*bf2c3715SXin Li << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl; 17