xref: /aosp_15_r20/external/eigen/test/array_cwise.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li 
12*bf2c3715SXin Li 
13*bf2c3715SXin Li // Test the corner cases of pow(x, y) for real types.
14*bf2c3715SXin Li template<typename Scalar>
pow_test()15*bf2c3715SXin Li void pow_test() {
16*bf2c3715SXin Li   const Scalar zero = Scalar(0);
17*bf2c3715SXin Li   const Scalar eps = Eigen::NumTraits<Scalar>::epsilon();
18*bf2c3715SXin Li   const Scalar one = Scalar(1);
19*bf2c3715SXin Li   const Scalar two = Scalar(2);
20*bf2c3715SXin Li   const Scalar three = Scalar(3);
21*bf2c3715SXin Li   const Scalar sqrt_half = Scalar(std::sqrt(0.5));
22*bf2c3715SXin Li   const Scalar sqrt2 = Scalar(std::sqrt(2));
23*bf2c3715SXin Li   const Scalar inf = Eigen::NumTraits<Scalar>::infinity();
24*bf2c3715SXin Li   const Scalar nan = Eigen::NumTraits<Scalar>::quiet_NaN();
25*bf2c3715SXin Li   const Scalar denorm_min = std::numeric_limits<Scalar>::denorm_min();
26*bf2c3715SXin Li   const Scalar min = (std::numeric_limits<Scalar>::min)();
27*bf2c3715SXin Li   const Scalar max = (std::numeric_limits<Scalar>::max)();
28*bf2c3715SXin Li   const Scalar max_exp = (static_cast<Scalar>(int(Eigen::NumTraits<Scalar>::max_exponent())) * Scalar(EIGEN_LN2)) / eps;
29*bf2c3715SXin Li 
30*bf2c3715SXin Li   const static Scalar abs_vals[] = {zero,
31*bf2c3715SXin Li                                     denorm_min,
32*bf2c3715SXin Li                                     min,
33*bf2c3715SXin Li                                     eps,
34*bf2c3715SXin Li                                     sqrt_half,
35*bf2c3715SXin Li                                     one,
36*bf2c3715SXin Li                                     sqrt2,
37*bf2c3715SXin Li                                     two,
38*bf2c3715SXin Li                                     three,
39*bf2c3715SXin Li                                     max_exp,
40*bf2c3715SXin Li                                     max,
41*bf2c3715SXin Li                                     inf,
42*bf2c3715SXin Li                                     nan};
43*bf2c3715SXin Li   const int abs_cases = 13;
44*bf2c3715SXin Li   const int num_cases = 2*abs_cases * 2*abs_cases;
45*bf2c3715SXin Li   // Repeat the same value to make sure we hit the vectorized path.
46*bf2c3715SXin Li   const int num_repeats = 32;
47*bf2c3715SXin Li   Array<Scalar, Dynamic, Dynamic> x(num_repeats, num_cases);
48*bf2c3715SXin Li   Array<Scalar, Dynamic, Dynamic> y(num_repeats, num_cases);
49*bf2c3715SXin Li   int count = 0;
50*bf2c3715SXin Li   for (int i = 0; i < abs_cases; ++i) {
51*bf2c3715SXin Li     const Scalar abs_x = abs_vals[i];
52*bf2c3715SXin Li     for (int sign_x = 0; sign_x < 2; ++sign_x) {
53*bf2c3715SXin Li       Scalar x_case = sign_x == 0 ? -abs_x : abs_x;
54*bf2c3715SXin Li       for (int j = 0; j < abs_cases; ++j) {
55*bf2c3715SXin Li         const Scalar abs_y = abs_vals[j];
56*bf2c3715SXin Li         for (int sign_y = 0; sign_y < 2; ++sign_y) {
57*bf2c3715SXin Li           Scalar y_case = sign_y == 0 ? -abs_y : abs_y;
58*bf2c3715SXin Li           for (int repeat = 0; repeat < num_repeats; ++repeat) {
59*bf2c3715SXin Li             x(repeat, count) = x_case;
60*bf2c3715SXin Li             y(repeat, count) = y_case;
61*bf2c3715SXin Li           }
62*bf2c3715SXin Li           ++count;
63*bf2c3715SXin Li         }
64*bf2c3715SXin Li       }
65*bf2c3715SXin Li     }
66*bf2c3715SXin Li   }
67*bf2c3715SXin Li 
68*bf2c3715SXin Li   Array<Scalar, Dynamic, Dynamic> actual = x.pow(y);
69*bf2c3715SXin Li   const Scalar tol = test_precision<Scalar>();
70*bf2c3715SXin Li   bool all_pass = true;
71*bf2c3715SXin Li   for (int i = 0; i < 1; ++i) {
72*bf2c3715SXin Li     for (int j = 0; j < num_cases; ++j) {
73*bf2c3715SXin Li       Scalar e = static_cast<Scalar>(std::pow(x(i,j), y(i,j)));
74*bf2c3715SXin Li       Scalar a = actual(i, j);
75*bf2c3715SXin Li       bool fail = !(a==e) && !internal::isApprox(a, e, tol) && !((numext::isnan)(a) && (numext::isnan)(e));
76*bf2c3715SXin Li       all_pass &= !fail;
77*bf2c3715SXin Li       if (fail) {
78*bf2c3715SXin Li         std::cout << "pow(" << x(i,j) << "," << y(i,j) << ")   =   " << a << " !=  " << e << std::endl;
79*bf2c3715SXin Li       }
80*bf2c3715SXin Li     }
81*bf2c3715SXin Li   }
82*bf2c3715SXin Li   VERIFY(all_pass);
83*bf2c3715SXin Li }
84*bf2c3715SXin Li 
array(const ArrayType & m)85*bf2c3715SXin Li template<typename ArrayType> void array(const ArrayType& m)
86*bf2c3715SXin Li {
87*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
88*bf2c3715SXin Li   typedef typename ArrayType::RealScalar RealScalar;
89*bf2c3715SXin Li   typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
90*bf2c3715SXin Li   typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
91*bf2c3715SXin Li 
92*bf2c3715SXin Li   Index rows = m.rows();
93*bf2c3715SXin Li   Index cols = m.cols();
94*bf2c3715SXin Li 
95*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols),
96*bf2c3715SXin Li              m2 = ArrayType::Random(rows, cols),
97*bf2c3715SXin Li              m3(rows, cols);
98*bf2c3715SXin Li   ArrayType m4 = m1; // copy constructor
99*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, m4);
100*bf2c3715SXin Li 
101*bf2c3715SXin Li   ColVectorType cv1 = ColVectorType::Random(rows);
102*bf2c3715SXin Li   RowVectorType rv1 = RowVectorType::Random(cols);
103*bf2c3715SXin Li 
104*bf2c3715SXin Li   Scalar  s1 = internal::random<Scalar>(),
105*bf2c3715SXin Li           s2 = internal::random<Scalar>();
106*bf2c3715SXin Li 
107*bf2c3715SXin Li   // scalar addition
108*bf2c3715SXin Li   VERIFY_IS_APPROX(m1 + s1, s1 + m1);
109*bf2c3715SXin Li   VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
110*bf2c3715SXin Li   VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
111*bf2c3715SXin Li   VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
112*bf2c3715SXin Li   VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
113*bf2c3715SXin Li   VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
114*bf2c3715SXin Li   m3 = m1;
115*bf2c3715SXin Li   m3 += s2;
116*bf2c3715SXin Li   VERIFY_IS_APPROX(m3, m1 + s2);
117*bf2c3715SXin Li   m3 = m1;
118*bf2c3715SXin Li   m3 -= s1;
119*bf2c3715SXin Li   VERIFY_IS_APPROX(m3, m1 - s1);
120*bf2c3715SXin Li 
121*bf2c3715SXin Li   // scalar operators via Maps
122*bf2c3715SXin Li   m3 = m1;
123*bf2c3715SXin Li   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
124*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, m3 - m2);
125*bf2c3715SXin Li 
126*bf2c3715SXin Li   m3 = m1;
127*bf2c3715SXin Li   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
128*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, m3 + m2);
129*bf2c3715SXin Li 
130*bf2c3715SXin Li   m3 = m1;
131*bf2c3715SXin Li   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
132*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, m3 * m2);
133*bf2c3715SXin Li 
134*bf2c3715SXin Li   m3 = m1;
135*bf2c3715SXin Li   m2 = ArrayType::Random(rows,cols);
136*bf2c3715SXin Li   m2 = (m2==0).select(1,m2);
137*bf2c3715SXin Li   ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
138*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, m3 / m2);
139*bf2c3715SXin Li 
140*bf2c3715SXin Li   // reductions
141*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
142*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
143*bf2c3715SXin Li   using std::abs;
144*bf2c3715SXin Li   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
145*bf2c3715SXin Li   VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
146*bf2c3715SXin Li   if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
147*bf2c3715SXin Li       VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
148*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
149*bf2c3715SXin Li 
150*bf2c3715SXin Li   // vector-wise ops
151*bf2c3715SXin Li   m3 = m1;
152*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
153*bf2c3715SXin Li   m3 = m1;
154*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
155*bf2c3715SXin Li   m3 = m1;
156*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
157*bf2c3715SXin Li   m3 = m1;
158*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
159*bf2c3715SXin Li 
160*bf2c3715SXin Li   // Conversion from scalar
161*bf2c3715SXin Li   VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1));
162*bf2c3715SXin Li   VERIFY_IS_APPROX((m3 = 1),  ArrayType::Constant(rows,cols,1));
163*bf2c3715SXin Li   VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1),  ArrayType::Constant(rows,cols,1));
164*bf2c3715SXin Li   typedef Array<Scalar,
165*bf2c3715SXin Li                 ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime,
166*bf2c3715SXin Li                 ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime,
167*bf2c3715SXin Li                 ArrayType::Options> FixedArrayType;
168*bf2c3715SXin Li   {
169*bf2c3715SXin Li     FixedArrayType f1(s1);
170*bf2c3715SXin Li     VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
171*bf2c3715SXin Li     FixedArrayType f2(numext::real(s1));
172*bf2c3715SXin Li     VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
173*bf2c3715SXin Li     FixedArrayType f3((int)100*numext::real(s1));
174*bf2c3715SXin Li     VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
175*bf2c3715SXin Li     f1.setRandom();
176*bf2c3715SXin Li     FixedArrayType f4(f1.data());
177*bf2c3715SXin Li     VERIFY_IS_APPROX(f4, f1);
178*bf2c3715SXin Li   }
179*bf2c3715SXin Li   #if EIGEN_HAS_CXX11
180*bf2c3715SXin Li   {
181*bf2c3715SXin Li     FixedArrayType f1{s1};
182*bf2c3715SXin Li     VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1));
183*bf2c3715SXin Li     FixedArrayType f2{numext::real(s1)};
184*bf2c3715SXin Li     VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1)));
185*bf2c3715SXin Li     FixedArrayType f3{(int)100*numext::real(s1)};
186*bf2c3715SXin Li     VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1)));
187*bf2c3715SXin Li     f1.setRandom();
188*bf2c3715SXin Li     FixedArrayType f4{f1.data()};
189*bf2c3715SXin Li     VERIFY_IS_APPROX(f4, f1);
190*bf2c3715SXin Li   }
191*bf2c3715SXin Li   #endif
192*bf2c3715SXin Li 
193*bf2c3715SXin Li   // pow
194*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.pow(2), m1.square());
195*bf2c3715SXin Li   VERIFY_IS_APPROX(pow(m1,2), m1.square());
196*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.pow(3), m1.cube());
197*bf2c3715SXin Li   VERIFY_IS_APPROX(pow(m1,3), m1.cube());
198*bf2c3715SXin Li   VERIFY_IS_APPROX((-m1).pow(3), -m1.cube());
199*bf2c3715SXin Li   VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
200*bf2c3715SXin Li   ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
201*bf2c3715SXin Li   VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
202*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.pow(exponents), m1.square());
203*bf2c3715SXin Li   VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square());
204*bf2c3715SXin Li   VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square());
205*bf2c3715SXin Li   VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square());
206*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square());
207*bf2c3715SXin Li   VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
208*bf2c3715SXin Li 
209*bf2c3715SXin Li   // Check possible conflicts with 1D ctor
210*bf2c3715SXin Li   typedef Array<Scalar, Dynamic, 1> OneDArrayType;
211*bf2c3715SXin Li   {
212*bf2c3715SXin Li     OneDArrayType o1(rows);
213*bf2c3715SXin Li     VERIFY(o1.size()==rows);
214*bf2c3715SXin Li     OneDArrayType o2(static_cast<int>(rows));
215*bf2c3715SXin Li     VERIFY(o2.size()==rows);
216*bf2c3715SXin Li   }
217*bf2c3715SXin Li   #if EIGEN_HAS_CXX11
218*bf2c3715SXin Li   {
219*bf2c3715SXin Li     OneDArrayType o1{rows};
220*bf2c3715SXin Li     VERIFY(o1.size()==rows);
221*bf2c3715SXin Li     OneDArrayType o4{int(rows)};
222*bf2c3715SXin Li     VERIFY(o4.size()==rows);
223*bf2c3715SXin Li   }
224*bf2c3715SXin Li   #endif
225*bf2c3715SXin Li   // Check possible conflicts with 2D ctor
226*bf2c3715SXin Li   typedef Array<Scalar, Dynamic, Dynamic> TwoDArrayType;
227*bf2c3715SXin Li   typedef Array<Scalar, 2, 1> ArrayType2;
228*bf2c3715SXin Li   {
229*bf2c3715SXin Li     TwoDArrayType o1(rows,cols);
230*bf2c3715SXin Li     VERIFY(o1.rows()==rows);
231*bf2c3715SXin Li     VERIFY(o1.cols()==cols);
232*bf2c3715SXin Li     TwoDArrayType o2(static_cast<int>(rows),static_cast<int>(cols));
233*bf2c3715SXin Li     VERIFY(o2.rows()==rows);
234*bf2c3715SXin Li     VERIFY(o2.cols()==cols);
235*bf2c3715SXin Li 
236*bf2c3715SXin Li     ArrayType2 o3(rows,cols);
237*bf2c3715SXin Li     VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
238*bf2c3715SXin Li     ArrayType2 o4(static_cast<int>(rows),static_cast<int>(cols));
239*bf2c3715SXin Li     VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
240*bf2c3715SXin Li   }
241*bf2c3715SXin Li   #if EIGEN_HAS_CXX11
242*bf2c3715SXin Li   {
243*bf2c3715SXin Li     TwoDArrayType o1{rows,cols};
244*bf2c3715SXin Li     VERIFY(o1.rows()==rows);
245*bf2c3715SXin Li     VERIFY(o1.cols()==cols);
246*bf2c3715SXin Li     TwoDArrayType o2{int(rows),int(cols)};
247*bf2c3715SXin Li     VERIFY(o2.rows()==rows);
248*bf2c3715SXin Li     VERIFY(o2.cols()==cols);
249*bf2c3715SXin Li 
250*bf2c3715SXin Li     ArrayType2 o3{rows,cols};
251*bf2c3715SXin Li     VERIFY(o3(0)==Scalar(rows) && o3(1)==Scalar(cols));
252*bf2c3715SXin Li     ArrayType2 o4{int(rows),int(cols)};
253*bf2c3715SXin Li     VERIFY(o4(0)==Scalar(rows) && o4(1)==Scalar(cols));
254*bf2c3715SXin Li   }
255*bf2c3715SXin Li   #endif
256*bf2c3715SXin Li }
257*bf2c3715SXin Li 
comparisons(const ArrayType & m)258*bf2c3715SXin Li template<typename ArrayType> void comparisons(const ArrayType& m)
259*bf2c3715SXin Li {
260*bf2c3715SXin Li   using std::abs;
261*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
262*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
263*bf2c3715SXin Li 
264*bf2c3715SXin Li   Index rows = m.rows();
265*bf2c3715SXin Li   Index cols = m.cols();
266*bf2c3715SXin Li 
267*bf2c3715SXin Li   Index r = internal::random<Index>(0, rows-1),
268*bf2c3715SXin Li         c = internal::random<Index>(0, cols-1);
269*bf2c3715SXin Li 
270*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols),
271*bf2c3715SXin Li             m2 = ArrayType::Random(rows, cols),
272*bf2c3715SXin Li             m3(rows, cols),
273*bf2c3715SXin Li             m4 = m1;
274*bf2c3715SXin Li 
275*bf2c3715SXin Li   m4 = (m4.abs()==Scalar(0)).select(1,m4);
276*bf2c3715SXin Li 
277*bf2c3715SXin Li   VERIFY(((m1 + Scalar(1)) > m1).all());
278*bf2c3715SXin Li   VERIFY(((m1 - Scalar(1)) < m1).all());
279*bf2c3715SXin Li   if (rows*cols>1)
280*bf2c3715SXin Li   {
281*bf2c3715SXin Li     m3 = m1;
282*bf2c3715SXin Li     m3(r,c) += 1;
283*bf2c3715SXin Li     VERIFY(! (m1 < m3).all() );
284*bf2c3715SXin Li     VERIFY(! (m1 > m3).all() );
285*bf2c3715SXin Li   }
286*bf2c3715SXin Li   VERIFY(!(m1 > m2 && m1 < m2).any());
287*bf2c3715SXin Li   VERIFY((m1 <= m2 || m1 >= m2).all());
288*bf2c3715SXin Li 
289*bf2c3715SXin Li   // comparisons array to scalar
290*bf2c3715SXin Li   VERIFY( (m1 != (m1(r,c)+1) ).any() );
291*bf2c3715SXin Li   VERIFY( (m1 >  (m1(r,c)-1) ).any() );
292*bf2c3715SXin Li   VERIFY( (m1 <  (m1(r,c)+1) ).any() );
293*bf2c3715SXin Li   VERIFY( (m1 ==  m1(r,c)    ).any() );
294*bf2c3715SXin Li 
295*bf2c3715SXin Li   // comparisons scalar to array
296*bf2c3715SXin Li   VERIFY( ( (m1(r,c)+1) != m1).any() );
297*bf2c3715SXin Li   VERIFY( ( (m1(r,c)-1) <  m1).any() );
298*bf2c3715SXin Li   VERIFY( ( (m1(r,c)+1) >  m1).any() );
299*bf2c3715SXin Li   VERIFY( (  m1(r,c)    == m1).any() );
300*bf2c3715SXin Li 
301*bf2c3715SXin Li   // test Select
302*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
303*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
304*bf2c3715SXin Li   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
305*bf2c3715SXin Li   for (int j=0; j<cols; ++j)
306*bf2c3715SXin Li   for (int i=0; i<rows; ++i)
307*bf2c3715SXin Li     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
308*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
309*bf2c3715SXin Li                         .select(ArrayType::Zero(rows,cols),m1), m3);
310*bf2c3715SXin Li   // shorter versions:
311*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
312*bf2c3715SXin Li                         .select(0,m1), m3);
313*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
314*bf2c3715SXin Li                         .select(m1,0), m3);
315*bf2c3715SXin Li   // even shorter version:
316*bf2c3715SXin Li   VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
317*bf2c3715SXin Li 
318*bf2c3715SXin Li   // count
319*bf2c3715SXin Li   VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
320*bf2c3715SXin Li 
321*bf2c3715SXin Li   // and/or
322*bf2c3715SXin Li   VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
323*bf2c3715SXin Li   VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
324*bf2c3715SXin Li   RealScalar a = m1.abs().mean();
325*bf2c3715SXin Li   VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
326*bf2c3715SXin Li 
327*bf2c3715SXin Li   typedef Array<Index, Dynamic, 1> ArrayOfIndices;
328*bf2c3715SXin Li 
329*bf2c3715SXin Li   // TODO allows colwise/rowwise for array
330*bf2c3715SXin Li   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
331*bf2c3715SXin Li   VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
332*bf2c3715SXin Li }
333*bf2c3715SXin Li 
array_real(const ArrayType & m)334*bf2c3715SXin Li template<typename ArrayType> void array_real(const ArrayType& m)
335*bf2c3715SXin Li {
336*bf2c3715SXin Li   using std::abs;
337*bf2c3715SXin Li   using std::sqrt;
338*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
339*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
340*bf2c3715SXin Li 
341*bf2c3715SXin Li   Index rows = m.rows();
342*bf2c3715SXin Li   Index cols = m.cols();
343*bf2c3715SXin Li 
344*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols),
345*bf2c3715SXin Li             m2 = ArrayType::Random(rows, cols),
346*bf2c3715SXin Li             m3(rows, cols),
347*bf2c3715SXin Li             m4 = m1;
348*bf2c3715SXin Li 
349*bf2c3715SXin Li   m4 = (m4.abs()==Scalar(0)).select(Scalar(1),m4);
350*bf2c3715SXin Li 
351*bf2c3715SXin Li   Scalar  s1 = internal::random<Scalar>();
352*bf2c3715SXin Li 
353*bf2c3715SXin Li   // these tests are mostly to check possible compilation issues with free-functions.
354*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sin(), sin(m1));
355*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cos(), cos(m1));
356*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.tan(), tan(m1));
357*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.asin(), asin(m1));
358*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.acos(), acos(m1));
359*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.atan(), atan(m1));
360*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
361*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
362*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
363*bf2c3715SXin Li #if EIGEN_HAS_CXX11_MATH
364*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.tanh().atanh(), atanh(tanh(m1)));
365*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sinh().asinh(), asinh(sinh(m1)));
366*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cosh().acosh(), acosh(cosh(m1)));
367*bf2c3715SXin Li #endif
368*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
369*bf2c3715SXin Li 
370*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.arg(), arg(m1));
371*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.round(), round(m1));
372*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.rint(), rint(m1));
373*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.floor(), floor(m1));
374*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.ceil(), ceil(m1));
375*bf2c3715SXin Li   VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
376*bf2c3715SXin Li   VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
377*bf2c3715SXin Li   VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
378*bf2c3715SXin Li   VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
379*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs(), abs(m1));
380*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
381*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.square(), square(m1));
382*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cube(), cube(m1));
383*bf2c3715SXin Li   VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
384*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sign(), sign(m1));
385*bf2c3715SXin Li   VERIFY((m1.sqrt().sign().isNaN() == (Eigen::isnan)(sign(sqrt(m1)))).all());
386*bf2c3715SXin Li 
387*bf2c3715SXin Li   // avoid inf and NaNs so verification doesn't fail
388*bf2c3715SXin Li   m3 = m4.abs();
389*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m3)));
390*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m3)));
391*bf2c3715SXin Li   VERIFY_IS_APPROX(rsqrt(m3), Scalar(1)/sqrt(abs(m3)));
392*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.log(), log(m3));
393*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.log1p(), log1p(m3));
394*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.log10(), log10(m3));
395*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.log2(), log2(m3));
396*bf2c3715SXin Li 
397*bf2c3715SXin Li 
398*bf2c3715SXin Li   VERIFY((!(m1>m2) == (m1<=m2)).all());
399*bf2c3715SXin Li 
400*bf2c3715SXin Li   VERIFY_IS_APPROX(sin(m1.asin()), m1);
401*bf2c3715SXin Li   VERIFY_IS_APPROX(cos(m1.acos()), m1);
402*bf2c3715SXin Li   VERIFY_IS_APPROX(tan(m1.atan()), m1);
403*bf2c3715SXin Li   VERIFY_IS_APPROX(sinh(m1), Scalar(0.5)*(exp(m1)-exp(-m1)));
404*bf2c3715SXin Li   VERIFY_IS_APPROX(cosh(m1), Scalar(0.5)*(exp(m1)+exp(-m1)));
405*bf2c3715SXin Li   VERIFY_IS_APPROX(tanh(m1), (Scalar(0.5)*(exp(m1)-exp(-m1)))/(Scalar(0.5)*(exp(m1)+exp(-m1))));
406*bf2c3715SXin Li   VERIFY_IS_APPROX(logistic(m1), (Scalar(1)/(Scalar(1)+exp(-m1))));
407*bf2c3715SXin Li   VERIFY_IS_APPROX(arg(m1), ((m1<Scalar(0)).template cast<Scalar>())*Scalar(std::acos(Scalar(-1))));
408*bf2c3715SXin Li   VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all());
409*bf2c3715SXin Li   VERIFY((rint(m1) <= ceil(m1) && rint(m1) >= floor(m1)).all());
410*bf2c3715SXin Li   VERIFY(((ceil(m1) - round(m1)) <= Scalar(0.5) || (round(m1) - floor(m1)) <= Scalar(0.5)).all());
411*bf2c3715SXin Li   VERIFY(((ceil(m1) - round(m1)) <= Scalar(1.0) && (round(m1) - floor(m1)) <= Scalar(1.0)).all());
412*bf2c3715SXin Li   VERIFY(((ceil(m1) - rint(m1)) <= Scalar(0.5) || (rint(m1) - floor(m1)) <= Scalar(0.5)).all());
413*bf2c3715SXin Li   VERIFY(((ceil(m1) - rint(m1)) <= Scalar(1.0) && (rint(m1) - floor(m1)) <= Scalar(1.0)).all());
414*bf2c3715SXin Li   VERIFY((Eigen::isnan)((m1*Scalar(0))/Scalar(0)).all());
415*bf2c3715SXin Li   VERIFY((Eigen::isinf)(m4/Scalar(0)).all());
416*bf2c3715SXin Li   VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*Scalar(0)/Scalar(0))) && (!(Eigen::isfinite)(m4/Scalar(0)))).all());
417*bf2c3715SXin Li   VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
418*bf2c3715SXin Li   VERIFY((abs(m1) == m1 || abs(m1) == -m1).all());
419*bf2c3715SXin Li   VERIFY_IS_APPROX(m3, sqrt(abs2(m3)));
420*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.absolute_difference(m2), (m1 > m2).select(m1 - m2, m2 - m1));
421*bf2c3715SXin Li   VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
422*bf2c3715SXin Li   VERIFY_IS_APPROX( m1*m1.sign(),m1.abs());
423*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
424*bf2c3715SXin Li 
425*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
426*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::abs2(Eigen::real(m1)) + numext::abs2(Eigen::imag(m1)), numext::abs2(m1));
427*bf2c3715SXin Li   if(!NumTraits<Scalar>::IsComplex)
428*bf2c3715SXin Li     VERIFY_IS_APPROX(numext::real(m1), m1);
429*bf2c3715SXin Li 
430*bf2c3715SXin Li   // shift argument of logarithm so that it is not zero
431*bf2c3715SXin Li   Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
432*bf2c3715SXin Li   VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m3) + smallNumber));
433*bf2c3715SXin Li   VERIFY_IS_APPROX((m3 + smallNumber + Scalar(1)).log() , log1p(abs(m3) + smallNumber));
434*bf2c3715SXin Li 
435*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
436*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp(), exp(m1));
437*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
438*bf2c3715SXin Li 
439*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
440*bf2c3715SXin Li   VERIFY_IS_APPROX((m3 + smallNumber).exp() - Scalar(1), expm1(abs(m3) + smallNumber));
441*bf2c3715SXin Li 
442*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
443*bf2c3715SXin Li   VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
444*bf2c3715SXin Li 
445*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt());
446*bf2c3715SXin Li   VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
447*bf2c3715SXin Li 
448*bf2c3715SXin Li   // Avoid inf and NaN.
449*bf2c3715SXin Li   m3 = (m1.square()<NumTraits<Scalar>::epsilon()).select(Scalar(1),m3);
450*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.pow(RealScalar(-2)), m3.square().inverse());
451*bf2c3715SXin Li   pow_test<Scalar>();
452*bf2c3715SXin Li 
453*bf2c3715SXin Li   VERIFY_IS_APPROX(log10(m3), log(m3)/numext::log(Scalar(10)));
454*bf2c3715SXin Li   VERIFY_IS_APPROX(log2(m3), log(m3)/numext::log(Scalar(2)));
455*bf2c3715SXin Li 
456*bf2c3715SXin Li   // scalar by array division
457*bf2c3715SXin Li   const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
458*bf2c3715SXin Li   s1 += Scalar(tiny);
459*bf2c3715SXin Li   m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
460*bf2c3715SXin Li   VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
461*bf2c3715SXin Li 
462*bf2c3715SXin Li   // check inplace transpose
463*bf2c3715SXin Li   m3 = m1;
464*bf2c3715SXin Li   m3.transposeInPlace();
465*bf2c3715SXin Li   VERIFY_IS_APPROX(m3, m1.transpose());
466*bf2c3715SXin Li   m3.transposeInPlace();
467*bf2c3715SXin Li   VERIFY_IS_APPROX(m3, m1);
468*bf2c3715SXin Li }
469*bf2c3715SXin Li 
array_complex(const ArrayType & m)470*bf2c3715SXin Li template<typename ArrayType> void array_complex(const ArrayType& m)
471*bf2c3715SXin Li {
472*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
473*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
474*bf2c3715SXin Li 
475*bf2c3715SXin Li   Index rows = m.rows();
476*bf2c3715SXin Li   Index cols = m.cols();
477*bf2c3715SXin Li 
478*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols),
479*bf2c3715SXin Li             m2(rows, cols),
480*bf2c3715SXin Li             m4 = m1;
481*bf2c3715SXin Li 
482*bf2c3715SXin Li   m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real());
483*bf2c3715SXin Li   m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
484*bf2c3715SXin Li 
485*bf2c3715SXin Li   Array<RealScalar, -1, -1> m3(rows, cols);
486*bf2c3715SXin Li 
487*bf2c3715SXin Li   for (Index i = 0; i < m.rows(); ++i)
488*bf2c3715SXin Li     for (Index j = 0; j < m.cols(); ++j)
489*bf2c3715SXin Li       m2(i,j) = sqrt(m1(i,j));
490*bf2c3715SXin Li 
491*bf2c3715SXin Li   // these tests are mostly to check possible compilation issues with free-functions.
492*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sin(), sin(m1));
493*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cos(), cos(m1));
494*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.tan(), tan(m1));
495*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sinh(), sinh(m1));
496*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cosh(), cosh(m1));
497*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.tanh(), tanh(m1));
498*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.logistic(), logistic(m1));
499*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.arg(), arg(m1));
500*bf2c3715SXin Li   VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all());
501*bf2c3715SXin Li   VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all());
502*bf2c3715SXin Li   VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all());
503*bf2c3715SXin Li   VERIFY_IS_APPROX(m4.inverse(), inverse(m4));
504*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.log(), log(m1));
505*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.log10(), log10(m1));
506*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.log2(), log2(m1));
507*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs(), abs(m1));
508*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.abs2(), abs2(m1));
509*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1));
510*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.square(), square(m1));
511*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cube(), cube(m1));
512*bf2c3715SXin Li   VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
513*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.sign(), sign(m1));
514*bf2c3715SXin Li 
515*bf2c3715SXin Li 
516*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
517*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp(), exp(m1));
518*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
519*bf2c3715SXin Li 
520*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.expm1(), expm1(m1));
521*bf2c3715SXin Li   VERIFY_IS_APPROX(expm1(m1), exp(m1) - 1.);
522*bf2c3715SXin Li   // Check for larger magnitude complex numbers that expm1 matches exp - 1.
523*bf2c3715SXin Li   VERIFY_IS_APPROX(expm1(10. * m1), exp(10. * m1) - 1.);
524*bf2c3715SXin Li 
525*bf2c3715SXin Li   VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1)));
526*bf2c3715SXin Li   VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1)));
527*bf2c3715SXin Li   VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
528*bf2c3715SXin Li   VERIFY_IS_APPROX(logistic(m1), (1.0/(1.0 + exp(-m1))));
529*bf2c3715SXin Li 
530*bf2c3715SXin Li   for (Index i = 0; i < m.rows(); ++i)
531*bf2c3715SXin Li     for (Index j = 0; j < m.cols(); ++j)
532*bf2c3715SXin Li       m3(i,j) = std::atan2(m1(i,j).imag(), m1(i,j).real());
533*bf2c3715SXin Li   VERIFY_IS_APPROX(arg(m1), m3);
534*bf2c3715SXin Li 
535*bf2c3715SXin Li   std::complex<RealScalar> zero(0.0,0.0);
536*bf2c3715SXin Li   VERIFY((Eigen::isnan)(m1*zero/zero).all());
537*bf2c3715SXin Li #if EIGEN_COMP_MSVC
538*bf2c3715SXin Li   // msvc complex division is not robust
539*bf2c3715SXin Li   VERIFY((Eigen::isinf)(m4/RealScalar(0)).all());
540*bf2c3715SXin Li #else
541*bf2c3715SXin Li #if EIGEN_COMP_CLANG
542*bf2c3715SXin Li   // clang's complex division is notoriously broken too
543*bf2c3715SXin Li   if((numext::isinf)(m4(0,0)/RealScalar(0))) {
544*bf2c3715SXin Li #endif
545*bf2c3715SXin Li     VERIFY((Eigen::isinf)(m4/zero).all());
546*bf2c3715SXin Li #if EIGEN_COMP_CLANG
547*bf2c3715SXin Li   }
548*bf2c3715SXin Li   else
549*bf2c3715SXin Li   {
550*bf2c3715SXin Li     VERIFY((Eigen::isinf)(m4.real()/zero.real()).all());
551*bf2c3715SXin Li   }
552*bf2c3715SXin Li #endif
553*bf2c3715SXin Li #endif // MSVC
554*bf2c3715SXin Li 
555*bf2c3715SXin Li   VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
556*bf2c3715SXin Li 
557*bf2c3715SXin Li   VERIFY_IS_APPROX(inverse(inverse(m4)),m4);
558*bf2c3715SXin Li   VERIFY_IS_APPROX(conj(m1.conjugate()), m1);
559*bf2c3715SXin Li   VERIFY_IS_APPROX(abs(m1), sqrt(square(m1.real())+square(m1.imag())));
560*bf2c3715SXin Li   VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1)));
561*bf2c3715SXin Li   VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
562*bf2c3715SXin Li   VERIFY_IS_APPROX(log2(m1), log(m1)/log(2));
563*bf2c3715SXin Li 
564*bf2c3715SXin Li   VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() );
565*bf2c3715SXin Li   VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
566*bf2c3715SXin Li 
567*bf2c3715SXin Li   // scalar by array division
568*bf2c3715SXin Li   Scalar  s1 = internal::random<Scalar>();
569*bf2c3715SXin Li   const RealScalar tiny = std::sqrt(std::numeric_limits<RealScalar>::epsilon());
570*bf2c3715SXin Li   s1 += Scalar(tiny);
571*bf2c3715SXin Li   m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
572*bf2c3715SXin Li   VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
573*bf2c3715SXin Li 
574*bf2c3715SXin Li   // check inplace transpose
575*bf2c3715SXin Li   m2 = m1;
576*bf2c3715SXin Li   m2.transposeInPlace();
577*bf2c3715SXin Li   VERIFY_IS_APPROX(m2, m1.transpose());
578*bf2c3715SXin Li   m2.transposeInPlace();
579*bf2c3715SXin Li   VERIFY_IS_APPROX(m2, m1);
580*bf2c3715SXin Li   // Check vectorized inplace transpose.
581*bf2c3715SXin Li   ArrayType m5 = ArrayType::Random(131, 131);
582*bf2c3715SXin Li   ArrayType m6 = m5;
583*bf2c3715SXin Li   m6.transposeInPlace();
584*bf2c3715SXin Li   VERIFY_IS_APPROX(m6, m5.transpose());
585*bf2c3715SXin Li }
586*bf2c3715SXin Li 
min_max(const ArrayType & m)587*bf2c3715SXin Li template<typename ArrayType> void min_max(const ArrayType& m)
588*bf2c3715SXin Li {
589*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
590*bf2c3715SXin Li 
591*bf2c3715SXin Li   Index rows = m.rows();
592*bf2c3715SXin Li   Index cols = m.cols();
593*bf2c3715SXin Li 
594*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols);
595*bf2c3715SXin Li 
596*bf2c3715SXin Li   // min/max with array
597*bf2c3715SXin Li   Scalar maxM1 = m1.maxCoeff();
598*bf2c3715SXin Li   Scalar minM1 = m1.minCoeff();
599*bf2c3715SXin Li 
600*bf2c3715SXin Li   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
601*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
602*bf2c3715SXin Li 
603*bf2c3715SXin Li   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
604*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
605*bf2c3715SXin Li 
606*bf2c3715SXin Li   // min/max with scalar input
607*bf2c3715SXin Li   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
608*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
609*bf2c3715SXin Li 
610*bf2c3715SXin Li   VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
611*bf2c3715SXin Li   VERIFY_IS_APPROX(m1, (m1.max)( minM1));
612*bf2c3715SXin Li 
613*bf2c3715SXin Li 
614*bf2c3715SXin Li   // min/max with various NaN propagation options.
615*bf2c3715SXin Li   if (m1.size() > 1 && !NumTraits<Scalar>::IsInteger) {
616*bf2c3715SXin Li     m1(0,0) = NumTraits<Scalar>::quiet_NaN();
617*bf2c3715SXin Li     maxM1 = m1.template maxCoeff<PropagateNaN>();
618*bf2c3715SXin Li     minM1 = m1.template minCoeff<PropagateNaN>();
619*bf2c3715SXin Li     VERIFY((numext::isnan)(maxM1));
620*bf2c3715SXin Li     VERIFY((numext::isnan)(minM1));
621*bf2c3715SXin Li 
622*bf2c3715SXin Li     maxM1 = m1.template maxCoeff<PropagateNumbers>();
623*bf2c3715SXin Li     minM1 = m1.template minCoeff<PropagateNumbers>();
624*bf2c3715SXin Li     VERIFY(!(numext::isnan)(maxM1));
625*bf2c3715SXin Li     VERIFY(!(numext::isnan)(minM1));
626*bf2c3715SXin Li   }
627*bf2c3715SXin Li }
628*bf2c3715SXin Li 
629*bf2c3715SXin Li template<int N>
630*bf2c3715SXin Li struct shift_left {
631*bf2c3715SXin Li   template<typename Scalar>
operator ()shift_left632*bf2c3715SXin Li   Scalar operator()(const Scalar& v) const {
633*bf2c3715SXin Li     return v << N;
634*bf2c3715SXin Li   }
635*bf2c3715SXin Li };
636*bf2c3715SXin Li 
637*bf2c3715SXin Li template<int N>
638*bf2c3715SXin Li struct arithmetic_shift_right {
639*bf2c3715SXin Li   template<typename Scalar>
operator ()arithmetic_shift_right640*bf2c3715SXin Li   Scalar operator()(const Scalar& v) const {
641*bf2c3715SXin Li     return v >> N;
642*bf2c3715SXin Li   }
643*bf2c3715SXin Li };
644*bf2c3715SXin Li 
array_integer(const ArrayType & m)645*bf2c3715SXin Li template<typename ArrayType> void array_integer(const ArrayType& m)
646*bf2c3715SXin Li {
647*bf2c3715SXin Li   Index rows = m.rows();
648*bf2c3715SXin Li   Index cols = m.cols();
649*bf2c3715SXin Li 
650*bf2c3715SXin Li   ArrayType m1 = ArrayType::Random(rows, cols),
651*bf2c3715SXin Li             m2(rows, cols);
652*bf2c3715SXin Li 
653*bf2c3715SXin Li   m2 = m1.template shiftLeft<2>();
654*bf2c3715SXin Li   VERIFY( (m2 == m1.unaryExpr(shift_left<2>())).all() );
655*bf2c3715SXin Li   m2 = m1.template shiftLeft<9>();
656*bf2c3715SXin Li   VERIFY( (m2 == m1.unaryExpr(shift_left<9>())).all() );
657*bf2c3715SXin Li 
658*bf2c3715SXin Li   m2 = m1.template shiftRight<2>();
659*bf2c3715SXin Li   VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<2>())).all() );
660*bf2c3715SXin Li   m2 = m1.template shiftRight<9>();
661*bf2c3715SXin Li   VERIFY( (m2 == m1.unaryExpr(arithmetic_shift_right<9>())).all() );
662*bf2c3715SXin Li }
663*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(array_cwise)664*bf2c3715SXin Li EIGEN_DECLARE_TEST(array_cwise)
665*bf2c3715SXin Li {
666*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
667*bf2c3715SXin Li     CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
668*bf2c3715SXin Li     CALL_SUBTEST_2( array(Array22f()) );
669*bf2c3715SXin Li     CALL_SUBTEST_3( array(Array44d()) );
670*bf2c3715SXin Li     CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
671*bf2c3715SXin Li     CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
672*bf2c3715SXin Li     CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
673*bf2c3715SXin Li     CALL_SUBTEST_6( array(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
674*bf2c3715SXin Li     CALL_SUBTEST_6( array_integer(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
675*bf2c3715SXin Li     CALL_SUBTEST_6( array_integer(Array<Index,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
676*bf2c3715SXin Li   }
677*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
678*bf2c3715SXin Li     CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
679*bf2c3715SXin Li     CALL_SUBTEST_2( comparisons(Array22f()) );
680*bf2c3715SXin Li     CALL_SUBTEST_3( comparisons(Array44d()) );
681*bf2c3715SXin Li     CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
682*bf2c3715SXin Li     CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
683*bf2c3715SXin Li   }
684*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
685*bf2c3715SXin Li     CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
686*bf2c3715SXin Li     CALL_SUBTEST_2( min_max(Array22f()) );
687*bf2c3715SXin Li     CALL_SUBTEST_3( min_max(Array44d()) );
688*bf2c3715SXin Li     CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
689*bf2c3715SXin Li     CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
690*bf2c3715SXin Li   }
691*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
692*bf2c3715SXin Li     CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
693*bf2c3715SXin Li     CALL_SUBTEST_2( array_real(Array22f()) );
694*bf2c3715SXin Li     CALL_SUBTEST_3( array_real(Array44d()) );
695*bf2c3715SXin Li     CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
696*bf2c3715SXin Li     CALL_SUBTEST_7( array_real(Array<Eigen::half, 32, 32>()) );
697*bf2c3715SXin Li     CALL_SUBTEST_8( array_real(Array<Eigen::bfloat16, 32, 32>()) );
698*bf2c3715SXin Li   }
699*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
700*bf2c3715SXin Li     CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
701*bf2c3715SXin Li   }
702*bf2c3715SXin Li 
703*bf2c3715SXin Li   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
704*bf2c3715SXin Li   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
705*bf2c3715SXin Li   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
706*bf2c3715SXin Li   typedef CwiseUnaryOp<internal::scalar_abs_op<double>, ArrayXd > Xpr;
707*bf2c3715SXin Li   VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
708*bf2c3715SXin Li                            ArrayBase<Xpr>
709*bf2c3715SXin Li                          >::value));
710*bf2c3715SXin Li }
711