xref: /aosp_15_r20/external/eigen/test/array_for_matrix.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
array_for_matrix(const MatrixType & m)12 template<typename MatrixType> void array_for_matrix(const MatrixType& m)
13 {
14   typedef typename MatrixType::Scalar Scalar;
15   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
16   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
17 
18   Index rows = m.rows();
19   Index cols = m.cols();
20 
21   MatrixType m1 = MatrixType::Random(rows, cols),
22              m2 = MatrixType::Random(rows, cols),
23              m3(rows, cols);
24 
25   ColVectorType cv1 = ColVectorType::Random(rows);
26   RowVectorType rv1 = RowVectorType::Random(cols);
27 
28   Scalar  s1 = internal::random<Scalar>(),
29           s2 = internal::random<Scalar>();
30 
31   // scalar addition
32   VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array());
33   VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
34   VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
35   m3 = m1;
36   m3.array() += s2;
37   VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
38   m3 = m1;
39   m3.array() -= s1;
40   VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
41 
42   // reductions
43   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm());
44   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm());
45   VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm());
46   VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm());
47   VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar,Scalar>()));
48 
49   // vector-wise ops
50   m3 = m1;
51   VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
52   m3 = m1;
53   VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
54   m3 = m1;
55   VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
56   m3 = m1;
57   VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
58 
59   // empty objects
60   VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().sum()), RowVectorType::Zero(cols));
61   VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().sum()), ColVectorType::Zero(rows));
62   VERIFY_IS_APPROX((m1.template block<0,Dynamic>(0,0,0,cols).colwise().prod()), RowVectorType::Ones(cols));
63   VERIFY_IS_APPROX((m1.template block<Dynamic,0>(0,0,rows,0).rowwise().prod()), ColVectorType::Ones(rows));
64 
65   VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols));
66   VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().sum(), ColVectorType::Zero(rows));
67   VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().prod(), RowVectorType::Ones(cols));
68   VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows));
69 
70   // verify the const accessors exist
71   const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
72   const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
73   const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
74   const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0);
75   VERIFY(&ref_a1 == &ref_m1);
76   VERIFY(&ref_a2 == &ref_m2);
77 
78   // Check write accessors:
79   m1.array().coeffRef(0,0) = 1;
80   VERIFY_IS_APPROX(m1(0,0),Scalar(1));
81   m1.array()(0,0) = 2;
82   VERIFY_IS_APPROX(m1(0,0),Scalar(2));
83   m1.array().matrix().coeffRef(0,0) = 3;
84   VERIFY_IS_APPROX(m1(0,0),Scalar(3));
85   m1.array().matrix()(0,0) = 4;
86   VERIFY_IS_APPROX(m1(0,0),Scalar(4));
87 }
88 
comparisons(const MatrixType & m)89 template<typename MatrixType> void comparisons(const MatrixType& m)
90 {
91   using std::abs;
92   typedef typename MatrixType::Scalar Scalar;
93   typedef typename NumTraits<Scalar>::Real RealScalar;
94 
95   Index rows = m.rows();
96   Index cols = m.cols();
97 
98   Index r = internal::random<Index>(0, rows-1),
99         c = internal::random<Index>(0, cols-1);
100 
101   MatrixType m1 = MatrixType::Random(rows, cols),
102              m2 = MatrixType::Random(rows, cols),
103              m3(rows, cols);
104 
105   VERIFY(((m1.array() + Scalar(1)) > m1.array()).all());
106   VERIFY(((m1.array() - Scalar(1)) < m1.array()).all());
107   if (rows*cols>1)
108   {
109     m3 = m1;
110     m3(r,c) += 1;
111     VERIFY(! (m1.array() < m3.array()).all() );
112     VERIFY(! (m1.array() > m3.array()).all() );
113   }
114 
115   // comparisons to scalar
116   VERIFY( (m1.array() != (m1(r,c)+1) ).any() );
117   VERIFY( (m1.array() > (m1(r,c)-1) ).any() );
118   VERIFY( (m1.array() < (m1(r,c)+1) ).any() );
119   VERIFY( (m1.array() == m1(r,c) ).any() );
120   VERIFY( m1.cwiseEqual(m1(r,c)).any() );
121 
122   // test Select
123   VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) );
124   VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) );
125   Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
126   for (int j=0; j<cols; ++j)
127   for (int i=0; i<rows; ++i)
128     m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
129   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
130                         .select(MatrixType::Zero(rows,cols),m1), m3);
131   // shorter versions:
132   VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array())
133                         .select(0,m1), m3);
134   VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array())
135                         .select(m1,0), m3);
136   // even shorter version:
137   VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3);
138 
139   // count
140   VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols);
141 
142   // and/or
143   VERIFY( ((m1.array()<RealScalar(0)).matrix() && (m1.array()>RealScalar(0)).matrix()).count() == 0);
144   VERIFY( ((m1.array()<RealScalar(0)).matrix() || (m1.array()>=RealScalar(0)).matrix()).count() == rows*cols);
145   RealScalar a = m1.cwiseAbs().mean();
146   VERIFY( ((m1.array()<-a).matrix() || (m1.array()>a).matrix()).count() == (m1.cwiseAbs().array()>a).count());
147 
148   typedef Matrix<Index, Dynamic, 1> VectorOfIndices;
149 
150   // TODO allows colwise/rowwise for array
151   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose());
152   VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols));
153 }
154 
lpNorm(const VectorType & v)155 template<typename VectorType> void lpNorm(const VectorType& v)
156 {
157   using std::sqrt;
158   typedef typename VectorType::RealScalar RealScalar;
159   VectorType u = VectorType::Random(v.size());
160 
161   if(v.size()==0)
162   {
163     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), RealScalar(0));
164     VERIFY_IS_APPROX(u.template lpNorm<1>(), RealScalar(0));
165     VERIFY_IS_APPROX(u.template lpNorm<2>(), RealScalar(0));
166     VERIFY_IS_APPROX(u.template lpNorm<5>(), RealScalar(0));
167   }
168   else
169   {
170     VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff());
171   }
172 
173   VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum());
174   VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum()));
175   VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum());
176 }
177 
cwise_min_max(const MatrixType & m)178 template<typename MatrixType> void cwise_min_max(const MatrixType& m)
179 {
180   typedef typename MatrixType::Scalar Scalar;
181 
182   Index rows = m.rows();
183   Index cols = m.cols();
184 
185   MatrixType m1 = MatrixType::Random(rows, cols);
186 
187   // min/max with array
188   Scalar maxM1 = m1.maxCoeff();
189   Scalar minM1 = m1.minCoeff();
190 
191   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1)));
192   VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1)));
193 
194   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1)));
195   VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1)));
196 
197   // min/max with scalar input
198   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1));
199   VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1));
200   VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1));
201   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1));
202 
203   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1));
204   VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1));
205   VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1));
206   VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1));
207 
208   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1));
209   VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1));
210 
211   VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1));
212   VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1));
213 
214 }
215 
resize(const MatrixTraits & t)216 template<typename MatrixTraits> void resize(const MatrixTraits& t)
217 {
218   typedef typename MatrixTraits::Scalar Scalar;
219   typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
220   typedef Array<Scalar,Dynamic,Dynamic> Array2DType;
221   typedef Matrix<Scalar,Dynamic,1> VectorType;
222   typedef Array<Scalar,Dynamic,1> Array1DType;
223 
224   Index rows = t.rows(), cols = t.cols();
225 
226   MatrixType m(rows,cols);
227   VectorType v(rows);
228   Array2DType a2(rows,cols);
229   Array1DType a1(rows);
230 
231   m.array().resize(rows+1,cols+1);
232   VERIFY(m.rows()==rows+1 && m.cols()==cols+1);
233   a2.matrix().resize(rows+1,cols+1);
234   VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1);
235   v.array().resize(cols);
236   VERIFY(v.size()==cols);
237   a1.matrix().resize(cols);
238   VERIFY(a1.size()==cols);
239 }
240 
241 template<int>
regression_bug_654()242 void regression_bug_654()
243 {
244   ArrayXf a = RowVectorXf(3);
245   VectorXf v = Array<float,1,Dynamic>(3);
246 }
247 
248 // Check propagation of LvalueBit through Array/Matrix-Wrapper
249 template<int>
regrrssion_bug_1410()250 void regrrssion_bug_1410()
251 {
252   const Matrix4i M;
253   const Array4i A;
254   ArrayWrapper<const Matrix4i> MA = M.array();
255   MA.row(0);
256   MatrixWrapper<const Array4i> AM = A.matrix();
257   AM.row(0);
258 
259   VERIFY((internal::traits<ArrayWrapper<const Matrix4i> >::Flags&LvalueBit)==0);
260   VERIFY((internal::traits<MatrixWrapper<const Array4i> >::Flags&LvalueBit)==0);
261 
262   VERIFY((internal::traits<ArrayWrapper<Matrix4i> >::Flags&LvalueBit)==LvalueBit);
263   VERIFY((internal::traits<MatrixWrapper<Array4i> >::Flags&LvalueBit)==LvalueBit);
264 }
265 
EIGEN_DECLARE_TEST(array_for_matrix)266 EIGEN_DECLARE_TEST(array_for_matrix)
267 {
268   for(int i = 0; i < g_repeat; i++) {
269     CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) );
270     CALL_SUBTEST_2( array_for_matrix(Matrix2f()) );
271     CALL_SUBTEST_3( array_for_matrix(Matrix4d()) );
272     CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
273     CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
274     CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
275   }
276   for(int i = 0; i < g_repeat; i++) {
277     CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
278     CALL_SUBTEST_2( comparisons(Matrix2f()) );
279     CALL_SUBTEST_3( comparisons(Matrix4d()) );
280     CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
281     CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
282   }
283   for(int i = 0; i < g_repeat; i++) {
284     CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) );
285     CALL_SUBTEST_2( cwise_min_max(Matrix2f()) );
286     CALL_SUBTEST_3( cwise_min_max(Matrix4d()) );
287     CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
288     CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
289   }
290   for(int i = 0; i < g_repeat; i++) {
291     CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
292     CALL_SUBTEST_2( lpNorm(Vector2f()) );
293     CALL_SUBTEST_7( lpNorm(Vector3d()) );
294     CALL_SUBTEST_8( lpNorm(Vector4f()) );
295     CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
296     CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
297   }
298   CALL_SUBTEST_5( lpNorm(VectorXf(0)) );
299   CALL_SUBTEST_4( lpNorm(VectorXcf(0)) );
300   for(int i = 0; i < g_repeat; i++) {
301     CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
302     CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
303     CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
304   }
305   CALL_SUBTEST_6( regression_bug_654<0>() );
306   CALL_SUBTEST_6( regrrssion_bug_1410<0>() );
307 }
308