1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2009 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2010 Jitse Niesen <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li #include <limits>
13*bf2c3715SXin Li #include <Eigen/Eigenvalues>
14*bf2c3715SXin Li #include <Eigen/LU>
15*bf2c3715SXin Li
find_pivot(typename MatrixType::Scalar tol,MatrixType & diffs,Index col=0)16*bf2c3715SXin Li template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0)
17*bf2c3715SXin Li {
18*bf2c3715SXin Li bool match = diffs.diagonal().sum() <= tol;
19*bf2c3715SXin Li if(match || col==diffs.cols())
20*bf2c3715SXin Li {
21*bf2c3715SXin Li return match;
22*bf2c3715SXin Li }
23*bf2c3715SXin Li else
24*bf2c3715SXin Li {
25*bf2c3715SXin Li Index n = diffs.cols();
26*bf2c3715SXin Li std::vector<std::pair<Index,Index> > transpositions;
27*bf2c3715SXin Li for(Index i=col; i<n; ++i)
28*bf2c3715SXin Li {
29*bf2c3715SXin Li Index best_index(0);
30*bf2c3715SXin Li if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol)
31*bf2c3715SXin Li break;
32*bf2c3715SXin Li
33*bf2c3715SXin Li best_index += col;
34*bf2c3715SXin Li
35*bf2c3715SXin Li diffs.row(col).swap(diffs.row(best_index));
36*bf2c3715SXin Li if(find_pivot(tol,diffs,col+1)) return true;
37*bf2c3715SXin Li diffs.row(col).swap(diffs.row(best_index));
38*bf2c3715SXin Li
39*bf2c3715SXin Li // move current pivot to the end
40*bf2c3715SXin Li diffs.row(n-(i-col)-1).swap(diffs.row(best_index));
41*bf2c3715SXin Li transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index));
42*bf2c3715SXin Li }
43*bf2c3715SXin Li // restore
44*bf2c3715SXin Li for(Index k=transpositions.size()-1; k>=0; --k)
45*bf2c3715SXin Li diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
46*bf2c3715SXin Li }
47*bf2c3715SXin Li return false;
48*bf2c3715SXin Li }
49*bf2c3715SXin Li
50*bf2c3715SXin Li /* Check that two column vectors are approximately equal up to permutations.
51*bf2c3715SXin Li * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
52*bf2c3715SXin Li * however this strategy is numerically inacurate because of numerical cancellation issues.
53*bf2c3715SXin Li */
54*bf2c3715SXin Li template<typename VectorType>
verify_is_approx_upto_permutation(const VectorType & vec1,const VectorType & vec2)55*bf2c3715SXin Li void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
56*bf2c3715SXin Li {
57*bf2c3715SXin Li typedef typename VectorType::Scalar Scalar;
58*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar;
59*bf2c3715SXin Li
60*bf2c3715SXin Li VERIFY(vec1.cols() == 1);
61*bf2c3715SXin Li VERIFY(vec2.cols() == 1);
62*bf2c3715SXin Li VERIFY(vec1.rows() == vec2.rows());
63*bf2c3715SXin Li
64*bf2c3715SXin Li Index n = vec1.rows();
65*bf2c3715SXin Li RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm());
66*bf2c3715SXin Li Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
67*bf2c3715SXin Li
68*bf2c3715SXin Li VERIFY( find_pivot(tol, diffs) );
69*bf2c3715SXin Li }
70*bf2c3715SXin Li
71*bf2c3715SXin Li
eigensolver(const MatrixType & m)72*bf2c3715SXin Li template<typename MatrixType> void eigensolver(const MatrixType& m)
73*bf2c3715SXin Li {
74*bf2c3715SXin Li /* this test covers the following files:
75*bf2c3715SXin Li ComplexEigenSolver.h, and indirectly ComplexSchur.h
76*bf2c3715SXin Li */
77*bf2c3715SXin Li Index rows = m.rows();
78*bf2c3715SXin Li Index cols = m.cols();
79*bf2c3715SXin Li
80*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
81*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar;
82*bf2c3715SXin Li
83*bf2c3715SXin Li MatrixType a = MatrixType::Random(rows,cols);
84*bf2c3715SXin Li MatrixType symmA = a.adjoint() * a;
85*bf2c3715SXin Li
86*bf2c3715SXin Li ComplexEigenSolver<MatrixType> ei0(symmA);
87*bf2c3715SXin Li VERIFY_IS_EQUAL(ei0.info(), Success);
88*bf2c3715SXin Li VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
89*bf2c3715SXin Li
90*bf2c3715SXin Li ComplexEigenSolver<MatrixType> ei1(a);
91*bf2c3715SXin Li VERIFY_IS_EQUAL(ei1.info(), Success);
92*bf2c3715SXin Li VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
93*bf2c3715SXin Li // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
94*bf2c3715SXin Li // another algorithm so results may differ slightly
95*bf2c3715SXin Li verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
96*bf2c3715SXin Li
97*bf2c3715SXin Li ComplexEigenSolver<MatrixType> ei2;
98*bf2c3715SXin Li ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
99*bf2c3715SXin Li VERIFY_IS_EQUAL(ei2.info(), Success);
100*bf2c3715SXin Li VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
101*bf2c3715SXin Li VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
102*bf2c3715SXin Li if (rows > 2) {
103*bf2c3715SXin Li ei2.setMaxIterations(1).compute(a);
104*bf2c3715SXin Li VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
105*bf2c3715SXin Li VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
106*bf2c3715SXin Li }
107*bf2c3715SXin Li
108*bf2c3715SXin Li ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
109*bf2c3715SXin Li VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
110*bf2c3715SXin Li VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
111*bf2c3715SXin Li
112*bf2c3715SXin Li // Regression test for issue #66
113*bf2c3715SXin Li MatrixType z = MatrixType::Zero(rows,cols);
114*bf2c3715SXin Li ComplexEigenSolver<MatrixType> eiz(z);
115*bf2c3715SXin Li VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
116*bf2c3715SXin Li
117*bf2c3715SXin Li MatrixType id = MatrixType::Identity(rows, cols);
118*bf2c3715SXin Li VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
119*bf2c3715SXin Li
120*bf2c3715SXin Li if (rows > 1 && rows < 20)
121*bf2c3715SXin Li {
122*bf2c3715SXin Li // Test matrix with NaN
123*bf2c3715SXin Li a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
124*bf2c3715SXin Li ComplexEigenSolver<MatrixType> eiNaN(a);
125*bf2c3715SXin Li VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
126*bf2c3715SXin Li }
127*bf2c3715SXin Li
128*bf2c3715SXin Li // regression test for bug 1098
129*bf2c3715SXin Li {
130*bf2c3715SXin Li ComplexEigenSolver<MatrixType> eig(a.adjoint() * a);
131*bf2c3715SXin Li eig.compute(a.adjoint() * a);
132*bf2c3715SXin Li }
133*bf2c3715SXin Li
134*bf2c3715SXin Li // regression test for bug 478
135*bf2c3715SXin Li {
136*bf2c3715SXin Li a.setZero();
137*bf2c3715SXin Li ComplexEigenSolver<MatrixType> ei3(a);
138*bf2c3715SXin Li VERIFY_IS_EQUAL(ei3.info(), Success);
139*bf2c3715SXin Li VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
140*bf2c3715SXin Li VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
141*bf2c3715SXin Li }
142*bf2c3715SXin Li }
143*bf2c3715SXin Li
eigensolver_verify_assert(const MatrixType & m)144*bf2c3715SXin Li template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
145*bf2c3715SXin Li {
146*bf2c3715SXin Li ComplexEigenSolver<MatrixType> eig;
147*bf2c3715SXin Li VERIFY_RAISES_ASSERT(eig.eigenvectors());
148*bf2c3715SXin Li VERIFY_RAISES_ASSERT(eig.eigenvalues());
149*bf2c3715SXin Li
150*bf2c3715SXin Li MatrixType a = MatrixType::Random(m.rows(),m.cols());
151*bf2c3715SXin Li eig.compute(a, false);
152*bf2c3715SXin Li VERIFY_RAISES_ASSERT(eig.eigenvectors());
153*bf2c3715SXin Li }
154*bf2c3715SXin Li
EIGEN_DECLARE_TEST(eigensolver_complex)155*bf2c3715SXin Li EIGEN_DECLARE_TEST(eigensolver_complex)
156*bf2c3715SXin Li {
157*bf2c3715SXin Li int s = 0;
158*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
159*bf2c3715SXin Li CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
160*bf2c3715SXin Li s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
161*bf2c3715SXin Li CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
162*bf2c3715SXin Li CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
163*bf2c3715SXin Li CALL_SUBTEST_4( eigensolver(Matrix3f()) );
164*bf2c3715SXin Li TEST_SET_BUT_UNUSED_VARIABLE(s)
165*bf2c3715SXin Li }
166*bf2c3715SXin Li CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
167*bf2c3715SXin Li s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
168*bf2c3715SXin Li CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
169*bf2c3715SXin Li CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
170*bf2c3715SXin Li CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );
171*bf2c3715SXin Li
172*bf2c3715SXin Li // Test problem size constructors
173*bf2c3715SXin Li CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
174*bf2c3715SXin Li
175*bf2c3715SXin Li TEST_SET_BUT_UNUSED_VARIABLE(s)
176*bf2c3715SXin Li }
177