xref: /aosp_15_r20/external/eigen/test/geo_homogeneous.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <Eigen/Geometry>
12*bf2c3715SXin Li 
homogeneous(void)13*bf2c3715SXin Li template<typename Scalar,int Size> void homogeneous(void)
14*bf2c3715SXin Li {
15*bf2c3715SXin Li   /* this test covers the following files:
16*bf2c3715SXin Li      Homogeneous.h
17*bf2c3715SXin Li   */
18*bf2c3715SXin Li 
19*bf2c3715SXin Li   typedef Matrix<Scalar,Size,Size> MatrixType;
20*bf2c3715SXin Li   typedef Matrix<Scalar,Size,1, ColMajor> VectorType;
21*bf2c3715SXin Li 
22*bf2c3715SXin Li   typedef Matrix<Scalar,Size+1,Size> HMatrixType;
23*bf2c3715SXin Li   typedef Matrix<Scalar,Size+1,1> HVectorType;
24*bf2c3715SXin Li 
25*bf2c3715SXin Li   typedef Matrix<Scalar,Size,Size+1>   T1MatrixType;
26*bf2c3715SXin Li   typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType;
27*bf2c3715SXin Li   typedef Matrix<Scalar,Size+1,Size> T3MatrixType;
28*bf2c3715SXin Li 
29*bf2c3715SXin Li   VectorType v0 = VectorType::Random(),
30*bf2c3715SXin Li              ones = VectorType::Ones();
31*bf2c3715SXin Li 
32*bf2c3715SXin Li   HVectorType hv0 = HVectorType::Random();
33*bf2c3715SXin Li 
34*bf2c3715SXin Li   MatrixType m0 = MatrixType::Random();
35*bf2c3715SXin Li 
36*bf2c3715SXin Li   HMatrixType hm0 = HMatrixType::Random();
37*bf2c3715SXin Li 
38*bf2c3715SXin Li   hv0 << v0, 1;
39*bf2c3715SXin Li   VERIFY_IS_APPROX(v0.homogeneous(), hv0);
40*bf2c3715SXin Li   VERIFY_IS_APPROX(v0, hv0.hnormalized());
41*bf2c3715SXin Li 
42*bf2c3715SXin Li   VERIFY_IS_APPROX(v0.homogeneous().sum(), hv0.sum());
43*bf2c3715SXin Li   VERIFY_IS_APPROX(v0.homogeneous().minCoeff(), hv0.minCoeff());
44*bf2c3715SXin Li   VERIFY_IS_APPROX(v0.homogeneous().maxCoeff(), hv0.maxCoeff());
45*bf2c3715SXin Li 
46*bf2c3715SXin Li   hm0 << m0, ones.transpose();
47*bf2c3715SXin Li   VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0);
48*bf2c3715SXin Li   VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized());
49*bf2c3715SXin Li   hm0.row(Size-1).setRandom();
50*bf2c3715SXin Li   for(int j=0; j<Size; ++j)
51*bf2c3715SXin Li     m0.col(j) = hm0.col(j).head(Size) / hm0(Size,j);
52*bf2c3715SXin Li   VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized());
53*bf2c3715SXin Li 
54*bf2c3715SXin Li   T1MatrixType t1 = T1MatrixType::Random();
55*bf2c3715SXin Li   VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous());
56*bf2c3715SXin Li   VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous());
57*bf2c3715SXin Li 
58*bf2c3715SXin Li   T2MatrixType t2 = T2MatrixType::Random();
59*bf2c3715SXin Li   VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous());
60*bf2c3715SXin Li   VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous());
61*bf2c3715SXin Li   VERIFY_IS_APPROX(t2 * (v0.homogeneous().asDiagonal()), t2 * hv0.asDiagonal());
62*bf2c3715SXin Li   VERIFY_IS_APPROX((v0.homogeneous().asDiagonal()) * t2, hv0.asDiagonal() * t2);
63*bf2c3715SXin Li 
64*bf2c3715SXin Li   VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
65*bf2c3715SXin Li                     v0.transpose().rowwise().homogeneous() * t2);
66*bf2c3715SXin Li   VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
67*bf2c3715SXin Li                     m0.transpose().rowwise().homogeneous() * t2);
68*bf2c3715SXin Li 
69*bf2c3715SXin Li   T3MatrixType t3 = T3MatrixType::Random();
70*bf2c3715SXin Li   VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3,
71*bf2c3715SXin Li                     v0.transpose().rowwise().homogeneous() * t3);
72*bf2c3715SXin Li   VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3,
73*bf2c3715SXin Li                     m0.transpose().rowwise().homogeneous() * t3);
74*bf2c3715SXin Li 
75*bf2c3715SXin Li   // test product with a Transform object
76*bf2c3715SXin Li   Transform<Scalar, Size, Affine> aff;
77*bf2c3715SXin Li   Transform<Scalar, Size, AffineCompact> caff;
78*bf2c3715SXin Li   Transform<Scalar, Size, Projective> proj;
79*bf2c3715SXin Li   Matrix<Scalar, Size, Dynamic>   pts;
80*bf2c3715SXin Li   Matrix<Scalar, Size+1, Dynamic> pts1, pts2;
81*bf2c3715SXin Li 
82*bf2c3715SXin Li   aff.affine().setRandom();
83*bf2c3715SXin Li   proj = caff = aff;
84*bf2c3715SXin Li   pts.setRandom(Size,internal::random<int>(1,20));
85*bf2c3715SXin Li 
86*bf2c3715SXin Li   pts1 = pts.colwise().homogeneous();
87*bf2c3715SXin Li   VERIFY_IS_APPROX(aff  * pts.colwise().homogeneous(), (aff  * pts1).colwise().hnormalized());
88*bf2c3715SXin Li   VERIFY_IS_APPROX(caff * pts.colwise().homogeneous(), (caff * pts1).colwise().hnormalized());
89*bf2c3715SXin Li   VERIFY_IS_APPROX(proj * pts.colwise().homogeneous(), (proj * pts1));
90*bf2c3715SXin Li 
91*bf2c3715SXin Li   VERIFY_IS_APPROX((aff  * pts1).colwise().hnormalized(),  aff  * pts);
92*bf2c3715SXin Li   VERIFY_IS_APPROX((caff * pts1).colwise().hnormalized(), caff * pts);
93*bf2c3715SXin Li 
94*bf2c3715SXin Li   pts2 = pts1;
95*bf2c3715SXin Li   pts2.row(Size).setRandom();
96*bf2c3715SXin Li   VERIFY_IS_APPROX((aff  * pts2).colwise().hnormalized(), aff  * pts2.colwise().hnormalized());
97*bf2c3715SXin Li   VERIFY_IS_APPROX((caff * pts2).colwise().hnormalized(), caff * pts2.colwise().hnormalized());
98*bf2c3715SXin Li   VERIFY_IS_APPROX((proj * pts2).colwise().hnormalized(), (proj * pts2.colwise().hnormalized().colwise().homogeneous()).colwise().hnormalized());
99*bf2c3715SXin Li 
100*bf2c3715SXin Li   // Test combination of homogeneous
101*bf2c3715SXin Li 
102*bf2c3715SXin Li   VERIFY_IS_APPROX( (t2 * v0.homogeneous()).hnormalized(),
103*bf2c3715SXin Li                        (t2.template topLeftCorner<Size,Size>() * v0 + t2.template topRightCorner<Size,1>())
104*bf2c3715SXin Li                      / ((t2.template bottomLeftCorner<1,Size>()*v0).value() + t2(Size,Size)) );
105*bf2c3715SXin Li 
106*bf2c3715SXin Li   VERIFY_IS_APPROX( (t2 * pts.colwise().homogeneous()).colwise().hnormalized(),
107*bf2c3715SXin Li                     (Matrix<Scalar, Size+1, Dynamic>(t2 * pts1).colwise().hnormalized()) );
108*bf2c3715SXin Li 
109*bf2c3715SXin Li   VERIFY_IS_APPROX( (t2 .lazyProduct( v0.homogeneous() )).hnormalized(), (t2 * v0.homogeneous()).hnormalized() );
110*bf2c3715SXin Li   VERIFY_IS_APPROX( (t2 .lazyProduct  ( pts.colwise().homogeneous() )).colwise().hnormalized(), (t2 * pts1).colwise().hnormalized() );
111*bf2c3715SXin Li 
112*bf2c3715SXin Li   VERIFY_IS_APPROX( (v0.transpose().homogeneous() .lazyProduct( t2 )).hnormalized(), (v0.transpose().homogeneous()*t2).hnormalized() );
113*bf2c3715SXin Li   VERIFY_IS_APPROX( (pts.transpose().rowwise().homogeneous() .lazyProduct( t2 )).rowwise().hnormalized(), (pts1.transpose()*t2).rowwise().hnormalized() );
114*bf2c3715SXin Li 
115*bf2c3715SXin Li   VERIFY_IS_APPROX( (t2.template triangularView<Lower>() * v0.homogeneous()).eval(), (t2.template triangularView<Lower>()*hv0) );
116*bf2c3715SXin Li }
117*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(geo_homogeneous)118*bf2c3715SXin Li EIGEN_DECLARE_TEST(geo_homogeneous)
119*bf2c3715SXin Li {
120*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
121*bf2c3715SXin Li     CALL_SUBTEST_1(( homogeneous<float,1>() ));
122*bf2c3715SXin Li     CALL_SUBTEST_2(( homogeneous<double,3>() ));
123*bf2c3715SXin Li     CALL_SUBTEST_3(( homogeneous<double,8>() ));
124*bf2c3715SXin Li   }
125*bf2c3715SXin Li }
126