xref: /aosp_15_r20/external/eigen/test/householder.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009-2010 Benoit Jacob <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <Eigen/QR>
12*bf2c3715SXin Li 
householder(const MatrixType & m)13*bf2c3715SXin Li template<typename MatrixType> void householder(const MatrixType& m)
14*bf2c3715SXin Li {
15*bf2c3715SXin Li   static bool even = true;
16*bf2c3715SXin Li   even = !even;
17*bf2c3715SXin Li   /* this test covers the following files:
18*bf2c3715SXin Li      Householder.h
19*bf2c3715SXin Li   */
20*bf2c3715SXin Li   Index rows = m.rows();
21*bf2c3715SXin Li   Index cols = m.cols();
22*bf2c3715SXin Li 
23*bf2c3715SXin Li   typedef typename MatrixType::Scalar Scalar;
24*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
25*bf2c3715SXin Li   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
26*bf2c3715SXin Li   typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
27*bf2c3715SXin Li   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
28*bf2c3715SXin Li   typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
29*bf2c3715SXin Li   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
30*bf2c3715SXin Li 
31*bf2c3715SXin Li   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
32*bf2c3715SXin Li 
33*bf2c3715SXin Li   Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
34*bf2c3715SXin Li   Scalar* tmp = &_tmp.coeffRef(0,0);
35*bf2c3715SXin Li 
36*bf2c3715SXin Li   Scalar beta;
37*bf2c3715SXin Li   RealScalar alpha;
38*bf2c3715SXin Li   EssentialVectorType essential;
39*bf2c3715SXin Li 
40*bf2c3715SXin Li   VectorType v1 = VectorType::Random(rows), v2;
41*bf2c3715SXin Li   v2 = v1;
42*bf2c3715SXin Li   v1.makeHouseholder(essential, beta, alpha);
43*bf2c3715SXin Li   v1.applyHouseholderOnTheLeft(essential,beta,tmp);
44*bf2c3715SXin Li   VERIFY_IS_APPROX(v1.norm(), v2.norm());
45*bf2c3715SXin Li   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
46*bf2c3715SXin Li   v1 = VectorType::Random(rows);
47*bf2c3715SXin Li   v2 = v1;
48*bf2c3715SXin Li   v1.applyHouseholderOnTheLeft(essential,beta,tmp);
49*bf2c3715SXin Li   VERIFY_IS_APPROX(v1.norm(), v2.norm());
50*bf2c3715SXin Li 
51*bf2c3715SXin Li   // reconstruct householder matrix:
52*bf2c3715SXin Li   SquareMatrixType id, H1, H2;
53*bf2c3715SXin Li   id.setIdentity(rows, rows);
54*bf2c3715SXin Li   H1 = H2 = id;
55*bf2c3715SXin Li   VectorType vv(rows);
56*bf2c3715SXin Li   vv << Scalar(1), essential;
57*bf2c3715SXin Li   H1.applyHouseholderOnTheLeft(essential, beta, tmp);
58*bf2c3715SXin Li   H2.applyHouseholderOnTheRight(essential, beta, tmp);
59*bf2c3715SXin Li   VERIFY_IS_APPROX(H1, H2);
60*bf2c3715SXin Li   VERIFY_IS_APPROX(H1, id - beta * vv*vv.adjoint());
61*bf2c3715SXin Li 
62*bf2c3715SXin Li   MatrixType m1(rows, cols),
63*bf2c3715SXin Li              m2(rows, cols);
64*bf2c3715SXin Li 
65*bf2c3715SXin Li   v1 = VectorType::Random(rows);
66*bf2c3715SXin Li   if(even) v1.tail(rows-1).setZero();
67*bf2c3715SXin Li   m1.colwise() = v1;
68*bf2c3715SXin Li   m2 = m1;
69*bf2c3715SXin Li   m1.col(0).makeHouseholder(essential, beta, alpha);
70*bf2c3715SXin Li   m1.applyHouseholderOnTheLeft(essential,beta,tmp);
71*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.norm(), m2.norm());
72*bf2c3715SXin Li   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
73*bf2c3715SXin Li   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0)));
74*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha);
75*bf2c3715SXin Li 
76*bf2c3715SXin Li   v1 = VectorType::Random(rows);
77*bf2c3715SXin Li   if(even) v1.tail(rows-1).setZero();
78*bf2c3715SXin Li   SquareMatrixType m3(rows,rows), m4(rows,rows);
79*bf2c3715SXin Li   m3.rowwise() = v1.transpose();
80*bf2c3715SXin Li   m4 = m3;
81*bf2c3715SXin Li   m3.row(0).makeHouseholder(essential, beta, alpha);
82*bf2c3715SXin Li   m3.applyHouseholderOnTheRight(essential.conjugate(),beta,tmp);
83*bf2c3715SXin Li   VERIFY_IS_APPROX(m3.norm(), m4.norm());
84*bf2c3715SXin Li   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
85*bf2c3715SXin Li   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0)));
86*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha);
87*bf2c3715SXin Li 
88*bf2c3715SXin Li   // test householder sequence on the left with a shift
89*bf2c3715SXin Li 
90*bf2c3715SXin Li   Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
91*bf2c3715SXin Li   Index brows = rows - shift;
92*bf2c3715SXin Li   m1.setRandom(rows, cols);
93*bf2c3715SXin Li   HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
94*bf2c3715SXin Li   HouseholderQR<HBlockMatrixType> qr(hbm);
95*bf2c3715SXin Li   m2 = m1;
96*bf2c3715SXin Li   m2.block(shift,0,brows,cols) = qr.matrixQR();
97*bf2c3715SXin Li   HCoeffsVectorType hc = qr.hCoeffs().conjugate();
98*bf2c3715SXin Li   HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
99*bf2c3715SXin Li   hseq.setLength(hc.size()).setShift(shift);
100*bf2c3715SXin Li   VERIFY(hseq.length() == hc.size());
101*bf2c3715SXin Li   VERIFY(hseq.shift() == shift);
102*bf2c3715SXin Li 
103*bf2c3715SXin Li   MatrixType m5 = m2;
104*bf2c3715SXin Li   m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
105*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
106*bf2c3715SXin Li   m3 = hseq;
107*bf2c3715SXin Li   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
108*bf2c3715SXin Li 
109*bf2c3715SXin Li   SquareMatrixType hseq_mat = hseq;
110*bf2c3715SXin Li   SquareMatrixType hseq_mat_conj = hseq.conjugate();
111*bf2c3715SXin Li   SquareMatrixType hseq_mat_adj = hseq.adjoint();
112*bf2c3715SXin Li   SquareMatrixType hseq_mat_trans = hseq.transpose();
113*bf2c3715SXin Li   SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
114*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq_mat.adjoint(),    hseq_mat_adj);
115*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq_mat.conjugate(),  hseq_mat_conj);
116*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq_mat.transpose(),  hseq_mat_trans);
117*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq * m6,             hseq_mat * m6);
118*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq.adjoint() * m6,   hseq_mat_adj * m6);
119*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq.conjugate() * m6, hseq_mat_conj * m6);
120*bf2c3715SXin Li   VERIFY_IS_APPROX(hseq.transpose() * m6, hseq_mat_trans * m6);
121*bf2c3715SXin Li   VERIFY_IS_APPROX(m6 * hseq,             m6 * hseq_mat);
122*bf2c3715SXin Li   VERIFY_IS_APPROX(m6 * hseq.adjoint(),   m6 * hseq_mat_adj);
123*bf2c3715SXin Li   VERIFY_IS_APPROX(m6 * hseq.conjugate(), m6 * hseq_mat_conj);
124*bf2c3715SXin Li   VERIFY_IS_APPROX(m6 * hseq.transpose(), m6 * hseq_mat_trans);
125*bf2c3715SXin Li 
126*bf2c3715SXin Li   // test householder sequence on the right with a shift
127*bf2c3715SXin Li 
128*bf2c3715SXin Li   TMatrixType tm2 = m2.transpose();
129*bf2c3715SXin Li   HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
130*bf2c3715SXin Li   rhseq.setLength(hc.size()).setShift(shift);
131*bf2c3715SXin Li   VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
132*bf2c3715SXin Li   m3 = rhseq;
133*bf2c3715SXin Li   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
134*bf2c3715SXin Li }
135*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(householder)136*bf2c3715SXin Li EIGEN_DECLARE_TEST(householder)
137*bf2c3715SXin Li {
138*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
139*bf2c3715SXin Li     CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
140*bf2c3715SXin Li     CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
141*bf2c3715SXin Li     CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
142*bf2c3715SXin Li     CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
143*bf2c3715SXin Li     CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
144*bf2c3715SXin Li     CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
145*bf2c3715SXin Li     CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
146*bf2c3715SXin Li     CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
147*bf2c3715SXin Li   }
148*bf2c3715SXin Li }
149