1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2009 Benoit Jacob <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <Eigen/LU>
12*bf2c3715SXin Li #include "solverbase.h"
13*bf2c3715SXin Li using namespace std;
14*bf2c3715SXin Li
15*bf2c3715SXin Li template<typename MatrixType>
matrix_l1_norm(const MatrixType & m)16*bf2c3715SXin Li typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
17*bf2c3715SXin Li return m.cwiseAbs().colwise().sum().maxCoeff();
18*bf2c3715SXin Li }
19*bf2c3715SXin Li
lu_non_invertible()20*bf2c3715SXin Li template<typename MatrixType> void lu_non_invertible()
21*bf2c3715SXin Li {
22*bf2c3715SXin Li STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value ));
23*bf2c3715SXin Li
24*bf2c3715SXin Li typedef typename MatrixType::RealScalar RealScalar;
25*bf2c3715SXin Li /* this test covers the following files:
26*bf2c3715SXin Li LU.h
27*bf2c3715SXin Li */
28*bf2c3715SXin Li Index rows, cols, cols2;
29*bf2c3715SXin Li if(MatrixType::RowsAtCompileTime==Dynamic)
30*bf2c3715SXin Li {
31*bf2c3715SXin Li rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
32*bf2c3715SXin Li }
33*bf2c3715SXin Li else
34*bf2c3715SXin Li {
35*bf2c3715SXin Li rows = MatrixType::RowsAtCompileTime;
36*bf2c3715SXin Li }
37*bf2c3715SXin Li if(MatrixType::ColsAtCompileTime==Dynamic)
38*bf2c3715SXin Li {
39*bf2c3715SXin Li cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
40*bf2c3715SXin Li cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
41*bf2c3715SXin Li }
42*bf2c3715SXin Li else
43*bf2c3715SXin Li {
44*bf2c3715SXin Li cols2 = cols = MatrixType::ColsAtCompileTime;
45*bf2c3715SXin Li }
46*bf2c3715SXin Li
47*bf2c3715SXin Li enum {
48*bf2c3715SXin Li RowsAtCompileTime = MatrixType::RowsAtCompileTime,
49*bf2c3715SXin Li ColsAtCompileTime = MatrixType::ColsAtCompileTime
50*bf2c3715SXin Li };
51*bf2c3715SXin Li typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
52*bf2c3715SXin Li typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
53*bf2c3715SXin Li typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
54*bf2c3715SXin Li CMatrixType;
55*bf2c3715SXin Li typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
56*bf2c3715SXin Li RMatrixType;
57*bf2c3715SXin Li
58*bf2c3715SXin Li Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
59*bf2c3715SXin Li
60*bf2c3715SXin Li // The image of the zero matrix should consist of a single (zero) column vector
61*bf2c3715SXin Li VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
62*bf2c3715SXin Li
63*bf2c3715SXin Li // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
64*bf2c3715SXin Li KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel();
65*bf2c3715SXin Li VERIFY((kernel.fullPivLu().isInvertible()));
66*bf2c3715SXin Li
67*bf2c3715SXin Li MatrixType m1(rows, cols), m3(rows, cols2);
68*bf2c3715SXin Li CMatrixType m2(cols, cols2);
69*bf2c3715SXin Li createRandomPIMatrixOfRank(rank, rows, cols, m1);
70*bf2c3715SXin Li
71*bf2c3715SXin Li FullPivLU<MatrixType> lu;
72*bf2c3715SXin Li
73*bf2c3715SXin Li // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
74*bf2c3715SXin Li // of singular values are either 0 or 1.
75*bf2c3715SXin Li // So it's not clear at all that the epsilon should play any role there.
76*bf2c3715SXin Li lu.setThreshold(RealScalar(0.01));
77*bf2c3715SXin Li lu.compute(m1);
78*bf2c3715SXin Li
79*bf2c3715SXin Li MatrixType u(rows,cols);
80*bf2c3715SXin Li u = lu.matrixLU().template triangularView<Upper>();
81*bf2c3715SXin Li RMatrixType l = RMatrixType::Identity(rows,rows);
82*bf2c3715SXin Li l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
83*bf2c3715SXin Li = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
84*bf2c3715SXin Li
85*bf2c3715SXin Li VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
86*bf2c3715SXin Li
87*bf2c3715SXin Li KernelMatrixType m1kernel = lu.kernel();
88*bf2c3715SXin Li ImageMatrixType m1image = lu.image(m1);
89*bf2c3715SXin Li
90*bf2c3715SXin Li VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
91*bf2c3715SXin Li VERIFY(rank == lu.rank());
92*bf2c3715SXin Li VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
93*bf2c3715SXin Li VERIFY(!lu.isInjective());
94*bf2c3715SXin Li VERIFY(!lu.isInvertible());
95*bf2c3715SXin Li VERIFY(!lu.isSurjective());
96*bf2c3715SXin Li VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
97*bf2c3715SXin Li VERIFY(m1image.fullPivLu().rank() == rank);
98*bf2c3715SXin Li VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
99*bf2c3715SXin Li
100*bf2c3715SXin Li check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);
101*bf2c3715SXin Li
102*bf2c3715SXin Li m2 = CMatrixType::Random(cols,cols2);
103*bf2c3715SXin Li m3 = m1*m2;
104*bf2c3715SXin Li m2 = CMatrixType::Random(cols,cols2);
105*bf2c3715SXin Li // test that the code, which does resize(), may be applied to an xpr
106*bf2c3715SXin Li m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
107*bf2c3715SXin Li VERIFY_IS_APPROX(m3, m1*m2);
108*bf2c3715SXin Li }
109*bf2c3715SXin Li
lu_invertible()110*bf2c3715SXin Li template<typename MatrixType> void lu_invertible()
111*bf2c3715SXin Li {
112*bf2c3715SXin Li /* this test covers the following files:
113*bf2c3715SXin Li FullPivLU.h
114*bf2c3715SXin Li */
115*bf2c3715SXin Li typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
116*bf2c3715SXin Li Index size = MatrixType::RowsAtCompileTime;
117*bf2c3715SXin Li if( size==Dynamic)
118*bf2c3715SXin Li size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE);
119*bf2c3715SXin Li
120*bf2c3715SXin Li MatrixType m1(size, size), m2(size, size), m3(size, size);
121*bf2c3715SXin Li FullPivLU<MatrixType> lu;
122*bf2c3715SXin Li lu.setThreshold(RealScalar(0.01));
123*bf2c3715SXin Li do {
124*bf2c3715SXin Li m1 = MatrixType::Random(size,size);
125*bf2c3715SXin Li lu.compute(m1);
126*bf2c3715SXin Li } while(!lu.isInvertible());
127*bf2c3715SXin Li
128*bf2c3715SXin Li VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
129*bf2c3715SXin Li VERIFY(0 == lu.dimensionOfKernel());
130*bf2c3715SXin Li VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
131*bf2c3715SXin Li VERIFY(size == lu.rank());
132*bf2c3715SXin Li VERIFY(lu.isInjective());
133*bf2c3715SXin Li VERIFY(lu.isSurjective());
134*bf2c3715SXin Li VERIFY(lu.isInvertible());
135*bf2c3715SXin Li VERIFY(lu.image(m1).fullPivLu().isInvertible());
136*bf2c3715SXin Li
137*bf2c3715SXin Li check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);
138*bf2c3715SXin Li
139*bf2c3715SXin Li MatrixType m1_inverse = lu.inverse();
140*bf2c3715SXin Li m3 = MatrixType::Random(size,size);
141*bf2c3715SXin Li m2 = lu.solve(m3);
142*bf2c3715SXin Li VERIFY_IS_APPROX(m2, m1_inverse*m3);
143*bf2c3715SXin Li
144*bf2c3715SXin Li RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
145*bf2c3715SXin Li const RealScalar rcond_est = lu.rcond();
146*bf2c3715SXin Li // Verify that the estimated condition number is within a factor of 10 of the
147*bf2c3715SXin Li // truth.
148*bf2c3715SXin Li VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
149*bf2c3715SXin Li
150*bf2c3715SXin Li // Regression test for Bug 302
151*bf2c3715SXin Li MatrixType m4 = MatrixType::Random(size,size);
152*bf2c3715SXin Li VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
153*bf2c3715SXin Li }
154*bf2c3715SXin Li
lu_partial_piv(Index size=MatrixType::ColsAtCompileTime)155*bf2c3715SXin Li template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime)
156*bf2c3715SXin Li {
157*bf2c3715SXin Li /* this test covers the following files:
158*bf2c3715SXin Li PartialPivLU.h
159*bf2c3715SXin Li */
160*bf2c3715SXin Li typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
161*bf2c3715SXin Li
162*bf2c3715SXin Li MatrixType m1(size, size), m2(size, size), m3(size, size);
163*bf2c3715SXin Li m1.setRandom();
164*bf2c3715SXin Li PartialPivLU<MatrixType> plu(m1);
165*bf2c3715SXin Li
166*bf2c3715SXin Li STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value ));
167*bf2c3715SXin Li
168*bf2c3715SXin Li VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
169*bf2c3715SXin Li
170*bf2c3715SXin Li check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);
171*bf2c3715SXin Li
172*bf2c3715SXin Li MatrixType m1_inverse = plu.inverse();
173*bf2c3715SXin Li m3 = MatrixType::Random(size,size);
174*bf2c3715SXin Li m2 = plu.solve(m3);
175*bf2c3715SXin Li VERIFY_IS_APPROX(m2, m1_inverse*m3);
176*bf2c3715SXin Li
177*bf2c3715SXin Li RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
178*bf2c3715SXin Li const RealScalar rcond_est = plu.rcond();
179*bf2c3715SXin Li // Verify that the estimate is within a factor of 10 of the truth.
180*bf2c3715SXin Li VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
181*bf2c3715SXin Li }
182*bf2c3715SXin Li
lu_verify_assert()183*bf2c3715SXin Li template<typename MatrixType> void lu_verify_assert()
184*bf2c3715SXin Li {
185*bf2c3715SXin Li MatrixType tmp;
186*bf2c3715SXin Li
187*bf2c3715SXin Li FullPivLU<MatrixType> lu;
188*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.matrixLU())
189*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.permutationP())
190*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.permutationQ())
191*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.kernel())
192*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.image(tmp))
193*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.solve(tmp))
194*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
195*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
196*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.determinant())
197*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.rank())
198*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
199*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.isInjective())
200*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.isSurjective())
201*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.isInvertible())
202*bf2c3715SXin Li VERIFY_RAISES_ASSERT(lu.inverse())
203*bf2c3715SXin Li
204*bf2c3715SXin Li PartialPivLU<MatrixType> plu;
205*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.matrixLU())
206*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.permutationP())
207*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.solve(tmp))
208*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
209*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
210*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.determinant())
211*bf2c3715SXin Li VERIFY_RAISES_ASSERT(plu.inverse())
212*bf2c3715SXin Li }
213*bf2c3715SXin Li
EIGEN_DECLARE_TEST(lu)214*bf2c3715SXin Li EIGEN_DECLARE_TEST(lu)
215*bf2c3715SXin Li {
216*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
217*bf2c3715SXin Li CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
218*bf2c3715SXin Li CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
219*bf2c3715SXin Li CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
220*bf2c3715SXin Li CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() );
221*bf2c3715SXin Li
222*bf2c3715SXin Li CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
223*bf2c3715SXin Li CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
224*bf2c3715SXin Li CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() );
225*bf2c3715SXin Li CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() );
226*bf2c3715SXin Li CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) );
227*bf2c3715SXin Li
228*bf2c3715SXin Li CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
229*bf2c3715SXin Li CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
230*bf2c3715SXin Li CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
231*bf2c3715SXin Li
232*bf2c3715SXin Li CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
233*bf2c3715SXin Li CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
234*bf2c3715SXin Li CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
235*bf2c3715SXin Li CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
236*bf2c3715SXin Li
237*bf2c3715SXin Li CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
238*bf2c3715SXin Li CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
239*bf2c3715SXin Li CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
240*bf2c3715SXin Li
241*bf2c3715SXin Li CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
242*bf2c3715SXin Li CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
243*bf2c3715SXin Li CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) );
244*bf2c3715SXin Li CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
245*bf2c3715SXin Li
246*bf2c3715SXin Li CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
247*bf2c3715SXin Li
248*bf2c3715SXin Li // Test problem size constructors
249*bf2c3715SXin Li CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
250*bf2c3715SXin Li CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
251*bf2c3715SXin Li }
252*bf2c3715SXin Li }
253