xref: /aosp_15_r20/external/eigen/test/nomalloc.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li 
11*bf2c3715SXin Li // discard stack allocation as that too bypasses malloc
12*bf2c3715SXin Li #define EIGEN_STACK_ALLOCATION_LIMIT 0
13*bf2c3715SXin Li // heap allocation will raise an assert if enabled at runtime
14*bf2c3715SXin Li #define EIGEN_RUNTIME_NO_MALLOC
15*bf2c3715SXin Li 
16*bf2c3715SXin Li #include "main.h"
17*bf2c3715SXin Li #include <Eigen/Cholesky>
18*bf2c3715SXin Li #include <Eigen/Eigenvalues>
19*bf2c3715SXin Li #include <Eigen/LU>
20*bf2c3715SXin Li #include <Eigen/QR>
21*bf2c3715SXin Li #include <Eigen/SVD>
22*bf2c3715SXin Li 
nomalloc(const MatrixType & m)23*bf2c3715SXin Li template<typename MatrixType> void nomalloc(const MatrixType& m)
24*bf2c3715SXin Li {
25*bf2c3715SXin Li   /* this test check no dynamic memory allocation are issued with fixed-size matrices
26*bf2c3715SXin Li   */
27*bf2c3715SXin Li   typedef typename MatrixType::Scalar Scalar;
28*bf2c3715SXin Li 
29*bf2c3715SXin Li   Index rows = m.rows();
30*bf2c3715SXin Li   Index cols = m.cols();
31*bf2c3715SXin Li 
32*bf2c3715SXin Li   MatrixType m1 = MatrixType::Random(rows, cols),
33*bf2c3715SXin Li              m2 = MatrixType::Random(rows, cols),
34*bf2c3715SXin Li              m3(rows, cols);
35*bf2c3715SXin Li 
36*bf2c3715SXin Li   Scalar s1 = internal::random<Scalar>();
37*bf2c3715SXin Li 
38*bf2c3715SXin Li   Index r = internal::random<Index>(0, rows-1),
39*bf2c3715SXin Li         c = internal::random<Index>(0, cols-1);
40*bf2c3715SXin Li 
41*bf2c3715SXin Li   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2);
42*bf2c3715SXin Li   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
43*bf2c3715SXin Li   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
44*bf2c3715SXin Li   VERIFY_IS_APPROX((m1*m1.transpose())*m2,  m1*(m1.transpose()*m2));
45*bf2c3715SXin Li 
46*bf2c3715SXin Li   m2.col(0).noalias() = m1 * m1.col(0);
47*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint() * m1.col(0);
48*bf2c3715SXin Li   m2.col(0).noalias() -= m1 * m1.row(0).adjoint();
49*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint();
50*bf2c3715SXin Li 
51*bf2c3715SXin Li   m2.row(0).noalias() = m1.row(0) * m1;
52*bf2c3715SXin Li   m2.row(0).noalias() -= m1.row(0) * m1.adjoint();
53*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1;
54*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint();
55*bf2c3715SXin Li   VERIFY_IS_APPROX(m2,m2);
56*bf2c3715SXin Li 
57*bf2c3715SXin Li   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0);
58*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0);
59*bf2c3715SXin Li   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint();
60*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint();
61*bf2c3715SXin Li 
62*bf2c3715SXin Li   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>();
63*bf2c3715SXin Li   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>();
64*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>();
65*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>();
66*bf2c3715SXin Li   VERIFY_IS_APPROX(m2,m2);
67*bf2c3715SXin Li 
68*bf2c3715SXin Li   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0);
69*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0);
70*bf2c3715SXin Li   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint();
71*bf2c3715SXin Li   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint();
72*bf2c3715SXin Li 
73*bf2c3715SXin Li   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>();
74*bf2c3715SXin Li   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>();
75*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>();
76*bf2c3715SXin Li   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>();
77*bf2c3715SXin Li   VERIFY_IS_APPROX(m2,m2);
78*bf2c3715SXin Li 
79*bf2c3715SXin Li   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0),-1);
80*bf2c3715SXin Li   m2.template selfadjointView<Upper>().rankUpdate(m1.row(0),-1);
81*bf2c3715SXin Li   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0)); // rank-2
82*bf2c3715SXin Li 
83*bf2c3715SXin Li   // The following fancy matrix-matrix products are not safe yet regarding static allocation
84*bf2c3715SXin Li   m2.template selfadjointView<Lower>().rankUpdate(m1);
85*bf2c3715SXin Li   m2 += m2.template triangularView<Upper>() * m1;
86*bf2c3715SXin Li   m2.template triangularView<Upper>() = m2 * m2;
87*bf2c3715SXin Li   m1 += m1.template selfadjointView<Lower>() * m2;
88*bf2c3715SXin Li   VERIFY_IS_APPROX(m2,m2);
89*bf2c3715SXin Li }
90*bf2c3715SXin Li 
91*bf2c3715SXin Li template<typename Scalar>
ctms_decompositions()92*bf2c3715SXin Li void ctms_decompositions()
93*bf2c3715SXin Li {
94*bf2c3715SXin Li   const int maxSize = 16;
95*bf2c3715SXin Li   const int size    = 12;
96*bf2c3715SXin Li 
97*bf2c3715SXin Li   typedef Eigen::Matrix<Scalar,
98*bf2c3715SXin Li                         Eigen::Dynamic, Eigen::Dynamic,
99*bf2c3715SXin Li                         0,
100*bf2c3715SXin Li                         maxSize, maxSize> Matrix;
101*bf2c3715SXin Li 
102*bf2c3715SXin Li   typedef Eigen::Matrix<Scalar,
103*bf2c3715SXin Li                         Eigen::Dynamic, 1,
104*bf2c3715SXin Li                         0,
105*bf2c3715SXin Li                         maxSize, 1> Vector;
106*bf2c3715SXin Li 
107*bf2c3715SXin Li   typedef Eigen::Matrix<std::complex<Scalar>,
108*bf2c3715SXin Li                         Eigen::Dynamic, Eigen::Dynamic,
109*bf2c3715SXin Li                         0,
110*bf2c3715SXin Li                         maxSize, maxSize> ComplexMatrix;
111*bf2c3715SXin Li 
112*bf2c3715SXin Li   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size));
113*bf2c3715SXin Li   Matrix X(size,size);
114*bf2c3715SXin Li   const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
115*bf2c3715SXin Li   const Matrix saA = A.adjoint() * A;
116*bf2c3715SXin Li   const Vector b(Vector::Random(size));
117*bf2c3715SXin Li   Vector x(size);
118*bf2c3715SXin Li 
119*bf2c3715SXin Li   // Cholesky module
120*bf2c3715SXin Li   Eigen::LLT<Matrix>  LLT;  LLT.compute(A);
121*bf2c3715SXin Li   X = LLT.solve(B);
122*bf2c3715SXin Li   x = LLT.solve(b);
123*bf2c3715SXin Li   Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
124*bf2c3715SXin Li   X = LDLT.solve(B);
125*bf2c3715SXin Li   x = LDLT.solve(b);
126*bf2c3715SXin Li 
127*bf2c3715SXin Li   // Eigenvalues module
128*bf2c3715SXin Li   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp;        hessDecomp.compute(complexA);
129*bf2c3715SXin Li   Eigen::ComplexSchur<ComplexMatrix>            cSchur(size);      cSchur.compute(complexA);
130*bf2c3715SXin Li   Eigen::ComplexEigenSolver<ComplexMatrix>      cEigSolver;        cEigSolver.compute(complexA);
131*bf2c3715SXin Li   Eigen::EigenSolver<Matrix>                    eigSolver;         eigSolver.compute(A);
132*bf2c3715SXin Li   Eigen::SelfAdjointEigenSolver<Matrix>         saEigSolver(size); saEigSolver.compute(saA);
133*bf2c3715SXin Li   Eigen::Tridiagonalization<Matrix>             tridiag;           tridiag.compute(saA);
134*bf2c3715SXin Li 
135*bf2c3715SXin Li   // LU module
136*bf2c3715SXin Li   Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
137*bf2c3715SXin Li   X = ppLU.solve(B);
138*bf2c3715SXin Li   x = ppLU.solve(b);
139*bf2c3715SXin Li   Eigen::FullPivLU<Matrix>    fpLU; fpLU.compute(A);
140*bf2c3715SXin Li   X = fpLU.solve(B);
141*bf2c3715SXin Li   x = fpLU.solve(b);
142*bf2c3715SXin Li 
143*bf2c3715SXin Li   // QR module
144*bf2c3715SXin Li   Eigen::HouseholderQR<Matrix>        hQR;  hQR.compute(A);
145*bf2c3715SXin Li   X = hQR.solve(B);
146*bf2c3715SXin Li   x = hQR.solve(b);
147*bf2c3715SXin Li   Eigen::ColPivHouseholderQR<Matrix>  cpQR; cpQR.compute(A);
148*bf2c3715SXin Li   X = cpQR.solve(B);
149*bf2c3715SXin Li   x = cpQR.solve(b);
150*bf2c3715SXin Li   Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
151*bf2c3715SXin Li   // FIXME X = fpQR.solve(B);
152*bf2c3715SXin Li   x = fpQR.solve(b);
153*bf2c3715SXin Li 
154*bf2c3715SXin Li   // SVD module
155*bf2c3715SXin Li   Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A, ComputeFullU | ComputeFullV);
156*bf2c3715SXin Li }
157*bf2c3715SXin Li 
test_zerosized()158*bf2c3715SXin Li void test_zerosized() {
159*bf2c3715SXin Li   // default constructors:
160*bf2c3715SXin Li   Eigen::MatrixXd A;
161*bf2c3715SXin Li   Eigen::VectorXd v;
162*bf2c3715SXin Li   // explicit zero-sized:
163*bf2c3715SXin Li   Eigen::ArrayXXd A0(0,0);
164*bf2c3715SXin Li   Eigen::ArrayXd v0(0);
165*bf2c3715SXin Li 
166*bf2c3715SXin Li   // assigning empty objects to each other:
167*bf2c3715SXin Li   A=A0;
168*bf2c3715SXin Li   v=v0;
169*bf2c3715SXin Li }
170*bf2c3715SXin Li 
test_reference(const MatrixType & m)171*bf2c3715SXin Li template<typename MatrixType> void test_reference(const MatrixType& m) {
172*bf2c3715SXin Li   typedef typename MatrixType::Scalar Scalar;
173*bf2c3715SXin Li   enum { Flag          =  MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
174*bf2c3715SXin Li   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor};
175*bf2c3715SXin Li   Index rows = m.rows(), cols=m.cols();
176*bf2c3715SXin Li   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag         > MatrixX;
177*bf2c3715SXin Li   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT;
178*bf2c3715SXin Li   // Dynamic reference:
179*bf2c3715SXin Li   typedef Eigen::Ref<const MatrixX  > Ref;
180*bf2c3715SXin Li   typedef Eigen::Ref<const MatrixXT > RefT;
181*bf2c3715SXin Li 
182*bf2c3715SXin Li   Ref r1(m);
183*bf2c3715SXin Li   Ref r2(m.block(rows/3, cols/4, rows/2, cols/2));
184*bf2c3715SXin Li   RefT r3(m.transpose());
185*bf2c3715SXin Li   RefT r4(m.topLeftCorner(rows/2, cols/2).transpose());
186*bf2c3715SXin Li 
187*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(RefT r5(m));
188*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(Ref r6(m.transpose()));
189*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m));
190*bf2c3715SXin Li 
191*bf2c3715SXin Li   // Copy constructors shall also never malloc
192*bf2c3715SXin Li   Ref r8 = r1;
193*bf2c3715SXin Li   RefT r9 = r3;
194*bf2c3715SXin Li 
195*bf2c3715SXin Li   // Initializing from a compatible Ref shall also never malloc
196*bf2c3715SXin Li   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10=r8, r11=m;
197*bf2c3715SXin Li 
198*bf2c3715SXin Li   // Initializing from an incompatible Ref will malloc:
199*bf2c3715SXin Li   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned;
200*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(RefAligned r12=r10);
201*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(Ref r13=r10); // r10 has more dynamic strides
202*bf2c3715SXin Li 
203*bf2c3715SXin Li }
204*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(nomalloc)205*bf2c3715SXin Li EIGEN_DECLARE_TEST(nomalloc)
206*bf2c3715SXin Li {
207*bf2c3715SXin Li   // create some dynamic objects
208*bf2c3715SXin Li   Eigen::MatrixXd M1 = MatrixXd::Random(3,3);
209*bf2c3715SXin Li   Ref<const MatrixXd> R1 = 2.0*M1; // Ref requires temporary
210*bf2c3715SXin Li 
211*bf2c3715SXin Li   // from here on prohibit malloc:
212*bf2c3715SXin Li   Eigen::internal::set_is_malloc_allowed(false);
213*bf2c3715SXin Li 
214*bf2c3715SXin Li   // check that our operator new is indeed called:
215*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
216*bf2c3715SXin Li   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
217*bf2c3715SXin Li   CALL_SUBTEST_2(nomalloc(Matrix4d()) );
218*bf2c3715SXin Li   CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
219*bf2c3715SXin Li 
220*bf2c3715SXin Li   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
221*bf2c3715SXin Li   CALL_SUBTEST_4(ctms_decompositions<float>());
222*bf2c3715SXin Li 
223*bf2c3715SXin Li   CALL_SUBTEST_5(test_zerosized());
224*bf2c3715SXin Li 
225*bf2c3715SXin Li   CALL_SUBTEST_6(test_reference(Matrix<float,32,32>()));
226*bf2c3715SXin Li   CALL_SUBTEST_7(test_reference(R1));
227*bf2c3715SXin Li   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2));
228*bf2c3715SXin Li }
229