1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2009 Benoit Jacob <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li #include <Eigen/QR>
13*bf2c3715SXin Li #include <Eigen/SVD>
14*bf2c3715SXin Li #include "solverbase.h"
15*bf2c3715SXin Li
16*bf2c3715SXin Li template <typename MatrixType>
cod()17*bf2c3715SXin Li void cod() {
18*bf2c3715SXin Li STATIC_CHECK(( internal::is_same<typename CompleteOrthogonalDecomposition<MatrixType>::StorageIndex,int>::value ));
19*bf2c3715SXin Li
20*bf2c3715SXin Li Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
21*bf2c3715SXin Li Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
22*bf2c3715SXin Li Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
23*bf2c3715SXin Li Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
24*bf2c3715SXin Li
25*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
26*bf2c3715SXin Li typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
27*bf2c3715SXin Li MatrixType::RowsAtCompileTime>
28*bf2c3715SXin Li MatrixQType;
29*bf2c3715SXin Li MatrixType matrix;
30*bf2c3715SXin Li createRandomPIMatrixOfRank(rank, rows, cols, matrix);
31*bf2c3715SXin Li CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
32*bf2c3715SXin Li VERIFY(rank == cod.rank());
33*bf2c3715SXin Li VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
34*bf2c3715SXin Li VERIFY(!cod.isInjective());
35*bf2c3715SXin Li VERIFY(!cod.isInvertible());
36*bf2c3715SXin Li VERIFY(!cod.isSurjective());
37*bf2c3715SXin Li
38*bf2c3715SXin Li MatrixQType q = cod.householderQ();
39*bf2c3715SXin Li VERIFY_IS_UNITARY(q);
40*bf2c3715SXin Li
41*bf2c3715SXin Li MatrixType z = cod.matrixZ();
42*bf2c3715SXin Li VERIFY_IS_UNITARY(z);
43*bf2c3715SXin Li
44*bf2c3715SXin Li MatrixType t;
45*bf2c3715SXin Li t.setZero(rows, cols);
46*bf2c3715SXin Li t.topLeftCorner(rank, rank) =
47*bf2c3715SXin Li cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
48*bf2c3715SXin Li
49*bf2c3715SXin Li MatrixType c = q * t * z * cod.colsPermutation().inverse();
50*bf2c3715SXin Li VERIFY_IS_APPROX(matrix, c);
51*bf2c3715SXin Li
52*bf2c3715SXin Li check_solverbase<MatrixType, MatrixType>(matrix, cod, rows, cols, cols2);
53*bf2c3715SXin Li
54*bf2c3715SXin Li // Verify that we get the same minimum-norm solution as the SVD.
55*bf2c3715SXin Li MatrixType exact_solution = MatrixType::Random(cols, cols2);
56*bf2c3715SXin Li MatrixType rhs = matrix * exact_solution;
57*bf2c3715SXin Li MatrixType cod_solution = cod.solve(rhs);
58*bf2c3715SXin Li JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
59*bf2c3715SXin Li MatrixType svd_solution = svd.solve(rhs);
60*bf2c3715SXin Li VERIFY_IS_APPROX(cod_solution, svd_solution);
61*bf2c3715SXin Li
62*bf2c3715SXin Li MatrixType pinv = cod.pseudoInverse();
63*bf2c3715SXin Li VERIFY_IS_APPROX(cod_solution, pinv * rhs);
64*bf2c3715SXin Li }
65*bf2c3715SXin Li
66*bf2c3715SXin Li template <typename MatrixType, int Cols2>
cod_fixedsize()67*bf2c3715SXin Li void cod_fixedsize() {
68*bf2c3715SXin Li enum {
69*bf2c3715SXin Li Rows = MatrixType::RowsAtCompileTime,
70*bf2c3715SXin Li Cols = MatrixType::ColsAtCompileTime
71*bf2c3715SXin Li };
72*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
73*bf2c3715SXin Li typedef CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > COD;
74*bf2c3715SXin Li int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
75*bf2c3715SXin Li Matrix<Scalar, Rows, Cols> matrix;
76*bf2c3715SXin Li createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
77*bf2c3715SXin Li COD cod(matrix);
78*bf2c3715SXin Li VERIFY(rank == cod.rank());
79*bf2c3715SXin Li VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
80*bf2c3715SXin Li VERIFY(cod.isInjective() == (rank == Rows));
81*bf2c3715SXin Li VERIFY(cod.isSurjective() == (rank == Cols));
82*bf2c3715SXin Li VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
83*bf2c3715SXin Li
84*bf2c3715SXin Li check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(matrix, cod, Rows, Cols, Cols2);
85*bf2c3715SXin Li
86*bf2c3715SXin Li // Verify that we get the same minimum-norm solution as the SVD.
87*bf2c3715SXin Li Matrix<Scalar, Cols, Cols2> exact_solution;
88*bf2c3715SXin Li exact_solution.setRandom(Cols, Cols2);
89*bf2c3715SXin Li Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
90*bf2c3715SXin Li Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
91*bf2c3715SXin Li JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
92*bf2c3715SXin Li Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
93*bf2c3715SXin Li VERIFY_IS_APPROX(cod_solution, svd_solution);
94*bf2c3715SXin Li
95*bf2c3715SXin Li typename Inverse<COD>::PlainObject pinv = cod.pseudoInverse();
96*bf2c3715SXin Li VERIFY_IS_APPROX(cod_solution, pinv * rhs);
97*bf2c3715SXin Li }
98*bf2c3715SXin Li
qr()99*bf2c3715SXin Li template<typename MatrixType> void qr()
100*bf2c3715SXin Li {
101*bf2c3715SXin Li using std::sqrt;
102*bf2c3715SXin Li
103*bf2c3715SXin Li STATIC_CHECK(( internal::is_same<typename ColPivHouseholderQR<MatrixType>::StorageIndex,int>::value ));
104*bf2c3715SXin Li
105*bf2c3715SXin Li Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
106*bf2c3715SXin Li Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
107*bf2c3715SXin Li
108*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
109*bf2c3715SXin Li typedef typename MatrixType::RealScalar RealScalar;
110*bf2c3715SXin Li typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
111*bf2c3715SXin Li MatrixType m1;
112*bf2c3715SXin Li createRandomPIMatrixOfRank(rank,rows,cols,m1);
113*bf2c3715SXin Li ColPivHouseholderQR<MatrixType> qr(m1);
114*bf2c3715SXin Li VERIFY_IS_EQUAL(rank, qr.rank());
115*bf2c3715SXin Li VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
116*bf2c3715SXin Li VERIFY(!qr.isInjective());
117*bf2c3715SXin Li VERIFY(!qr.isInvertible());
118*bf2c3715SXin Li VERIFY(!qr.isSurjective());
119*bf2c3715SXin Li
120*bf2c3715SXin Li MatrixQType q = qr.householderQ();
121*bf2c3715SXin Li VERIFY_IS_UNITARY(q);
122*bf2c3715SXin Li
123*bf2c3715SXin Li MatrixType r = qr.matrixQR().template triangularView<Upper>();
124*bf2c3715SXin Li MatrixType c = q * r * qr.colsPermutation().inverse();
125*bf2c3715SXin Li VERIFY_IS_APPROX(m1, c);
126*bf2c3715SXin Li
127*bf2c3715SXin Li // Verify that the absolute value of the diagonal elements in R are
128*bf2c3715SXin Li // non-increasing until they reach the singularity threshold.
129*bf2c3715SXin Li RealScalar threshold =
130*bf2c3715SXin Li sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
131*bf2c3715SXin Li for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
132*bf2c3715SXin Li RealScalar x = numext::abs(r(i, i));
133*bf2c3715SXin Li RealScalar y = numext::abs(r(i + 1, i + 1));
134*bf2c3715SXin Li if (x < threshold && y < threshold) continue;
135*bf2c3715SXin Li if (!test_isApproxOrLessThan(y, x)) {
136*bf2c3715SXin Li for (Index j = 0; j < (std::min)(rows, cols); ++j) {
137*bf2c3715SXin Li std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
138*bf2c3715SXin Li }
139*bf2c3715SXin Li std::cout << "Failure at i=" << i << ", rank=" << rank
140*bf2c3715SXin Li << ", threshold=" << threshold << std::endl;
141*bf2c3715SXin Li }
142*bf2c3715SXin Li VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
143*bf2c3715SXin Li }
144*bf2c3715SXin Li
145*bf2c3715SXin Li check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2);
146*bf2c3715SXin Li
147*bf2c3715SXin Li {
148*bf2c3715SXin Li MatrixType m2, m3;
149*bf2c3715SXin Li Index size = rows;
150*bf2c3715SXin Li do {
151*bf2c3715SXin Li m1 = MatrixType::Random(size,size);
152*bf2c3715SXin Li qr.compute(m1);
153*bf2c3715SXin Li } while(!qr.isInvertible());
154*bf2c3715SXin Li MatrixType m1_inv = qr.inverse();
155*bf2c3715SXin Li m3 = m1 * MatrixType::Random(size,cols2);
156*bf2c3715SXin Li m2 = qr.solve(m3);
157*bf2c3715SXin Li VERIFY_IS_APPROX(m2, m1_inv*m3);
158*bf2c3715SXin Li }
159*bf2c3715SXin Li }
160*bf2c3715SXin Li
qr_fixedsize()161*bf2c3715SXin Li template<typename MatrixType, int Cols2> void qr_fixedsize()
162*bf2c3715SXin Li {
163*bf2c3715SXin Li using std::sqrt;
164*bf2c3715SXin Li using std::abs;
165*bf2c3715SXin Li enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
166*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
167*bf2c3715SXin Li typedef typename MatrixType::RealScalar RealScalar;
168*bf2c3715SXin Li int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
169*bf2c3715SXin Li Matrix<Scalar,Rows,Cols> m1;
170*bf2c3715SXin Li createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
171*bf2c3715SXin Li ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
172*bf2c3715SXin Li VERIFY_IS_EQUAL(rank, qr.rank());
173*bf2c3715SXin Li VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
174*bf2c3715SXin Li VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
175*bf2c3715SXin Li VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
176*bf2c3715SXin Li VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
177*bf2c3715SXin Li
178*bf2c3715SXin Li Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
179*bf2c3715SXin Li Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
180*bf2c3715SXin Li VERIFY_IS_APPROX(m1, c);
181*bf2c3715SXin Li
182*bf2c3715SXin Li check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
183*bf2c3715SXin Li
184*bf2c3715SXin Li // Verify that the absolute value of the diagonal elements in R are
185*bf2c3715SXin Li // non-increasing until they reache the singularity threshold.
186*bf2c3715SXin Li RealScalar threshold =
187*bf2c3715SXin Li sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
188*bf2c3715SXin Li for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
189*bf2c3715SXin Li RealScalar x = numext::abs(r(i, i));
190*bf2c3715SXin Li RealScalar y = numext::abs(r(i + 1, i + 1));
191*bf2c3715SXin Li if (x < threshold && y < threshold) continue;
192*bf2c3715SXin Li if (!test_isApproxOrLessThan(y, x)) {
193*bf2c3715SXin Li for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
194*bf2c3715SXin Li std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
195*bf2c3715SXin Li }
196*bf2c3715SXin Li std::cout << "Failure at i=" << i << ", rank=" << rank
197*bf2c3715SXin Li << ", threshold=" << threshold << std::endl;
198*bf2c3715SXin Li }
199*bf2c3715SXin Li VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
200*bf2c3715SXin Li }
201*bf2c3715SXin Li }
202*bf2c3715SXin Li
203*bf2c3715SXin Li // This test is meant to verify that pivots are chosen such that
204*bf2c3715SXin Li // even for a graded matrix, the diagonal of R falls of roughly
205*bf2c3715SXin Li // monotonically until it reaches the threshold for singularity.
206*bf2c3715SXin Li // We use the so-called Kahan matrix, which is a famous counter-example
207*bf2c3715SXin Li // for rank-revealing QR. See
208*bf2c3715SXin Li // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
209*bf2c3715SXin Li // page 3 for more detail.
qr_kahan_matrix()210*bf2c3715SXin Li template<typename MatrixType> void qr_kahan_matrix()
211*bf2c3715SXin Li {
212*bf2c3715SXin Li using std::sqrt;
213*bf2c3715SXin Li using std::abs;
214*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
215*bf2c3715SXin Li typedef typename MatrixType::RealScalar RealScalar;
216*bf2c3715SXin Li
217*bf2c3715SXin Li Index rows = 300, cols = rows;
218*bf2c3715SXin Li
219*bf2c3715SXin Li MatrixType m1;
220*bf2c3715SXin Li m1.setZero(rows,cols);
221*bf2c3715SXin Li RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
222*bf2c3715SXin Li RealScalar c = std::sqrt(1 - s*s);
223*bf2c3715SXin Li RealScalar pow_s_i(1.0); // pow(s,i)
224*bf2c3715SXin Li for (Index i = 0; i < rows; ++i) {
225*bf2c3715SXin Li m1(i, i) = pow_s_i;
226*bf2c3715SXin Li m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
227*bf2c3715SXin Li pow_s_i *= s;
228*bf2c3715SXin Li }
229*bf2c3715SXin Li m1 = (m1 + m1.transpose()).eval();
230*bf2c3715SXin Li ColPivHouseholderQR<MatrixType> qr(m1);
231*bf2c3715SXin Li MatrixType r = qr.matrixQR().template triangularView<Upper>();
232*bf2c3715SXin Li
233*bf2c3715SXin Li RealScalar threshold =
234*bf2c3715SXin Li std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
235*bf2c3715SXin Li for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
236*bf2c3715SXin Li RealScalar x = numext::abs(r(i, i));
237*bf2c3715SXin Li RealScalar y = numext::abs(r(i + 1, i + 1));
238*bf2c3715SXin Li if (x < threshold && y < threshold) continue;
239*bf2c3715SXin Li if (!test_isApproxOrLessThan(y, x)) {
240*bf2c3715SXin Li for (Index j = 0; j < (std::min)(rows, cols); ++j) {
241*bf2c3715SXin Li std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
242*bf2c3715SXin Li }
243*bf2c3715SXin Li std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
244*bf2c3715SXin Li << ", threshold=" << threshold << std::endl;
245*bf2c3715SXin Li }
246*bf2c3715SXin Li VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
247*bf2c3715SXin Li }
248*bf2c3715SXin Li }
249*bf2c3715SXin Li
qr_invertible()250*bf2c3715SXin Li template<typename MatrixType> void qr_invertible()
251*bf2c3715SXin Li {
252*bf2c3715SXin Li using std::log;
253*bf2c3715SXin Li using std::abs;
254*bf2c3715SXin Li typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
255*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
256*bf2c3715SXin Li
257*bf2c3715SXin Li int size = internal::random<int>(10,50);
258*bf2c3715SXin Li
259*bf2c3715SXin Li MatrixType m1(size, size), m2(size, size), m3(size, size);
260*bf2c3715SXin Li m1 = MatrixType::Random(size,size);
261*bf2c3715SXin Li
262*bf2c3715SXin Li if (internal::is_same<RealScalar,float>::value)
263*bf2c3715SXin Li {
264*bf2c3715SXin Li // let's build a matrix more stable to inverse
265*bf2c3715SXin Li MatrixType a = MatrixType::Random(size,size*2);
266*bf2c3715SXin Li m1 += a * a.adjoint();
267*bf2c3715SXin Li }
268*bf2c3715SXin Li
269*bf2c3715SXin Li ColPivHouseholderQR<MatrixType> qr(m1);
270*bf2c3715SXin Li
271*bf2c3715SXin Li check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
272*bf2c3715SXin Li
273*bf2c3715SXin Li // now construct a matrix with prescribed determinant
274*bf2c3715SXin Li m1.setZero();
275*bf2c3715SXin Li for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
276*bf2c3715SXin Li RealScalar absdet = abs(m1.diagonal().prod());
277*bf2c3715SXin Li m3 = qr.householderQ(); // get a unitary
278*bf2c3715SXin Li m1 = m3 * m1 * m3;
279*bf2c3715SXin Li qr.compute(m1);
280*bf2c3715SXin Li VERIFY_IS_APPROX(absdet, qr.absDeterminant());
281*bf2c3715SXin Li VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
282*bf2c3715SXin Li }
283*bf2c3715SXin Li
qr_verify_assert()284*bf2c3715SXin Li template<typename MatrixType> void qr_verify_assert()
285*bf2c3715SXin Li {
286*bf2c3715SXin Li MatrixType tmp;
287*bf2c3715SXin Li
288*bf2c3715SXin Li ColPivHouseholderQR<MatrixType> qr;
289*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.matrixQR())
290*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.solve(tmp))
291*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
292*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
293*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.householderQ())
294*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
295*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.isInjective())
296*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.isSurjective())
297*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.isInvertible())
298*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.inverse())
299*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.absDeterminant())
300*bf2c3715SXin Li VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
301*bf2c3715SXin Li }
302*bf2c3715SXin Li
cod_verify_assert()303*bf2c3715SXin Li template<typename MatrixType> void cod_verify_assert()
304*bf2c3715SXin Li {
305*bf2c3715SXin Li MatrixType tmp;
306*bf2c3715SXin Li
307*bf2c3715SXin Li CompleteOrthogonalDecomposition<MatrixType> cod;
308*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.matrixQTZ())
309*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.solve(tmp))
310*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.transpose().solve(tmp))
311*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.adjoint().solve(tmp))
312*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.householderQ())
313*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.dimensionOfKernel())
314*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.isInjective())
315*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.isSurjective())
316*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.isInvertible())
317*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.pseudoInverse())
318*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.absDeterminant())
319*bf2c3715SXin Li VERIFY_RAISES_ASSERT(cod.logAbsDeterminant())
320*bf2c3715SXin Li }
321*bf2c3715SXin Li
EIGEN_DECLARE_TEST(qr_colpivoting)322*bf2c3715SXin Li EIGEN_DECLARE_TEST(qr_colpivoting)
323*bf2c3715SXin Li {
324*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
325*bf2c3715SXin Li CALL_SUBTEST_1( qr<MatrixXf>() );
326*bf2c3715SXin Li CALL_SUBTEST_2( qr<MatrixXd>() );
327*bf2c3715SXin Li CALL_SUBTEST_3( qr<MatrixXcd>() );
328*bf2c3715SXin Li CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
329*bf2c3715SXin Li CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
330*bf2c3715SXin Li CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
331*bf2c3715SXin Li }
332*bf2c3715SXin Li
333*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
334*bf2c3715SXin Li CALL_SUBTEST_1( cod<MatrixXf>() );
335*bf2c3715SXin Li CALL_SUBTEST_2( cod<MatrixXd>() );
336*bf2c3715SXin Li CALL_SUBTEST_3( cod<MatrixXcd>() );
337*bf2c3715SXin Li CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
338*bf2c3715SXin Li CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
339*bf2c3715SXin Li CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
340*bf2c3715SXin Li }
341*bf2c3715SXin Li
342*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
343*bf2c3715SXin Li CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
344*bf2c3715SXin Li CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
345*bf2c3715SXin Li CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
346*bf2c3715SXin Li CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
347*bf2c3715SXin Li }
348*bf2c3715SXin Li
349*bf2c3715SXin Li CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
350*bf2c3715SXin Li CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
351*bf2c3715SXin Li CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
352*bf2c3715SXin Li CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
353*bf2c3715SXin Li CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
354*bf2c3715SXin Li CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
355*bf2c3715SXin Li
356*bf2c3715SXin Li CALL_SUBTEST_7(cod_verify_assert<Matrix3f>());
357*bf2c3715SXin Li CALL_SUBTEST_8(cod_verify_assert<Matrix3d>());
358*bf2c3715SXin Li CALL_SUBTEST_1(cod_verify_assert<MatrixXf>());
359*bf2c3715SXin Li CALL_SUBTEST_2(cod_verify_assert<MatrixXd>());
360*bf2c3715SXin Li CALL_SUBTEST_6(cod_verify_assert<MatrixXcf>());
361*bf2c3715SXin Li CALL_SUBTEST_3(cod_verify_assert<MatrixXcd>());
362*bf2c3715SXin Li
363*bf2c3715SXin Li // Test problem size constructors
364*bf2c3715SXin Li CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
365*bf2c3715SXin Li
366*bf2c3715SXin Li CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
367*bf2c3715SXin Li CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
368*bf2c3715SXin Li }
369