xref: /aosp_15_r20/external/eigen/test/schur_complex.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2010,2012 Jitse Niesen <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <limits>
12*bf2c3715SXin Li #include <Eigen/Eigenvalues>
13*bf2c3715SXin Li 
schur(int size=MatrixType::ColsAtCompileTime)14*bf2c3715SXin Li template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
15*bf2c3715SXin Li {
16*bf2c3715SXin Li   typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
17*bf2c3715SXin Li   typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
18*bf2c3715SXin Li 
19*bf2c3715SXin Li   // Test basic functionality: T is triangular and A = U T U*
20*bf2c3715SXin Li   for(int counter = 0; counter < g_repeat; ++counter) {
21*bf2c3715SXin Li     MatrixType A = MatrixType::Random(size, size);
22*bf2c3715SXin Li     ComplexSchur<MatrixType> schurOfA(A);
23*bf2c3715SXin Li     VERIFY_IS_EQUAL(schurOfA.info(), Success);
24*bf2c3715SXin Li     ComplexMatrixType U = schurOfA.matrixU();
25*bf2c3715SXin Li     ComplexMatrixType T = schurOfA.matrixT();
26*bf2c3715SXin Li     for(int row = 1; row < size; ++row) {
27*bf2c3715SXin Li       for(int col = 0; col < row; ++col) {
28*bf2c3715SXin Li         VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
29*bf2c3715SXin Li       }
30*bf2c3715SXin Li     }
31*bf2c3715SXin Li     VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
32*bf2c3715SXin Li   }
33*bf2c3715SXin Li 
34*bf2c3715SXin Li   // Test asserts when not initialized
35*bf2c3715SXin Li   ComplexSchur<MatrixType> csUninitialized;
36*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
37*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
38*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(csUninitialized.info());
39*bf2c3715SXin Li 
40*bf2c3715SXin Li   // Test whether compute() and constructor returns same result
41*bf2c3715SXin Li   MatrixType A = MatrixType::Random(size, size);
42*bf2c3715SXin Li   ComplexSchur<MatrixType> cs1;
43*bf2c3715SXin Li   cs1.compute(A);
44*bf2c3715SXin Li   ComplexSchur<MatrixType> cs2(A);
45*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs1.info(), Success);
46*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs2.info(), Success);
47*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
48*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
49*bf2c3715SXin Li 
50*bf2c3715SXin Li   // Test maximum number of iterations
51*bf2c3715SXin Li   ComplexSchur<MatrixType> cs3;
52*bf2c3715SXin Li   cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
53*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.info(), Success);
54*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
55*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
56*bf2c3715SXin Li   cs3.setMaxIterations(1).compute(A);
57*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
58*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
59*bf2c3715SXin Li 
60*bf2c3715SXin Li   MatrixType Atriangular = A;
61*bf2c3715SXin Li   Atriangular.template triangularView<StrictlyLower>().setZero();
62*bf2c3715SXin Li   cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
63*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.info(), Success);
64*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
65*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
66*bf2c3715SXin Li 
67*bf2c3715SXin Li   // Test computation of only T, not U
68*bf2c3715SXin Li   ComplexSchur<MatrixType> csOnlyT(A, false);
69*bf2c3715SXin Li   VERIFY_IS_EQUAL(csOnlyT.info(), Success);
70*bf2c3715SXin Li   VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
71*bf2c3715SXin Li   VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
72*bf2c3715SXin Li 
73*bf2c3715SXin Li   if (size > 1 && size < 20)
74*bf2c3715SXin Li   {
75*bf2c3715SXin Li     // Test matrix with NaN
76*bf2c3715SXin Li     A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
77*bf2c3715SXin Li     ComplexSchur<MatrixType> csNaN(A);
78*bf2c3715SXin Li     VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
79*bf2c3715SXin Li   }
80*bf2c3715SXin Li }
81*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(schur_complex)82*bf2c3715SXin Li EIGEN_DECLARE_TEST(schur_complex)
83*bf2c3715SXin Li {
84*bf2c3715SXin Li   CALL_SUBTEST_1(( schur<Matrix4cd>() ));
85*bf2c3715SXin Li   CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
86*bf2c3715SXin Li   CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
87*bf2c3715SXin Li   CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
88*bf2c3715SXin Li 
89*bf2c3715SXin Li   // Test problem size constructors
90*bf2c3715SXin Li   CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
91*bf2c3715SXin Li }
92