1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2012 Desire Nuentsa Wakam <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2014 Gael Guennebaud <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li #include "sparse.h"
10*bf2c3715SXin Li #include <Eigen/SparseQR>
11*bf2c3715SXin Li
12*bf2c3715SXin Li template<typename MatrixType,typename DenseMat>
generate_sparse_rectangular_problem(MatrixType & A,DenseMat & dA,int maxRows=300,int maxCols=150)13*bf2c3715SXin Li int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150)
14*bf2c3715SXin Li {
15*bf2c3715SXin Li eigen_assert(maxRows >= maxCols);
16*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
17*bf2c3715SXin Li int rows = internal::random<int>(1,maxRows);
18*bf2c3715SXin Li int cols = internal::random<int>(1,maxCols);
19*bf2c3715SXin Li double density = (std::max)(8./(rows*cols), 0.01);
20*bf2c3715SXin Li
21*bf2c3715SXin Li A.resize(rows,cols);
22*bf2c3715SXin Li dA.resize(rows,cols);
23*bf2c3715SXin Li initSparse<Scalar>(density, dA, A,ForceNonZeroDiag);
24*bf2c3715SXin Li A.makeCompressed();
25*bf2c3715SXin Li int nop = internal::random<int>(0, internal::random<double>(0,1) > 0.5 ? cols/2 : 0);
26*bf2c3715SXin Li for(int k=0; k<nop; ++k)
27*bf2c3715SXin Li {
28*bf2c3715SXin Li int j0 = internal::random<int>(0,cols-1);
29*bf2c3715SXin Li int j1 = internal::random<int>(0,cols-1);
30*bf2c3715SXin Li Scalar s = internal::random<Scalar>();
31*bf2c3715SXin Li A.col(j0) = s * A.col(j1);
32*bf2c3715SXin Li dA.col(j0) = s * dA.col(j1);
33*bf2c3715SXin Li }
34*bf2c3715SXin Li
35*bf2c3715SXin Li // if(rows<cols) {
36*bf2c3715SXin Li // A.conservativeResize(cols,cols);
37*bf2c3715SXin Li // dA.conservativeResize(cols,cols);
38*bf2c3715SXin Li // dA.bottomRows(cols-rows).setZero();
39*bf2c3715SXin Li // }
40*bf2c3715SXin Li
41*bf2c3715SXin Li return rows;
42*bf2c3715SXin Li }
43*bf2c3715SXin Li
test_sparseqr_scalar()44*bf2c3715SXin Li template<typename Scalar> void test_sparseqr_scalar()
45*bf2c3715SXin Li {
46*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar;
47*bf2c3715SXin Li typedef SparseMatrix<Scalar,ColMajor> MatrixType;
48*bf2c3715SXin Li typedef Matrix<Scalar,Dynamic,Dynamic> DenseMat;
49*bf2c3715SXin Li typedef Matrix<Scalar,Dynamic,1> DenseVector;
50*bf2c3715SXin Li MatrixType A;
51*bf2c3715SXin Li DenseMat dA;
52*bf2c3715SXin Li DenseVector refX,x,b;
53*bf2c3715SXin Li SparseQR<MatrixType, COLAMDOrdering<int> > solver;
54*bf2c3715SXin Li generate_sparse_rectangular_problem(A,dA);
55*bf2c3715SXin Li
56*bf2c3715SXin Li b = dA * DenseVector::Random(A.cols());
57*bf2c3715SXin Li solver.compute(A);
58*bf2c3715SXin Li
59*bf2c3715SXin Li // Q should be MxM
60*bf2c3715SXin Li VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows());
61*bf2c3715SXin Li VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows());
62*bf2c3715SXin Li
63*bf2c3715SXin Li // R should be MxN
64*bf2c3715SXin Li VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows());
65*bf2c3715SXin Li VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols());
66*bf2c3715SXin Li
67*bf2c3715SXin Li // Q and R can be multiplied
68*bf2c3715SXin Li DenseMat recoveredA = solver.matrixQ()
69*bf2c3715SXin Li * DenseMat(solver.matrixR().template triangularView<Upper>())
70*bf2c3715SXin Li * solver.colsPermutation().transpose();
71*bf2c3715SXin Li VERIFY_IS_EQUAL(recoveredA.rows(), A.rows());
72*bf2c3715SXin Li VERIFY_IS_EQUAL(recoveredA.cols(), A.cols());
73*bf2c3715SXin Li
74*bf2c3715SXin Li // and in the full rank case the original matrix is recovered
75*bf2c3715SXin Li if (solver.rank() == A.cols())
76*bf2c3715SXin Li {
77*bf2c3715SXin Li VERIFY_IS_APPROX(A, recoveredA);
78*bf2c3715SXin Li }
79*bf2c3715SXin Li
80*bf2c3715SXin Li if(internal::random<float>(0,1)>0.5f)
81*bf2c3715SXin Li solver.factorize(A); // this checks that calling analyzePattern is not needed if the pattern do not change.
82*bf2c3715SXin Li if (solver.info() != Success)
83*bf2c3715SXin Li {
84*bf2c3715SXin Li std::cerr << "sparse QR factorization failed\n";
85*bf2c3715SXin Li exit(0);
86*bf2c3715SXin Li return;
87*bf2c3715SXin Li }
88*bf2c3715SXin Li x = solver.solve(b);
89*bf2c3715SXin Li if (solver.info() != Success)
90*bf2c3715SXin Li {
91*bf2c3715SXin Li std::cerr << "sparse QR factorization failed\n";
92*bf2c3715SXin Li exit(0);
93*bf2c3715SXin Li return;
94*bf2c3715SXin Li }
95*bf2c3715SXin Li
96*bf2c3715SXin Li // Compare with a dense QR solver
97*bf2c3715SXin Li ColPivHouseholderQR<DenseMat> dqr(dA);
98*bf2c3715SXin Li refX = dqr.solve(b);
99*bf2c3715SXin Li
100*bf2c3715SXin Li bool rank_deficient = A.cols()>A.rows() || dqr.rank()<A.cols();
101*bf2c3715SXin Li if(rank_deficient)
102*bf2c3715SXin Li {
103*bf2c3715SXin Li // rank deficient problem -> we might have to increase the threshold
104*bf2c3715SXin Li // to get a correct solution.
105*bf2c3715SXin Li RealScalar th = RealScalar(20)*dA.colwise().norm().maxCoeff()*(A.rows()+A.cols()) * NumTraits<RealScalar>::epsilon();
106*bf2c3715SXin Li for(Index k=0; (k<16) && !test_isApprox(A*x,b); ++k)
107*bf2c3715SXin Li {
108*bf2c3715SXin Li th *= RealScalar(10);
109*bf2c3715SXin Li solver.setPivotThreshold(th);
110*bf2c3715SXin Li solver.compute(A);
111*bf2c3715SXin Li x = solver.solve(b);
112*bf2c3715SXin Li }
113*bf2c3715SXin Li }
114*bf2c3715SXin Li
115*bf2c3715SXin Li VERIFY_IS_APPROX(A * x, b);
116*bf2c3715SXin Li
117*bf2c3715SXin Li // For rank deficient problem, the estimated rank might
118*bf2c3715SXin Li // be slightly off, so let's only raise a warning in such cases.
119*bf2c3715SXin Li if(rank_deficient) ++g_test_level;
120*bf2c3715SXin Li VERIFY_IS_EQUAL(solver.rank(), dqr.rank());
121*bf2c3715SXin Li if(rank_deficient) --g_test_level;
122*bf2c3715SXin Li
123*bf2c3715SXin Li if(solver.rank()==A.cols()) // full rank
124*bf2c3715SXin Li VERIFY_IS_APPROX(x, refX);
125*bf2c3715SXin Li // else
126*bf2c3715SXin Li // VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() );
127*bf2c3715SXin Li
128*bf2c3715SXin Li // Compute explicitly the matrix Q
129*bf2c3715SXin Li MatrixType Q, QtQ, idM;
130*bf2c3715SXin Li Q = solver.matrixQ();
131*bf2c3715SXin Li //Check ||Q' * Q - I ||
132*bf2c3715SXin Li QtQ = Q * Q.adjoint();
133*bf2c3715SXin Li idM.resize(Q.rows(), Q.rows()); idM.setIdentity();
134*bf2c3715SXin Li VERIFY(idM.isApprox(QtQ));
135*bf2c3715SXin Li
136*bf2c3715SXin Li // Q to dense
137*bf2c3715SXin Li DenseMat dQ;
138*bf2c3715SXin Li dQ = solver.matrixQ();
139*bf2c3715SXin Li VERIFY_IS_APPROX(Q, dQ);
140*bf2c3715SXin Li }
EIGEN_DECLARE_TEST(sparseqr)141*bf2c3715SXin Li EIGEN_DECLARE_TEST(sparseqr)
142*bf2c3715SXin Li {
143*bf2c3715SXin Li for(int i=0; i<g_repeat; ++i)
144*bf2c3715SXin Li {
145*bf2c3715SXin Li CALL_SUBTEST_1(test_sparseqr_scalar<double>());
146*bf2c3715SXin Li CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >());
147*bf2c3715SXin Li }
148*bf2c3715SXin Li }
149*bf2c3715SXin Li
150