1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008 Benoit Jacob <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li
matrixVisitor(const MatrixType & p)12*bf2c3715SXin Li template<typename MatrixType> void matrixVisitor(const MatrixType& p)
13*bf2c3715SXin Li {
14*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
15*bf2c3715SXin Li
16*bf2c3715SXin Li Index rows = p.rows();
17*bf2c3715SXin Li Index cols = p.cols();
18*bf2c3715SXin Li
19*bf2c3715SXin Li // construct a random matrix where all coefficients are different
20*bf2c3715SXin Li MatrixType m;
21*bf2c3715SXin Li m = MatrixType::Random(rows, cols);
22*bf2c3715SXin Li for(Index i = 0; i < m.size(); i++)
23*bf2c3715SXin Li for(Index i2 = 0; i2 < i; i2++)
24*bf2c3715SXin Li while(m(i) == m(i2)) // yes, ==
25*bf2c3715SXin Li m(i) = internal::random<Scalar>();
26*bf2c3715SXin Li
27*bf2c3715SXin Li Scalar minc = Scalar(1000), maxc = Scalar(-1000);
28*bf2c3715SXin Li Index minrow=0,mincol=0,maxrow=0,maxcol=0;
29*bf2c3715SXin Li for(Index j = 0; j < cols; j++)
30*bf2c3715SXin Li for(Index i = 0; i < rows; i++)
31*bf2c3715SXin Li {
32*bf2c3715SXin Li if(m(i,j) < minc)
33*bf2c3715SXin Li {
34*bf2c3715SXin Li minc = m(i,j);
35*bf2c3715SXin Li minrow = i;
36*bf2c3715SXin Li mincol = j;
37*bf2c3715SXin Li }
38*bf2c3715SXin Li if(m(i,j) > maxc)
39*bf2c3715SXin Li {
40*bf2c3715SXin Li maxc = m(i,j);
41*bf2c3715SXin Li maxrow = i;
42*bf2c3715SXin Li maxcol = j;
43*bf2c3715SXin Li }
44*bf2c3715SXin Li }
45*bf2c3715SXin Li Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
46*bf2c3715SXin Li Scalar eigen_minc, eigen_maxc;
47*bf2c3715SXin Li eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
48*bf2c3715SXin Li eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
49*bf2c3715SXin Li VERIFY(minrow == eigen_minrow);
50*bf2c3715SXin Li VERIFY(maxrow == eigen_maxrow);
51*bf2c3715SXin Li VERIFY(mincol == eigen_mincol);
52*bf2c3715SXin Li VERIFY(maxcol == eigen_maxcol);
53*bf2c3715SXin Li VERIFY_IS_APPROX(minc, eigen_minc);
54*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, eigen_maxc);
55*bf2c3715SXin Li VERIFY_IS_APPROX(minc, m.minCoeff());
56*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, m.maxCoeff());
57*bf2c3715SXin Li
58*bf2c3715SXin Li eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
59*bf2c3715SXin Li Index maxrow2=0,maxcol2=0;
60*bf2c3715SXin Li eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
61*bf2c3715SXin Li VERIFY(maxrow2 == eigen_maxrow);
62*bf2c3715SXin Li VERIFY(maxcol2 == eigen_maxcol);
63*bf2c3715SXin Li
64*bf2c3715SXin Li if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
65*bf2c3715SXin Li // Test NaN propagation by replacing an element with NaN.
66*bf2c3715SXin Li bool stop = false;
67*bf2c3715SXin Li for (Index j = 0; j < cols && !stop; ++j) {
68*bf2c3715SXin Li for (Index i = 0; i < rows && !stop; ++i) {
69*bf2c3715SXin Li if (!(j == mincol && i == minrow) &&
70*bf2c3715SXin Li !(j == maxcol && i == maxrow)) {
71*bf2c3715SXin Li m(i,j) = NumTraits<Scalar>::quiet_NaN();
72*bf2c3715SXin Li stop = true;
73*bf2c3715SXin Li break;
74*bf2c3715SXin Li }
75*bf2c3715SXin Li }
76*bf2c3715SXin Li }
77*bf2c3715SXin Li
78*bf2c3715SXin Li eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
79*bf2c3715SXin Li eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
80*bf2c3715SXin Li VERIFY(minrow == eigen_minrow);
81*bf2c3715SXin Li VERIFY(maxrow == eigen_maxrow);
82*bf2c3715SXin Li VERIFY(mincol == eigen_mincol);
83*bf2c3715SXin Li VERIFY(maxcol == eigen_maxcol);
84*bf2c3715SXin Li VERIFY_IS_APPROX(minc, eigen_minc);
85*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, eigen_maxc);
86*bf2c3715SXin Li VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
87*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
88*bf2c3715SXin Li
89*bf2c3715SXin Li eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
90*bf2c3715SXin Li eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
91*bf2c3715SXin Li VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
92*bf2c3715SXin Li VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
93*bf2c3715SXin Li VERIFY((numext::isnan)(eigen_minc));
94*bf2c3715SXin Li VERIFY((numext::isnan)(eigen_maxc));
95*bf2c3715SXin Li }
96*bf2c3715SXin Li
97*bf2c3715SXin Li }
98*bf2c3715SXin Li
vectorVisitor(const VectorType & w)99*bf2c3715SXin Li template<typename VectorType> void vectorVisitor(const VectorType& w)
100*bf2c3715SXin Li {
101*bf2c3715SXin Li typedef typename VectorType::Scalar Scalar;
102*bf2c3715SXin Li
103*bf2c3715SXin Li Index size = w.size();
104*bf2c3715SXin Li
105*bf2c3715SXin Li // construct a random vector where all coefficients are different
106*bf2c3715SXin Li VectorType v;
107*bf2c3715SXin Li v = VectorType::Random(size);
108*bf2c3715SXin Li for(Index i = 0; i < size; i++)
109*bf2c3715SXin Li for(Index i2 = 0; i2 < i; i2++)
110*bf2c3715SXin Li while(v(i) == v(i2)) // yes, ==
111*bf2c3715SXin Li v(i) = internal::random<Scalar>();
112*bf2c3715SXin Li
113*bf2c3715SXin Li Scalar minc = v(0), maxc = v(0);
114*bf2c3715SXin Li Index minidx=0, maxidx=0;
115*bf2c3715SXin Li for(Index i = 0; i < size; i++)
116*bf2c3715SXin Li {
117*bf2c3715SXin Li if(v(i) < minc)
118*bf2c3715SXin Li {
119*bf2c3715SXin Li minc = v(i);
120*bf2c3715SXin Li minidx = i;
121*bf2c3715SXin Li }
122*bf2c3715SXin Li if(v(i) > maxc)
123*bf2c3715SXin Li {
124*bf2c3715SXin Li maxc = v(i);
125*bf2c3715SXin Li maxidx = i;
126*bf2c3715SXin Li }
127*bf2c3715SXin Li }
128*bf2c3715SXin Li Index eigen_minidx, eigen_maxidx;
129*bf2c3715SXin Li Scalar eigen_minc, eigen_maxc;
130*bf2c3715SXin Li eigen_minc = v.minCoeff(&eigen_minidx);
131*bf2c3715SXin Li eigen_maxc = v.maxCoeff(&eigen_maxidx);
132*bf2c3715SXin Li VERIFY(minidx == eigen_minidx);
133*bf2c3715SXin Li VERIFY(maxidx == eigen_maxidx);
134*bf2c3715SXin Li VERIFY_IS_APPROX(minc, eigen_minc);
135*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, eigen_maxc);
136*bf2c3715SXin Li VERIFY_IS_APPROX(minc, v.minCoeff());
137*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, v.maxCoeff());
138*bf2c3715SXin Li
139*bf2c3715SXin Li Index idx0 = internal::random<Index>(0,size-1);
140*bf2c3715SXin Li Index idx1 = eigen_minidx;
141*bf2c3715SXin Li Index idx2 = eigen_maxidx;
142*bf2c3715SXin Li VectorType v1(v), v2(v);
143*bf2c3715SXin Li v1(idx0) = v1(idx1);
144*bf2c3715SXin Li v2(idx0) = v2(idx2);
145*bf2c3715SXin Li v1.minCoeff(&eigen_minidx);
146*bf2c3715SXin Li v2.maxCoeff(&eigen_maxidx);
147*bf2c3715SXin Li VERIFY(eigen_minidx == (std::min)(idx0,idx1));
148*bf2c3715SXin Li VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
149*bf2c3715SXin Li
150*bf2c3715SXin Li if (!NumTraits<Scalar>::IsInteger && size > 2) {
151*bf2c3715SXin Li // Test NaN propagation by replacing an element with NaN.
152*bf2c3715SXin Li for (Index i = 0; i < size; ++i) {
153*bf2c3715SXin Li if (i != minidx && i != maxidx) {
154*bf2c3715SXin Li v(i) = NumTraits<Scalar>::quiet_NaN();
155*bf2c3715SXin Li break;
156*bf2c3715SXin Li }
157*bf2c3715SXin Li }
158*bf2c3715SXin Li eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
159*bf2c3715SXin Li eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
160*bf2c3715SXin Li VERIFY(minidx == eigen_minidx);
161*bf2c3715SXin Li VERIFY(maxidx == eigen_maxidx);
162*bf2c3715SXin Li VERIFY_IS_APPROX(minc, eigen_minc);
163*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, eigen_maxc);
164*bf2c3715SXin Li VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
165*bf2c3715SXin Li VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
166*bf2c3715SXin Li
167*bf2c3715SXin Li eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
168*bf2c3715SXin Li eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
169*bf2c3715SXin Li VERIFY(minidx != eigen_minidx);
170*bf2c3715SXin Li VERIFY(maxidx != eigen_maxidx);
171*bf2c3715SXin Li VERIFY((numext::isnan)(eigen_minc));
172*bf2c3715SXin Li VERIFY((numext::isnan)(eigen_maxc));
173*bf2c3715SXin Li }
174*bf2c3715SXin Li }
175*bf2c3715SXin Li
EIGEN_DECLARE_TEST(visitor)176*bf2c3715SXin Li EIGEN_DECLARE_TEST(visitor)
177*bf2c3715SXin Li {
178*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
179*bf2c3715SXin Li CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
180*bf2c3715SXin Li CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
181*bf2c3715SXin Li CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
182*bf2c3715SXin Li CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
183*bf2c3715SXin Li CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
184*bf2c3715SXin Li CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
185*bf2c3715SXin Li }
186*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
187*bf2c3715SXin Li CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
188*bf2c3715SXin Li CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
189*bf2c3715SXin Li CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
190*bf2c3715SXin Li CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
191*bf2c3715SXin Li CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
192*bf2c3715SXin Li }
193*bf2c3715SXin Li }
194