1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <unsupported/Eigen/AutoDiff>
12*bf2c3715SXin Li
13*bf2c3715SXin Li template<typename Scalar>
foo(const Scalar & x,const Scalar & y)14*bf2c3715SXin Li EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y)
15*bf2c3715SXin Li {
16*bf2c3715SXin Li using namespace std;
17*bf2c3715SXin Li // return x+std::sin(y);
18*bf2c3715SXin Li EIGEN_ASM_COMMENT("mybegin");
19*bf2c3715SXin Li // pow(float, int) promotes to pow(double, double)
20*bf2c3715SXin Li return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(Scalar(-0.5)*x*x+0);
21*bf2c3715SXin Li //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
22*bf2c3715SXin Li EIGEN_ASM_COMMENT("myend");
23*bf2c3715SXin Li }
24*bf2c3715SXin Li
25*bf2c3715SXin Li template<typename Vector>
foo(const Vector & p)26*bf2c3715SXin Li EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p)
27*bf2c3715SXin Li {
28*bf2c3715SXin Li typedef typename Vector::Scalar Scalar;
29*bf2c3715SXin Li return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p);
30*bf2c3715SXin Li }
31*bf2c3715SXin Li
32*bf2c3715SXin Li template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
33*bf2c3715SXin Li struct TestFunc1
34*bf2c3715SXin Li {
35*bf2c3715SXin Li typedef _Scalar Scalar;
36*bf2c3715SXin Li enum {
37*bf2c3715SXin Li InputsAtCompileTime = NX,
38*bf2c3715SXin Li ValuesAtCompileTime = NY
39*bf2c3715SXin Li };
40*bf2c3715SXin Li typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
41*bf2c3715SXin Li typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
42*bf2c3715SXin Li typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
43*bf2c3715SXin Li
44*bf2c3715SXin Li int m_inputs, m_values;
45*bf2c3715SXin Li
TestFunc1TestFunc146*bf2c3715SXin Li TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
TestFunc1TestFunc147*bf2c3715SXin Li TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {}
48*bf2c3715SXin Li
inputsTestFunc149*bf2c3715SXin Li int inputs() const { return m_inputs; }
valuesTestFunc150*bf2c3715SXin Li int values() const { return m_values; }
51*bf2c3715SXin Li
52*bf2c3715SXin Li template<typename T>
operator ()TestFunc153*bf2c3715SXin Li void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const
54*bf2c3715SXin Li {
55*bf2c3715SXin Li Matrix<T,ValuesAtCompileTime,1>& v = *_v;
56*bf2c3715SXin Li
57*bf2c3715SXin Li v[0] = 2 * x[0] * x[0] + x[0] * x[1];
58*bf2c3715SXin Li v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
59*bf2c3715SXin Li if(inputs()>2)
60*bf2c3715SXin Li {
61*bf2c3715SXin Li v[0] += 0.5 * x[2];
62*bf2c3715SXin Li v[1] += x[2];
63*bf2c3715SXin Li }
64*bf2c3715SXin Li if(values()>2)
65*bf2c3715SXin Li {
66*bf2c3715SXin Li v[2] = 3 * x[1] * x[0] * x[0];
67*bf2c3715SXin Li }
68*bf2c3715SXin Li if (inputs()>2 && values()>2)
69*bf2c3715SXin Li v[2] *= x[2];
70*bf2c3715SXin Li }
71*bf2c3715SXin Li
operator ()TestFunc172*bf2c3715SXin Li void operator() (const InputType& x, ValueType* v, JacobianType* _j) const
73*bf2c3715SXin Li {
74*bf2c3715SXin Li (*this)(x, v);
75*bf2c3715SXin Li
76*bf2c3715SXin Li if(_j)
77*bf2c3715SXin Li {
78*bf2c3715SXin Li JacobianType& j = *_j;
79*bf2c3715SXin Li
80*bf2c3715SXin Li j(0,0) = 4 * x[0] + x[1];
81*bf2c3715SXin Li j(1,0) = 3 * x[1];
82*bf2c3715SXin Li
83*bf2c3715SXin Li j(0,1) = x[0];
84*bf2c3715SXin Li j(1,1) = 3 * x[0] + 2 * 0.5 * x[1];
85*bf2c3715SXin Li
86*bf2c3715SXin Li if (inputs()>2)
87*bf2c3715SXin Li {
88*bf2c3715SXin Li j(0,2) = 0.5;
89*bf2c3715SXin Li j(1,2) = 1;
90*bf2c3715SXin Li }
91*bf2c3715SXin Li if(values()>2)
92*bf2c3715SXin Li {
93*bf2c3715SXin Li j(2,0) = 3 * x[1] * 2 * x[0];
94*bf2c3715SXin Li j(2,1) = 3 * x[0] * x[0];
95*bf2c3715SXin Li }
96*bf2c3715SXin Li if (inputs()>2 && values()>2)
97*bf2c3715SXin Li {
98*bf2c3715SXin Li j(2,0) *= x[2];
99*bf2c3715SXin Li j(2,1) *= x[2];
100*bf2c3715SXin Li
101*bf2c3715SXin Li j(2,2) = 3 * x[1] * x[0] * x[0];
102*bf2c3715SXin Li j(2,2) = 3 * x[1] * x[0] * x[0];
103*bf2c3715SXin Li }
104*bf2c3715SXin Li }
105*bf2c3715SXin Li }
106*bf2c3715SXin Li };
107*bf2c3715SXin Li
108*bf2c3715SXin Li
109*bf2c3715SXin Li #if EIGEN_HAS_VARIADIC_TEMPLATES
110*bf2c3715SXin Li /* Test functor for the C++11 features. */
111*bf2c3715SXin Li template <typename Scalar>
112*bf2c3715SXin Li struct integratorFunctor
113*bf2c3715SXin Li {
114*bf2c3715SXin Li typedef Matrix<Scalar, 2, 1> InputType;
115*bf2c3715SXin Li typedef Matrix<Scalar, 2, 1> ValueType;
116*bf2c3715SXin Li
117*bf2c3715SXin Li /*
118*bf2c3715SXin Li * Implementation starts here.
119*bf2c3715SXin Li */
integratorFunctorintegratorFunctor120*bf2c3715SXin Li integratorFunctor(const Scalar gain) : _gain(gain) {}
integratorFunctorintegratorFunctor121*bf2c3715SXin Li integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {}
122*bf2c3715SXin Li const Scalar _gain;
123*bf2c3715SXin Li
124*bf2c3715SXin Li template <typename T1, typename T2>
operator ()integratorFunctor125*bf2c3715SXin Li void operator() (const T1 &input, T2 *output, const Scalar dt) const
126*bf2c3715SXin Li {
127*bf2c3715SXin Li T2 &o = *output;
128*bf2c3715SXin Li
129*bf2c3715SXin Li /* Integrator to test the AD. */
130*bf2c3715SXin Li o[0] = input[0] + input[1] * dt * _gain;
131*bf2c3715SXin Li o[1] = input[1] * _gain;
132*bf2c3715SXin Li }
133*bf2c3715SXin Li
134*bf2c3715SXin Li /* Only needed for the test */
135*bf2c3715SXin Li template <typename T1, typename T2, typename T3>
operator ()integratorFunctor136*bf2c3715SXin Li void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const
137*bf2c3715SXin Li {
138*bf2c3715SXin Li T2 &o = *output;
139*bf2c3715SXin Li
140*bf2c3715SXin Li /* Integrator to test the AD. */
141*bf2c3715SXin Li o[0] = input[0] + input[1] * dt * _gain;
142*bf2c3715SXin Li o[1] = input[1] * _gain;
143*bf2c3715SXin Li
144*bf2c3715SXin Li if (jacobian)
145*bf2c3715SXin Li {
146*bf2c3715SXin Li T3 &j = *jacobian;
147*bf2c3715SXin Li
148*bf2c3715SXin Li j(0, 0) = 1;
149*bf2c3715SXin Li j(0, 1) = dt * _gain;
150*bf2c3715SXin Li j(1, 0) = 0;
151*bf2c3715SXin Li j(1, 1) = _gain;
152*bf2c3715SXin Li }
153*bf2c3715SXin Li }
154*bf2c3715SXin Li
155*bf2c3715SXin Li };
156*bf2c3715SXin Li
forward_jacobian_cpp11(const Func & f)157*bf2c3715SXin Li template<typename Func> void forward_jacobian_cpp11(const Func& f)
158*bf2c3715SXin Li {
159*bf2c3715SXin Li typedef typename Func::ValueType::Scalar Scalar;
160*bf2c3715SXin Li typedef typename Func::ValueType ValueType;
161*bf2c3715SXin Li typedef typename Func::InputType InputType;
162*bf2c3715SXin Li typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType;
163*bf2c3715SXin Li
164*bf2c3715SXin Li InputType x = InputType::Random(InputType::RowsAtCompileTime);
165*bf2c3715SXin Li ValueType y, yref;
166*bf2c3715SXin Li JacobianType j, jref;
167*bf2c3715SXin Li
168*bf2c3715SXin Li const Scalar dt = internal::random<double>();
169*bf2c3715SXin Li
170*bf2c3715SXin Li jref.setZero();
171*bf2c3715SXin Li yref.setZero();
172*bf2c3715SXin Li f(x, &yref, &jref, dt);
173*bf2c3715SXin Li
174*bf2c3715SXin Li //std::cerr << "y, yref, jref: " << "\n";
175*bf2c3715SXin Li //std::cerr << y.transpose() << "\n\n";
176*bf2c3715SXin Li //std::cerr << yref << "\n\n";
177*bf2c3715SXin Li //std::cerr << jref << "\n\n";
178*bf2c3715SXin Li
179*bf2c3715SXin Li AutoDiffJacobian<Func> autoj(f);
180*bf2c3715SXin Li autoj(x, &y, &j, dt);
181*bf2c3715SXin Li
182*bf2c3715SXin Li //std::cerr << "y j (via autodiff): " << "\n";
183*bf2c3715SXin Li //std::cerr << y.transpose() << "\n\n";
184*bf2c3715SXin Li //std::cerr << j << "\n\n";
185*bf2c3715SXin Li
186*bf2c3715SXin Li VERIFY_IS_APPROX(y, yref);
187*bf2c3715SXin Li VERIFY_IS_APPROX(j, jref);
188*bf2c3715SXin Li }
189*bf2c3715SXin Li #endif
190*bf2c3715SXin Li
forward_jacobian(const Func & f)191*bf2c3715SXin Li template<typename Func> void forward_jacobian(const Func& f)
192*bf2c3715SXin Li {
193*bf2c3715SXin Li typename Func::InputType x = Func::InputType::Random(f.inputs());
194*bf2c3715SXin Li typename Func::ValueType y(f.values()), yref(f.values());
195*bf2c3715SXin Li typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs());
196*bf2c3715SXin Li
197*bf2c3715SXin Li jref.setZero();
198*bf2c3715SXin Li yref.setZero();
199*bf2c3715SXin Li f(x,&yref,&jref);
200*bf2c3715SXin Li // std::cerr << y.transpose() << "\n\n";;
201*bf2c3715SXin Li // std::cerr << j << "\n\n";;
202*bf2c3715SXin Li
203*bf2c3715SXin Li j.setZero();
204*bf2c3715SXin Li y.setZero();
205*bf2c3715SXin Li AutoDiffJacobian<Func> autoj(f);
206*bf2c3715SXin Li autoj(x, &y, &j);
207*bf2c3715SXin Li // std::cerr << y.transpose() << "\n\n";;
208*bf2c3715SXin Li // std::cerr << j << "\n\n";;
209*bf2c3715SXin Li
210*bf2c3715SXin Li VERIFY_IS_APPROX(y, yref);
211*bf2c3715SXin Li VERIFY_IS_APPROX(j, jref);
212*bf2c3715SXin Li }
213*bf2c3715SXin Li
214*bf2c3715SXin Li // TODO also check actual derivatives!
215*bf2c3715SXin Li template <int>
test_autodiff_scalar()216*bf2c3715SXin Li void test_autodiff_scalar()
217*bf2c3715SXin Li {
218*bf2c3715SXin Li Vector2f p = Vector2f::Random();
219*bf2c3715SXin Li typedef AutoDiffScalar<Vector2f> AD;
220*bf2c3715SXin Li AD ax(p.x(),Vector2f::UnitX());
221*bf2c3715SXin Li AD ay(p.y(),Vector2f::UnitY());
222*bf2c3715SXin Li AD res = foo<AD>(ax,ay);
223*bf2c3715SXin Li VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
224*bf2c3715SXin Li }
225*bf2c3715SXin Li
226*bf2c3715SXin Li
227*bf2c3715SXin Li // TODO also check actual derivatives!
228*bf2c3715SXin Li template <int>
test_autodiff_vector()229*bf2c3715SXin Li void test_autodiff_vector()
230*bf2c3715SXin Li {
231*bf2c3715SXin Li Vector2f p = Vector2f::Random();
232*bf2c3715SXin Li typedef AutoDiffScalar<Vector2f> AD;
233*bf2c3715SXin Li typedef Matrix<AD,2,1> VectorAD;
234*bf2c3715SXin Li VectorAD ap = p.cast<AD>();
235*bf2c3715SXin Li ap.x().derivatives() = Vector2f::UnitX();
236*bf2c3715SXin Li ap.y().derivatives() = Vector2f::UnitY();
237*bf2c3715SXin Li
238*bf2c3715SXin Li AD res = foo<VectorAD>(ap);
239*bf2c3715SXin Li VERIFY_IS_APPROX(res.value(), foo(p));
240*bf2c3715SXin Li }
241*bf2c3715SXin Li
242*bf2c3715SXin Li template <int>
test_autodiff_jacobian()243*bf2c3715SXin Li void test_autodiff_jacobian()
244*bf2c3715SXin Li {
245*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
246*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
247*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
248*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
249*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
250*bf2c3715SXin Li #if EIGEN_HAS_VARIADIC_TEMPLATES
251*bf2c3715SXin Li CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) ));
252*bf2c3715SXin Li #endif
253*bf2c3715SXin Li }
254*bf2c3715SXin Li
255*bf2c3715SXin Li
256*bf2c3715SXin Li template <int>
test_autodiff_hessian()257*bf2c3715SXin Li void test_autodiff_hessian()
258*bf2c3715SXin Li {
259*bf2c3715SXin Li typedef AutoDiffScalar<VectorXd> AD;
260*bf2c3715SXin Li typedef Matrix<AD,Eigen::Dynamic,1> VectorAD;
261*bf2c3715SXin Li typedef AutoDiffScalar<VectorAD> ADD;
262*bf2c3715SXin Li typedef Matrix<ADD,Eigen::Dynamic,1> VectorADD;
263*bf2c3715SXin Li VectorADD x(2);
264*bf2c3715SXin Li double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), s4 = internal::random<double>();
265*bf2c3715SXin Li x(0).value()=s1;
266*bf2c3715SXin Li x(1).value()=s2;
267*bf2c3715SXin Li
268*bf2c3715SXin Li //set unit vectors for the derivative directions (partial derivatives of the input vector)
269*bf2c3715SXin Li x(0).derivatives().resize(2);
270*bf2c3715SXin Li x(0).derivatives().setZero();
271*bf2c3715SXin Li x(0).derivatives()(0)= 1;
272*bf2c3715SXin Li x(1).derivatives().resize(2);
273*bf2c3715SXin Li x(1).derivatives().setZero();
274*bf2c3715SXin Li x(1).derivatives()(1)=1;
275*bf2c3715SXin Li
276*bf2c3715SXin Li //repeat partial derivatives for the inner AutoDiffScalar
277*bf2c3715SXin Li x(0).value().derivatives() = VectorXd::Unit(2,0);
278*bf2c3715SXin Li x(1).value().derivatives() = VectorXd::Unit(2,1);
279*bf2c3715SXin Li
280*bf2c3715SXin Li //set the hessian matrix to zero
281*bf2c3715SXin Li for(int idx=0; idx<2; idx++) {
282*bf2c3715SXin Li x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2);
283*bf2c3715SXin Li x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2);
284*bf2c3715SXin Li }
285*bf2c3715SXin Li
286*bf2c3715SXin Li ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1));
287*bf2c3715SXin Li
288*bf2c3715SXin Li VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value());
289*bf2c3715SXin Li VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value());
290*bf2c3715SXin Li VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4));
291*bf2c3715SXin Li VERIFY_IS_APPROX(y.value().derivatives()(1), s4*std::cos(s1*s3+s2*s4));
292*bf2c3715SXin Li VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3));
293*bf2c3715SXin Li VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4));
294*bf2c3715SXin Li
295*bf2c3715SXin Li ADD z = x(0)*x(1);
296*bf2c3715SXin Li VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1));
297*bf2c3715SXin Li VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0));
298*bf2c3715SXin Li }
299*bf2c3715SXin Li
bug_1222()300*bf2c3715SXin Li double bug_1222() {
301*bf2c3715SXin Li typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
302*bf2c3715SXin Li const double _cv1_3 = 1.0;
303*bf2c3715SXin Li const AD chi_3 = 1.0;
304*bf2c3715SXin Li // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType>
305*bf2c3715SXin Li const AD denom = chi_3 + _cv1_3;
306*bf2c3715SXin Li return denom.value();
307*bf2c3715SXin Li }
308*bf2c3715SXin Li
309*bf2c3715SXin Li #ifdef EIGEN_TEST_PART_5
310*bf2c3715SXin Li
bug_1223()311*bf2c3715SXin Li double bug_1223() {
312*bf2c3715SXin Li using std::min;
313*bf2c3715SXin Li typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
314*bf2c3715SXin Li
315*bf2c3715SXin Li const double _cv1_3 = 1.0;
316*bf2c3715SXin Li const AD chi_3 = 1.0;
317*bf2c3715SXin Li const AD denom = 1.0;
318*bf2c3715SXin Li
319*bf2c3715SXin Li // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& value)
320*bf2c3715SXin Li // without initializing m_derivatives (which is a reference in this case)
321*bf2c3715SXin Li #define EIGEN_TEST_SPACE
322*bf2c3715SXin Li const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0);
323*bf2c3715SXin Li
324*bf2c3715SXin Li const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0);
325*bf2c3715SXin Li
326*bf2c3715SXin Li return t.value() + t2.value();
327*bf2c3715SXin Li }
328*bf2c3715SXin Li
329*bf2c3715SXin Li // regression test for some compilation issues with specializations of ScalarBinaryOpTraits
bug_1260()330*bf2c3715SXin Li void bug_1260() {
331*bf2c3715SXin Li Matrix4d A = Matrix4d::Ones();
332*bf2c3715SXin Li Vector4d v = Vector4d::Ones();
333*bf2c3715SXin Li A*v;
334*bf2c3715SXin Li }
335*bf2c3715SXin Li
336*bf2c3715SXin Li // check a compilation issue with numext::max
bug_1261()337*bf2c3715SXin Li double bug_1261() {
338*bf2c3715SXin Li typedef AutoDiffScalar<Matrix2d> AD;
339*bf2c3715SXin Li typedef Matrix<AD,2,1> VectorAD;
340*bf2c3715SXin Li
341*bf2c3715SXin Li VectorAD v(0.,0.);
342*bf2c3715SXin Li const AD maxVal = v.maxCoeff();
343*bf2c3715SXin Li const AD minVal = v.minCoeff();
344*bf2c3715SXin Li return maxVal.value() + minVal.value();
345*bf2c3715SXin Li }
346*bf2c3715SXin Li
bug_1264()347*bf2c3715SXin Li double bug_1264() {
348*bf2c3715SXin Li typedef AutoDiffScalar<Vector2d> AD;
349*bf2c3715SXin Li const AD s = 0.;
350*bf2c3715SXin Li const Matrix<AD, 3, 1> v1(0.,0.,0.);
351*bf2c3715SXin Li const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1;
352*bf2c3715SXin Li return v2(0).value();
353*bf2c3715SXin Li }
354*bf2c3715SXin Li
355*bf2c3715SXin Li // check with expressions on constants
bug_1281()356*bf2c3715SXin Li double bug_1281() {
357*bf2c3715SXin Li int n = 2;
358*bf2c3715SXin Li typedef AutoDiffScalar<VectorXd> AD;
359*bf2c3715SXin Li const AD c = 1.;
360*bf2c3715SXin Li AD x0(2,n,0);
361*bf2c3715SXin Li AD y1 = (AD(c)+AD(c))*x0;
362*bf2c3715SXin Li y1 = x0 * (AD(c)+AD(c));
363*bf2c3715SXin Li AD y2 = (-AD(c))+x0;
364*bf2c3715SXin Li y2 = x0+(-AD(c));
365*bf2c3715SXin Li AD y3 = (AD(c)*(-AD(c))+AD(c))*x0;
366*bf2c3715SXin Li y3 = x0 * (AD(c)*(-AD(c))+AD(c));
367*bf2c3715SXin Li return (y1+y2+y3).value();
368*bf2c3715SXin Li }
369*bf2c3715SXin Li
370*bf2c3715SXin Li #endif
371*bf2c3715SXin Li
EIGEN_DECLARE_TEST(autodiff)372*bf2c3715SXin Li EIGEN_DECLARE_TEST(autodiff)
373*bf2c3715SXin Li {
374*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
375*bf2c3715SXin Li CALL_SUBTEST_1( test_autodiff_scalar<1>() );
376*bf2c3715SXin Li CALL_SUBTEST_2( test_autodiff_vector<1>() );
377*bf2c3715SXin Li CALL_SUBTEST_3( test_autodiff_jacobian<1>() );
378*bf2c3715SXin Li CALL_SUBTEST_4( test_autodiff_hessian<1>() );
379*bf2c3715SXin Li }
380*bf2c3715SXin Li
381*bf2c3715SXin Li CALL_SUBTEST_5( bug_1222() );
382*bf2c3715SXin Li CALL_SUBTEST_5( bug_1223() );
383*bf2c3715SXin Li CALL_SUBTEST_5( bug_1260() );
384*bf2c3715SXin Li CALL_SUBTEST_5( bug_1261() );
385*bf2c3715SXin Li CALL_SUBTEST_5( bug_1281() );
386*bf2c3715SXin Li }
387*bf2c3715SXin Li
388