xref: /aosp_15_r20/external/eigen/unsupported/test/special_functions.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2016 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include <limits.h>
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li #include "../Eigen/SpecialFunctions"
13*bf2c3715SXin Li 
14*bf2c3715SXin Li // Hack to allow "implicit" conversions from double to Scalar via comma-initialization.
15*bf2c3715SXin Li template<typename Derived>
operator <<(Eigen::DenseBase<Derived> & dense,double v)16*bf2c3715SXin Li Eigen::CommaInitializer<Derived> operator<<(Eigen::DenseBase<Derived>& dense, double v) {
17*bf2c3715SXin Li   return (dense << static_cast<typename Derived::Scalar>(v));
18*bf2c3715SXin Li }
19*bf2c3715SXin Li 
20*bf2c3715SXin Li template<typename XprType>
operator ,(Eigen::CommaInitializer<XprType> & ci,double v)21*bf2c3715SXin Li Eigen::CommaInitializer<XprType>& operator,(Eigen::CommaInitializer<XprType>& ci, double v) {
22*bf2c3715SXin Li   return (ci, static_cast<typename XprType::Scalar>(v));
23*bf2c3715SXin Li }
24*bf2c3715SXin Li 
25*bf2c3715SXin Li template<typename X, typename Y>
verify_component_wise(const X & x,const Y & y)26*bf2c3715SXin Li void verify_component_wise(const X& x, const Y& y)
27*bf2c3715SXin Li {
28*bf2c3715SXin Li   for(Index i=0; i<x.size(); ++i)
29*bf2c3715SXin Li   {
30*bf2c3715SXin Li     if((numext::isfinite)(y(i)))
31*bf2c3715SXin Li       VERIFY_IS_APPROX( x(i), y(i) );
32*bf2c3715SXin Li     else if((numext::isnan)(y(i)))
33*bf2c3715SXin Li       VERIFY((numext::isnan)(x(i)));
34*bf2c3715SXin Li     else
35*bf2c3715SXin Li       VERIFY_IS_EQUAL( x(i), y(i) );
36*bf2c3715SXin Li   }
37*bf2c3715SXin Li }
38*bf2c3715SXin Li 
array_special_functions()39*bf2c3715SXin Li template<typename ArrayType> void array_special_functions()
40*bf2c3715SXin Li {
41*bf2c3715SXin Li   using std::abs;
42*bf2c3715SXin Li   using std::sqrt;
43*bf2c3715SXin Li   typedef typename ArrayType::Scalar Scalar;
44*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
45*bf2c3715SXin Li 
46*bf2c3715SXin Li   Scalar plusinf = std::numeric_limits<Scalar>::infinity();
47*bf2c3715SXin Li   Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
48*bf2c3715SXin Li 
49*bf2c3715SXin Li   Index rows = internal::random<Index>(1,30);
50*bf2c3715SXin Li   Index cols = 1;
51*bf2c3715SXin Li 
52*bf2c3715SXin Li   // API
53*bf2c3715SXin Li   {
54*bf2c3715SXin Li     ArrayType m1 = ArrayType::Random(rows,cols);
55*bf2c3715SXin Li #if EIGEN_HAS_C99_MATH
56*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1));
57*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.digamma(), digamma(m1));
58*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.erf(), erf(m1));
59*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.erfc(), erfc(m1));
60*bf2c3715SXin Li #endif  // EIGEN_HAS_C99_MATH
61*bf2c3715SXin Li   }
62*bf2c3715SXin Li 
63*bf2c3715SXin Li 
64*bf2c3715SXin Li #if EIGEN_HAS_C99_MATH
65*bf2c3715SXin Li   // check special functions (comparing against numpy implementation)
66*bf2c3715SXin Li   if (!NumTraits<Scalar>::IsComplex)
67*bf2c3715SXin Li   {
68*bf2c3715SXin Li 
69*bf2c3715SXin Li     {
70*bf2c3715SXin Li       ArrayType m1 = ArrayType::Random(rows,cols);
71*bf2c3715SXin Li       ArrayType m2 = ArrayType::Random(rows,cols);
72*bf2c3715SXin Li 
73*bf2c3715SXin Li       // Test various propreties of igamma & igammac.  These are normalized
74*bf2c3715SXin Li       // gamma integrals where
75*bf2c3715SXin Li       //   igammac(a, x) = Gamma(a, x) / Gamma(a)
76*bf2c3715SXin Li       //   igamma(a, x) = gamma(a, x) / Gamma(a)
77*bf2c3715SXin Li       // where Gamma and gamma are considered the standard unnormalized
78*bf2c3715SXin Li       // upper and lower incomplete gamma functions, respectively.
79*bf2c3715SXin Li       ArrayType a = m1.abs() + Scalar(2);
80*bf2c3715SXin Li       ArrayType x = m2.abs() + Scalar(2);
81*bf2c3715SXin Li       ArrayType zero = ArrayType::Zero(rows, cols);
82*bf2c3715SXin Li       ArrayType one = ArrayType::Constant(rows, cols, Scalar(1.0));
83*bf2c3715SXin Li       ArrayType a_m1 = a - one;
84*bf2c3715SXin Li       ArrayType Gamma_a_x = Eigen::igammac(a, x) * a.lgamma().exp();
85*bf2c3715SXin Li       ArrayType Gamma_a_m1_x = Eigen::igammac(a_m1, x) * a_m1.lgamma().exp();
86*bf2c3715SXin Li       ArrayType gamma_a_x = Eigen::igamma(a, x) * a.lgamma().exp();
87*bf2c3715SXin Li       ArrayType gamma_a_m1_x = Eigen::igamma(a_m1, x) * a_m1.lgamma().exp();
88*bf2c3715SXin Li 
89*bf2c3715SXin Li 
90*bf2c3715SXin Li       // Gamma(a, 0) == Gamma(a)
91*bf2c3715SXin Li       VERIFY_IS_APPROX(Eigen::igammac(a, zero), one);
92*bf2c3715SXin Li 
93*bf2c3715SXin Li       // Gamma(a, x) + gamma(a, x) == Gamma(a)
94*bf2c3715SXin Li       VERIFY_IS_APPROX(Gamma_a_x + gamma_a_x, a.lgamma().exp());
95*bf2c3715SXin Li 
96*bf2c3715SXin Li       // Gamma(a, x) == (a - 1) * Gamma(a-1, x) + x^(a-1) * exp(-x)
97*bf2c3715SXin Li       VERIFY_IS_APPROX(Gamma_a_x, (a - Scalar(1)) * Gamma_a_m1_x + x.pow(a-Scalar(1)) * (-x).exp());
98*bf2c3715SXin Li 
99*bf2c3715SXin Li       // gamma(a, x) == (a - 1) * gamma(a-1, x) - x^(a-1) * exp(-x)
100*bf2c3715SXin Li       VERIFY_IS_APPROX(gamma_a_x, (a - Scalar(1)) * gamma_a_m1_x - x.pow(a-Scalar(1)) * (-x).exp());
101*bf2c3715SXin Li     }
102*bf2c3715SXin Li     {
103*bf2c3715SXin Li       // Verify for large a and x that values are between 0 and 1.
104*bf2c3715SXin Li       ArrayType m1 = ArrayType::Random(rows,cols);
105*bf2c3715SXin Li       ArrayType m2 = ArrayType::Random(rows,cols);
106*bf2c3715SXin Li       int max_exponent = std::numeric_limits<Scalar>::max_exponent10;
107*bf2c3715SXin Li       ArrayType a = m1.abs() *  Scalar(pow(10., max_exponent - 1));
108*bf2c3715SXin Li       ArrayType x = m2.abs() *  Scalar(pow(10., max_exponent - 1));
109*bf2c3715SXin Li       for (int i = 0; i < a.size(); ++i) {
110*bf2c3715SXin Li         Scalar igam = numext::igamma(a(i), x(i));
111*bf2c3715SXin Li         VERIFY(0 <= igam);
112*bf2c3715SXin Li         VERIFY(igam <= 1);
113*bf2c3715SXin Li       }
114*bf2c3715SXin Li     }
115*bf2c3715SXin Li 
116*bf2c3715SXin Li     {
117*bf2c3715SXin Li       // Check exact values of igamma and igammac against a third party calculation.
118*bf2c3715SXin Li       Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
119*bf2c3715SXin Li       Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)};
120*bf2c3715SXin Li 
121*bf2c3715SXin Li       // location i*6+j corresponds to a_s[i], x_s[j].
122*bf2c3715SXin Li       Scalar igamma_s[][6] = {
123*bf2c3715SXin Li           {Scalar(0.0), nan, nan, nan, nan, nan},
124*bf2c3715SXin Li           {Scalar(0.0), Scalar(0.6321205588285578), Scalar(0.7768698398515702),
125*bf2c3715SXin Li            Scalar(0.9816843611112658), Scalar(9.999500016666262e-05),
126*bf2c3715SXin Li            Scalar(1.0)},
127*bf2c3715SXin Li           {Scalar(0.0), Scalar(0.4275932955291202), Scalar(0.608374823728911),
128*bf2c3715SXin Li            Scalar(0.9539882943107686), Scalar(7.522076445089201e-07),
129*bf2c3715SXin Li            Scalar(1.0)},
130*bf2c3715SXin Li           {Scalar(0.0), Scalar(0.01898815687615381),
131*bf2c3715SXin Li            Scalar(0.06564245437845008), Scalar(0.5665298796332909),
132*bf2c3715SXin Li            Scalar(4.166333347221828e-18), Scalar(1.0)},
133*bf2c3715SXin Li           {Scalar(0.0), Scalar(0.9999780593618628), Scalar(0.9999899967080838),
134*bf2c3715SXin Li            Scalar(0.9999996219837988), Scalar(0.9991370418689945), Scalar(1.0)},
135*bf2c3715SXin Li           {Scalar(0.0), Scalar(0.0), Scalar(0.0), Scalar(0.0), Scalar(0.0),
136*bf2c3715SXin Li            Scalar(0.5042041932513908)}};
137*bf2c3715SXin Li       Scalar igammac_s[][6] = {
138*bf2c3715SXin Li           {nan, nan, nan, nan, nan, nan},
139*bf2c3715SXin Li           {Scalar(1.0), Scalar(0.36787944117144233),
140*bf2c3715SXin Li            Scalar(0.22313016014842982), Scalar(0.018315638888734182),
141*bf2c3715SXin Li            Scalar(0.9999000049998333), Scalar(0.0)},
142*bf2c3715SXin Li           {Scalar(1.0), Scalar(0.5724067044708798), Scalar(0.3916251762710878),
143*bf2c3715SXin Li            Scalar(0.04601170568923136), Scalar(0.9999992477923555),
144*bf2c3715SXin Li            Scalar(0.0)},
145*bf2c3715SXin Li           {Scalar(1.0), Scalar(0.9810118431238462), Scalar(0.9343575456215499),
146*bf2c3715SXin Li            Scalar(0.4334701203667089), Scalar(1.0), Scalar(0.0)},
147*bf2c3715SXin Li           {Scalar(1.0), Scalar(2.1940638138146658e-05),
148*bf2c3715SXin Li            Scalar(1.0003291916285e-05), Scalar(3.7801620118431334e-07),
149*bf2c3715SXin Li            Scalar(0.0008629581310054535), Scalar(0.0)},
150*bf2c3715SXin Li           {Scalar(1.0), Scalar(1.0), Scalar(1.0), Scalar(1.0), Scalar(1.0),
151*bf2c3715SXin Li            Scalar(0.49579580674813944)}};
152*bf2c3715SXin Li 
153*bf2c3715SXin Li       for (int i = 0; i < 6; ++i) {
154*bf2c3715SXin Li         for (int j = 0; j < 6; ++j) {
155*bf2c3715SXin Li           if ((std::isnan)(igamma_s[i][j])) {
156*bf2c3715SXin Li             VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j])));
157*bf2c3715SXin Li           } else {
158*bf2c3715SXin Li             VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]);
159*bf2c3715SXin Li           }
160*bf2c3715SXin Li 
161*bf2c3715SXin Li           if ((std::isnan)(igammac_s[i][j])) {
162*bf2c3715SXin Li             VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j])));
163*bf2c3715SXin Li           } else {
164*bf2c3715SXin Li             VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]);
165*bf2c3715SXin Li           }
166*bf2c3715SXin Li         }
167*bf2c3715SXin Li       }
168*bf2c3715SXin Li     }
169*bf2c3715SXin Li   }
170*bf2c3715SXin Li #endif  // EIGEN_HAS_C99_MATH
171*bf2c3715SXin Li 
172*bf2c3715SXin Li   // Check the ndtri function against scipy.special.ndtri
173*bf2c3715SXin Li   {
174*bf2c3715SXin Li     ArrayType x(7), res(7), ref(7);
175*bf2c3715SXin Li     x << 0.5, 0.2, 0.8, 0.9, 0.1, 0.99, 0.01;
176*bf2c3715SXin Li     ref << 0., -0.8416212335729142, 0.8416212335729142, 1.2815515655446004, -1.2815515655446004, 2.3263478740408408, -2.3263478740408408;
177*bf2c3715SXin Li     CALL_SUBTEST( verify_component_wise(ref, ref); );
178*bf2c3715SXin Li     CALL_SUBTEST( res = x.ndtri(); verify_component_wise(res, ref); );
179*bf2c3715SXin Li     CALL_SUBTEST( res = ndtri(x); verify_component_wise(res, ref); );
180*bf2c3715SXin Li 
181*bf2c3715SXin Li     // ndtri(normal_cdf(x)) ~= x
182*bf2c3715SXin Li     CALL_SUBTEST(
183*bf2c3715SXin Li         ArrayType m1 = ArrayType::Random(32);
184*bf2c3715SXin Li         using std::sqrt;
185*bf2c3715SXin Li 
186*bf2c3715SXin Li         ArrayType cdf_val = (m1 / Scalar(sqrt(2.))).erf();
187*bf2c3715SXin Li         cdf_val = (cdf_val + Scalar(1)) / Scalar(2);
188*bf2c3715SXin Li         verify_component_wise(cdf_val.ndtri(), m1););
189*bf2c3715SXin Li 
190*bf2c3715SXin Li   }
191*bf2c3715SXin Li 
192*bf2c3715SXin Li   // Check the zeta function against scipy.special.zeta
193*bf2c3715SXin Li   {
194*bf2c3715SXin Li     ArrayType x(10), q(10), res(10), ref(10);
195*bf2c3715SXin Li     x << 1.5,   4, 10.5, 10000.5,    3,      1,    0.9,  2,  3,  4;
196*bf2c3715SXin Li     q <<   2, 1.5,    3,  1.0001, -2.5, 1.2345, 1.2345, -1, -2, -3;
197*bf2c3715SXin Li     ref << 1.61237534869, 0.234848505667, 1.03086757337e-5, 0.367879440865, 0.054102025820864097, plusinf, nan, plusinf, nan, plusinf;
198*bf2c3715SXin Li     CALL_SUBTEST( verify_component_wise(ref, ref); );
199*bf2c3715SXin Li     CALL_SUBTEST( res = x.zeta(q); verify_component_wise(res, ref); );
200*bf2c3715SXin Li     CALL_SUBTEST( res = zeta(x,q); verify_component_wise(res, ref); );
201*bf2c3715SXin Li   }
202*bf2c3715SXin Li 
203*bf2c3715SXin Li   // digamma
204*bf2c3715SXin Li   {
205*bf2c3715SXin Li     ArrayType x(9), res(9), ref(9);
206*bf2c3715SXin Li     x << 1, 1.5, 4, -10.5, 10000.5, 0, -1, -2, -3;
207*bf2c3715SXin Li     ref << -0.5772156649015329, 0.03648997397857645, 1.2561176684318, 2.398239129535781, 9.210340372392849, nan, nan, nan, nan;
208*bf2c3715SXin Li     CALL_SUBTEST( verify_component_wise(ref, ref); );
209*bf2c3715SXin Li 
210*bf2c3715SXin Li     CALL_SUBTEST( res = x.digamma(); verify_component_wise(res, ref); );
211*bf2c3715SXin Li     CALL_SUBTEST( res = digamma(x);  verify_component_wise(res, ref); );
212*bf2c3715SXin Li   }
213*bf2c3715SXin Li 
214*bf2c3715SXin Li #if EIGEN_HAS_C99_MATH
215*bf2c3715SXin Li   {
216*bf2c3715SXin Li     ArrayType n(16), x(16), res(16), ref(16);
217*bf2c3715SXin Li     n << 1, 1,    1, 1.5,   17,   31,   28,    8,   42,  147, 170, -1,  0,  1,  2,  3;
218*bf2c3715SXin Li     x << 2, 3, 25.5, 1.5,  4.7, 11.8, 17.7, 30.2, 15.8, 54.1,  64, -1, -2, -3, -4, -5;
219*bf2c3715SXin Li     ref << 0.644934066848, 0.394934066848, 0.0399946696496, nan, 293.334565435, 0.445487887616, -2.47810300902e-07, -8.29668781082e-09, -0.434562276666, 0.567742190178, -0.0108615497927, nan, nan, plusinf, nan, plusinf;
220*bf2c3715SXin Li     CALL_SUBTEST( verify_component_wise(ref, ref); );
221*bf2c3715SXin Li 
222*bf2c3715SXin Li     if(sizeof(RealScalar)>=8) {  // double
223*bf2c3715SXin Li       // Reason for commented line: http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1232
224*bf2c3715SXin Li       //       CALL_SUBTEST( res = x.polygamma(n); verify_component_wise(res, ref); );
225*bf2c3715SXin Li       CALL_SUBTEST( res = polygamma(n,x);  verify_component_wise(res, ref); );
226*bf2c3715SXin Li     }
227*bf2c3715SXin Li     else {
228*bf2c3715SXin Li       //       CALL_SUBTEST( res = x.polygamma(n); verify_component_wise(res.head(8), ref.head(8)); );
229*bf2c3715SXin Li       CALL_SUBTEST( res = polygamma(n,x); verify_component_wise(res.head(8), ref.head(8)); );
230*bf2c3715SXin Li     }
231*bf2c3715SXin Li   }
232*bf2c3715SXin Li #endif
233*bf2c3715SXin Li 
234*bf2c3715SXin Li #if EIGEN_HAS_C99_MATH
235*bf2c3715SXin Li   {
236*bf2c3715SXin Li     // Inputs and ground truth generated with scipy via:
237*bf2c3715SXin Li     //   a = np.logspace(-3, 3, 5) - 1e-3
238*bf2c3715SXin Li     //   b = np.logspace(-3, 3, 5) - 1e-3
239*bf2c3715SXin Li     //   x = np.linspace(-0.1, 1.1, 5)
240*bf2c3715SXin Li     //   (full_a, full_b, full_x) = np.vectorize(lambda a, b, x: (a, b, x))(*np.ix_(a, b, x))
241*bf2c3715SXin Li     //   full_a = full_a.flatten().tolist()  # same for full_b, full_x
242*bf2c3715SXin Li     //   v = scipy.special.betainc(full_a, full_b, full_x).flatten().tolist()
243*bf2c3715SXin Li     //
244*bf2c3715SXin Li     // Note in Eigen, we call betainc with arguments in the order (x, a, b).
245*bf2c3715SXin Li     ArrayType a(125);
246*bf2c3715SXin Li     ArrayType b(125);
247*bf2c3715SXin Li     ArrayType x(125);
248*bf2c3715SXin Li     ArrayType v(125);
249*bf2c3715SXin Li     ArrayType res(125);
250*bf2c3715SXin Li 
251*bf2c3715SXin Li     a << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
252*bf2c3715SXin Li         0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
253*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
254*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
255*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
256*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
257*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
258*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
259*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
260*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
261*bf2c3715SXin Li         0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
262*bf2c3715SXin Li         0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
263*bf2c3715SXin Li         0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999,
264*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
265*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
266*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
267*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
268*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
269*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
270*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
271*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
272*bf2c3715SXin Li         31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
273*bf2c3715SXin Li         999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
274*bf2c3715SXin Li         999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999,
275*bf2c3715SXin Li         999.999, 999.999, 999.999;
276*bf2c3715SXin Li 
277*bf2c3715SXin Li     b << 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379,
278*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999,
279*bf2c3715SXin Li         0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379,
280*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999,
281*bf2c3715SXin Li         999.999, 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0,
282*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
283*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999,
284*bf2c3715SXin Li         0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379,
285*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999,
286*bf2c3715SXin Li         999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
287*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
288*bf2c3715SXin Li         0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999,
289*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
290*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999,
291*bf2c3715SXin Li         999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
292*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
293*bf2c3715SXin Li         0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999,
294*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
295*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999,
296*bf2c3715SXin Li         999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379,
297*bf2c3715SXin Li         0.03062277660168379, 0.03062277660168379, 0.03062277660168379,
298*bf2c3715SXin Li         0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999,
299*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 31.62177660168379,
300*bf2c3715SXin Li         31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999,
301*bf2c3715SXin Li         999.999, 999.999;
302*bf2c3715SXin Li 
303*bf2c3715SXin Li     x << -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
304*bf2c3715SXin Li         0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
305*bf2c3715SXin Li         0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1,
306*bf2c3715SXin Li         0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1,
307*bf2c3715SXin Li         -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8,
308*bf2c3715SXin Li         1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
309*bf2c3715SXin Li         0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2,
310*bf2c3715SXin Li         0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1,
311*bf2c3715SXin Li         0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5,
312*bf2c3715SXin Li         0.8, 1.1;
313*bf2c3715SXin Li 
314*bf2c3715SXin Li     v << nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
315*bf2c3715SXin Li         nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan,
316*bf2c3715SXin Li         nan, nan, nan, 0.47972119876364683, 0.5, 0.5202788012363533, nan, nan,
317*bf2c3715SXin Li         0.9518683957740043, 0.9789663010413743, 0.9931729188073435, nan, nan,
318*bf2c3715SXin Li         0.999995949033062, 0.9999999999993698, 0.9999999999999999, nan, nan,
319*bf2c3715SXin Li         0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan,
320*bf2c3715SXin Li         nan, nan, nan, nan, nan, 0.006827081192655869, 0.0210336989586256,
321*bf2c3715SXin Li         0.04813160422599567, nan, nan, 0.20014344256217678, 0.5000000000000001,
322*bf2c3715SXin Li         0.7998565574378232, nan, nan, 0.9991401428435834, 0.999999999698403,
323*bf2c3715SXin Li         0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999,
324*bf2c3715SXin Li         0.9999999999999999, nan, nan, nan, nan, nan, nan, nan,
325*bf2c3715SXin Li         1.0646600232370887e-25, 6.301722877826246e-13, 4.050966937974938e-06,
326*bf2c3715SXin Li         nan, nan, 7.864342668429763e-23, 3.015969667594166e-10,
327*bf2c3715SXin Li         0.0008598571564165444, nan, nan, 6.031987710123844e-08,
328*bf2c3715SXin Li         0.5000000000000007, 0.9999999396801229, nan, nan, 0.9999999999999999,
329*bf2c3715SXin Li         0.9999999999999999, 0.9999999999999999, nan, nan, nan, nan, nan, nan,
330*bf2c3715SXin Li         nan, 0.0, 7.029920380986636e-306, 2.2450728208591345e-101, nan, nan,
331*bf2c3715SXin Li         0.0, 9.275871147869727e-302, 1.2232913026152827e-97, nan, nan, 0.0,
332*bf2c3715SXin Li         3.0891393081932924e-252, 2.9303043666183996e-60, nan, nan,
333*bf2c3715SXin Li         2.248913486879199e-196, 0.5000000000004947, 0.9999999999999999, nan;
334*bf2c3715SXin Li 
335*bf2c3715SXin Li     CALL_SUBTEST(res = betainc(a, b, x);
336*bf2c3715SXin Li                  verify_component_wise(res, v););
337*bf2c3715SXin Li   }
338*bf2c3715SXin Li 
339*bf2c3715SXin Li   // Test various properties of betainc
340*bf2c3715SXin Li   {
341*bf2c3715SXin Li     ArrayType m1 = ArrayType::Random(32);
342*bf2c3715SXin Li     ArrayType m2 = ArrayType::Random(32);
343*bf2c3715SXin Li     ArrayType m3 = ArrayType::Random(32);
344*bf2c3715SXin Li     ArrayType one = ArrayType::Constant(32, Scalar(1.0));
345*bf2c3715SXin Li     const Scalar eps = std::numeric_limits<Scalar>::epsilon();
346*bf2c3715SXin Li     ArrayType a = (m1 * Scalar(4)).exp();
347*bf2c3715SXin Li     ArrayType b = (m2 * Scalar(4)).exp();
348*bf2c3715SXin Li     ArrayType x = m3.abs();
349*bf2c3715SXin Li 
350*bf2c3715SXin Li     // betainc(a, 1, x) == x**a
351*bf2c3715SXin Li     CALL_SUBTEST(
352*bf2c3715SXin Li         ArrayType test = betainc(a, one, x);
353*bf2c3715SXin Li         ArrayType expected = x.pow(a);
354*bf2c3715SXin Li         verify_component_wise(test, expected););
355*bf2c3715SXin Li 
356*bf2c3715SXin Li     // betainc(1, b, x) == 1 - (1 - x)**b
357*bf2c3715SXin Li     CALL_SUBTEST(
358*bf2c3715SXin Li         ArrayType test = betainc(one, b, x);
359*bf2c3715SXin Li         ArrayType expected = one - (one - x).pow(b);
360*bf2c3715SXin Li         verify_component_wise(test, expected););
361*bf2c3715SXin Li 
362*bf2c3715SXin Li     // betainc(a, b, x) == 1 - betainc(b, a, 1-x)
363*bf2c3715SXin Li     CALL_SUBTEST(
364*bf2c3715SXin Li         ArrayType test = betainc(a, b, x) + betainc(b, a, one - x);
365*bf2c3715SXin Li         ArrayType expected = one;
366*bf2c3715SXin Li         verify_component_wise(test, expected););
367*bf2c3715SXin Li 
368*bf2c3715SXin Li     // betainc(a+1, b, x) = betainc(a, b, x) - x**a * (1 - x)**b / (a * beta(a, b))
369*bf2c3715SXin Li     CALL_SUBTEST(
370*bf2c3715SXin Li         ArrayType num = x.pow(a) * (one - x).pow(b);
371*bf2c3715SXin Li         ArrayType denom = a * (a.lgamma() + b.lgamma() - (a + b).lgamma()).exp();
372*bf2c3715SXin Li         // Add eps to rhs and lhs so that component-wise test doesn't result in
373*bf2c3715SXin Li         // nans when both outputs are zeros.
374*bf2c3715SXin Li         ArrayType expected = betainc(a, b, x) - num / denom + eps;
375*bf2c3715SXin Li         ArrayType test = betainc(a + one, b, x) + eps;
376*bf2c3715SXin Li         if (sizeof(Scalar) >= 8) { // double
377*bf2c3715SXin Li           verify_component_wise(test, expected);
378*bf2c3715SXin Li         } else {
379*bf2c3715SXin Li           // Reason for limited test: http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1232
380*bf2c3715SXin Li           verify_component_wise(test.head(8), expected.head(8));
381*bf2c3715SXin Li         });
382*bf2c3715SXin Li 
383*bf2c3715SXin Li     // betainc(a, b+1, x) = betainc(a, b, x) + x**a * (1 - x)**b / (b * beta(a, b))
384*bf2c3715SXin Li     CALL_SUBTEST(
385*bf2c3715SXin Li         // Add eps to rhs and lhs so that component-wise test doesn't result in
386*bf2c3715SXin Li         // nans when both outputs are zeros.
387*bf2c3715SXin Li         ArrayType num = x.pow(a) * (one - x).pow(b);
388*bf2c3715SXin Li         ArrayType denom = b * (a.lgamma() + b.lgamma() - (a + b).lgamma()).exp();
389*bf2c3715SXin Li         ArrayType expected = betainc(a, b, x) + num / denom + eps;
390*bf2c3715SXin Li         ArrayType test = betainc(a, b + one, x) + eps;
391*bf2c3715SXin Li         verify_component_wise(test, expected););
392*bf2c3715SXin Li   }
393*bf2c3715SXin Li #endif  // EIGEN_HAS_C99_MATH
394*bf2c3715SXin Li 
395*bf2c3715SXin Li     /* Code to generate the data for the following two test cases.
396*bf2c3715SXin Li     N = 5
397*bf2c3715SXin Li     np.random.seed(3)
398*bf2c3715SXin Li 
399*bf2c3715SXin Li     a = np.logspace(-2, 3, 6)
400*bf2c3715SXin Li     a = np.ravel(np.tile(np.reshape(a, [-1, 1]), [1, N]))
401*bf2c3715SXin Li     x = np.random.gamma(a, 1.0)
402*bf2c3715SXin Li     x = np.maximum(x, np.finfo(np.float32).tiny)
403*bf2c3715SXin Li 
404*bf2c3715SXin Li     def igamma(a, x):
405*bf2c3715SXin Li       return mpmath.gammainc(a, 0, x, regularized=True)
406*bf2c3715SXin Li 
407*bf2c3715SXin Li     def igamma_der_a(a, x):
408*bf2c3715SXin Li       res = mpmath.diff(lambda a_prime: igamma(a_prime, x), a)
409*bf2c3715SXin Li       return np.float64(res)
410*bf2c3715SXin Li 
411*bf2c3715SXin Li     def gamma_sample_der_alpha(a, x):
412*bf2c3715SXin Li       igamma_x = igamma(a, x)
413*bf2c3715SXin Li       def igammainv_of_igamma(a_prime):
414*bf2c3715SXin Li         return mpmath.findroot(lambda x_prime: igamma(a_prime, x_prime) -
415*bf2c3715SXin Li             igamma_x, x, solver='newton')
416*bf2c3715SXin Li       return np.float64(mpmath.diff(igammainv_of_igamma, a))
417*bf2c3715SXin Li 
418*bf2c3715SXin Li     v_igamma_der_a = np.vectorize(igamma_der_a)(a, x)
419*bf2c3715SXin Li     v_gamma_sample_der_alpha = np.vectorize(gamma_sample_der_alpha)(a, x)
420*bf2c3715SXin Li   */
421*bf2c3715SXin Li 
422*bf2c3715SXin Li #if EIGEN_HAS_C99_MATH
423*bf2c3715SXin Li   // Test igamma_der_a
424*bf2c3715SXin Li   {
425*bf2c3715SXin Li     ArrayType a(30);
426*bf2c3715SXin Li     ArrayType x(30);
427*bf2c3715SXin Li     ArrayType res(30);
428*bf2c3715SXin Li     ArrayType v(30);
429*bf2c3715SXin Li 
430*bf2c3715SXin Li     a << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0, 1.0,
431*bf2c3715SXin Li         1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
432*bf2c3715SXin Li         100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
433*bf2c3715SXin Li 
434*bf2c3715SXin Li     x << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
435*bf2c3715SXin Li         1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16,
436*bf2c3715SXin Li         0.0132865061065, 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06,
437*bf2c3715SXin Li         0.333412038288, 1.18135687766, 0.580629033777, 0.170631439426,
438*bf2c3715SXin Li         0.786686768458, 7.63873279537, 13.1944344379, 11.896042354,
439*bf2c3715SXin Li         10.5830172417, 10.5020942233, 92.8918587747, 95.003720371,
440*bf2c3715SXin Li         86.3715926467, 96.0330217672, 82.6389930677, 968.702906754,
441*bf2c3715SXin Li         969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
442*bf2c3715SXin Li 
443*bf2c3715SXin Li     v << -32.7256441441, -36.4394150514, -9.66467612263, -36.4394150514,
444*bf2c3715SXin Li         -36.4394150514, -1.0891900302, -2.66351229645, -2.48666868596,
445*bf2c3715SXin Li         -0.929700494428, -3.56327722764, -0.455320135314, -0.391437214323,
446*bf2c3715SXin Li         -0.491352055991, -0.350454834292, -0.471773162921, -0.104084440522,
447*bf2c3715SXin Li         -0.0723646747909, -0.0992828975532, -0.121638215446, -0.122619605294,
448*bf2c3715SXin Li         -0.0317670267286, -0.0359974812869, -0.0154359225363, -0.0375775365921,
449*bf2c3715SXin Li         -0.00794899153653, -0.00777303219211, -0.00796085782042,
450*bf2c3715SXin Li         -0.0125850719397, -0.00455500206958, -0.00476436993148;
451*bf2c3715SXin Li 
452*bf2c3715SXin Li     CALL_SUBTEST(res = igamma_der_a(a, x); verify_component_wise(res, v););
453*bf2c3715SXin Li   }
454*bf2c3715SXin Li 
455*bf2c3715SXin Li   // Test gamma_sample_der_alpha
456*bf2c3715SXin Li   {
457*bf2c3715SXin Li     ArrayType alpha(30);
458*bf2c3715SXin Li     ArrayType sample(30);
459*bf2c3715SXin Li     ArrayType res(30);
460*bf2c3715SXin Li     ArrayType v(30);
461*bf2c3715SXin Li 
462*bf2c3715SXin Li     alpha << 0.01, 0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 1.0,
463*bf2c3715SXin Li         1.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 10.0, 100.0, 100.0, 100.0, 100.0,
464*bf2c3715SXin Li         100.0, 1000.0, 1000.0, 1000.0, 1000.0, 1000.0;
465*bf2c3715SXin Li 
466*bf2c3715SXin Li     sample << 1.25668890405e-26, 1.17549435082e-38, 1.20938905072e-05,
467*bf2c3715SXin Li         1.17549435082e-38, 1.17549435082e-38, 5.66572070696e-16,
468*bf2c3715SXin Li         0.0132865061065, 0.0200034203853, 6.29263709118e-17, 1.37160367764e-06,
469*bf2c3715SXin Li         0.333412038288, 1.18135687766, 0.580629033777, 0.170631439426,
470*bf2c3715SXin Li         0.786686768458, 7.63873279537, 13.1944344379, 11.896042354,
471*bf2c3715SXin Li         10.5830172417, 10.5020942233, 92.8918587747, 95.003720371,
472*bf2c3715SXin Li         86.3715926467, 96.0330217672, 82.6389930677, 968.702906754,
473*bf2c3715SXin Li         969.463546828, 1001.79726022, 955.047416547, 1044.27458568;
474*bf2c3715SXin Li 
475*bf2c3715SXin Li     v << 7.42424742367e-23, 1.02004297287e-34, 0.0130155240738,
476*bf2c3715SXin Li         1.02004297287e-34, 1.02004297287e-34, 1.96505168277e-13, 0.525575786243,
477*bf2c3715SXin Li         0.713903991771, 2.32077561808e-14, 0.000179348049886, 0.635500453302,
478*bf2c3715SXin Li         1.27561284917, 0.878125852156, 0.41565819538, 1.03606488534,
479*bf2c3715SXin Li         0.885964824887, 1.16424049334, 1.10764479598, 1.04590810812,
480*bf2c3715SXin Li         1.04193666963, 0.965193152414, 0.976217589464, 0.93008035061,
481*bf2c3715SXin Li         0.98153216096, 0.909196397698, 0.98434963993, 0.984738050206,
482*bf2c3715SXin Li         1.00106492525, 0.97734200649, 1.02198794179;
483*bf2c3715SXin Li 
484*bf2c3715SXin Li     CALL_SUBTEST(res = gamma_sample_der_alpha(alpha, sample);
485*bf2c3715SXin Li                  verify_component_wise(res, v););
486*bf2c3715SXin Li   }
487*bf2c3715SXin Li #endif  // EIGEN_HAS_C99_MATH
488*bf2c3715SXin Li }
489*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(special_functions)490*bf2c3715SXin Li EIGEN_DECLARE_TEST(special_functions)
491*bf2c3715SXin Li {
492*bf2c3715SXin Li   CALL_SUBTEST_1(array_special_functions<ArrayXf>());
493*bf2c3715SXin Li   CALL_SUBTEST_2(array_special_functions<ArrayXd>());
494*bf2c3715SXin Li   // TODO(cantonios): half/bfloat16 don't have enough precision to reproduce results above.
495*bf2c3715SXin Li   // CALL_SUBTEST_3(array_special_functions<ArrayX<Eigen::half>>());
496*bf2c3715SXin Li   // CALL_SUBTEST_4(array_special_functions<ArrayX<Eigen::bfloat16>>());
497*bf2c3715SXin Li }
498