xref: /aosp_15_r20/external/fdlibm/e_exp.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)e_exp.c 1.6 04/04/22 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
8*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
9*1e651e1eSRoland Levillain  * is preserved.
10*1e651e1eSRoland Levillain  * ====================================================
11*1e651e1eSRoland Levillain  */
12*1e651e1eSRoland Levillain 
13*1e651e1eSRoland Levillain /* __ieee754_exp(x)
14*1e651e1eSRoland Levillain  * Returns the exponential of x.
15*1e651e1eSRoland Levillain  *
16*1e651e1eSRoland Levillain  * Method
17*1e651e1eSRoland Levillain  *   1. Argument reduction:
18*1e651e1eSRoland Levillain  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19*1e651e1eSRoland Levillain  *	Given x, find r and integer k such that
20*1e651e1eSRoland Levillain  *
21*1e651e1eSRoland Levillain  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
22*1e651e1eSRoland Levillain  *
23*1e651e1eSRoland Levillain  *      Here r will be represented as r = hi-lo for better
24*1e651e1eSRoland Levillain  *	accuracy.
25*1e651e1eSRoland Levillain  *
26*1e651e1eSRoland Levillain  *   2. Approximation of ieee_exp(r) by a special rational function on
27*1e651e1eSRoland Levillain  *	the interval [0,0.34658]:
28*1e651e1eSRoland Levillain  *	Write
29*1e651e1eSRoland Levillain  *	    R(r**2) = r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30*1e651e1eSRoland Levillain  *      We use a special Remes algorithm on [0,0.34658] to generate
31*1e651e1eSRoland Levillain  * 	a polynomial of degree 5 to approximate R. The maximum error
32*1e651e1eSRoland Levillain  *	of this polynomial approximation is bounded by 2**-59. In
33*1e651e1eSRoland Levillain  *	other words,
34*1e651e1eSRoland Levillain  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35*1e651e1eSRoland Levillain  *  	(where z=r*r, and the values of P1 to P5 are listed below)
36*1e651e1eSRoland Levillain  *	and
37*1e651e1eSRoland Levillain  *	    |                  5          |     -59
38*1e651e1eSRoland Levillain  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
39*1e651e1eSRoland Levillain  *	    |                             |
40*1e651e1eSRoland Levillain  *	The computation of ieee_exp(r) thus becomes
41*1e651e1eSRoland Levillain  *                             2*r
42*1e651e1eSRoland Levillain  *		exp(r) = 1 + -------
43*1e651e1eSRoland Levillain  *		              R - r
44*1e651e1eSRoland Levillain  *                                 r*R1(r)
45*1e651e1eSRoland Levillain  *		       = 1 + r + ----------- (for better accuracy)
46*1e651e1eSRoland Levillain  *		                  2 - R1(r)
47*1e651e1eSRoland Levillain  *	where
48*1e651e1eSRoland Levillain  *			         2       4             10
49*1e651e1eSRoland Levillain  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
50*1e651e1eSRoland Levillain  *
51*1e651e1eSRoland Levillain  *   3. Scale back to obtain ieee_exp(x):
52*1e651e1eSRoland Levillain  *	From step 1, we have
53*1e651e1eSRoland Levillain  *	   ieee_exp(x) = 2^k * ieee_exp(r)
54*1e651e1eSRoland Levillain  *
55*1e651e1eSRoland Levillain  * Special cases:
56*1e651e1eSRoland Levillain  *	exp(INF) is INF, ieee_exp(NaN) is NaN;
57*1e651e1eSRoland Levillain  *	exp(-INF) is 0, and
58*1e651e1eSRoland Levillain  *	for finite argument, only ieee_exp(0)=1 is exact.
59*1e651e1eSRoland Levillain  *
60*1e651e1eSRoland Levillain  * Accuracy:
61*1e651e1eSRoland Levillain  *	according to an error analysis, the error is always less than
62*1e651e1eSRoland Levillain  *	1 ulp (unit in the last place).
63*1e651e1eSRoland Levillain  *
64*1e651e1eSRoland Levillain  * Misc. info.
65*1e651e1eSRoland Levillain  *	For IEEE double
66*1e651e1eSRoland Levillain  *	    if x >  7.09782712893383973096e+02 then ieee_exp(x) overflow
67*1e651e1eSRoland Levillain  *	    if x < -7.45133219101941108420e+02 then ieee_exp(x) underflow
68*1e651e1eSRoland Levillain  *
69*1e651e1eSRoland Levillain  * Constants:
70*1e651e1eSRoland Levillain  * The hexadecimal values are the intended ones for the following
71*1e651e1eSRoland Levillain  * constants. The decimal values may be used, provided that the
72*1e651e1eSRoland Levillain  * compiler will convert from decimal to binary accurately enough
73*1e651e1eSRoland Levillain  * to produce the hexadecimal values shown.
74*1e651e1eSRoland Levillain  */
75*1e651e1eSRoland Levillain 
76*1e651e1eSRoland Levillain #include "fdlibm.h"
77*1e651e1eSRoland Levillain 
78*1e651e1eSRoland Levillain #ifdef __STDC__
79*1e651e1eSRoland Levillain static const double
80*1e651e1eSRoland Levillain #else
81*1e651e1eSRoland Levillain static double
82*1e651e1eSRoland Levillain #endif
83*1e651e1eSRoland Levillain one	= 1.0,
84*1e651e1eSRoland Levillain halF[2]	= {0.5,-0.5,},
85*1e651e1eSRoland Levillain huge	= 1.0e+300,
86*1e651e1eSRoland Levillain twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
87*1e651e1eSRoland Levillain o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
88*1e651e1eSRoland Levillain u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
89*1e651e1eSRoland Levillain ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
90*1e651e1eSRoland Levillain 	     -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
91*1e651e1eSRoland Levillain ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
92*1e651e1eSRoland Levillain 	     -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
93*1e651e1eSRoland Levillain invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
94*1e651e1eSRoland Levillain P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
95*1e651e1eSRoland Levillain P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
96*1e651e1eSRoland Levillain P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
97*1e651e1eSRoland Levillain P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
98*1e651e1eSRoland Levillain P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
99*1e651e1eSRoland Levillain 
100*1e651e1eSRoland Levillain 
101*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_exp(double x)102*1e651e1eSRoland Levillain 	double __ieee754_exp(double x)	/* default IEEE double exp */
103*1e651e1eSRoland Levillain #else
104*1e651e1eSRoland Levillain 	double __ieee754_exp(x)	/* default IEEE double exp */
105*1e651e1eSRoland Levillain 	double x;
106*1e651e1eSRoland Levillain #endif
107*1e651e1eSRoland Levillain {
108*1e651e1eSRoland Levillain 	double y,hi,lo,c,t;
109*1e651e1eSRoland Levillain 	int k,xsb;
110*1e651e1eSRoland Levillain 	unsigned hx;
111*1e651e1eSRoland Levillain 
112*1e651e1eSRoland Levillain 	hx  = __HI(x);	/* high word of x */
113*1e651e1eSRoland Levillain 	xsb = (hx>>31)&1;		/* sign bit of x */
114*1e651e1eSRoland Levillain 	hx &= 0x7fffffff;		/* high word of |x| */
115*1e651e1eSRoland Levillain 
116*1e651e1eSRoland Levillain     /* filter out non-finite argument */
117*1e651e1eSRoland Levillain 	if(hx >= 0x40862E42) {			/* if |x|>=709.78... */
118*1e651e1eSRoland Levillain             if(hx>=0x7ff00000) {
119*1e651e1eSRoland Levillain 		if(((hx&0xfffff)|__LO(x))!=0)
120*1e651e1eSRoland Levillain 		     return x+x; 		/* NaN */
121*1e651e1eSRoland Levillain 		else return (xsb==0)? x:0.0;	/* ieee_exp(+-inf)={inf,0} */
122*1e651e1eSRoland Levillain 	    }
123*1e651e1eSRoland Levillain 	    if(x > o_threshold) return huge*huge; /* overflow */
124*1e651e1eSRoland Levillain 	    if(x < u_threshold) return twom1000*twom1000; /* underflow */
125*1e651e1eSRoland Levillain 	}
126*1e651e1eSRoland Levillain 
127*1e651e1eSRoland Levillain     /* argument reduction */
128*1e651e1eSRoland Levillain 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
129*1e651e1eSRoland Levillain 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
130*1e651e1eSRoland Levillain 		hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
131*1e651e1eSRoland Levillain 	    } else {
132*1e651e1eSRoland Levillain 		k  = (int)(invln2*x+halF[xsb]);
133*1e651e1eSRoland Levillain 		t  = k;
134*1e651e1eSRoland Levillain 		hi = x - t*ln2HI[0];	/* t*ln2HI is exact here */
135*1e651e1eSRoland Levillain 		lo = t*ln2LO[0];
136*1e651e1eSRoland Levillain 	    }
137*1e651e1eSRoland Levillain 	    x  = hi - lo;
138*1e651e1eSRoland Levillain 	}
139*1e651e1eSRoland Levillain 	else if(hx < 0x3e300000)  {	/* when |x|<2**-28 */
140*1e651e1eSRoland Levillain 	    if(huge+x>one) return one+x;/* trigger inexact */
141*1e651e1eSRoland Levillain 	}
142*1e651e1eSRoland Levillain 	else k = 0;
143*1e651e1eSRoland Levillain 
144*1e651e1eSRoland Levillain     /* x is now in primary range */
145*1e651e1eSRoland Levillain 	t  = x*x;
146*1e651e1eSRoland Levillain 	c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
147*1e651e1eSRoland Levillain 	if(k==0) 	return one-((x*c)/(c-2.0)-x);
148*1e651e1eSRoland Levillain 	else 		y = one-((lo-(x*c)/(2.0-c))-hi);
149*1e651e1eSRoland Levillain 	if(k >= -1021) {
150*1e651e1eSRoland Levillain 	    __HI(y) += (k<<20);	/* add k to y's exponent */
151*1e651e1eSRoland Levillain 	    return y;
152*1e651e1eSRoland Levillain 	} else {
153*1e651e1eSRoland Levillain 	    __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
154*1e651e1eSRoland Levillain 	    return y*twom1000;
155*1e651e1eSRoland Levillain 	}
156*1e651e1eSRoland Levillain }
157