1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)e_exp.c 1.6 04/04/22 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 8*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 9*1e651e1eSRoland Levillain * is preserved. 10*1e651e1eSRoland Levillain * ==================================================== 11*1e651e1eSRoland Levillain */ 12*1e651e1eSRoland Levillain 13*1e651e1eSRoland Levillain /* __ieee754_exp(x) 14*1e651e1eSRoland Levillain * Returns the exponential of x. 15*1e651e1eSRoland Levillain * 16*1e651e1eSRoland Levillain * Method 17*1e651e1eSRoland Levillain * 1. Argument reduction: 18*1e651e1eSRoland Levillain * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. 19*1e651e1eSRoland Levillain * Given x, find r and integer k such that 20*1e651e1eSRoland Levillain * 21*1e651e1eSRoland Levillain * x = k*ln2 + r, |r| <= 0.5*ln2. 22*1e651e1eSRoland Levillain * 23*1e651e1eSRoland Levillain * Here r will be represented as r = hi-lo for better 24*1e651e1eSRoland Levillain * accuracy. 25*1e651e1eSRoland Levillain * 26*1e651e1eSRoland Levillain * 2. Approximation of ieee_exp(r) by a special rational function on 27*1e651e1eSRoland Levillain * the interval [0,0.34658]: 28*1e651e1eSRoland Levillain * Write 29*1e651e1eSRoland Levillain * R(r**2) = r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2 + r*r/6 - r**4/360 + ... 30*1e651e1eSRoland Levillain * We use a special Remes algorithm on [0,0.34658] to generate 31*1e651e1eSRoland Levillain * a polynomial of degree 5 to approximate R. The maximum error 32*1e651e1eSRoland Levillain * of this polynomial approximation is bounded by 2**-59. In 33*1e651e1eSRoland Levillain * other words, 34*1e651e1eSRoland Levillain * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 35*1e651e1eSRoland Levillain * (where z=r*r, and the values of P1 to P5 are listed below) 36*1e651e1eSRoland Levillain * and 37*1e651e1eSRoland Levillain * | 5 | -59 38*1e651e1eSRoland Levillain * | 2.0+P1*z+...+P5*z - R(z) | <= 2 39*1e651e1eSRoland Levillain * | | 40*1e651e1eSRoland Levillain * The computation of ieee_exp(r) thus becomes 41*1e651e1eSRoland Levillain * 2*r 42*1e651e1eSRoland Levillain * exp(r) = 1 + ------- 43*1e651e1eSRoland Levillain * R - r 44*1e651e1eSRoland Levillain * r*R1(r) 45*1e651e1eSRoland Levillain * = 1 + r + ----------- (for better accuracy) 46*1e651e1eSRoland Levillain * 2 - R1(r) 47*1e651e1eSRoland Levillain * where 48*1e651e1eSRoland Levillain * 2 4 10 49*1e651e1eSRoland Levillain * R1(r) = r - (P1*r + P2*r + ... + P5*r ). 50*1e651e1eSRoland Levillain * 51*1e651e1eSRoland Levillain * 3. Scale back to obtain ieee_exp(x): 52*1e651e1eSRoland Levillain * From step 1, we have 53*1e651e1eSRoland Levillain * ieee_exp(x) = 2^k * ieee_exp(r) 54*1e651e1eSRoland Levillain * 55*1e651e1eSRoland Levillain * Special cases: 56*1e651e1eSRoland Levillain * exp(INF) is INF, ieee_exp(NaN) is NaN; 57*1e651e1eSRoland Levillain * exp(-INF) is 0, and 58*1e651e1eSRoland Levillain * for finite argument, only ieee_exp(0)=1 is exact. 59*1e651e1eSRoland Levillain * 60*1e651e1eSRoland Levillain * Accuracy: 61*1e651e1eSRoland Levillain * according to an error analysis, the error is always less than 62*1e651e1eSRoland Levillain * 1 ulp (unit in the last place). 63*1e651e1eSRoland Levillain * 64*1e651e1eSRoland Levillain * Misc. info. 65*1e651e1eSRoland Levillain * For IEEE double 66*1e651e1eSRoland Levillain * if x > 7.09782712893383973096e+02 then ieee_exp(x) overflow 67*1e651e1eSRoland Levillain * if x < -7.45133219101941108420e+02 then ieee_exp(x) underflow 68*1e651e1eSRoland Levillain * 69*1e651e1eSRoland Levillain * Constants: 70*1e651e1eSRoland Levillain * The hexadecimal values are the intended ones for the following 71*1e651e1eSRoland Levillain * constants. The decimal values may be used, provided that the 72*1e651e1eSRoland Levillain * compiler will convert from decimal to binary accurately enough 73*1e651e1eSRoland Levillain * to produce the hexadecimal values shown. 74*1e651e1eSRoland Levillain */ 75*1e651e1eSRoland Levillain 76*1e651e1eSRoland Levillain #include "fdlibm.h" 77*1e651e1eSRoland Levillain 78*1e651e1eSRoland Levillain #ifdef __STDC__ 79*1e651e1eSRoland Levillain static const double 80*1e651e1eSRoland Levillain #else 81*1e651e1eSRoland Levillain static double 82*1e651e1eSRoland Levillain #endif 83*1e651e1eSRoland Levillain one = 1.0, 84*1e651e1eSRoland Levillain halF[2] = {0.5,-0.5,}, 85*1e651e1eSRoland Levillain huge = 1.0e+300, 86*1e651e1eSRoland Levillain twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ 87*1e651e1eSRoland Levillain o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ 88*1e651e1eSRoland Levillain u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ 89*1e651e1eSRoland Levillain ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ 90*1e651e1eSRoland Levillain -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ 91*1e651e1eSRoland Levillain ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ 92*1e651e1eSRoland Levillain -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ 93*1e651e1eSRoland Levillain invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ 94*1e651e1eSRoland Levillain P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 95*1e651e1eSRoland Levillain P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 96*1e651e1eSRoland Levillain P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 97*1e651e1eSRoland Levillain P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 98*1e651e1eSRoland Levillain P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ 99*1e651e1eSRoland Levillain 100*1e651e1eSRoland Levillain 101*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_exp(double x)102*1e651e1eSRoland Levillain double __ieee754_exp(double x) /* default IEEE double exp */ 103*1e651e1eSRoland Levillain #else 104*1e651e1eSRoland Levillain double __ieee754_exp(x) /* default IEEE double exp */ 105*1e651e1eSRoland Levillain double x; 106*1e651e1eSRoland Levillain #endif 107*1e651e1eSRoland Levillain { 108*1e651e1eSRoland Levillain double y,hi,lo,c,t; 109*1e651e1eSRoland Levillain int k,xsb; 110*1e651e1eSRoland Levillain unsigned hx; 111*1e651e1eSRoland Levillain 112*1e651e1eSRoland Levillain hx = __HI(x); /* high word of x */ 113*1e651e1eSRoland Levillain xsb = (hx>>31)&1; /* sign bit of x */ 114*1e651e1eSRoland Levillain hx &= 0x7fffffff; /* high word of |x| */ 115*1e651e1eSRoland Levillain 116*1e651e1eSRoland Levillain /* filter out non-finite argument */ 117*1e651e1eSRoland Levillain if(hx >= 0x40862E42) { /* if |x|>=709.78... */ 118*1e651e1eSRoland Levillain if(hx>=0x7ff00000) { 119*1e651e1eSRoland Levillain if(((hx&0xfffff)|__LO(x))!=0) 120*1e651e1eSRoland Levillain return x+x; /* NaN */ 121*1e651e1eSRoland Levillain else return (xsb==0)? x:0.0; /* ieee_exp(+-inf)={inf,0} */ 122*1e651e1eSRoland Levillain } 123*1e651e1eSRoland Levillain if(x > o_threshold) return huge*huge; /* overflow */ 124*1e651e1eSRoland Levillain if(x < u_threshold) return twom1000*twom1000; /* underflow */ 125*1e651e1eSRoland Levillain } 126*1e651e1eSRoland Levillain 127*1e651e1eSRoland Levillain /* argument reduction */ 128*1e651e1eSRoland Levillain if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 129*1e651e1eSRoland Levillain if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 130*1e651e1eSRoland Levillain hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; 131*1e651e1eSRoland Levillain } else { 132*1e651e1eSRoland Levillain k = (int)(invln2*x+halF[xsb]); 133*1e651e1eSRoland Levillain t = k; 134*1e651e1eSRoland Levillain hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ 135*1e651e1eSRoland Levillain lo = t*ln2LO[0]; 136*1e651e1eSRoland Levillain } 137*1e651e1eSRoland Levillain x = hi - lo; 138*1e651e1eSRoland Levillain } 139*1e651e1eSRoland Levillain else if(hx < 0x3e300000) { /* when |x|<2**-28 */ 140*1e651e1eSRoland Levillain if(huge+x>one) return one+x;/* trigger inexact */ 141*1e651e1eSRoland Levillain } 142*1e651e1eSRoland Levillain else k = 0; 143*1e651e1eSRoland Levillain 144*1e651e1eSRoland Levillain /* x is now in primary range */ 145*1e651e1eSRoland Levillain t = x*x; 146*1e651e1eSRoland Levillain c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 147*1e651e1eSRoland Levillain if(k==0) return one-((x*c)/(c-2.0)-x); 148*1e651e1eSRoland Levillain else y = one-((lo-(x*c)/(2.0-c))-hi); 149*1e651e1eSRoland Levillain if(k >= -1021) { 150*1e651e1eSRoland Levillain __HI(y) += (k<<20); /* add k to y's exponent */ 151*1e651e1eSRoland Levillain return y; 152*1e651e1eSRoland Levillain } else { 153*1e651e1eSRoland Levillain __HI(y) += ((k+1000)<<20);/* add k to y's exponent */ 154*1e651e1eSRoland Levillain return y*twom1000; 155*1e651e1eSRoland Levillain } 156*1e651e1eSRoland Levillain } 157