xref: /aosp_15_r20/external/fdlibm/e_jn.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)e_jn.c 1.4 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /*
15*1e651e1eSRoland Levillain  * __ieee754_jn(n, x), __ieee754_yn(n, x)
16*1e651e1eSRoland Levillain  * floating point Bessel's function of the 1st and 2nd kind
17*1e651e1eSRoland Levillain  * of order n
18*1e651e1eSRoland Levillain  *
19*1e651e1eSRoland Levillain  * Special cases:
20*1e651e1eSRoland Levillain  *	y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal;
21*1e651e1eSRoland Levillain  *	y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal.
22*1e651e1eSRoland Levillain  * Note 2. About ieee_jn(n,x), ieee_yn(n,x)
23*1e651e1eSRoland Levillain  *	For n=0, ieee_j0(x) is called,
24*1e651e1eSRoland Levillain  *	for n=1, ieee_j1(x) is called,
25*1e651e1eSRoland Levillain  *	for n<x, forward recursion us used starting
26*1e651e1eSRoland Levillain  *	from values of ieee_j0(x) and ieee_j1(x).
27*1e651e1eSRoland Levillain  *	for n>x, a continued fraction approximation to
28*1e651e1eSRoland Levillain  *	j(n,x)/j(n-1,x) is evaluated and then backward
29*1e651e1eSRoland Levillain  *	recursion is used starting from a supposed value
30*1e651e1eSRoland Levillain  *	for j(n,x). The resulting value of j(0,x) is
31*1e651e1eSRoland Levillain  *	compared with the actual value to correct the
32*1e651e1eSRoland Levillain  *	supposed value of j(n,x).
33*1e651e1eSRoland Levillain  *
34*1e651e1eSRoland Levillain  *	yn(n,x) is similar in all respects, except
35*1e651e1eSRoland Levillain  *	that forward recursion is used for all
36*1e651e1eSRoland Levillain  *	values of n>1.
37*1e651e1eSRoland Levillain  *
38*1e651e1eSRoland Levillain  */
39*1e651e1eSRoland Levillain 
40*1e651e1eSRoland Levillain #include "fdlibm.h"
41*1e651e1eSRoland Levillain 
42*1e651e1eSRoland Levillain #ifdef __STDC__
43*1e651e1eSRoland Levillain static const double
44*1e651e1eSRoland Levillain #else
45*1e651e1eSRoland Levillain static double
46*1e651e1eSRoland Levillain #endif
47*1e651e1eSRoland Levillain invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48*1e651e1eSRoland Levillain two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49*1e651e1eSRoland Levillain one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50*1e651e1eSRoland Levillain 
51*1e651e1eSRoland Levillain static double zero  =  0.00000000000000000000e+00;
52*1e651e1eSRoland Levillain 
53*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_jn(int n,double x)54*1e651e1eSRoland Levillain 	double __ieee754_jn(int n, double x)
55*1e651e1eSRoland Levillain #else
56*1e651e1eSRoland Levillain 	double __ieee754_jn(n,x)
57*1e651e1eSRoland Levillain 	int n; double x;
58*1e651e1eSRoland Levillain #endif
59*1e651e1eSRoland Levillain {
60*1e651e1eSRoland Levillain 	int i,hx,ix,lx, sgn;
61*1e651e1eSRoland Levillain 	double a, b, temp, di;
62*1e651e1eSRoland Levillain 	double z, w;
63*1e651e1eSRoland Levillain 
64*1e651e1eSRoland Levillain     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
65*1e651e1eSRoland Levillain      * Thus, J(-n,x) = J(n,-x)
66*1e651e1eSRoland Levillain      */
67*1e651e1eSRoland Levillain 	hx = __HI(x);
68*1e651e1eSRoland Levillain 	ix = 0x7fffffff&hx;
69*1e651e1eSRoland Levillain 	lx = __LO(x);
70*1e651e1eSRoland Levillain     /* if J(n,NaN) is NaN */
71*1e651e1eSRoland Levillain 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
72*1e651e1eSRoland Levillain 	if(n<0){
73*1e651e1eSRoland Levillain 		n = -n;
74*1e651e1eSRoland Levillain 		x = -x;
75*1e651e1eSRoland Levillain 		hx ^= 0x80000000;
76*1e651e1eSRoland Levillain 	}
77*1e651e1eSRoland Levillain 	if(n==0) return(__ieee754_j0(x));
78*1e651e1eSRoland Levillain 	if(n==1) return(__ieee754_j1(x));
79*1e651e1eSRoland Levillain 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
80*1e651e1eSRoland Levillain 	x = ieee_fabs(x);
81*1e651e1eSRoland Levillain 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
82*1e651e1eSRoland Levillain 	    b = zero;
83*1e651e1eSRoland Levillain 	else if((double)n<=x) {
84*1e651e1eSRoland Levillain 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
85*1e651e1eSRoland Levillain 	    if(ix>=0x52D00000) { /* x > 2**302 */
86*1e651e1eSRoland Levillain     /* (x >> n**2)
87*1e651e1eSRoland Levillain      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
88*1e651e1eSRoland Levillain      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
89*1e651e1eSRoland Levillain      *	    Let s=ieee_sin(x), c=ieee_cos(x),
90*1e651e1eSRoland Levillain      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
91*1e651e1eSRoland Levillain      *
92*1e651e1eSRoland Levillain      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
93*1e651e1eSRoland Levillain      *		----------------------------------
94*1e651e1eSRoland Levillain      *		   0	 s-c		 c+s
95*1e651e1eSRoland Levillain      *		   1	-s-c 		-c+s
96*1e651e1eSRoland Levillain      *		   2	-s+c		-c-s
97*1e651e1eSRoland Levillain      *		   3	 s+c		 c-s
98*1e651e1eSRoland Levillain      */
99*1e651e1eSRoland Levillain 		switch(n&3) {
100*1e651e1eSRoland Levillain 		    case 0: temp =  ieee_cos(x)+ieee_sin(x); break;
101*1e651e1eSRoland Levillain 		    case 1: temp = -ieee_cos(x)+ieee_sin(x); break;
102*1e651e1eSRoland Levillain 		    case 2: temp = -ieee_cos(x)-ieee_sin(x); break;
103*1e651e1eSRoland Levillain 		    case 3: temp =  ieee_cos(x)-ieee_sin(x); break;
104*1e651e1eSRoland Levillain 		}
105*1e651e1eSRoland Levillain 		b = invsqrtpi*temp/ieee_sqrt(x);
106*1e651e1eSRoland Levillain 	    } else {
107*1e651e1eSRoland Levillain 	        a = __ieee754_j0(x);
108*1e651e1eSRoland Levillain 	        b = __ieee754_j1(x);
109*1e651e1eSRoland Levillain 	        for(i=1;i<n;i++){
110*1e651e1eSRoland Levillain 		    temp = b;
111*1e651e1eSRoland Levillain 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
112*1e651e1eSRoland Levillain 		    a = temp;
113*1e651e1eSRoland Levillain 	        }
114*1e651e1eSRoland Levillain 	    }
115*1e651e1eSRoland Levillain 	} else {
116*1e651e1eSRoland Levillain 	    if(ix<0x3e100000) {	/* x < 2**-29 */
117*1e651e1eSRoland Levillain     /* x is tiny, return the first Taylor expansion of J(n,x)
118*1e651e1eSRoland Levillain      * J(n,x) = 1/n!*(x/2)^n  - ...
119*1e651e1eSRoland Levillain      */
120*1e651e1eSRoland Levillain 		if(n>33)	/* underflow */
121*1e651e1eSRoland Levillain 		    b = zero;
122*1e651e1eSRoland Levillain 		else {
123*1e651e1eSRoland Levillain 		    temp = x*0.5; b = temp;
124*1e651e1eSRoland Levillain 		    for (a=one,i=2;i<=n;i++) {
125*1e651e1eSRoland Levillain 			a *= (double)i;		/* a = n! */
126*1e651e1eSRoland Levillain 			b *= temp;		/* b = (x/2)^n */
127*1e651e1eSRoland Levillain 		    }
128*1e651e1eSRoland Levillain 		    b = b/a;
129*1e651e1eSRoland Levillain 		}
130*1e651e1eSRoland Levillain 	    } else {
131*1e651e1eSRoland Levillain 		/* use backward recurrence */
132*1e651e1eSRoland Levillain 		/* 			x      x^2      x^2
133*1e651e1eSRoland Levillain 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
134*1e651e1eSRoland Levillain 		 *			2n  - 2(n+1) - 2(n+2)
135*1e651e1eSRoland Levillain 		 *
136*1e651e1eSRoland Levillain 		 * 			1      1        1
137*1e651e1eSRoland Levillain 		 *  (for large x)   =  ----  ------   ------   .....
138*1e651e1eSRoland Levillain 		 *			2n   2(n+1)   2(n+2)
139*1e651e1eSRoland Levillain 		 *			-- - ------ - ------ -
140*1e651e1eSRoland Levillain 		 *			 x     x         x
141*1e651e1eSRoland Levillain 		 *
142*1e651e1eSRoland Levillain 		 * Let w = 2n/x and h=2/x, then the above quotient
143*1e651e1eSRoland Levillain 		 * is equal to the continued fraction:
144*1e651e1eSRoland Levillain 		 *		    1
145*1e651e1eSRoland Levillain 		 *	= -----------------------
146*1e651e1eSRoland Levillain 		 *		       1
147*1e651e1eSRoland Levillain 		 *	   w - -----------------
148*1e651e1eSRoland Levillain 		 *			  1
149*1e651e1eSRoland Levillain 		 * 	        w+h - ---------
150*1e651e1eSRoland Levillain 		 *		       w+2h - ...
151*1e651e1eSRoland Levillain 		 *
152*1e651e1eSRoland Levillain 		 * To determine how many terms needed, let
153*1e651e1eSRoland Levillain 		 * Q(0) = w, Q(1) = w(w+h) - 1,
154*1e651e1eSRoland Levillain 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
155*1e651e1eSRoland Levillain 		 * When Q(k) > 1e4	good for single
156*1e651e1eSRoland Levillain 		 * When Q(k) > 1e9	good for double
157*1e651e1eSRoland Levillain 		 * When Q(k) > 1e17	good for quadruple
158*1e651e1eSRoland Levillain 		 */
159*1e651e1eSRoland Levillain 	    /* determine k */
160*1e651e1eSRoland Levillain 		double t,v;
161*1e651e1eSRoland Levillain 		double q0,q1,h,tmp; int k,m;
162*1e651e1eSRoland Levillain 		w  = (n+n)/(double)x; h = 2.0/(double)x;
163*1e651e1eSRoland Levillain 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
164*1e651e1eSRoland Levillain 		while(q1<1.0e9) {
165*1e651e1eSRoland Levillain 			k += 1; z += h;
166*1e651e1eSRoland Levillain 			tmp = z*q1 - q0;
167*1e651e1eSRoland Levillain 			q0 = q1;
168*1e651e1eSRoland Levillain 			q1 = tmp;
169*1e651e1eSRoland Levillain 		}
170*1e651e1eSRoland Levillain 		m = n+n;
171*1e651e1eSRoland Levillain 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
172*1e651e1eSRoland Levillain 		a = t;
173*1e651e1eSRoland Levillain 		b = one;
174*1e651e1eSRoland Levillain 		/*  estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n)
175*1e651e1eSRoland Levillain 		 *  Hence, if n*(ieee_log(2n/x)) > ...
176*1e651e1eSRoland Levillain 		 *  single 8.8722839355e+01
177*1e651e1eSRoland Levillain 		 *  double 7.09782712893383973096e+02
178*1e651e1eSRoland Levillain 		 *  long double 1.1356523406294143949491931077970765006170e+04
179*1e651e1eSRoland Levillain 		 *  then recurrent value may overflow and the result is
180*1e651e1eSRoland Levillain 		 *  likely underflow to zero
181*1e651e1eSRoland Levillain 		 */
182*1e651e1eSRoland Levillain 		tmp = n;
183*1e651e1eSRoland Levillain 		v = two/x;
184*1e651e1eSRoland Levillain 		tmp = tmp*__ieee754_log(ieee_fabs(v*tmp));
185*1e651e1eSRoland Levillain 		if(tmp<7.09782712893383973096e+02) {
186*1e651e1eSRoland Levillain 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
187*1e651e1eSRoland Levillain 		        temp = b;
188*1e651e1eSRoland Levillain 			b *= di;
189*1e651e1eSRoland Levillain 			b  = b/x - a;
190*1e651e1eSRoland Levillain 		        a = temp;
191*1e651e1eSRoland Levillain 			di -= two;
192*1e651e1eSRoland Levillain 	     	    }
193*1e651e1eSRoland Levillain 		} else {
194*1e651e1eSRoland Levillain 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
195*1e651e1eSRoland Levillain 		        temp = b;
196*1e651e1eSRoland Levillain 			b *= di;
197*1e651e1eSRoland Levillain 			b  = b/x - a;
198*1e651e1eSRoland Levillain 		        a = temp;
199*1e651e1eSRoland Levillain 			di -= two;
200*1e651e1eSRoland Levillain 		    /* scale b to avoid spurious overflow */
201*1e651e1eSRoland Levillain 			if(b>1e100) {
202*1e651e1eSRoland Levillain 			    a /= b;
203*1e651e1eSRoland Levillain 			    t /= b;
204*1e651e1eSRoland Levillain 			    b  = one;
205*1e651e1eSRoland Levillain 			}
206*1e651e1eSRoland Levillain 	     	    }
207*1e651e1eSRoland Levillain 		}
208*1e651e1eSRoland Levillain 	    	b = (t*__ieee754_j0(x)/b);
209*1e651e1eSRoland Levillain 	    }
210*1e651e1eSRoland Levillain 	}
211*1e651e1eSRoland Levillain 	if(sgn==1) return -b; else return b;
212*1e651e1eSRoland Levillain }
213*1e651e1eSRoland Levillain 
214*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_yn(int n,double x)215*1e651e1eSRoland Levillain 	double __ieee754_yn(int n, double x)
216*1e651e1eSRoland Levillain #else
217*1e651e1eSRoland Levillain 	double __ieee754_yn(n,x)
218*1e651e1eSRoland Levillain 	int n; double x;
219*1e651e1eSRoland Levillain #endif
220*1e651e1eSRoland Levillain {
221*1e651e1eSRoland Levillain 	int i,hx,ix,lx;
222*1e651e1eSRoland Levillain 	int sign;
223*1e651e1eSRoland Levillain 	double a, b, temp;
224*1e651e1eSRoland Levillain 
225*1e651e1eSRoland Levillain 	hx = __HI(x);
226*1e651e1eSRoland Levillain 	ix = 0x7fffffff&hx;
227*1e651e1eSRoland Levillain 	lx = __LO(x);
228*1e651e1eSRoland Levillain     /* if Y(n,NaN) is NaN */
229*1e651e1eSRoland Levillain 	if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
230*1e651e1eSRoland Levillain 	if((ix|lx)==0) return -one/zero;
231*1e651e1eSRoland Levillain 	if(hx<0) return zero/zero;
232*1e651e1eSRoland Levillain 	sign = 1;
233*1e651e1eSRoland Levillain 	if(n<0){
234*1e651e1eSRoland Levillain 		n = -n;
235*1e651e1eSRoland Levillain 		sign = 1 - ((n&1)<<1);
236*1e651e1eSRoland Levillain 	}
237*1e651e1eSRoland Levillain 	if(n==0) return(__ieee754_y0(x));
238*1e651e1eSRoland Levillain 	if(n==1) return(sign*__ieee754_y1(x));
239*1e651e1eSRoland Levillain 	if(ix==0x7ff00000) return zero;
240*1e651e1eSRoland Levillain 	if(ix>=0x52D00000) { /* x > 2**302 */
241*1e651e1eSRoland Levillain     /* (x >> n**2)
242*1e651e1eSRoland Levillain      *	    Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
243*1e651e1eSRoland Levillain      *	    Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi)
244*1e651e1eSRoland Levillain      *	    Let s=ieee_sin(x), c=ieee_cos(x),
245*1e651e1eSRoland Levillain      *		xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then
246*1e651e1eSRoland Levillain      *
247*1e651e1eSRoland Levillain      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
248*1e651e1eSRoland Levillain      *		----------------------------------
249*1e651e1eSRoland Levillain      *		   0	 s-c		 c+s
250*1e651e1eSRoland Levillain      *		   1	-s-c 		-c+s
251*1e651e1eSRoland Levillain      *		   2	-s+c		-c-s
252*1e651e1eSRoland Levillain      *		   3	 s+c		 c-s
253*1e651e1eSRoland Levillain      */
254*1e651e1eSRoland Levillain 		switch(n&3) {
255*1e651e1eSRoland Levillain 		    case 0: temp =  ieee_sin(x)-ieee_cos(x); break;
256*1e651e1eSRoland Levillain 		    case 1: temp = -ieee_sin(x)-ieee_cos(x); break;
257*1e651e1eSRoland Levillain 		    case 2: temp = -ieee_sin(x)+ieee_cos(x); break;
258*1e651e1eSRoland Levillain 		    case 3: temp =  ieee_sin(x)+ieee_cos(x); break;
259*1e651e1eSRoland Levillain 		}
260*1e651e1eSRoland Levillain 		b = invsqrtpi*temp/ieee_sqrt(x);
261*1e651e1eSRoland Levillain 	} else {
262*1e651e1eSRoland Levillain 	    a = __ieee754_y0(x);
263*1e651e1eSRoland Levillain 	    b = __ieee754_y1(x);
264*1e651e1eSRoland Levillain 	/* quit if b is -inf */
265*1e651e1eSRoland Levillain 	    for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
266*1e651e1eSRoland Levillain 		temp = b;
267*1e651e1eSRoland Levillain 		b = ((double)(i+i)/x)*b - a;
268*1e651e1eSRoland Levillain 		a = temp;
269*1e651e1eSRoland Levillain 	    }
270*1e651e1eSRoland Levillain 	}
271*1e651e1eSRoland Levillain 	if(sign>0) return b; else return -b;
272*1e651e1eSRoland Levillain }
273