1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)e_jn.c 1.4 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* 15*1e651e1eSRoland Levillain * __ieee754_jn(n, x), __ieee754_yn(n, x) 16*1e651e1eSRoland Levillain * floating point Bessel's function of the 1st and 2nd kind 17*1e651e1eSRoland Levillain * of order n 18*1e651e1eSRoland Levillain * 19*1e651e1eSRoland Levillain * Special cases: 20*1e651e1eSRoland Levillain * y0(0)=ieee_y1(0)=ieee_yn(n,0) = -inf with division by zero signal; 21*1e651e1eSRoland Levillain * y0(-ve)=ieee_y1(-ve)=ieee_yn(n,-ve) are NaN with invalid signal. 22*1e651e1eSRoland Levillain * Note 2. About ieee_jn(n,x), ieee_yn(n,x) 23*1e651e1eSRoland Levillain * For n=0, ieee_j0(x) is called, 24*1e651e1eSRoland Levillain * for n=1, ieee_j1(x) is called, 25*1e651e1eSRoland Levillain * for n<x, forward recursion us used starting 26*1e651e1eSRoland Levillain * from values of ieee_j0(x) and ieee_j1(x). 27*1e651e1eSRoland Levillain * for n>x, a continued fraction approximation to 28*1e651e1eSRoland Levillain * j(n,x)/j(n-1,x) is evaluated and then backward 29*1e651e1eSRoland Levillain * recursion is used starting from a supposed value 30*1e651e1eSRoland Levillain * for j(n,x). The resulting value of j(0,x) is 31*1e651e1eSRoland Levillain * compared with the actual value to correct the 32*1e651e1eSRoland Levillain * supposed value of j(n,x). 33*1e651e1eSRoland Levillain * 34*1e651e1eSRoland Levillain * yn(n,x) is similar in all respects, except 35*1e651e1eSRoland Levillain * that forward recursion is used for all 36*1e651e1eSRoland Levillain * values of n>1. 37*1e651e1eSRoland Levillain * 38*1e651e1eSRoland Levillain */ 39*1e651e1eSRoland Levillain 40*1e651e1eSRoland Levillain #include "fdlibm.h" 41*1e651e1eSRoland Levillain 42*1e651e1eSRoland Levillain #ifdef __STDC__ 43*1e651e1eSRoland Levillain static const double 44*1e651e1eSRoland Levillain #else 45*1e651e1eSRoland Levillain static double 46*1e651e1eSRoland Levillain #endif 47*1e651e1eSRoland Levillain invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 48*1e651e1eSRoland Levillain two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ 49*1e651e1eSRoland Levillain one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ 50*1e651e1eSRoland Levillain 51*1e651e1eSRoland Levillain static double zero = 0.00000000000000000000e+00; 52*1e651e1eSRoland Levillain 53*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_jn(int n,double x)54*1e651e1eSRoland Levillain double __ieee754_jn(int n, double x) 55*1e651e1eSRoland Levillain #else 56*1e651e1eSRoland Levillain double __ieee754_jn(n,x) 57*1e651e1eSRoland Levillain int n; double x; 58*1e651e1eSRoland Levillain #endif 59*1e651e1eSRoland Levillain { 60*1e651e1eSRoland Levillain int i,hx,ix,lx, sgn; 61*1e651e1eSRoland Levillain double a, b, temp, di; 62*1e651e1eSRoland Levillain double z, w; 63*1e651e1eSRoland Levillain 64*1e651e1eSRoland Levillain /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 65*1e651e1eSRoland Levillain * Thus, J(-n,x) = J(n,-x) 66*1e651e1eSRoland Levillain */ 67*1e651e1eSRoland Levillain hx = __HI(x); 68*1e651e1eSRoland Levillain ix = 0x7fffffff&hx; 69*1e651e1eSRoland Levillain lx = __LO(x); 70*1e651e1eSRoland Levillain /* if J(n,NaN) is NaN */ 71*1e651e1eSRoland Levillain if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; 72*1e651e1eSRoland Levillain if(n<0){ 73*1e651e1eSRoland Levillain n = -n; 74*1e651e1eSRoland Levillain x = -x; 75*1e651e1eSRoland Levillain hx ^= 0x80000000; 76*1e651e1eSRoland Levillain } 77*1e651e1eSRoland Levillain if(n==0) return(__ieee754_j0(x)); 78*1e651e1eSRoland Levillain if(n==1) return(__ieee754_j1(x)); 79*1e651e1eSRoland Levillain sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ 80*1e651e1eSRoland Levillain x = ieee_fabs(x); 81*1e651e1eSRoland Levillain if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ 82*1e651e1eSRoland Levillain b = zero; 83*1e651e1eSRoland Levillain else if((double)n<=x) { 84*1e651e1eSRoland Levillain /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ 85*1e651e1eSRoland Levillain if(ix>=0x52D00000) { /* x > 2**302 */ 86*1e651e1eSRoland Levillain /* (x >> n**2) 87*1e651e1eSRoland Levillain * Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi) 88*1e651e1eSRoland Levillain * Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi) 89*1e651e1eSRoland Levillain * Let s=ieee_sin(x), c=ieee_cos(x), 90*1e651e1eSRoland Levillain * xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then 91*1e651e1eSRoland Levillain * 92*1e651e1eSRoland Levillain * n sin(xn)*sqt2 cos(xn)*sqt2 93*1e651e1eSRoland Levillain * ---------------------------------- 94*1e651e1eSRoland Levillain * 0 s-c c+s 95*1e651e1eSRoland Levillain * 1 -s-c -c+s 96*1e651e1eSRoland Levillain * 2 -s+c -c-s 97*1e651e1eSRoland Levillain * 3 s+c c-s 98*1e651e1eSRoland Levillain */ 99*1e651e1eSRoland Levillain switch(n&3) { 100*1e651e1eSRoland Levillain case 0: temp = ieee_cos(x)+ieee_sin(x); break; 101*1e651e1eSRoland Levillain case 1: temp = -ieee_cos(x)+ieee_sin(x); break; 102*1e651e1eSRoland Levillain case 2: temp = -ieee_cos(x)-ieee_sin(x); break; 103*1e651e1eSRoland Levillain case 3: temp = ieee_cos(x)-ieee_sin(x); break; 104*1e651e1eSRoland Levillain } 105*1e651e1eSRoland Levillain b = invsqrtpi*temp/ieee_sqrt(x); 106*1e651e1eSRoland Levillain } else { 107*1e651e1eSRoland Levillain a = __ieee754_j0(x); 108*1e651e1eSRoland Levillain b = __ieee754_j1(x); 109*1e651e1eSRoland Levillain for(i=1;i<n;i++){ 110*1e651e1eSRoland Levillain temp = b; 111*1e651e1eSRoland Levillain b = b*((double)(i+i)/x) - a; /* avoid underflow */ 112*1e651e1eSRoland Levillain a = temp; 113*1e651e1eSRoland Levillain } 114*1e651e1eSRoland Levillain } 115*1e651e1eSRoland Levillain } else { 116*1e651e1eSRoland Levillain if(ix<0x3e100000) { /* x < 2**-29 */ 117*1e651e1eSRoland Levillain /* x is tiny, return the first Taylor expansion of J(n,x) 118*1e651e1eSRoland Levillain * J(n,x) = 1/n!*(x/2)^n - ... 119*1e651e1eSRoland Levillain */ 120*1e651e1eSRoland Levillain if(n>33) /* underflow */ 121*1e651e1eSRoland Levillain b = zero; 122*1e651e1eSRoland Levillain else { 123*1e651e1eSRoland Levillain temp = x*0.5; b = temp; 124*1e651e1eSRoland Levillain for (a=one,i=2;i<=n;i++) { 125*1e651e1eSRoland Levillain a *= (double)i; /* a = n! */ 126*1e651e1eSRoland Levillain b *= temp; /* b = (x/2)^n */ 127*1e651e1eSRoland Levillain } 128*1e651e1eSRoland Levillain b = b/a; 129*1e651e1eSRoland Levillain } 130*1e651e1eSRoland Levillain } else { 131*1e651e1eSRoland Levillain /* use backward recurrence */ 132*1e651e1eSRoland Levillain /* x x^2 x^2 133*1e651e1eSRoland Levillain * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 134*1e651e1eSRoland Levillain * 2n - 2(n+1) - 2(n+2) 135*1e651e1eSRoland Levillain * 136*1e651e1eSRoland Levillain * 1 1 1 137*1e651e1eSRoland Levillain * (for large x) = ---- ------ ------ ..... 138*1e651e1eSRoland Levillain * 2n 2(n+1) 2(n+2) 139*1e651e1eSRoland Levillain * -- - ------ - ------ - 140*1e651e1eSRoland Levillain * x x x 141*1e651e1eSRoland Levillain * 142*1e651e1eSRoland Levillain * Let w = 2n/x and h=2/x, then the above quotient 143*1e651e1eSRoland Levillain * is equal to the continued fraction: 144*1e651e1eSRoland Levillain * 1 145*1e651e1eSRoland Levillain * = ----------------------- 146*1e651e1eSRoland Levillain * 1 147*1e651e1eSRoland Levillain * w - ----------------- 148*1e651e1eSRoland Levillain * 1 149*1e651e1eSRoland Levillain * w+h - --------- 150*1e651e1eSRoland Levillain * w+2h - ... 151*1e651e1eSRoland Levillain * 152*1e651e1eSRoland Levillain * To determine how many terms needed, let 153*1e651e1eSRoland Levillain * Q(0) = w, Q(1) = w(w+h) - 1, 154*1e651e1eSRoland Levillain * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 155*1e651e1eSRoland Levillain * When Q(k) > 1e4 good for single 156*1e651e1eSRoland Levillain * When Q(k) > 1e9 good for double 157*1e651e1eSRoland Levillain * When Q(k) > 1e17 good for quadruple 158*1e651e1eSRoland Levillain */ 159*1e651e1eSRoland Levillain /* determine k */ 160*1e651e1eSRoland Levillain double t,v; 161*1e651e1eSRoland Levillain double q0,q1,h,tmp; int k,m; 162*1e651e1eSRoland Levillain w = (n+n)/(double)x; h = 2.0/(double)x; 163*1e651e1eSRoland Levillain q0 = w; z = w+h; q1 = w*z - 1.0; k=1; 164*1e651e1eSRoland Levillain while(q1<1.0e9) { 165*1e651e1eSRoland Levillain k += 1; z += h; 166*1e651e1eSRoland Levillain tmp = z*q1 - q0; 167*1e651e1eSRoland Levillain q0 = q1; 168*1e651e1eSRoland Levillain q1 = tmp; 169*1e651e1eSRoland Levillain } 170*1e651e1eSRoland Levillain m = n+n; 171*1e651e1eSRoland Levillain for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); 172*1e651e1eSRoland Levillain a = t; 173*1e651e1eSRoland Levillain b = one; 174*1e651e1eSRoland Levillain /* estimate ieee_log((2/x)^n*n!) = n*ieee_log(2/x)+n*ln(n) 175*1e651e1eSRoland Levillain * Hence, if n*(ieee_log(2n/x)) > ... 176*1e651e1eSRoland Levillain * single 8.8722839355e+01 177*1e651e1eSRoland Levillain * double 7.09782712893383973096e+02 178*1e651e1eSRoland Levillain * long double 1.1356523406294143949491931077970765006170e+04 179*1e651e1eSRoland Levillain * then recurrent value may overflow and the result is 180*1e651e1eSRoland Levillain * likely underflow to zero 181*1e651e1eSRoland Levillain */ 182*1e651e1eSRoland Levillain tmp = n; 183*1e651e1eSRoland Levillain v = two/x; 184*1e651e1eSRoland Levillain tmp = tmp*__ieee754_log(ieee_fabs(v*tmp)); 185*1e651e1eSRoland Levillain if(tmp<7.09782712893383973096e+02) { 186*1e651e1eSRoland Levillain for(i=n-1,di=(double)(i+i);i>0;i--){ 187*1e651e1eSRoland Levillain temp = b; 188*1e651e1eSRoland Levillain b *= di; 189*1e651e1eSRoland Levillain b = b/x - a; 190*1e651e1eSRoland Levillain a = temp; 191*1e651e1eSRoland Levillain di -= two; 192*1e651e1eSRoland Levillain } 193*1e651e1eSRoland Levillain } else { 194*1e651e1eSRoland Levillain for(i=n-1,di=(double)(i+i);i>0;i--){ 195*1e651e1eSRoland Levillain temp = b; 196*1e651e1eSRoland Levillain b *= di; 197*1e651e1eSRoland Levillain b = b/x - a; 198*1e651e1eSRoland Levillain a = temp; 199*1e651e1eSRoland Levillain di -= two; 200*1e651e1eSRoland Levillain /* scale b to avoid spurious overflow */ 201*1e651e1eSRoland Levillain if(b>1e100) { 202*1e651e1eSRoland Levillain a /= b; 203*1e651e1eSRoland Levillain t /= b; 204*1e651e1eSRoland Levillain b = one; 205*1e651e1eSRoland Levillain } 206*1e651e1eSRoland Levillain } 207*1e651e1eSRoland Levillain } 208*1e651e1eSRoland Levillain b = (t*__ieee754_j0(x)/b); 209*1e651e1eSRoland Levillain } 210*1e651e1eSRoland Levillain } 211*1e651e1eSRoland Levillain if(sgn==1) return -b; else return b; 212*1e651e1eSRoland Levillain } 213*1e651e1eSRoland Levillain 214*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_yn(int n,double x)215*1e651e1eSRoland Levillain double __ieee754_yn(int n, double x) 216*1e651e1eSRoland Levillain #else 217*1e651e1eSRoland Levillain double __ieee754_yn(n,x) 218*1e651e1eSRoland Levillain int n; double x; 219*1e651e1eSRoland Levillain #endif 220*1e651e1eSRoland Levillain { 221*1e651e1eSRoland Levillain int i,hx,ix,lx; 222*1e651e1eSRoland Levillain int sign; 223*1e651e1eSRoland Levillain double a, b, temp; 224*1e651e1eSRoland Levillain 225*1e651e1eSRoland Levillain hx = __HI(x); 226*1e651e1eSRoland Levillain ix = 0x7fffffff&hx; 227*1e651e1eSRoland Levillain lx = __LO(x); 228*1e651e1eSRoland Levillain /* if Y(n,NaN) is NaN */ 229*1e651e1eSRoland Levillain if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x; 230*1e651e1eSRoland Levillain if((ix|lx)==0) return -one/zero; 231*1e651e1eSRoland Levillain if(hx<0) return zero/zero; 232*1e651e1eSRoland Levillain sign = 1; 233*1e651e1eSRoland Levillain if(n<0){ 234*1e651e1eSRoland Levillain n = -n; 235*1e651e1eSRoland Levillain sign = 1 - ((n&1)<<1); 236*1e651e1eSRoland Levillain } 237*1e651e1eSRoland Levillain if(n==0) return(__ieee754_y0(x)); 238*1e651e1eSRoland Levillain if(n==1) return(sign*__ieee754_y1(x)); 239*1e651e1eSRoland Levillain if(ix==0x7ff00000) return zero; 240*1e651e1eSRoland Levillain if(ix>=0x52D00000) { /* x > 2**302 */ 241*1e651e1eSRoland Levillain /* (x >> n**2) 242*1e651e1eSRoland Levillain * Jn(x) = ieee_cos(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi) 243*1e651e1eSRoland Levillain * Yn(x) = ieee_sin(x-(2n+1)*pi/4)*ieee_sqrt(2/x*pi) 244*1e651e1eSRoland Levillain * Let s=ieee_sin(x), c=ieee_cos(x), 245*1e651e1eSRoland Levillain * xn=x-(2n+1)*pi/4, sqt2 = ieee_sqrt(2),then 246*1e651e1eSRoland Levillain * 247*1e651e1eSRoland Levillain * n sin(xn)*sqt2 cos(xn)*sqt2 248*1e651e1eSRoland Levillain * ---------------------------------- 249*1e651e1eSRoland Levillain * 0 s-c c+s 250*1e651e1eSRoland Levillain * 1 -s-c -c+s 251*1e651e1eSRoland Levillain * 2 -s+c -c-s 252*1e651e1eSRoland Levillain * 3 s+c c-s 253*1e651e1eSRoland Levillain */ 254*1e651e1eSRoland Levillain switch(n&3) { 255*1e651e1eSRoland Levillain case 0: temp = ieee_sin(x)-ieee_cos(x); break; 256*1e651e1eSRoland Levillain case 1: temp = -ieee_sin(x)-ieee_cos(x); break; 257*1e651e1eSRoland Levillain case 2: temp = -ieee_sin(x)+ieee_cos(x); break; 258*1e651e1eSRoland Levillain case 3: temp = ieee_sin(x)+ieee_cos(x); break; 259*1e651e1eSRoland Levillain } 260*1e651e1eSRoland Levillain b = invsqrtpi*temp/ieee_sqrt(x); 261*1e651e1eSRoland Levillain } else { 262*1e651e1eSRoland Levillain a = __ieee754_y0(x); 263*1e651e1eSRoland Levillain b = __ieee754_y1(x); 264*1e651e1eSRoland Levillain /* quit if b is -inf */ 265*1e651e1eSRoland Levillain for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){ 266*1e651e1eSRoland Levillain temp = b; 267*1e651e1eSRoland Levillain b = ((double)(i+i)/x)*b - a; 268*1e651e1eSRoland Levillain a = temp; 269*1e651e1eSRoland Levillain } 270*1e651e1eSRoland Levillain } 271*1e651e1eSRoland Levillain if(sign>0) return b; else return -b; 272*1e651e1eSRoland Levillain } 273