1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain /* @(#)e_log.c 1.3 95/01/18 */ 3*1e651e1eSRoland Levillain /* 4*1e651e1eSRoland Levillain * ==================================================== 5*1e651e1eSRoland Levillain * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6*1e651e1eSRoland Levillain * 7*1e651e1eSRoland Levillain * Developed at SunSoft, a Sun Microsystems, Inc. business. 8*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 9*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 10*1e651e1eSRoland Levillain * is preserved. 11*1e651e1eSRoland Levillain * ==================================================== 12*1e651e1eSRoland Levillain */ 13*1e651e1eSRoland Levillain 14*1e651e1eSRoland Levillain /* __ieee754_log(x) 15*1e651e1eSRoland Levillain * Return the logrithm of x 16*1e651e1eSRoland Levillain * 17*1e651e1eSRoland Levillain * Method : 18*1e651e1eSRoland Levillain * 1. Argument Reduction: find k and f such that 19*1e651e1eSRoland Levillain * x = 2^k * (1+f), 20*1e651e1eSRoland Levillain * where ieee_sqrt(2)/2 < 1+f < ieee_sqrt(2) . 21*1e651e1eSRoland Levillain * 22*1e651e1eSRoland Levillain * 2. Approximation of ieee_log(1+f). 23*1e651e1eSRoland Levillain * Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s) 24*1e651e1eSRoland Levillain * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 25*1e651e1eSRoland Levillain * = 2s + s*R 26*1e651e1eSRoland Levillain * We use a special Reme algorithm on [0,0.1716] to generate 27*1e651e1eSRoland Levillain * a polynomial of degree 14 to approximate R The maximum error 28*1e651e1eSRoland Levillain * of this polynomial approximation is bounded by 2**-58.45. In 29*1e651e1eSRoland Levillain * other words, 30*1e651e1eSRoland Levillain * 2 4 6 8 10 12 14 31*1e651e1eSRoland Levillain * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 32*1e651e1eSRoland Levillain * (the values of Lg1 to Lg7 are listed in the program) 33*1e651e1eSRoland Levillain * and 34*1e651e1eSRoland Levillain * | 2 14 | -58.45 35*1e651e1eSRoland Levillain * | Lg1*s +...+Lg7*s - R(z) | <= 2 36*1e651e1eSRoland Levillain * | | 37*1e651e1eSRoland Levillain * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 38*1e651e1eSRoland Levillain * In order to guarantee error in log below 1ulp, we compute log 39*1e651e1eSRoland Levillain * by 40*1e651e1eSRoland Levillain * log(1+f) = f - s*(f - R) (if f is not too large) 41*1e651e1eSRoland Levillain * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 42*1e651e1eSRoland Levillain * 43*1e651e1eSRoland Levillain * 3. Finally, ieee_log(x) = k*ln2 + ieee_log(1+f). 44*1e651e1eSRoland Levillain * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 45*1e651e1eSRoland Levillain * Here ln2 is split into two floating point number: 46*1e651e1eSRoland Levillain * ln2_hi + ln2_lo, 47*1e651e1eSRoland Levillain * where n*ln2_hi is always exact for |n| < 2000. 48*1e651e1eSRoland Levillain * 49*1e651e1eSRoland Levillain * Special cases: 50*1e651e1eSRoland Levillain * log(x) is NaN with signal if x < 0 (including -INF) ; 51*1e651e1eSRoland Levillain * log(+INF) is +INF; ieee_log(0) is -INF with signal; 52*1e651e1eSRoland Levillain * log(NaN) is that NaN with no signal. 53*1e651e1eSRoland Levillain * 54*1e651e1eSRoland Levillain * Accuracy: 55*1e651e1eSRoland Levillain * according to an error analysis, the error is always less than 56*1e651e1eSRoland Levillain * 1 ulp (unit in the last place). 57*1e651e1eSRoland Levillain * 58*1e651e1eSRoland Levillain * Constants: 59*1e651e1eSRoland Levillain * The hexadecimal values are the intended ones for the following 60*1e651e1eSRoland Levillain * constants. The decimal values may be used, provided that the 61*1e651e1eSRoland Levillain * compiler will convert from decimal to binary accurately enough 62*1e651e1eSRoland Levillain * to produce the hexadecimal values shown. 63*1e651e1eSRoland Levillain */ 64*1e651e1eSRoland Levillain 65*1e651e1eSRoland Levillain #include "fdlibm.h" 66*1e651e1eSRoland Levillain 67*1e651e1eSRoland Levillain #ifdef __STDC__ 68*1e651e1eSRoland Levillain static const double 69*1e651e1eSRoland Levillain #else 70*1e651e1eSRoland Levillain static double 71*1e651e1eSRoland Levillain #endif 72*1e651e1eSRoland Levillain ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 73*1e651e1eSRoland Levillain ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 74*1e651e1eSRoland Levillain two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 75*1e651e1eSRoland Levillain Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 76*1e651e1eSRoland Levillain Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 77*1e651e1eSRoland Levillain Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 78*1e651e1eSRoland Levillain Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 79*1e651e1eSRoland Levillain Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 80*1e651e1eSRoland Levillain Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 81*1e651e1eSRoland Levillain Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 82*1e651e1eSRoland Levillain 83*1e651e1eSRoland Levillain static double zero = 0.0; 84*1e651e1eSRoland Levillain 85*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_log(double x)86*1e651e1eSRoland Levillain double __ieee754_log(double x) 87*1e651e1eSRoland Levillain #else 88*1e651e1eSRoland Levillain double __ieee754_log(x) 89*1e651e1eSRoland Levillain double x; 90*1e651e1eSRoland Levillain #endif 91*1e651e1eSRoland Levillain { 92*1e651e1eSRoland Levillain double hfsq,f,s,z,R,w,t1,t2,dk; 93*1e651e1eSRoland Levillain int k,hx,i,j; 94*1e651e1eSRoland Levillain unsigned lx; 95*1e651e1eSRoland Levillain 96*1e651e1eSRoland Levillain hx = __HI(x); /* high word of x */ 97*1e651e1eSRoland Levillain lx = __LO(x); /* low word of x */ 98*1e651e1eSRoland Levillain 99*1e651e1eSRoland Levillain k=0; 100*1e651e1eSRoland Levillain if (hx < 0x00100000) { /* x < 2**-1022 */ 101*1e651e1eSRoland Levillain if (((hx&0x7fffffff)|lx)==0) 102*1e651e1eSRoland Levillain return -two54/zero; /* ieee_log(+-0)=-inf */ 103*1e651e1eSRoland Levillain if (hx<0) return (x-x)/zero; /* ieee_log(-#) = NaN */ 104*1e651e1eSRoland Levillain k -= 54; x *= two54; /* subnormal number, scale up x */ 105*1e651e1eSRoland Levillain hx = __HI(x); /* high word of x */ 106*1e651e1eSRoland Levillain } 107*1e651e1eSRoland Levillain if (hx >= 0x7ff00000) return x+x; 108*1e651e1eSRoland Levillain k += (hx>>20)-1023; 109*1e651e1eSRoland Levillain hx &= 0x000fffff; 110*1e651e1eSRoland Levillain i = (hx+0x95f64)&0x100000; 111*1e651e1eSRoland Levillain __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ 112*1e651e1eSRoland Levillain k += (i>>20); 113*1e651e1eSRoland Levillain f = x-1.0; 114*1e651e1eSRoland Levillain if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ 115*1e651e1eSRoland Levillain if(f==zero) if(k==0) return zero; else {dk=(double)k; 116*1e651e1eSRoland Levillain return dk*ln2_hi+dk*ln2_lo;} 117*1e651e1eSRoland Levillain R = f*f*(0.5-0.33333333333333333*f); 118*1e651e1eSRoland Levillain if(k==0) return f-R; else {dk=(double)k; 119*1e651e1eSRoland Levillain return dk*ln2_hi-((R-dk*ln2_lo)-f);} 120*1e651e1eSRoland Levillain } 121*1e651e1eSRoland Levillain s = f/(2.0+f); 122*1e651e1eSRoland Levillain dk = (double)k; 123*1e651e1eSRoland Levillain z = s*s; 124*1e651e1eSRoland Levillain i = hx-0x6147a; 125*1e651e1eSRoland Levillain w = z*z; 126*1e651e1eSRoland Levillain j = 0x6b851-hx; 127*1e651e1eSRoland Levillain t1= w*(Lg2+w*(Lg4+w*Lg6)); 128*1e651e1eSRoland Levillain t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 129*1e651e1eSRoland Levillain i |= j; 130*1e651e1eSRoland Levillain R = t2+t1; 131*1e651e1eSRoland Levillain if(i>0) { 132*1e651e1eSRoland Levillain hfsq=0.5*f*f; 133*1e651e1eSRoland Levillain if(k==0) return f-(hfsq-s*(hfsq+R)); else 134*1e651e1eSRoland Levillain return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 135*1e651e1eSRoland Levillain } else { 136*1e651e1eSRoland Levillain if(k==0) return f-s*(f-R); else 137*1e651e1eSRoland Levillain return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 138*1e651e1eSRoland Levillain } 139*1e651e1eSRoland Levillain } 140