xref: /aosp_15_r20/external/fdlibm/e_log.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)e_log.c 1.3 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /* __ieee754_log(x)
15*1e651e1eSRoland Levillain  * Return the logrithm of x
16*1e651e1eSRoland Levillain  *
17*1e651e1eSRoland Levillain  * Method :
18*1e651e1eSRoland Levillain  *   1. Argument Reduction: find k and f such that
19*1e651e1eSRoland Levillain  *			x = 2^k * (1+f),
20*1e651e1eSRoland Levillain  *	   where  ieee_sqrt(2)/2 < 1+f < ieee_sqrt(2) .
21*1e651e1eSRoland Levillain  *
22*1e651e1eSRoland Levillain  *   2. Approximation of ieee_log(1+f).
23*1e651e1eSRoland Levillain  *	Let s = f/(2+f) ; based on ieee_log(1+f) = ieee_log(1+s) - ieee_log(1-s)
24*1e651e1eSRoland Levillain  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25*1e651e1eSRoland Levillain  *	     	 = 2s + s*R
26*1e651e1eSRoland Levillain  *      We use a special Reme algorithm on [0,0.1716] to generate
27*1e651e1eSRoland Levillain  * 	a polynomial of degree 14 to approximate R The maximum error
28*1e651e1eSRoland Levillain  *	of this polynomial approximation is bounded by 2**-58.45. In
29*1e651e1eSRoland Levillain  *	other words,
30*1e651e1eSRoland Levillain  *		        2      4      6      8      10      12      14
31*1e651e1eSRoland Levillain  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
32*1e651e1eSRoland Levillain  *  	(the values of Lg1 to Lg7 are listed in the program)
33*1e651e1eSRoland Levillain  *	and
34*1e651e1eSRoland Levillain  *	    |      2          14          |     -58.45
35*1e651e1eSRoland Levillain  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
36*1e651e1eSRoland Levillain  *	    |                             |
37*1e651e1eSRoland Levillain  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38*1e651e1eSRoland Levillain  *	In order to guarantee error in log below 1ulp, we compute log
39*1e651e1eSRoland Levillain  *	by
40*1e651e1eSRoland Levillain  *		log(1+f) = f - s*(f - R)	(if f is not too large)
41*1e651e1eSRoland Levillain  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
42*1e651e1eSRoland Levillain  *
43*1e651e1eSRoland Levillain  *	3. Finally,  ieee_log(x) = k*ln2 + ieee_log(1+f).
44*1e651e1eSRoland Levillain  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45*1e651e1eSRoland Levillain  *	   Here ln2 is split into two floating point number:
46*1e651e1eSRoland Levillain  *			ln2_hi + ln2_lo,
47*1e651e1eSRoland Levillain  *	   where n*ln2_hi is always exact for |n| < 2000.
48*1e651e1eSRoland Levillain  *
49*1e651e1eSRoland Levillain  * Special cases:
50*1e651e1eSRoland Levillain  *	log(x) is NaN with signal if x < 0 (including -INF) ;
51*1e651e1eSRoland Levillain  *	log(+INF) is +INF; ieee_log(0) is -INF with signal;
52*1e651e1eSRoland Levillain  *	log(NaN) is that NaN with no signal.
53*1e651e1eSRoland Levillain  *
54*1e651e1eSRoland Levillain  * Accuracy:
55*1e651e1eSRoland Levillain  *	according to an error analysis, the error is always less than
56*1e651e1eSRoland Levillain  *	1 ulp (unit in the last place).
57*1e651e1eSRoland Levillain  *
58*1e651e1eSRoland Levillain  * Constants:
59*1e651e1eSRoland Levillain  * The hexadecimal values are the intended ones for the following
60*1e651e1eSRoland Levillain  * constants. The decimal values may be used, provided that the
61*1e651e1eSRoland Levillain  * compiler will convert from decimal to binary accurately enough
62*1e651e1eSRoland Levillain  * to produce the hexadecimal values shown.
63*1e651e1eSRoland Levillain  */
64*1e651e1eSRoland Levillain 
65*1e651e1eSRoland Levillain #include "fdlibm.h"
66*1e651e1eSRoland Levillain 
67*1e651e1eSRoland Levillain #ifdef __STDC__
68*1e651e1eSRoland Levillain static const double
69*1e651e1eSRoland Levillain #else
70*1e651e1eSRoland Levillain static double
71*1e651e1eSRoland Levillain #endif
72*1e651e1eSRoland Levillain ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
73*1e651e1eSRoland Levillain ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
74*1e651e1eSRoland Levillain two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
75*1e651e1eSRoland Levillain Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
76*1e651e1eSRoland Levillain Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
77*1e651e1eSRoland Levillain Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
78*1e651e1eSRoland Levillain Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
79*1e651e1eSRoland Levillain Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
80*1e651e1eSRoland Levillain Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
81*1e651e1eSRoland Levillain Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
82*1e651e1eSRoland Levillain 
83*1e651e1eSRoland Levillain static double zero   =  0.0;
84*1e651e1eSRoland Levillain 
85*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_log(double x)86*1e651e1eSRoland Levillain 	double __ieee754_log(double x)
87*1e651e1eSRoland Levillain #else
88*1e651e1eSRoland Levillain 	double __ieee754_log(x)
89*1e651e1eSRoland Levillain 	double x;
90*1e651e1eSRoland Levillain #endif
91*1e651e1eSRoland Levillain {
92*1e651e1eSRoland Levillain 	double hfsq,f,s,z,R,w,t1,t2,dk;
93*1e651e1eSRoland Levillain 	int k,hx,i,j;
94*1e651e1eSRoland Levillain 	unsigned lx;
95*1e651e1eSRoland Levillain 
96*1e651e1eSRoland Levillain 	hx = __HI(x);		/* high word of x */
97*1e651e1eSRoland Levillain 	lx = __LO(x);		/* low  word of x */
98*1e651e1eSRoland Levillain 
99*1e651e1eSRoland Levillain 	k=0;
100*1e651e1eSRoland Levillain 	if (hx < 0x00100000) {			/* x < 2**-1022  */
101*1e651e1eSRoland Levillain 	    if (((hx&0x7fffffff)|lx)==0)
102*1e651e1eSRoland Levillain 		return -two54/zero;		/* ieee_log(+-0)=-inf */
103*1e651e1eSRoland Levillain 	    if (hx<0) return (x-x)/zero;	/* ieee_log(-#) = NaN */
104*1e651e1eSRoland Levillain 	    k -= 54; x *= two54; /* subnormal number, scale up x */
105*1e651e1eSRoland Levillain 	    hx = __HI(x);		/* high word of x */
106*1e651e1eSRoland Levillain 	}
107*1e651e1eSRoland Levillain 	if (hx >= 0x7ff00000) return x+x;
108*1e651e1eSRoland Levillain 	k += (hx>>20)-1023;
109*1e651e1eSRoland Levillain 	hx &= 0x000fffff;
110*1e651e1eSRoland Levillain 	i = (hx+0x95f64)&0x100000;
111*1e651e1eSRoland Levillain 	__HI(x) = hx|(i^0x3ff00000);	/* normalize x or x/2 */
112*1e651e1eSRoland Levillain 	k += (i>>20);
113*1e651e1eSRoland Levillain 	f = x-1.0;
114*1e651e1eSRoland Levillain 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
115*1e651e1eSRoland Levillain 	    if(f==zero) if(k==0) return zero;  else {dk=(double)k;
116*1e651e1eSRoland Levillain 				 return dk*ln2_hi+dk*ln2_lo;}
117*1e651e1eSRoland Levillain 	    R = f*f*(0.5-0.33333333333333333*f);
118*1e651e1eSRoland Levillain 	    if(k==0) return f-R; else {dk=(double)k;
119*1e651e1eSRoland Levillain 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
120*1e651e1eSRoland Levillain 	}
121*1e651e1eSRoland Levillain  	s = f/(2.0+f);
122*1e651e1eSRoland Levillain 	dk = (double)k;
123*1e651e1eSRoland Levillain 	z = s*s;
124*1e651e1eSRoland Levillain 	i = hx-0x6147a;
125*1e651e1eSRoland Levillain 	w = z*z;
126*1e651e1eSRoland Levillain 	j = 0x6b851-hx;
127*1e651e1eSRoland Levillain 	t1= w*(Lg2+w*(Lg4+w*Lg6));
128*1e651e1eSRoland Levillain 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
129*1e651e1eSRoland Levillain 	i |= j;
130*1e651e1eSRoland Levillain 	R = t2+t1;
131*1e651e1eSRoland Levillain 	if(i>0) {
132*1e651e1eSRoland Levillain 	    hfsq=0.5*f*f;
133*1e651e1eSRoland Levillain 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
134*1e651e1eSRoland Levillain 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
135*1e651e1eSRoland Levillain 	} else {
136*1e651e1eSRoland Levillain 	    if(k==0) return f-s*(f-R); else
137*1e651e1eSRoland Levillain 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
138*1e651e1eSRoland Levillain 	}
139*1e651e1eSRoland Levillain }
140