xref: /aosp_15_r20/external/fdlibm/e_pow.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain #ifndef lint
3*1e651e1eSRoland Levillain static  char sccsid[] = "@(#)e_pow.c 1.5 04/04/22 SMI";
4*1e651e1eSRoland Levillain #endif
5*1e651e1eSRoland Levillain 
6*1e651e1eSRoland Levillain /*
7*1e651e1eSRoland Levillain  * ====================================================
8*1e651e1eSRoland Levillain  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
9*1e651e1eSRoland Levillain  *
10*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
11*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
12*1e651e1eSRoland Levillain  * is preserved.
13*1e651e1eSRoland Levillain  * ====================================================
14*1e651e1eSRoland Levillain  */
15*1e651e1eSRoland Levillain 
16*1e651e1eSRoland Levillain /* __ieee754_pow(x,y) return x**y
17*1e651e1eSRoland Levillain  *
18*1e651e1eSRoland Levillain  *		      n
19*1e651e1eSRoland Levillain  * Method:  Let x =  2   * (1+f)
20*1e651e1eSRoland Levillain  *	1. Compute and return log2(x) in two pieces:
21*1e651e1eSRoland Levillain  *		log2(x) = w1 + w2,
22*1e651e1eSRoland Levillain  *	   where w1 has 53-24 = 29 bit trailing zeros.
23*1e651e1eSRoland Levillain  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
24*1e651e1eSRoland Levillain  *	   arithmetic, where |y'|<=0.5.
25*1e651e1eSRoland Levillain  *	3. Return x**y = 2**n*ieee_exp(y'*log2)
26*1e651e1eSRoland Levillain  *
27*1e651e1eSRoland Levillain  * Special cases:
28*1e651e1eSRoland Levillain  *	1.  (anything) ** 0  is 1
29*1e651e1eSRoland Levillain  *	2.  (anything) ** 1  is itself
30*1e651e1eSRoland Levillain  *	3.  (anything) ** NAN is NAN
31*1e651e1eSRoland Levillain  *	4.  NAN ** (anything except 0) is NAN
32*1e651e1eSRoland Levillain  *	5.  +-(|x| > 1) **  +INF is +INF
33*1e651e1eSRoland Levillain  *	6.  +-(|x| > 1) **  -INF is +0
34*1e651e1eSRoland Levillain  *	7.  +-(|x| < 1) **  +INF is +0
35*1e651e1eSRoland Levillain  *	8.  +-(|x| < 1) **  -INF is +INF
36*1e651e1eSRoland Levillain  *	9.  +-1         ** +-INF is NAN
37*1e651e1eSRoland Levillain  *	10. +0 ** (+anything except 0, NAN)               is +0
38*1e651e1eSRoland Levillain  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
39*1e651e1eSRoland Levillain  *	12. +0 ** (-anything except 0, NAN)               is +INF
40*1e651e1eSRoland Levillain  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
41*1e651e1eSRoland Levillain  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
42*1e651e1eSRoland Levillain  *	15. +INF ** (+anything except 0,NAN) is +INF
43*1e651e1eSRoland Levillain  *	16. +INF ** (-anything except 0,NAN) is +0
44*1e651e1eSRoland Levillain  *	17. -INF ** (anything)  = -0 ** (-anything)
45*1e651e1eSRoland Levillain  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
46*1e651e1eSRoland Levillain  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
47*1e651e1eSRoland Levillain  *
48*1e651e1eSRoland Levillain  * Accuracy:
49*1e651e1eSRoland Levillain  *	pow(x,y) returns x**y nearly rounded. In particular
50*1e651e1eSRoland Levillain  *			pow(integer,integer)
51*1e651e1eSRoland Levillain  *	always returns the correct integer provided it is
52*1e651e1eSRoland Levillain  *	representable.
53*1e651e1eSRoland Levillain  *
54*1e651e1eSRoland Levillain  * Constants :
55*1e651e1eSRoland Levillain  * The hexadecimal values are the intended ones for the following
56*1e651e1eSRoland Levillain  * constants. The decimal values may be used, provided that the
57*1e651e1eSRoland Levillain  * compiler will convert from decimal to binary accurately enough
58*1e651e1eSRoland Levillain  * to produce the hexadecimal values shown.
59*1e651e1eSRoland Levillain  */
60*1e651e1eSRoland Levillain 
61*1e651e1eSRoland Levillain #include "fdlibm.h"
62*1e651e1eSRoland Levillain 
63*1e651e1eSRoland Levillain #ifdef __STDC__
64*1e651e1eSRoland Levillain static const double
65*1e651e1eSRoland Levillain #else
66*1e651e1eSRoland Levillain static double
67*1e651e1eSRoland Levillain #endif
68*1e651e1eSRoland Levillain bp[] = {1.0, 1.5,},
69*1e651e1eSRoland Levillain dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
70*1e651e1eSRoland Levillain dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
71*1e651e1eSRoland Levillain zero    =  0.0,
72*1e651e1eSRoland Levillain one	=  1.0,
73*1e651e1eSRoland Levillain two	=  2.0,
74*1e651e1eSRoland Levillain two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
75*1e651e1eSRoland Levillain huge	=  1.0e300,
76*1e651e1eSRoland Levillain tiny    =  1.0e-300,
77*1e651e1eSRoland Levillain 	/* poly coefs for (3/2)*(ieee_log(x)-2s-2/3*s**3 */
78*1e651e1eSRoland Levillain L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
79*1e651e1eSRoland Levillain L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
80*1e651e1eSRoland Levillain L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
81*1e651e1eSRoland Levillain L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
82*1e651e1eSRoland Levillain L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
83*1e651e1eSRoland Levillain L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
84*1e651e1eSRoland Levillain P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
85*1e651e1eSRoland Levillain P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
86*1e651e1eSRoland Levillain P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
87*1e651e1eSRoland Levillain P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
88*1e651e1eSRoland Levillain P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
89*1e651e1eSRoland Levillain lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
90*1e651e1eSRoland Levillain lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
91*1e651e1eSRoland Levillain lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
92*1e651e1eSRoland Levillain ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
93*1e651e1eSRoland Levillain cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
94*1e651e1eSRoland Levillain cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
95*1e651e1eSRoland Levillain cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
96*1e651e1eSRoland Levillain ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
97*1e651e1eSRoland Levillain ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
98*1e651e1eSRoland Levillain ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
99*1e651e1eSRoland Levillain 
100*1e651e1eSRoland Levillain #ifdef __STDC__
__ieee754_pow(double x,double y)101*1e651e1eSRoland Levillain 	double __ieee754_pow(double x, double y)
102*1e651e1eSRoland Levillain #else
103*1e651e1eSRoland Levillain 	double __ieee754_pow(x,y)
104*1e651e1eSRoland Levillain 	double x, y;
105*1e651e1eSRoland Levillain #endif
106*1e651e1eSRoland Levillain {
107*1e651e1eSRoland Levillain 	double z,ax,z_h,z_l,p_h,p_l;
108*1e651e1eSRoland Levillain 	double y1,t1,t2,r,s,t,u,v,w;
109*1e651e1eSRoland Levillain 	int i0,i1,i,j,k,yisint,n;
110*1e651e1eSRoland Levillain 	int hx,hy,ix,iy;
111*1e651e1eSRoland Levillain 	unsigned lx,ly;
112*1e651e1eSRoland Levillain 
113*1e651e1eSRoland Levillain 	i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
114*1e651e1eSRoland Levillain 	hx = __HI(x); lx = __LO(x);
115*1e651e1eSRoland Levillain 	hy = __HI(y); ly = __LO(y);
116*1e651e1eSRoland Levillain 	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
117*1e651e1eSRoland Levillain 
118*1e651e1eSRoland Levillain     /* y==zero: x**0 = 1 */
119*1e651e1eSRoland Levillain 	if((iy|ly)==0) return one;
120*1e651e1eSRoland Levillain 
121*1e651e1eSRoland Levillain     /* +-NaN return x+y */
122*1e651e1eSRoland Levillain 	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
123*1e651e1eSRoland Levillain 	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
124*1e651e1eSRoland Levillain 		return x+y;
125*1e651e1eSRoland Levillain 
126*1e651e1eSRoland Levillain     /* determine if y is an odd int when x < 0
127*1e651e1eSRoland Levillain      * yisint = 0	... y is not an integer
128*1e651e1eSRoland Levillain      * yisint = 1	... y is an odd int
129*1e651e1eSRoland Levillain      * yisint = 2	... y is an even int
130*1e651e1eSRoland Levillain      */
131*1e651e1eSRoland Levillain 	yisint  = 0;
132*1e651e1eSRoland Levillain 	if(hx<0) {
133*1e651e1eSRoland Levillain 	    if(iy>=0x43400000) yisint = 2; /* even integer y */
134*1e651e1eSRoland Levillain 	    else if(iy>=0x3ff00000) {
135*1e651e1eSRoland Levillain 		k = (iy>>20)-0x3ff;	   /* exponent */
136*1e651e1eSRoland Levillain 		if(k>20) {
137*1e651e1eSRoland Levillain 		    j = ly>>(52-k);
138*1e651e1eSRoland Levillain 		    if((j<<(52-k))==ly) yisint = 2-(j&1);
139*1e651e1eSRoland Levillain 		} else if(ly==0) {
140*1e651e1eSRoland Levillain 		    j = iy>>(20-k);
141*1e651e1eSRoland Levillain 		    if((j<<(20-k))==iy) yisint = 2-(j&1);
142*1e651e1eSRoland Levillain 		}
143*1e651e1eSRoland Levillain 	    }
144*1e651e1eSRoland Levillain 	}
145*1e651e1eSRoland Levillain 
146*1e651e1eSRoland Levillain     /* special value of y */
147*1e651e1eSRoland Levillain 	if(ly==0) {
148*1e651e1eSRoland Levillain 	    if (iy==0x7ff00000) {	/* y is +-inf */
149*1e651e1eSRoland Levillain 	        if(((ix-0x3ff00000)|lx)==0)
150*1e651e1eSRoland Levillain 		    return  y - y;	/* inf**+-1 is NaN */
151*1e651e1eSRoland Levillain 	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
152*1e651e1eSRoland Levillain 		    return (hy>=0)? y: zero;
153*1e651e1eSRoland Levillain 	        else			/* (|x|<1)**-,+inf = inf,0 */
154*1e651e1eSRoland Levillain 		    return (hy<0)?-y: zero;
155*1e651e1eSRoland Levillain 	    }
156*1e651e1eSRoland Levillain 	    if(iy==0x3ff00000) {	/* y is  +-1 */
157*1e651e1eSRoland Levillain 		if(hy<0) return one/x; else return x;
158*1e651e1eSRoland Levillain 	    }
159*1e651e1eSRoland Levillain 	    if(hy==0x40000000) return x*x; /* y is  2 */
160*1e651e1eSRoland Levillain 	    if(hy==0x3fe00000) {	/* y is  0.5 */
161*1e651e1eSRoland Levillain 		if(hx>=0)	/* x >= +0 */
162*1e651e1eSRoland Levillain 		return ieee_sqrt(x);
163*1e651e1eSRoland Levillain 	    }
164*1e651e1eSRoland Levillain 	}
165*1e651e1eSRoland Levillain 
166*1e651e1eSRoland Levillain 	ax   = ieee_fabs(x);
167*1e651e1eSRoland Levillain     /* special value of x */
168*1e651e1eSRoland Levillain 	if(lx==0) {
169*1e651e1eSRoland Levillain 	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
170*1e651e1eSRoland Levillain 		z = ax;			/*x is +-0,+-inf,+-1*/
171*1e651e1eSRoland Levillain 		if(hy<0) z = one/z;	/* z = (1/|x|) */
172*1e651e1eSRoland Levillain 		if(hx<0) {
173*1e651e1eSRoland Levillain 		    if(((ix-0x3ff00000)|yisint)==0) {
174*1e651e1eSRoland Levillain 			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
175*1e651e1eSRoland Levillain 		    } else if(yisint==1)
176*1e651e1eSRoland Levillain 			z = -z;		/* (x<0)**odd = -(|x|**odd) */
177*1e651e1eSRoland Levillain 		}
178*1e651e1eSRoland Levillain 		return z;
179*1e651e1eSRoland Levillain 	    }
180*1e651e1eSRoland Levillain 	}
181*1e651e1eSRoland Levillain 
182*1e651e1eSRoland Levillain 	n = (hx>>31)+1;
183*1e651e1eSRoland Levillain 
184*1e651e1eSRoland Levillain     /* (x<0)**(non-int) is NaN */
185*1e651e1eSRoland Levillain 	if((n|yisint)==0) return (x-x)/(x-x);
186*1e651e1eSRoland Levillain 
187*1e651e1eSRoland Levillain 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
188*1e651e1eSRoland Levillain 	if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
189*1e651e1eSRoland Levillain 
190*1e651e1eSRoland Levillain     /* |y| is huge */
191*1e651e1eSRoland Levillain 	if(iy>0x41e00000) { /* if |y| > 2**31 */
192*1e651e1eSRoland Levillain 	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
193*1e651e1eSRoland Levillain 		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
194*1e651e1eSRoland Levillain 		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
195*1e651e1eSRoland Levillain 	    }
196*1e651e1eSRoland Levillain 	/* over/underflow if x is not close to one */
197*1e651e1eSRoland Levillain 	    if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
198*1e651e1eSRoland Levillain 	    if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
199*1e651e1eSRoland Levillain 	/* now |1-x| is tiny <= 2**-20, suffice to compute
200*1e651e1eSRoland Levillain 	   ieee_log(x) by x-x^2/2+x^3/3-x^4/4 */
201*1e651e1eSRoland Levillain 	    t = ax-one;		/* t has 20 trailing zeros */
202*1e651e1eSRoland Levillain 	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
203*1e651e1eSRoland Levillain 	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
204*1e651e1eSRoland Levillain 	    v = t*ivln2_l-w*ivln2;
205*1e651e1eSRoland Levillain 	    t1 = u+v;
206*1e651e1eSRoland Levillain 	    __LO(t1) = 0;
207*1e651e1eSRoland Levillain 	    t2 = v-(t1-u);
208*1e651e1eSRoland Levillain 	} else {
209*1e651e1eSRoland Levillain 	    double ss,s2,s_h,s_l,t_h,t_l;
210*1e651e1eSRoland Levillain 	    n = 0;
211*1e651e1eSRoland Levillain 	/* take care subnormal number */
212*1e651e1eSRoland Levillain 	    if(ix<0x00100000)
213*1e651e1eSRoland Levillain 		{ax *= two53; n -= 53; ix = __HI(ax); }
214*1e651e1eSRoland Levillain 	    n  += ((ix)>>20)-0x3ff;
215*1e651e1eSRoland Levillain 	    j  = ix&0x000fffff;
216*1e651e1eSRoland Levillain 	/* determine interval */
217*1e651e1eSRoland Levillain 	    ix = j|0x3ff00000;		/* normalize ix */
218*1e651e1eSRoland Levillain 	    if(j<=0x3988E) k=0;		/* |x|<ieee_sqrt(3/2) */
219*1e651e1eSRoland Levillain 	    else if(j<0xBB67A) k=1;	/* |x|<ieee_sqrt(3)   */
220*1e651e1eSRoland Levillain 	    else {k=0;n+=1;ix -= 0x00100000;}
221*1e651e1eSRoland Levillain 	    __HI(ax) = ix;
222*1e651e1eSRoland Levillain 
223*1e651e1eSRoland Levillain 	/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
224*1e651e1eSRoland Levillain 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
225*1e651e1eSRoland Levillain 	    v = one/(ax+bp[k]);
226*1e651e1eSRoland Levillain 	    ss = u*v;
227*1e651e1eSRoland Levillain 	    s_h = ss;
228*1e651e1eSRoland Levillain 	    __LO(s_h) = 0;
229*1e651e1eSRoland Levillain 	/* t_h=ax+bp[k] High */
230*1e651e1eSRoland Levillain 	    t_h = zero;
231*1e651e1eSRoland Levillain 	    __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
232*1e651e1eSRoland Levillain 	    t_l = ax - (t_h-bp[k]);
233*1e651e1eSRoland Levillain 	    s_l = v*((u-s_h*t_h)-s_h*t_l);
234*1e651e1eSRoland Levillain 	/* compute ieee_log(ax) */
235*1e651e1eSRoland Levillain 	    s2 = ss*ss;
236*1e651e1eSRoland Levillain 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
237*1e651e1eSRoland Levillain 	    r += s_l*(s_h+ss);
238*1e651e1eSRoland Levillain 	    s2  = s_h*s_h;
239*1e651e1eSRoland Levillain 	    t_h = 3.0+s2+r;
240*1e651e1eSRoland Levillain 	    __LO(t_h) = 0;
241*1e651e1eSRoland Levillain 	    t_l = r-((t_h-3.0)-s2);
242*1e651e1eSRoland Levillain 	/* u+v = ss*(1+...) */
243*1e651e1eSRoland Levillain 	    u = s_h*t_h;
244*1e651e1eSRoland Levillain 	    v = s_l*t_h+t_l*ss;
245*1e651e1eSRoland Levillain 	/* 2/(3log2)*(ss+...) */
246*1e651e1eSRoland Levillain 	    p_h = u+v;
247*1e651e1eSRoland Levillain 	    __LO(p_h) = 0;
248*1e651e1eSRoland Levillain 	    p_l = v-(p_h-u);
249*1e651e1eSRoland Levillain 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
250*1e651e1eSRoland Levillain 	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
251*1e651e1eSRoland Levillain 	/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
252*1e651e1eSRoland Levillain 	    t = (double)n;
253*1e651e1eSRoland Levillain 	    t1 = (((z_h+z_l)+dp_h[k])+t);
254*1e651e1eSRoland Levillain 	    __LO(t1) = 0;
255*1e651e1eSRoland Levillain 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
256*1e651e1eSRoland Levillain 	}
257*1e651e1eSRoland Levillain 
258*1e651e1eSRoland Levillain     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
259*1e651e1eSRoland Levillain 	y1  = y;
260*1e651e1eSRoland Levillain 	__LO(y1) = 0;
261*1e651e1eSRoland Levillain 	p_l = (y-y1)*t1+y*t2;
262*1e651e1eSRoland Levillain 	p_h = y1*t1;
263*1e651e1eSRoland Levillain 	z = p_l+p_h;
264*1e651e1eSRoland Levillain 	j = __HI(z);
265*1e651e1eSRoland Levillain 	i = __LO(z);
266*1e651e1eSRoland Levillain 	if (j>=0x40900000) {				/* z >= 1024 */
267*1e651e1eSRoland Levillain 	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
268*1e651e1eSRoland Levillain 		return s*huge*huge;			/* overflow */
269*1e651e1eSRoland Levillain 	    else {
270*1e651e1eSRoland Levillain 		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
271*1e651e1eSRoland Levillain 	    }
272*1e651e1eSRoland Levillain 	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
273*1e651e1eSRoland Levillain 	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
274*1e651e1eSRoland Levillain 		return s*tiny*tiny;		/* underflow */
275*1e651e1eSRoland Levillain 	    else {
276*1e651e1eSRoland Levillain 		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
277*1e651e1eSRoland Levillain 	    }
278*1e651e1eSRoland Levillain 	}
279*1e651e1eSRoland Levillain     /*
280*1e651e1eSRoland Levillain      * compute 2**(p_h+p_l)
281*1e651e1eSRoland Levillain      */
282*1e651e1eSRoland Levillain 	i = j&0x7fffffff;
283*1e651e1eSRoland Levillain 	k = (i>>20)-0x3ff;
284*1e651e1eSRoland Levillain 	n = 0;
285*1e651e1eSRoland Levillain 	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
286*1e651e1eSRoland Levillain 	    n = j+(0x00100000>>(k+1));
287*1e651e1eSRoland Levillain 	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
288*1e651e1eSRoland Levillain 	    t = zero;
289*1e651e1eSRoland Levillain 	    __HI(t) = (n&~(0x000fffff>>k));
290*1e651e1eSRoland Levillain 	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
291*1e651e1eSRoland Levillain 	    if(j<0) n = -n;
292*1e651e1eSRoland Levillain 	    p_h -= t;
293*1e651e1eSRoland Levillain 	}
294*1e651e1eSRoland Levillain 	t = p_l+p_h;
295*1e651e1eSRoland Levillain 	__LO(t) = 0;
296*1e651e1eSRoland Levillain 	u = t*lg2_h;
297*1e651e1eSRoland Levillain 	v = (p_l-(t-p_h))*lg2+t*lg2_l;
298*1e651e1eSRoland Levillain 	z = u+v;
299*1e651e1eSRoland Levillain 	w = v-(z-u);
300*1e651e1eSRoland Levillain 	t  = z*z;
301*1e651e1eSRoland Levillain 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
302*1e651e1eSRoland Levillain 	r  = (z*t1)/(t1-two)-(w+z*w);
303*1e651e1eSRoland Levillain 	z  = one-(r-z);
304*1e651e1eSRoland Levillain 	j  = __HI(z);
305*1e651e1eSRoland Levillain 	j += (n<<20);
306*1e651e1eSRoland Levillain 	if((j>>20)<=0) z = ieee_scalbn(z,n);	/* subnormal output */
307*1e651e1eSRoland Levillain 	else __HI(z) += (n<<20);
308*1e651e1eSRoland Levillain 	return s*z;
309*1e651e1eSRoland Levillain }
310