1*1e651e1eSRoland Levillain 2*1e651e1eSRoland Levillain #ifndef lint 3*1e651e1eSRoland Levillain static char sccsid[] = "@(#)e_pow.c 1.5 04/04/22 SMI"; 4*1e651e1eSRoland Levillain #endif 5*1e651e1eSRoland Levillain 6*1e651e1eSRoland Levillain /* 7*1e651e1eSRoland Levillain * ==================================================== 8*1e651e1eSRoland Levillain * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 9*1e651e1eSRoland Levillain * 10*1e651e1eSRoland Levillain * Permission to use, copy, modify, and distribute this 11*1e651e1eSRoland Levillain * software is freely granted, provided that this notice 12*1e651e1eSRoland Levillain * is preserved. 13*1e651e1eSRoland Levillain * ==================================================== 14*1e651e1eSRoland Levillain */ 15*1e651e1eSRoland Levillain 16*1e651e1eSRoland Levillain /* __ieee754_pow(x,y) return x**y 17*1e651e1eSRoland Levillain * 18*1e651e1eSRoland Levillain * n 19*1e651e1eSRoland Levillain * Method: Let x = 2 * (1+f) 20*1e651e1eSRoland Levillain * 1. Compute and return log2(x) in two pieces: 21*1e651e1eSRoland Levillain * log2(x) = w1 + w2, 22*1e651e1eSRoland Levillain * where w1 has 53-24 = 29 bit trailing zeros. 23*1e651e1eSRoland Levillain * 2. Perform y*log2(x) = n+y' by simulating muti-precision 24*1e651e1eSRoland Levillain * arithmetic, where |y'|<=0.5. 25*1e651e1eSRoland Levillain * 3. Return x**y = 2**n*ieee_exp(y'*log2) 26*1e651e1eSRoland Levillain * 27*1e651e1eSRoland Levillain * Special cases: 28*1e651e1eSRoland Levillain * 1. (anything) ** 0 is 1 29*1e651e1eSRoland Levillain * 2. (anything) ** 1 is itself 30*1e651e1eSRoland Levillain * 3. (anything) ** NAN is NAN 31*1e651e1eSRoland Levillain * 4. NAN ** (anything except 0) is NAN 32*1e651e1eSRoland Levillain * 5. +-(|x| > 1) ** +INF is +INF 33*1e651e1eSRoland Levillain * 6. +-(|x| > 1) ** -INF is +0 34*1e651e1eSRoland Levillain * 7. +-(|x| < 1) ** +INF is +0 35*1e651e1eSRoland Levillain * 8. +-(|x| < 1) ** -INF is +INF 36*1e651e1eSRoland Levillain * 9. +-1 ** +-INF is NAN 37*1e651e1eSRoland Levillain * 10. +0 ** (+anything except 0, NAN) is +0 38*1e651e1eSRoland Levillain * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 39*1e651e1eSRoland Levillain * 12. +0 ** (-anything except 0, NAN) is +INF 40*1e651e1eSRoland Levillain * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF 41*1e651e1eSRoland Levillain * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) 42*1e651e1eSRoland Levillain * 15. +INF ** (+anything except 0,NAN) is +INF 43*1e651e1eSRoland Levillain * 16. +INF ** (-anything except 0,NAN) is +0 44*1e651e1eSRoland Levillain * 17. -INF ** (anything) = -0 ** (-anything) 45*1e651e1eSRoland Levillain * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 46*1e651e1eSRoland Levillain * 19. (-anything except 0 and inf) ** (non-integer) is NAN 47*1e651e1eSRoland Levillain * 48*1e651e1eSRoland Levillain * Accuracy: 49*1e651e1eSRoland Levillain * pow(x,y) returns x**y nearly rounded. In particular 50*1e651e1eSRoland Levillain * pow(integer,integer) 51*1e651e1eSRoland Levillain * always returns the correct integer provided it is 52*1e651e1eSRoland Levillain * representable. 53*1e651e1eSRoland Levillain * 54*1e651e1eSRoland Levillain * Constants : 55*1e651e1eSRoland Levillain * The hexadecimal values are the intended ones for the following 56*1e651e1eSRoland Levillain * constants. The decimal values may be used, provided that the 57*1e651e1eSRoland Levillain * compiler will convert from decimal to binary accurately enough 58*1e651e1eSRoland Levillain * to produce the hexadecimal values shown. 59*1e651e1eSRoland Levillain */ 60*1e651e1eSRoland Levillain 61*1e651e1eSRoland Levillain #include "fdlibm.h" 62*1e651e1eSRoland Levillain 63*1e651e1eSRoland Levillain #ifdef __STDC__ 64*1e651e1eSRoland Levillain static const double 65*1e651e1eSRoland Levillain #else 66*1e651e1eSRoland Levillain static double 67*1e651e1eSRoland Levillain #endif 68*1e651e1eSRoland Levillain bp[] = {1.0, 1.5,}, 69*1e651e1eSRoland Levillain dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ 70*1e651e1eSRoland Levillain dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ 71*1e651e1eSRoland Levillain zero = 0.0, 72*1e651e1eSRoland Levillain one = 1.0, 73*1e651e1eSRoland Levillain two = 2.0, 74*1e651e1eSRoland Levillain two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ 75*1e651e1eSRoland Levillain huge = 1.0e300, 76*1e651e1eSRoland Levillain tiny = 1.0e-300, 77*1e651e1eSRoland Levillain /* poly coefs for (3/2)*(ieee_log(x)-2s-2/3*s**3 */ 78*1e651e1eSRoland Levillain L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ 79*1e651e1eSRoland Levillain L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ 80*1e651e1eSRoland Levillain L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ 81*1e651e1eSRoland Levillain L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ 82*1e651e1eSRoland Levillain L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ 83*1e651e1eSRoland Levillain L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ 84*1e651e1eSRoland Levillain P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 85*1e651e1eSRoland Levillain P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 86*1e651e1eSRoland Levillain P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 87*1e651e1eSRoland Levillain P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 88*1e651e1eSRoland Levillain P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ 89*1e651e1eSRoland Levillain lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ 90*1e651e1eSRoland Levillain lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ 91*1e651e1eSRoland Levillain lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ 92*1e651e1eSRoland Levillain ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ 93*1e651e1eSRoland Levillain cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ 94*1e651e1eSRoland Levillain cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ 95*1e651e1eSRoland Levillain cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ 96*1e651e1eSRoland Levillain ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ 97*1e651e1eSRoland Levillain ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ 98*1e651e1eSRoland Levillain ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ 99*1e651e1eSRoland Levillain 100*1e651e1eSRoland Levillain #ifdef __STDC__ __ieee754_pow(double x,double y)101*1e651e1eSRoland Levillain double __ieee754_pow(double x, double y) 102*1e651e1eSRoland Levillain #else 103*1e651e1eSRoland Levillain double __ieee754_pow(x,y) 104*1e651e1eSRoland Levillain double x, y; 105*1e651e1eSRoland Levillain #endif 106*1e651e1eSRoland Levillain { 107*1e651e1eSRoland Levillain double z,ax,z_h,z_l,p_h,p_l; 108*1e651e1eSRoland Levillain double y1,t1,t2,r,s,t,u,v,w; 109*1e651e1eSRoland Levillain int i0,i1,i,j,k,yisint,n; 110*1e651e1eSRoland Levillain int hx,hy,ix,iy; 111*1e651e1eSRoland Levillain unsigned lx,ly; 112*1e651e1eSRoland Levillain 113*1e651e1eSRoland Levillain i0 = ((*(int*)&one)>>29)^1; i1=1-i0; 114*1e651e1eSRoland Levillain hx = __HI(x); lx = __LO(x); 115*1e651e1eSRoland Levillain hy = __HI(y); ly = __LO(y); 116*1e651e1eSRoland Levillain ix = hx&0x7fffffff; iy = hy&0x7fffffff; 117*1e651e1eSRoland Levillain 118*1e651e1eSRoland Levillain /* y==zero: x**0 = 1 */ 119*1e651e1eSRoland Levillain if((iy|ly)==0) return one; 120*1e651e1eSRoland Levillain 121*1e651e1eSRoland Levillain /* +-NaN return x+y */ 122*1e651e1eSRoland Levillain if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || 123*1e651e1eSRoland Levillain iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 124*1e651e1eSRoland Levillain return x+y; 125*1e651e1eSRoland Levillain 126*1e651e1eSRoland Levillain /* determine if y is an odd int when x < 0 127*1e651e1eSRoland Levillain * yisint = 0 ... y is not an integer 128*1e651e1eSRoland Levillain * yisint = 1 ... y is an odd int 129*1e651e1eSRoland Levillain * yisint = 2 ... y is an even int 130*1e651e1eSRoland Levillain */ 131*1e651e1eSRoland Levillain yisint = 0; 132*1e651e1eSRoland Levillain if(hx<0) { 133*1e651e1eSRoland Levillain if(iy>=0x43400000) yisint = 2; /* even integer y */ 134*1e651e1eSRoland Levillain else if(iy>=0x3ff00000) { 135*1e651e1eSRoland Levillain k = (iy>>20)-0x3ff; /* exponent */ 136*1e651e1eSRoland Levillain if(k>20) { 137*1e651e1eSRoland Levillain j = ly>>(52-k); 138*1e651e1eSRoland Levillain if((j<<(52-k))==ly) yisint = 2-(j&1); 139*1e651e1eSRoland Levillain } else if(ly==0) { 140*1e651e1eSRoland Levillain j = iy>>(20-k); 141*1e651e1eSRoland Levillain if((j<<(20-k))==iy) yisint = 2-(j&1); 142*1e651e1eSRoland Levillain } 143*1e651e1eSRoland Levillain } 144*1e651e1eSRoland Levillain } 145*1e651e1eSRoland Levillain 146*1e651e1eSRoland Levillain /* special value of y */ 147*1e651e1eSRoland Levillain if(ly==0) { 148*1e651e1eSRoland Levillain if (iy==0x7ff00000) { /* y is +-inf */ 149*1e651e1eSRoland Levillain if(((ix-0x3ff00000)|lx)==0) 150*1e651e1eSRoland Levillain return y - y; /* inf**+-1 is NaN */ 151*1e651e1eSRoland Levillain else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ 152*1e651e1eSRoland Levillain return (hy>=0)? y: zero; 153*1e651e1eSRoland Levillain else /* (|x|<1)**-,+inf = inf,0 */ 154*1e651e1eSRoland Levillain return (hy<0)?-y: zero; 155*1e651e1eSRoland Levillain } 156*1e651e1eSRoland Levillain if(iy==0x3ff00000) { /* y is +-1 */ 157*1e651e1eSRoland Levillain if(hy<0) return one/x; else return x; 158*1e651e1eSRoland Levillain } 159*1e651e1eSRoland Levillain if(hy==0x40000000) return x*x; /* y is 2 */ 160*1e651e1eSRoland Levillain if(hy==0x3fe00000) { /* y is 0.5 */ 161*1e651e1eSRoland Levillain if(hx>=0) /* x >= +0 */ 162*1e651e1eSRoland Levillain return ieee_sqrt(x); 163*1e651e1eSRoland Levillain } 164*1e651e1eSRoland Levillain } 165*1e651e1eSRoland Levillain 166*1e651e1eSRoland Levillain ax = ieee_fabs(x); 167*1e651e1eSRoland Levillain /* special value of x */ 168*1e651e1eSRoland Levillain if(lx==0) { 169*1e651e1eSRoland Levillain if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ 170*1e651e1eSRoland Levillain z = ax; /*x is +-0,+-inf,+-1*/ 171*1e651e1eSRoland Levillain if(hy<0) z = one/z; /* z = (1/|x|) */ 172*1e651e1eSRoland Levillain if(hx<0) { 173*1e651e1eSRoland Levillain if(((ix-0x3ff00000)|yisint)==0) { 174*1e651e1eSRoland Levillain z = (z-z)/(z-z); /* (-1)**non-int is NaN */ 175*1e651e1eSRoland Levillain } else if(yisint==1) 176*1e651e1eSRoland Levillain z = -z; /* (x<0)**odd = -(|x|**odd) */ 177*1e651e1eSRoland Levillain } 178*1e651e1eSRoland Levillain return z; 179*1e651e1eSRoland Levillain } 180*1e651e1eSRoland Levillain } 181*1e651e1eSRoland Levillain 182*1e651e1eSRoland Levillain n = (hx>>31)+1; 183*1e651e1eSRoland Levillain 184*1e651e1eSRoland Levillain /* (x<0)**(non-int) is NaN */ 185*1e651e1eSRoland Levillain if((n|yisint)==0) return (x-x)/(x-x); 186*1e651e1eSRoland Levillain 187*1e651e1eSRoland Levillain s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ 188*1e651e1eSRoland Levillain if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ 189*1e651e1eSRoland Levillain 190*1e651e1eSRoland Levillain /* |y| is huge */ 191*1e651e1eSRoland Levillain if(iy>0x41e00000) { /* if |y| > 2**31 */ 192*1e651e1eSRoland Levillain if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ 193*1e651e1eSRoland Levillain if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; 194*1e651e1eSRoland Levillain if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; 195*1e651e1eSRoland Levillain } 196*1e651e1eSRoland Levillain /* over/underflow if x is not close to one */ 197*1e651e1eSRoland Levillain if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; 198*1e651e1eSRoland Levillain if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; 199*1e651e1eSRoland Levillain /* now |1-x| is tiny <= 2**-20, suffice to compute 200*1e651e1eSRoland Levillain ieee_log(x) by x-x^2/2+x^3/3-x^4/4 */ 201*1e651e1eSRoland Levillain t = ax-one; /* t has 20 trailing zeros */ 202*1e651e1eSRoland Levillain w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); 203*1e651e1eSRoland Levillain u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ 204*1e651e1eSRoland Levillain v = t*ivln2_l-w*ivln2; 205*1e651e1eSRoland Levillain t1 = u+v; 206*1e651e1eSRoland Levillain __LO(t1) = 0; 207*1e651e1eSRoland Levillain t2 = v-(t1-u); 208*1e651e1eSRoland Levillain } else { 209*1e651e1eSRoland Levillain double ss,s2,s_h,s_l,t_h,t_l; 210*1e651e1eSRoland Levillain n = 0; 211*1e651e1eSRoland Levillain /* take care subnormal number */ 212*1e651e1eSRoland Levillain if(ix<0x00100000) 213*1e651e1eSRoland Levillain {ax *= two53; n -= 53; ix = __HI(ax); } 214*1e651e1eSRoland Levillain n += ((ix)>>20)-0x3ff; 215*1e651e1eSRoland Levillain j = ix&0x000fffff; 216*1e651e1eSRoland Levillain /* determine interval */ 217*1e651e1eSRoland Levillain ix = j|0x3ff00000; /* normalize ix */ 218*1e651e1eSRoland Levillain if(j<=0x3988E) k=0; /* |x|<ieee_sqrt(3/2) */ 219*1e651e1eSRoland Levillain else if(j<0xBB67A) k=1; /* |x|<ieee_sqrt(3) */ 220*1e651e1eSRoland Levillain else {k=0;n+=1;ix -= 0x00100000;} 221*1e651e1eSRoland Levillain __HI(ax) = ix; 222*1e651e1eSRoland Levillain 223*1e651e1eSRoland Levillain /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 224*1e651e1eSRoland Levillain u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 225*1e651e1eSRoland Levillain v = one/(ax+bp[k]); 226*1e651e1eSRoland Levillain ss = u*v; 227*1e651e1eSRoland Levillain s_h = ss; 228*1e651e1eSRoland Levillain __LO(s_h) = 0; 229*1e651e1eSRoland Levillain /* t_h=ax+bp[k] High */ 230*1e651e1eSRoland Levillain t_h = zero; 231*1e651e1eSRoland Levillain __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); 232*1e651e1eSRoland Levillain t_l = ax - (t_h-bp[k]); 233*1e651e1eSRoland Levillain s_l = v*((u-s_h*t_h)-s_h*t_l); 234*1e651e1eSRoland Levillain /* compute ieee_log(ax) */ 235*1e651e1eSRoland Levillain s2 = ss*ss; 236*1e651e1eSRoland Levillain r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); 237*1e651e1eSRoland Levillain r += s_l*(s_h+ss); 238*1e651e1eSRoland Levillain s2 = s_h*s_h; 239*1e651e1eSRoland Levillain t_h = 3.0+s2+r; 240*1e651e1eSRoland Levillain __LO(t_h) = 0; 241*1e651e1eSRoland Levillain t_l = r-((t_h-3.0)-s2); 242*1e651e1eSRoland Levillain /* u+v = ss*(1+...) */ 243*1e651e1eSRoland Levillain u = s_h*t_h; 244*1e651e1eSRoland Levillain v = s_l*t_h+t_l*ss; 245*1e651e1eSRoland Levillain /* 2/(3log2)*(ss+...) */ 246*1e651e1eSRoland Levillain p_h = u+v; 247*1e651e1eSRoland Levillain __LO(p_h) = 0; 248*1e651e1eSRoland Levillain p_l = v-(p_h-u); 249*1e651e1eSRoland Levillain z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ 250*1e651e1eSRoland Levillain z_l = cp_l*p_h+p_l*cp+dp_l[k]; 251*1e651e1eSRoland Levillain /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 252*1e651e1eSRoland Levillain t = (double)n; 253*1e651e1eSRoland Levillain t1 = (((z_h+z_l)+dp_h[k])+t); 254*1e651e1eSRoland Levillain __LO(t1) = 0; 255*1e651e1eSRoland Levillain t2 = z_l-(((t1-t)-dp_h[k])-z_h); 256*1e651e1eSRoland Levillain } 257*1e651e1eSRoland Levillain 258*1e651e1eSRoland Levillain /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 259*1e651e1eSRoland Levillain y1 = y; 260*1e651e1eSRoland Levillain __LO(y1) = 0; 261*1e651e1eSRoland Levillain p_l = (y-y1)*t1+y*t2; 262*1e651e1eSRoland Levillain p_h = y1*t1; 263*1e651e1eSRoland Levillain z = p_l+p_h; 264*1e651e1eSRoland Levillain j = __HI(z); 265*1e651e1eSRoland Levillain i = __LO(z); 266*1e651e1eSRoland Levillain if (j>=0x40900000) { /* z >= 1024 */ 267*1e651e1eSRoland Levillain if(((j-0x40900000)|i)!=0) /* if z > 1024 */ 268*1e651e1eSRoland Levillain return s*huge*huge; /* overflow */ 269*1e651e1eSRoland Levillain else { 270*1e651e1eSRoland Levillain if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ 271*1e651e1eSRoland Levillain } 272*1e651e1eSRoland Levillain } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ 273*1e651e1eSRoland Levillain if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ 274*1e651e1eSRoland Levillain return s*tiny*tiny; /* underflow */ 275*1e651e1eSRoland Levillain else { 276*1e651e1eSRoland Levillain if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ 277*1e651e1eSRoland Levillain } 278*1e651e1eSRoland Levillain } 279*1e651e1eSRoland Levillain /* 280*1e651e1eSRoland Levillain * compute 2**(p_h+p_l) 281*1e651e1eSRoland Levillain */ 282*1e651e1eSRoland Levillain i = j&0x7fffffff; 283*1e651e1eSRoland Levillain k = (i>>20)-0x3ff; 284*1e651e1eSRoland Levillain n = 0; 285*1e651e1eSRoland Levillain if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ 286*1e651e1eSRoland Levillain n = j+(0x00100000>>(k+1)); 287*1e651e1eSRoland Levillain k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ 288*1e651e1eSRoland Levillain t = zero; 289*1e651e1eSRoland Levillain __HI(t) = (n&~(0x000fffff>>k)); 290*1e651e1eSRoland Levillain n = ((n&0x000fffff)|0x00100000)>>(20-k); 291*1e651e1eSRoland Levillain if(j<0) n = -n; 292*1e651e1eSRoland Levillain p_h -= t; 293*1e651e1eSRoland Levillain } 294*1e651e1eSRoland Levillain t = p_l+p_h; 295*1e651e1eSRoland Levillain __LO(t) = 0; 296*1e651e1eSRoland Levillain u = t*lg2_h; 297*1e651e1eSRoland Levillain v = (p_l-(t-p_h))*lg2+t*lg2_l; 298*1e651e1eSRoland Levillain z = u+v; 299*1e651e1eSRoland Levillain w = v-(z-u); 300*1e651e1eSRoland Levillain t = z*z; 301*1e651e1eSRoland Levillain t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 302*1e651e1eSRoland Levillain r = (z*t1)/(t1-two)-(w+z*w); 303*1e651e1eSRoland Levillain z = one-(r-z); 304*1e651e1eSRoland Levillain j = __HI(z); 305*1e651e1eSRoland Levillain j += (n<<20); 306*1e651e1eSRoland Levillain if((j>>20)<=0) z = ieee_scalbn(z,n); /* subnormal output */ 307*1e651e1eSRoland Levillain else __HI(z) += (n<<20); 308*1e651e1eSRoland Levillain return s*z; 309*1e651e1eSRoland Levillain } 310