xref: /aosp_15_r20/external/fdlibm/k_cos.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)k_cos.c 1.3 95/01/18 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
9*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
10*1e651e1eSRoland Levillain  * is preserved.
11*1e651e1eSRoland Levillain  * ====================================================
12*1e651e1eSRoland Levillain  */
13*1e651e1eSRoland Levillain 
14*1e651e1eSRoland Levillain /*
15*1e651e1eSRoland Levillain  * __kernel_cos( x,  y )
16*1e651e1eSRoland Levillain  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
17*1e651e1eSRoland Levillain  * Input x is assumed to be bounded by ~pi/4 in magnitude.
18*1e651e1eSRoland Levillain  * Input y is the tail of x.
19*1e651e1eSRoland Levillain  *
20*1e651e1eSRoland Levillain  * Algorithm
21*1e651e1eSRoland Levillain  *	1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
22*1e651e1eSRoland Levillain  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
23*1e651e1eSRoland Levillain  *	3. ieee_cos(x) is approximated by a polynomial of degree 14 on
24*1e651e1eSRoland Levillain  *	   [0,pi/4]
25*1e651e1eSRoland Levillain  *		  	                 4            14
26*1e651e1eSRoland Levillain  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
27*1e651e1eSRoland Levillain  *	   where the remez error is
28*1e651e1eSRoland Levillain  *
29*1e651e1eSRoland Levillain  * 	|              2     4     6     8     10    12     14 |     -58
30*1e651e1eSRoland Levillain  * 	|ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
31*1e651e1eSRoland Levillain  * 	|    					               |
32*1e651e1eSRoland Levillain  *
33*1e651e1eSRoland Levillain  * 	               4     6     8     10    12     14
34*1e651e1eSRoland Levillain  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
35*1e651e1eSRoland Levillain  *	       ieee_cos(x) = 1 - x*x/2 + r
36*1e651e1eSRoland Levillain  *	   since ieee_cos(x+y) ~ ieee_cos(x) - ieee_sin(x)*y
37*1e651e1eSRoland Levillain  *			  ~ ieee_cos(x) - x*y,
38*1e651e1eSRoland Levillain  *	   a correction term is necessary in ieee_cos(x) and hence
39*1e651e1eSRoland Levillain  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
40*1e651e1eSRoland Levillain  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
41*1e651e1eSRoland Levillain  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
42*1e651e1eSRoland Levillain  *	   Then
43*1e651e1eSRoland Levillain  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
44*1e651e1eSRoland Levillain  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
45*1e651e1eSRoland Levillain  *	   magnitude of the latter is at least a quarter of x*x/2,
46*1e651e1eSRoland Levillain  *	   thus, reducing the rounding error in the subtraction.
47*1e651e1eSRoland Levillain  */
48*1e651e1eSRoland Levillain 
49*1e651e1eSRoland Levillain #include "fdlibm.h"
50*1e651e1eSRoland Levillain 
51*1e651e1eSRoland Levillain #ifdef __STDC__
52*1e651e1eSRoland Levillain static const double
53*1e651e1eSRoland Levillain #else
54*1e651e1eSRoland Levillain static double
55*1e651e1eSRoland Levillain #endif
56*1e651e1eSRoland Levillain one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
57*1e651e1eSRoland Levillain C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
58*1e651e1eSRoland Levillain C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
59*1e651e1eSRoland Levillain C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
60*1e651e1eSRoland Levillain C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
61*1e651e1eSRoland Levillain C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
62*1e651e1eSRoland Levillain C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
63*1e651e1eSRoland Levillain 
64*1e651e1eSRoland Levillain #ifdef __STDC__
__kernel_cos(double x,double y)65*1e651e1eSRoland Levillain 	double __kernel_cos(double x, double y)
66*1e651e1eSRoland Levillain #else
67*1e651e1eSRoland Levillain 	double __kernel_cos(x, y)
68*1e651e1eSRoland Levillain 	double x,y;
69*1e651e1eSRoland Levillain #endif
70*1e651e1eSRoland Levillain {
71*1e651e1eSRoland Levillain 	double a,hz,z,r,qx;
72*1e651e1eSRoland Levillain 	int ix;
73*1e651e1eSRoland Levillain 	ix = __HI(x)&0x7fffffff;	/* ix = |x|'s high word*/
74*1e651e1eSRoland Levillain 	if(ix<0x3e400000) {			/* if x < 2**27 */
75*1e651e1eSRoland Levillain 	    if(((int)x)==0) return one;		/* generate inexact */
76*1e651e1eSRoland Levillain 	}
77*1e651e1eSRoland Levillain 	z  = x*x;
78*1e651e1eSRoland Levillain 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
79*1e651e1eSRoland Levillain 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
80*1e651e1eSRoland Levillain 	    return one - (0.5*z - (z*r - x*y));
81*1e651e1eSRoland Levillain 	else {
82*1e651e1eSRoland Levillain 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
83*1e651e1eSRoland Levillain 		qx = 0.28125;
84*1e651e1eSRoland Levillain 	    } else {
85*1e651e1eSRoland Levillain 	        __HI(qx) = ix-0x00200000;	/* x/4 */
86*1e651e1eSRoland Levillain 	        __LO(qx) = 0;
87*1e651e1eSRoland Levillain 	    }
88*1e651e1eSRoland Levillain 	    hz = 0.5*z-qx;
89*1e651e1eSRoland Levillain 	    a  = one-qx;
90*1e651e1eSRoland Levillain 	    return a - (hz - (z*r-x*y));
91*1e651e1eSRoland Levillain 	}
92*1e651e1eSRoland Levillain }
93