xref: /aosp_15_r20/external/fdlibm/s_expm1.c (revision 1e651e1ef2b613db2c4b29ae59c1de74cf0222ae)
1*1e651e1eSRoland Levillain 
2*1e651e1eSRoland Levillain /* @(#)s_expm1.c 1.5 04/04/22 */
3*1e651e1eSRoland Levillain /*
4*1e651e1eSRoland Levillain  * ====================================================
5*1e651e1eSRoland Levillain  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6*1e651e1eSRoland Levillain  *
7*1e651e1eSRoland Levillain  * Permission to use, copy, modify, and distribute this
8*1e651e1eSRoland Levillain  * software is freely granted, provided that this notice
9*1e651e1eSRoland Levillain  * is preserved.
10*1e651e1eSRoland Levillain  * ====================================================
11*1e651e1eSRoland Levillain  */
12*1e651e1eSRoland Levillain 
13*1e651e1eSRoland Levillain /* ieee_expm1(x)
14*1e651e1eSRoland Levillain  * Returns ieee_exp(x)-1, the exponential of x minus 1.
15*1e651e1eSRoland Levillain  *
16*1e651e1eSRoland Levillain  * Method
17*1e651e1eSRoland Levillain  *   1. Argument reduction:
18*1e651e1eSRoland Levillain  *	Given x, find r and integer k such that
19*1e651e1eSRoland Levillain  *
20*1e651e1eSRoland Levillain  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
21*1e651e1eSRoland Levillain  *
22*1e651e1eSRoland Levillain  *      Here a correction term c will be computed to compensate
23*1e651e1eSRoland Levillain  *	the error in r when rounded to a floating-point number.
24*1e651e1eSRoland Levillain  *
25*1e651e1eSRoland Levillain  *   2. Approximating ieee_expm1(r) by a special rational function on
26*1e651e1eSRoland Levillain  *	the interval [0,0.34658]:
27*1e651e1eSRoland Levillain  *	Since
28*1e651e1eSRoland Levillain  *	    r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29*1e651e1eSRoland Levillain  *	we define R1(r*r) by
30*1e651e1eSRoland Levillain  *	    r*(ieee_exp(r)+1)/(ieee_exp(r)-1) = 2+ r^2/6 * R1(r*r)
31*1e651e1eSRoland Levillain  *	That is,
32*1e651e1eSRoland Levillain  *	    R1(r**2) = 6/r *((ieee_exp(r)+1)/(ieee_exp(r)-1) - 2/r)
33*1e651e1eSRoland Levillain  *		     = 6/r * ( 1 + 2.0*(1/(ieee_exp(r)-1) - 1/r))
34*1e651e1eSRoland Levillain  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35*1e651e1eSRoland Levillain  *      We use a special Remes algorithm on [0,0.347] to generate
36*1e651e1eSRoland Levillain  * 	a polynomial of degree 5 in r*r to approximate R1. The
37*1e651e1eSRoland Levillain  *	maximum error of this polynomial approximation is bounded
38*1e651e1eSRoland Levillain  *	by 2**-61. In other words,
39*1e651e1eSRoland Levillain  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40*1e651e1eSRoland Levillain  *	where 	Q1  =  -1.6666666666666567384E-2,
41*1e651e1eSRoland Levillain  * 		Q2  =   3.9682539681370365873E-4,
42*1e651e1eSRoland Levillain  * 		Q3  =  -9.9206344733435987357E-6,
43*1e651e1eSRoland Levillain  * 		Q4  =   2.5051361420808517002E-7,
44*1e651e1eSRoland Levillain  * 		Q5  =  -6.2843505682382617102E-9;
45*1e651e1eSRoland Levillain  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
46*1e651e1eSRoland Levillain  *	with error bounded by
47*1e651e1eSRoland Levillain  *	    |                  5           |     -61
48*1e651e1eSRoland Levillain  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
49*1e651e1eSRoland Levillain  *	    |                              |
50*1e651e1eSRoland Levillain  *
51*1e651e1eSRoland Levillain  *	expm1(r) = ieee_exp(r)-1 is then computed by the following
52*1e651e1eSRoland Levillain  * 	specific way which minimize the accumulation rounding error:
53*1e651e1eSRoland Levillain  *			       2     3
54*1e651e1eSRoland Levillain  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
55*1e651e1eSRoland Levillain  *	      ieee_expm1(r) = r + --- + --- * [--------------------]
56*1e651e1eSRoland Levillain  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
57*1e651e1eSRoland Levillain  *
58*1e651e1eSRoland Levillain  *	To compensate the error in the argument reduction, we use
59*1e651e1eSRoland Levillain  *		expm1(r+c) = ieee_expm1(r) + c + ieee_expm1(r)*c
60*1e651e1eSRoland Levillain  *			   ~ ieee_expm1(r) + c + r*c
61*1e651e1eSRoland Levillain  *	Thus c+r*c will be added in as the correction terms for
62*1e651e1eSRoland Levillain  *	expm1(r+c). Now rearrange the term to avoid optimization
63*1e651e1eSRoland Levillain  * 	screw up:
64*1e651e1eSRoland Levillain  *		        (      2                                    2 )
65*1e651e1eSRoland Levillain  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
66*1e651e1eSRoland Levillain  *	 ieee_expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67*1e651e1eSRoland Levillain  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
68*1e651e1eSRoland Levillain  *                      (                                             )
69*1e651e1eSRoland Levillain  *
70*1e651e1eSRoland Levillain  *		   = r - E
71*1e651e1eSRoland Levillain  *   3. Scale back to obtain ieee_expm1(x):
72*1e651e1eSRoland Levillain  *	From step 1, we have
73*1e651e1eSRoland Levillain  *	   ieee_expm1(x) = either 2^k*[expm1(r)+1] - 1
74*1e651e1eSRoland Levillain  *		    = or     2^k*[expm1(r) + (1-2^-k)]
75*1e651e1eSRoland Levillain  *   4. Implementation notes:
76*1e651e1eSRoland Levillain  *	(A). To save one multiplication, we scale the coefficient Qi
77*1e651e1eSRoland Levillain  *	     to Qi*2^i, and replace z by (x^2)/2.
78*1e651e1eSRoland Levillain  *	(B). To achieve maximum accuracy, we compute ieee_expm1(x) by
79*1e651e1eSRoland Levillain  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80*1e651e1eSRoland Levillain  *	  (ii)  if k=0, return r-E
81*1e651e1eSRoland Levillain  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
82*1e651e1eSRoland Levillain  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
83*1e651e1eSRoland Levillain  *	       	       else	     return  1.0+2.0*(r-E);
84*1e651e1eSRoland Levillain  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or ieee_exp(x)-1)
85*1e651e1eSRoland Levillain  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86*1e651e1eSRoland Levillain  *	  (vii) return 2^k(1-((E+2^-k)-r))
87*1e651e1eSRoland Levillain  *
88*1e651e1eSRoland Levillain  * Special cases:
89*1e651e1eSRoland Levillain  *	expm1(INF) is INF, ieee_expm1(NaN) is NaN;
90*1e651e1eSRoland Levillain  *	expm1(-INF) is -1, and
91*1e651e1eSRoland Levillain  *	for finite argument, only ieee_expm1(0)=0 is exact.
92*1e651e1eSRoland Levillain  *
93*1e651e1eSRoland Levillain  * Accuracy:
94*1e651e1eSRoland Levillain  *	according to an error analysis, the error is always less than
95*1e651e1eSRoland Levillain  *	1 ulp (unit in the last place).
96*1e651e1eSRoland Levillain  *
97*1e651e1eSRoland Levillain  * Misc. info.
98*1e651e1eSRoland Levillain  *	For IEEE double
99*1e651e1eSRoland Levillain  *	    if x >  7.09782712893383973096e+02 then ieee_expm1(x) overflow
100*1e651e1eSRoland Levillain  *
101*1e651e1eSRoland Levillain  * Constants:
102*1e651e1eSRoland Levillain  * The hexadecimal values are the intended ones for the following
103*1e651e1eSRoland Levillain  * constants. The decimal values may be used, provided that the
104*1e651e1eSRoland Levillain  * compiler will convert from decimal to binary accurately enough
105*1e651e1eSRoland Levillain  * to produce the hexadecimal values shown.
106*1e651e1eSRoland Levillain  */
107*1e651e1eSRoland Levillain 
108*1e651e1eSRoland Levillain #include "fdlibm.h"
109*1e651e1eSRoland Levillain 
110*1e651e1eSRoland Levillain #ifdef __STDC__
111*1e651e1eSRoland Levillain static const double
112*1e651e1eSRoland Levillain #else
113*1e651e1eSRoland Levillain static double
114*1e651e1eSRoland Levillain #endif
115*1e651e1eSRoland Levillain one		= 1.0,
116*1e651e1eSRoland Levillain huge		= 1.0e+300,
117*1e651e1eSRoland Levillain tiny		= 1.0e-300,
118*1e651e1eSRoland Levillain o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
119*1e651e1eSRoland Levillain ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
120*1e651e1eSRoland Levillain ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
121*1e651e1eSRoland Levillain invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
122*1e651e1eSRoland Levillain 	/* scaled coefficients related to expm1 */
123*1e651e1eSRoland Levillain Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
124*1e651e1eSRoland Levillain Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
125*1e651e1eSRoland Levillain Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
126*1e651e1eSRoland Levillain Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
127*1e651e1eSRoland Levillain Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
128*1e651e1eSRoland Levillain 
129*1e651e1eSRoland Levillain #ifdef __STDC__
ieee_expm1(double x)130*1e651e1eSRoland Levillain 	double ieee_expm1(double x)
131*1e651e1eSRoland Levillain #else
132*1e651e1eSRoland Levillain 	double ieee_expm1(x)
133*1e651e1eSRoland Levillain 	double x;
134*1e651e1eSRoland Levillain #endif
135*1e651e1eSRoland Levillain {
136*1e651e1eSRoland Levillain 	double y,hi,lo,c,t,e,hxs,hfx,r1;
137*1e651e1eSRoland Levillain 	int k,xsb;
138*1e651e1eSRoland Levillain 	unsigned hx;
139*1e651e1eSRoland Levillain 
140*1e651e1eSRoland Levillain 	hx  = __HI(x);	/* high word of x */
141*1e651e1eSRoland Levillain 	xsb = hx&0x80000000;		/* sign bit of x */
142*1e651e1eSRoland Levillain 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
143*1e651e1eSRoland Levillain 	hx &= 0x7fffffff;		/* high word of |x| */
144*1e651e1eSRoland Levillain 
145*1e651e1eSRoland Levillain     /* filter out huge and non-finite argument */
146*1e651e1eSRoland Levillain 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
147*1e651e1eSRoland Levillain 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
148*1e651e1eSRoland Levillain                 if(hx>=0x7ff00000) {
149*1e651e1eSRoland Levillain 		    if(((hx&0xfffff)|__LO(x))!=0)
150*1e651e1eSRoland Levillain 		         return x+x; 	 /* NaN */
151*1e651e1eSRoland Levillain 		    else return (xsb==0)? x:-1.0;/* ieee_exp(+-inf)={inf,-1} */
152*1e651e1eSRoland Levillain 	        }
153*1e651e1eSRoland Levillain 	        if(x > o_threshold) return huge*huge; /* overflow */
154*1e651e1eSRoland Levillain 	    }
155*1e651e1eSRoland Levillain 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
156*1e651e1eSRoland Levillain 		if(x+tiny<0.0)		/* raise inexact */
157*1e651e1eSRoland Levillain 		return tiny-one;	/* return -1 */
158*1e651e1eSRoland Levillain 	    }
159*1e651e1eSRoland Levillain 	}
160*1e651e1eSRoland Levillain 
161*1e651e1eSRoland Levillain     /* argument reduction */
162*1e651e1eSRoland Levillain 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
163*1e651e1eSRoland Levillain 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
164*1e651e1eSRoland Levillain 		if(xsb==0)
165*1e651e1eSRoland Levillain 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
166*1e651e1eSRoland Levillain 		else
167*1e651e1eSRoland Levillain 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
168*1e651e1eSRoland Levillain 	    } else {
169*1e651e1eSRoland Levillain 		k  = invln2*x+((xsb==0)?0.5:-0.5);
170*1e651e1eSRoland Levillain 		t  = k;
171*1e651e1eSRoland Levillain 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
172*1e651e1eSRoland Levillain 		lo = t*ln2_lo;
173*1e651e1eSRoland Levillain 	    }
174*1e651e1eSRoland Levillain 	    x  = hi - lo;
175*1e651e1eSRoland Levillain 	    c  = (hi-x)-lo;
176*1e651e1eSRoland Levillain 	}
177*1e651e1eSRoland Levillain 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
178*1e651e1eSRoland Levillain 	    // t = huge+x;	/* return x with inexact flags when x!=0 */
179*1e651e1eSRoland Levillain 	    // return x - (t-(huge+x));
180*1e651e1eSRoland Levillain 	    return x;	// inexact flag is not set, but Java ignors this flag anyway
181*1e651e1eSRoland Levillain 	}
182*1e651e1eSRoland Levillain 	else k = 0;
183*1e651e1eSRoland Levillain 
184*1e651e1eSRoland Levillain     /* x is now in primary range */
185*1e651e1eSRoland Levillain 	hfx = 0.5*x;
186*1e651e1eSRoland Levillain 	hxs = x*hfx;
187*1e651e1eSRoland Levillain 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
188*1e651e1eSRoland Levillain 	t  = 3.0-r1*hfx;
189*1e651e1eSRoland Levillain 	e  = hxs*((r1-t)/(6.0 - x*t));
190*1e651e1eSRoland Levillain 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
191*1e651e1eSRoland Levillain 	else {
192*1e651e1eSRoland Levillain 	    e  = (x*(e-c)-c);
193*1e651e1eSRoland Levillain 	    e -= hxs;
194*1e651e1eSRoland Levillain 	    if(k== -1) return 0.5*(x-e)-0.5;
195*1e651e1eSRoland Levillain 	    if(k==1)
196*1e651e1eSRoland Levillain 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
197*1e651e1eSRoland Levillain 	       	else 	      return  one+2.0*(x-e);
198*1e651e1eSRoland Levillain 	    if (k <= -2 || k>56) {   /* suffice to return ieee_exp(x)-1 */
199*1e651e1eSRoland Levillain 	        y = one-(e-x);
200*1e651e1eSRoland Levillain 	        __HI(y) += (k<<20);	/* add k to y's exponent */
201*1e651e1eSRoland Levillain 	        return y-one;
202*1e651e1eSRoland Levillain 	    }
203*1e651e1eSRoland Levillain 	    t = one;
204*1e651e1eSRoland Levillain 	    if(k<20) {
205*1e651e1eSRoland Levillain 	       	__HI(t) = 0x3ff00000 - (0x200000>>k);  /* t=1-2^-k */
206*1e651e1eSRoland Levillain 	       	y = t-(e-x);
207*1e651e1eSRoland Levillain 	       	__HI(y) += (k<<20);	/* add k to y's exponent */
208*1e651e1eSRoland Levillain 	   } else {
209*1e651e1eSRoland Levillain 	       	__HI(t)  = ((0x3ff-k)<<20);	/* 2^-k */
210*1e651e1eSRoland Levillain 	       	y = x-(e+t);
211*1e651e1eSRoland Levillain 	       	y += one;
212*1e651e1eSRoland Levillain 	       	__HI(y) += (k<<20);	/* add k to y's exponent */
213*1e651e1eSRoland Levillain 	    }
214*1e651e1eSRoland Levillain 	}
215*1e651e1eSRoland Levillain 	return y;
216*1e651e1eSRoland Levillain }
217