1*a58d3d2aSXin Li#!/usr/bin/python3 2*a58d3d2aSXin Li'''Copyright (c) 2021-2022 Amazon 3*a58d3d2aSXin Li Copyright (c) 2018-2019 Mozilla 4*a58d3d2aSXin Li 5*a58d3d2aSXin Li Redistribution and use in source and binary forms, with or without 6*a58d3d2aSXin Li modification, are permitted provided that the following conditions 7*a58d3d2aSXin Li are met: 8*a58d3d2aSXin Li 9*a58d3d2aSXin Li - Redistributions of source code must retain the above copyright 10*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer. 11*a58d3d2aSXin Li 12*a58d3d2aSXin Li - Redistributions in binary form must reproduce the above copyright 13*a58d3d2aSXin Li notice, this list of conditions and the following disclaimer in the 14*a58d3d2aSXin Li documentation and/or other materials provided with the distribution. 15*a58d3d2aSXin Li 16*a58d3d2aSXin Li THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17*a58d3d2aSXin Li ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18*a58d3d2aSXin Li LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19*a58d3d2aSXin Li A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR 20*a58d3d2aSXin Li CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 21*a58d3d2aSXin Li EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 22*a58d3d2aSXin Li PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 23*a58d3d2aSXin Li PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 24*a58d3d2aSXin Li LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 25*a58d3d2aSXin Li NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 26*a58d3d2aSXin Li SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27*a58d3d2aSXin Li''' 28*a58d3d2aSXin Li 29*a58d3d2aSXin Li# Train an LPCNet model 30*a58d3d2aSXin Li 31*a58d3d2aSXin Liimport argparse 32*a58d3d2aSXin Lifrom plc_loader import PLCLoader 33*a58d3d2aSXin Li 34*a58d3d2aSXin Liparser = argparse.ArgumentParser(description='Test a PLC model') 35*a58d3d2aSXin Li 36*a58d3d2aSXin Liparser.add_argument('weights', metavar='<weights file>', help='weights file (.h5)') 37*a58d3d2aSXin Liparser.add_argument('features', metavar='<features file>', help='binary features file (float32)') 38*a58d3d2aSXin Liparser.add_argument('output', metavar='<output>', help='reconstructed file (float32)') 39*a58d3d2aSXin Liparser.add_argument('--model', metavar='<model>', default='lpcnet_plc', help='PLC model python definition (without .py)') 40*a58d3d2aSXin Ligroup1 = parser.add_mutually_exclusive_group() 41*a58d3d2aSXin Li 42*a58d3d2aSXin Liparser.add_argument('--gru-size', metavar='<units>', default=256, type=int, help='number of units in GRU (default 256)') 43*a58d3d2aSXin Liparser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network (default 128)') 44*a58d3d2aSXin Li 45*a58d3d2aSXin Li 46*a58d3d2aSXin Liargs = parser.parse_args() 47*a58d3d2aSXin Li 48*a58d3d2aSXin Liimport importlib 49*a58d3d2aSXin Lilpcnet = importlib.import_module(args.model) 50*a58d3d2aSXin Li 51*a58d3d2aSXin Liimport sys 52*a58d3d2aSXin Liimport numpy as np 53*a58d3d2aSXin Lifrom tensorflow.keras.optimizers import Adam 54*a58d3d2aSXin Lifrom tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger 55*a58d3d2aSXin Liimport tensorflow.keras.backend as K 56*a58d3d2aSXin Liimport h5py 57*a58d3d2aSXin Li 58*a58d3d2aSXin Liimport tensorflow as tf 59*a58d3d2aSXin Li#gpus = tf.config.experimental.list_physical_devices('GPU') 60*a58d3d2aSXin Li#if gpus: 61*a58d3d2aSXin Li# try: 62*a58d3d2aSXin Li# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) 63*a58d3d2aSXin Li# except RuntimeError as e: 64*a58d3d2aSXin Li# print(e) 65*a58d3d2aSXin Li 66*a58d3d2aSXin Limodel = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=1, training=False, quantize=False, cond_size=args.cond_size) 67*a58d3d2aSXin Limodel.compile() 68*a58d3d2aSXin Li 69*a58d3d2aSXin Lilpc_order = 16 70*a58d3d2aSXin Li 71*a58d3d2aSXin Lifeature_file = args.features 72*a58d3d2aSXin Linb_features = model.nb_used_features + lpc_order 73*a58d3d2aSXin Linb_used_features = model.nb_used_features 74*a58d3d2aSXin Li 75*a58d3d2aSXin Li# u for unquantised, load 16 bit PCM samples and convert to mu-law 76*a58d3d2aSXin Li 77*a58d3d2aSXin Lifeatures = np.loadtxt(feature_file) 78*a58d3d2aSXin Liprint(features.shape) 79*a58d3d2aSXin Lisequence_size = features.shape[0] 80*a58d3d2aSXin Lilost = np.reshape(features[:,-1:], (1, sequence_size, 1)) 81*a58d3d2aSXin Lifeatures = features[:,:nb_used_features] 82*a58d3d2aSXin Lifeatures = np.reshape(features, (1, sequence_size, nb_used_features)) 83*a58d3d2aSXin Li 84*a58d3d2aSXin Li 85*a58d3d2aSXin Limodel.load_weights(args.weights) 86*a58d3d2aSXin Li 87*a58d3d2aSXin Lifeatures = features*lost 88*a58d3d2aSXin Liout = model.predict([features, lost]) 89*a58d3d2aSXin Li 90*a58d3d2aSXin Liout = features + (1-lost)*out 91*a58d3d2aSXin Li 92*a58d3d2aSXin Linp.savetxt(args.output, out[0,:,:]) 93