1*62c56f98SSadaf Ebrahimi /*
2*62c56f98SSadaf Ebrahimi * Helper functions for the RSA module
3*62c56f98SSadaf Ebrahimi *
4*62c56f98SSadaf Ebrahimi * Copyright The Mbed TLS Contributors
5*62c56f98SSadaf Ebrahimi * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6*62c56f98SSadaf Ebrahimi *
7*62c56f98SSadaf Ebrahimi */
8*62c56f98SSadaf Ebrahimi
9*62c56f98SSadaf Ebrahimi #include "common.h"
10*62c56f98SSadaf Ebrahimi
11*62c56f98SSadaf Ebrahimi #if defined(MBEDTLS_RSA_C)
12*62c56f98SSadaf Ebrahimi
13*62c56f98SSadaf Ebrahimi #include "mbedtls/rsa.h"
14*62c56f98SSadaf Ebrahimi #include "mbedtls/bignum.h"
15*62c56f98SSadaf Ebrahimi #include "rsa_alt_helpers.h"
16*62c56f98SSadaf Ebrahimi
17*62c56f98SSadaf Ebrahimi /*
18*62c56f98SSadaf Ebrahimi * Compute RSA prime factors from public and private exponents
19*62c56f98SSadaf Ebrahimi *
20*62c56f98SSadaf Ebrahimi * Summary of algorithm:
21*62c56f98SSadaf Ebrahimi * Setting F := lcm(P-1,Q-1), the idea is as follows:
22*62c56f98SSadaf Ebrahimi *
23*62c56f98SSadaf Ebrahimi * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
24*62c56f98SSadaf Ebrahimi * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
25*62c56f98SSadaf Ebrahimi * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
26*62c56f98SSadaf Ebrahimi * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
27*62c56f98SSadaf Ebrahimi * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
28*62c56f98SSadaf Ebrahimi * factors of N.
29*62c56f98SSadaf Ebrahimi *
30*62c56f98SSadaf Ebrahimi * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
31*62c56f98SSadaf Ebrahimi * construction still applies since (-)^K is the identity on the set of
32*62c56f98SSadaf Ebrahimi * roots of 1 in Z/NZ.
33*62c56f98SSadaf Ebrahimi *
34*62c56f98SSadaf Ebrahimi * The public and private key primitives (-)^E and (-)^D are mutually inverse
35*62c56f98SSadaf Ebrahimi * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
36*62c56f98SSadaf Ebrahimi * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
37*62c56f98SSadaf Ebrahimi * Splitting L = 2^t * K with K odd, we have
38*62c56f98SSadaf Ebrahimi *
39*62c56f98SSadaf Ebrahimi * DE - 1 = FL = (F/2) * (2^(t+1)) * K,
40*62c56f98SSadaf Ebrahimi *
41*62c56f98SSadaf Ebrahimi * so (F / 2) * K is among the numbers
42*62c56f98SSadaf Ebrahimi *
43*62c56f98SSadaf Ebrahimi * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
44*62c56f98SSadaf Ebrahimi *
45*62c56f98SSadaf Ebrahimi * where ord is the order of 2 in (DE - 1).
46*62c56f98SSadaf Ebrahimi * We can therefore iterate through these numbers apply the construction
47*62c56f98SSadaf Ebrahimi * of (a) and (b) above to attempt to factor N.
48*62c56f98SSadaf Ebrahimi *
49*62c56f98SSadaf Ebrahimi */
mbedtls_rsa_deduce_primes(mbedtls_mpi const * N,mbedtls_mpi const * E,mbedtls_mpi const * D,mbedtls_mpi * P,mbedtls_mpi * Q)50*62c56f98SSadaf Ebrahimi int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
51*62c56f98SSadaf Ebrahimi mbedtls_mpi const *E, mbedtls_mpi const *D,
52*62c56f98SSadaf Ebrahimi mbedtls_mpi *P, mbedtls_mpi *Q)
53*62c56f98SSadaf Ebrahimi {
54*62c56f98SSadaf Ebrahimi int ret = 0;
55*62c56f98SSadaf Ebrahimi
56*62c56f98SSadaf Ebrahimi uint16_t attempt; /* Number of current attempt */
57*62c56f98SSadaf Ebrahimi uint16_t iter; /* Number of squares computed in the current attempt */
58*62c56f98SSadaf Ebrahimi
59*62c56f98SSadaf Ebrahimi uint16_t order; /* Order of 2 in DE - 1 */
60*62c56f98SSadaf Ebrahimi
61*62c56f98SSadaf Ebrahimi mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
62*62c56f98SSadaf Ebrahimi mbedtls_mpi K; /* Temporary holding the current candidate */
63*62c56f98SSadaf Ebrahimi
64*62c56f98SSadaf Ebrahimi const unsigned char primes[] = { 2,
65*62c56f98SSadaf Ebrahimi 3, 5, 7, 11, 13, 17, 19, 23,
66*62c56f98SSadaf Ebrahimi 29, 31, 37, 41, 43, 47, 53, 59,
67*62c56f98SSadaf Ebrahimi 61, 67, 71, 73, 79, 83, 89, 97,
68*62c56f98SSadaf Ebrahimi 101, 103, 107, 109, 113, 127, 131, 137,
69*62c56f98SSadaf Ebrahimi 139, 149, 151, 157, 163, 167, 173, 179,
70*62c56f98SSadaf Ebrahimi 181, 191, 193, 197, 199, 211, 223, 227,
71*62c56f98SSadaf Ebrahimi 229, 233, 239, 241, 251 };
72*62c56f98SSadaf Ebrahimi
73*62c56f98SSadaf Ebrahimi const size_t num_primes = sizeof(primes) / sizeof(*primes);
74*62c56f98SSadaf Ebrahimi
75*62c56f98SSadaf Ebrahimi if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
76*62c56f98SSadaf Ebrahimi return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
77*62c56f98SSadaf Ebrahimi }
78*62c56f98SSadaf Ebrahimi
79*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
80*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(D, 1) <= 0 ||
81*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
82*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(E, 1) <= 0 ||
83*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(E, N) >= 0) {
84*62c56f98SSadaf Ebrahimi return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
85*62c56f98SSadaf Ebrahimi }
86*62c56f98SSadaf Ebrahimi
87*62c56f98SSadaf Ebrahimi /*
88*62c56f98SSadaf Ebrahimi * Initializations and temporary changes
89*62c56f98SSadaf Ebrahimi */
90*62c56f98SSadaf Ebrahimi
91*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&K);
92*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&T);
93*62c56f98SSadaf Ebrahimi
94*62c56f98SSadaf Ebrahimi /* T := DE - 1 */
95*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E));
96*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
97*62c56f98SSadaf Ebrahimi
98*62c56f98SSadaf Ebrahimi if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
99*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
100*62c56f98SSadaf Ebrahimi goto cleanup;
101*62c56f98SSadaf Ebrahimi }
102*62c56f98SSadaf Ebrahimi
103*62c56f98SSadaf Ebrahimi /* After this operation, T holds the largest odd divisor of DE - 1. */
104*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
105*62c56f98SSadaf Ebrahimi
106*62c56f98SSadaf Ebrahimi /*
107*62c56f98SSadaf Ebrahimi * Actual work
108*62c56f98SSadaf Ebrahimi */
109*62c56f98SSadaf Ebrahimi
110*62c56f98SSadaf Ebrahimi /* Skip trying 2 if N == 1 mod 8 */
111*62c56f98SSadaf Ebrahimi attempt = 0;
112*62c56f98SSadaf Ebrahimi if (N->p[0] % 8 == 1) {
113*62c56f98SSadaf Ebrahimi attempt = 1;
114*62c56f98SSadaf Ebrahimi }
115*62c56f98SSadaf Ebrahimi
116*62c56f98SSadaf Ebrahimi for (; attempt < num_primes; ++attempt) {
117*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));
118*62c56f98SSadaf Ebrahimi
119*62c56f98SSadaf Ebrahimi /* Check if gcd(K,N) = 1 */
120*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
121*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(P, 1) != 0) {
122*62c56f98SSadaf Ebrahimi continue;
123*62c56f98SSadaf Ebrahimi }
124*62c56f98SSadaf Ebrahimi
125*62c56f98SSadaf Ebrahimi /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
126*62c56f98SSadaf Ebrahimi * and check whether they have nontrivial GCD with N. */
127*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
128*62c56f98SSadaf Ebrahimi Q /* temporarily use Q for storing Montgomery
129*62c56f98SSadaf Ebrahimi * multiplication helper values */));
130*62c56f98SSadaf Ebrahimi
131*62c56f98SSadaf Ebrahimi for (iter = 1; iter <= order; ++iter) {
132*62c56f98SSadaf Ebrahimi /* If we reach 1 prematurely, there's no point
133*62c56f98SSadaf Ebrahimi * in continuing to square K */
134*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
135*62c56f98SSadaf Ebrahimi break;
136*62c56f98SSadaf Ebrahimi }
137*62c56f98SSadaf Ebrahimi
138*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
139*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
140*62c56f98SSadaf Ebrahimi
141*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(P, 1) == 1 &&
142*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(P, N) == -1) {
143*62c56f98SSadaf Ebrahimi /*
144*62c56f98SSadaf Ebrahimi * Have found a nontrivial divisor P of N.
145*62c56f98SSadaf Ebrahimi * Set Q := N / P.
146*62c56f98SSadaf Ebrahimi */
147*62c56f98SSadaf Ebrahimi
148*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
149*62c56f98SSadaf Ebrahimi goto cleanup;
150*62c56f98SSadaf Ebrahimi }
151*62c56f98SSadaf Ebrahimi
152*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
153*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
154*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
155*62c56f98SSadaf Ebrahimi }
156*62c56f98SSadaf Ebrahimi
157*62c56f98SSadaf Ebrahimi /*
158*62c56f98SSadaf Ebrahimi * If we get here, then either we prematurely aborted the loop because
159*62c56f98SSadaf Ebrahimi * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
160*62c56f98SSadaf Ebrahimi * be 1 if D,E,N were consistent.
161*62c56f98SSadaf Ebrahimi * Check if that's the case and abort if not, to avoid very long,
162*62c56f98SSadaf Ebrahimi * yet eventually failing, computations if N,D,E were not sane.
163*62c56f98SSadaf Ebrahimi */
164*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
165*62c56f98SSadaf Ebrahimi break;
166*62c56f98SSadaf Ebrahimi }
167*62c56f98SSadaf Ebrahimi }
168*62c56f98SSadaf Ebrahimi
169*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
170*62c56f98SSadaf Ebrahimi
171*62c56f98SSadaf Ebrahimi cleanup:
172*62c56f98SSadaf Ebrahimi
173*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&K);
174*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&T);
175*62c56f98SSadaf Ebrahimi return ret;
176*62c56f98SSadaf Ebrahimi }
177*62c56f98SSadaf Ebrahimi
178*62c56f98SSadaf Ebrahimi /*
179*62c56f98SSadaf Ebrahimi * Given P, Q and the public exponent E, deduce D.
180*62c56f98SSadaf Ebrahimi * This is essentially a modular inversion.
181*62c56f98SSadaf Ebrahimi */
mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const * P,mbedtls_mpi const * Q,mbedtls_mpi const * E,mbedtls_mpi * D)182*62c56f98SSadaf Ebrahimi int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
183*62c56f98SSadaf Ebrahimi mbedtls_mpi const *Q,
184*62c56f98SSadaf Ebrahimi mbedtls_mpi const *E,
185*62c56f98SSadaf Ebrahimi mbedtls_mpi *D)
186*62c56f98SSadaf Ebrahimi {
187*62c56f98SSadaf Ebrahimi int ret = 0;
188*62c56f98SSadaf Ebrahimi mbedtls_mpi K, L;
189*62c56f98SSadaf Ebrahimi
190*62c56f98SSadaf Ebrahimi if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
191*62c56f98SSadaf Ebrahimi return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
192*62c56f98SSadaf Ebrahimi }
193*62c56f98SSadaf Ebrahimi
194*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
195*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
196*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(E, 0) == 0) {
197*62c56f98SSadaf Ebrahimi return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
198*62c56f98SSadaf Ebrahimi }
199*62c56f98SSadaf Ebrahimi
200*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&K);
201*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&L);
202*62c56f98SSadaf Ebrahimi
203*62c56f98SSadaf Ebrahimi /* Temporarily put K := P-1 and L := Q-1 */
204*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
205*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
206*62c56f98SSadaf Ebrahimi
207*62c56f98SSadaf Ebrahimi /* Temporarily put D := gcd(P-1, Q-1) */
208*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
209*62c56f98SSadaf Ebrahimi
210*62c56f98SSadaf Ebrahimi /* K := LCM(P-1, Q-1) */
211*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
212*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
213*62c56f98SSadaf Ebrahimi
214*62c56f98SSadaf Ebrahimi /* Compute modular inverse of E in LCM(P-1, Q-1) */
215*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
216*62c56f98SSadaf Ebrahimi
217*62c56f98SSadaf Ebrahimi cleanup:
218*62c56f98SSadaf Ebrahimi
219*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&K);
220*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&L);
221*62c56f98SSadaf Ebrahimi
222*62c56f98SSadaf Ebrahimi return ret;
223*62c56f98SSadaf Ebrahimi }
224*62c56f98SSadaf Ebrahimi
mbedtls_rsa_deduce_crt(const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)225*62c56f98SSadaf Ebrahimi int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
226*62c56f98SSadaf Ebrahimi const mbedtls_mpi *D, mbedtls_mpi *DP,
227*62c56f98SSadaf Ebrahimi mbedtls_mpi *DQ, mbedtls_mpi *QP)
228*62c56f98SSadaf Ebrahimi {
229*62c56f98SSadaf Ebrahimi int ret = 0;
230*62c56f98SSadaf Ebrahimi mbedtls_mpi K;
231*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&K);
232*62c56f98SSadaf Ebrahimi
233*62c56f98SSadaf Ebrahimi /* DP = D mod P-1 */
234*62c56f98SSadaf Ebrahimi if (DP != NULL) {
235*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
236*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
237*62c56f98SSadaf Ebrahimi }
238*62c56f98SSadaf Ebrahimi
239*62c56f98SSadaf Ebrahimi /* DQ = D mod Q-1 */
240*62c56f98SSadaf Ebrahimi if (DQ != NULL) {
241*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
242*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
243*62c56f98SSadaf Ebrahimi }
244*62c56f98SSadaf Ebrahimi
245*62c56f98SSadaf Ebrahimi /* QP = Q^{-1} mod P */
246*62c56f98SSadaf Ebrahimi if (QP != NULL) {
247*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
248*62c56f98SSadaf Ebrahimi }
249*62c56f98SSadaf Ebrahimi
250*62c56f98SSadaf Ebrahimi cleanup:
251*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&K);
252*62c56f98SSadaf Ebrahimi
253*62c56f98SSadaf Ebrahimi return ret;
254*62c56f98SSadaf Ebrahimi }
255*62c56f98SSadaf Ebrahimi
256*62c56f98SSadaf Ebrahimi /*
257*62c56f98SSadaf Ebrahimi * Check that core RSA parameters are sane.
258*62c56f98SSadaf Ebrahimi */
mbedtls_rsa_validate_params(const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)259*62c56f98SSadaf Ebrahimi int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
260*62c56f98SSadaf Ebrahimi const mbedtls_mpi *Q, const mbedtls_mpi *D,
261*62c56f98SSadaf Ebrahimi const mbedtls_mpi *E,
262*62c56f98SSadaf Ebrahimi int (*f_rng)(void *, unsigned char *, size_t),
263*62c56f98SSadaf Ebrahimi void *p_rng)
264*62c56f98SSadaf Ebrahimi {
265*62c56f98SSadaf Ebrahimi int ret = 0;
266*62c56f98SSadaf Ebrahimi mbedtls_mpi K, L;
267*62c56f98SSadaf Ebrahimi
268*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&K);
269*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&L);
270*62c56f98SSadaf Ebrahimi
271*62c56f98SSadaf Ebrahimi /*
272*62c56f98SSadaf Ebrahimi * Step 1: If PRNG provided, check that P and Q are prime
273*62c56f98SSadaf Ebrahimi */
274*62c56f98SSadaf Ebrahimi
275*62c56f98SSadaf Ebrahimi #if defined(MBEDTLS_GENPRIME)
276*62c56f98SSadaf Ebrahimi /*
277*62c56f98SSadaf Ebrahimi * When generating keys, the strongest security we support aims for an error
278*62c56f98SSadaf Ebrahimi * rate of at most 2^-100 and we are aiming for the same certainty here as
279*62c56f98SSadaf Ebrahimi * well.
280*62c56f98SSadaf Ebrahimi */
281*62c56f98SSadaf Ebrahimi if (f_rng != NULL && P != NULL &&
282*62c56f98SSadaf Ebrahimi (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
283*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
284*62c56f98SSadaf Ebrahimi goto cleanup;
285*62c56f98SSadaf Ebrahimi }
286*62c56f98SSadaf Ebrahimi
287*62c56f98SSadaf Ebrahimi if (f_rng != NULL && Q != NULL &&
288*62c56f98SSadaf Ebrahimi (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
289*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
290*62c56f98SSadaf Ebrahimi goto cleanup;
291*62c56f98SSadaf Ebrahimi }
292*62c56f98SSadaf Ebrahimi #else
293*62c56f98SSadaf Ebrahimi ((void) f_rng);
294*62c56f98SSadaf Ebrahimi ((void) p_rng);
295*62c56f98SSadaf Ebrahimi #endif /* MBEDTLS_GENPRIME */
296*62c56f98SSadaf Ebrahimi
297*62c56f98SSadaf Ebrahimi /*
298*62c56f98SSadaf Ebrahimi * Step 2: Check that 1 < N = P * Q
299*62c56f98SSadaf Ebrahimi */
300*62c56f98SSadaf Ebrahimi
301*62c56f98SSadaf Ebrahimi if (P != NULL && Q != NULL && N != NULL) {
302*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
303*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(N, 1) <= 0 ||
304*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(&K, N) != 0) {
305*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
306*62c56f98SSadaf Ebrahimi goto cleanup;
307*62c56f98SSadaf Ebrahimi }
308*62c56f98SSadaf Ebrahimi }
309*62c56f98SSadaf Ebrahimi
310*62c56f98SSadaf Ebrahimi /*
311*62c56f98SSadaf Ebrahimi * Step 3: Check and 1 < D, E < N if present.
312*62c56f98SSadaf Ebrahimi */
313*62c56f98SSadaf Ebrahimi
314*62c56f98SSadaf Ebrahimi if (N != NULL && D != NULL && E != NULL) {
315*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
316*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(E, 1) <= 0 ||
317*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
318*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_mpi(E, N) >= 0) {
319*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
320*62c56f98SSadaf Ebrahimi goto cleanup;
321*62c56f98SSadaf Ebrahimi }
322*62c56f98SSadaf Ebrahimi }
323*62c56f98SSadaf Ebrahimi
324*62c56f98SSadaf Ebrahimi /*
325*62c56f98SSadaf Ebrahimi * Step 4: Check that D, E are inverse modulo P-1 and Q-1
326*62c56f98SSadaf Ebrahimi */
327*62c56f98SSadaf Ebrahimi
328*62c56f98SSadaf Ebrahimi if (P != NULL && Q != NULL && D != NULL && E != NULL) {
329*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
330*62c56f98SSadaf Ebrahimi mbedtls_mpi_cmp_int(Q, 1) <= 0) {
331*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
332*62c56f98SSadaf Ebrahimi goto cleanup;
333*62c56f98SSadaf Ebrahimi }
334*62c56f98SSadaf Ebrahimi
335*62c56f98SSadaf Ebrahimi /* Compute DE-1 mod P-1 */
336*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
337*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
338*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
339*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
340*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
341*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
342*62c56f98SSadaf Ebrahimi goto cleanup;
343*62c56f98SSadaf Ebrahimi }
344*62c56f98SSadaf Ebrahimi
345*62c56f98SSadaf Ebrahimi /* Compute DE-1 mod Q-1 */
346*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
347*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
348*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
349*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
350*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
351*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
352*62c56f98SSadaf Ebrahimi goto cleanup;
353*62c56f98SSadaf Ebrahimi }
354*62c56f98SSadaf Ebrahimi }
355*62c56f98SSadaf Ebrahimi
356*62c56f98SSadaf Ebrahimi cleanup:
357*62c56f98SSadaf Ebrahimi
358*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&K);
359*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&L);
360*62c56f98SSadaf Ebrahimi
361*62c56f98SSadaf Ebrahimi /* Wrap MPI error codes by RSA check failure error code */
362*62c56f98SSadaf Ebrahimi if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
363*62c56f98SSadaf Ebrahimi ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
364*62c56f98SSadaf Ebrahimi }
365*62c56f98SSadaf Ebrahimi
366*62c56f98SSadaf Ebrahimi return ret;
367*62c56f98SSadaf Ebrahimi }
368*62c56f98SSadaf Ebrahimi
369*62c56f98SSadaf Ebrahimi /*
370*62c56f98SSadaf Ebrahimi * Check that RSA CRT parameters are in accordance with core parameters.
371*62c56f98SSadaf Ebrahimi */
mbedtls_rsa_validate_crt(const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * DP,const mbedtls_mpi * DQ,const mbedtls_mpi * QP)372*62c56f98SSadaf Ebrahimi int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
373*62c56f98SSadaf Ebrahimi const mbedtls_mpi *D, const mbedtls_mpi *DP,
374*62c56f98SSadaf Ebrahimi const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
375*62c56f98SSadaf Ebrahimi {
376*62c56f98SSadaf Ebrahimi int ret = 0;
377*62c56f98SSadaf Ebrahimi
378*62c56f98SSadaf Ebrahimi mbedtls_mpi K, L;
379*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&K);
380*62c56f98SSadaf Ebrahimi mbedtls_mpi_init(&L);
381*62c56f98SSadaf Ebrahimi
382*62c56f98SSadaf Ebrahimi /* Check that DP - D == 0 mod P - 1 */
383*62c56f98SSadaf Ebrahimi if (DP != NULL) {
384*62c56f98SSadaf Ebrahimi if (P == NULL) {
385*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
386*62c56f98SSadaf Ebrahimi goto cleanup;
387*62c56f98SSadaf Ebrahimi }
388*62c56f98SSadaf Ebrahimi
389*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
390*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
391*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
392*62c56f98SSadaf Ebrahimi
393*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
394*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
395*62c56f98SSadaf Ebrahimi goto cleanup;
396*62c56f98SSadaf Ebrahimi }
397*62c56f98SSadaf Ebrahimi }
398*62c56f98SSadaf Ebrahimi
399*62c56f98SSadaf Ebrahimi /* Check that DQ - D == 0 mod Q - 1 */
400*62c56f98SSadaf Ebrahimi if (DQ != NULL) {
401*62c56f98SSadaf Ebrahimi if (Q == NULL) {
402*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
403*62c56f98SSadaf Ebrahimi goto cleanup;
404*62c56f98SSadaf Ebrahimi }
405*62c56f98SSadaf Ebrahimi
406*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
407*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
408*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
409*62c56f98SSadaf Ebrahimi
410*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
411*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
412*62c56f98SSadaf Ebrahimi goto cleanup;
413*62c56f98SSadaf Ebrahimi }
414*62c56f98SSadaf Ebrahimi }
415*62c56f98SSadaf Ebrahimi
416*62c56f98SSadaf Ebrahimi /* Check that QP * Q - 1 == 0 mod P */
417*62c56f98SSadaf Ebrahimi if (QP != NULL) {
418*62c56f98SSadaf Ebrahimi if (P == NULL || Q == NULL) {
419*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
420*62c56f98SSadaf Ebrahimi goto cleanup;
421*62c56f98SSadaf Ebrahimi }
422*62c56f98SSadaf Ebrahimi
423*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
424*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
425*62c56f98SSadaf Ebrahimi MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
426*62c56f98SSadaf Ebrahimi if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
427*62c56f98SSadaf Ebrahimi ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
428*62c56f98SSadaf Ebrahimi goto cleanup;
429*62c56f98SSadaf Ebrahimi }
430*62c56f98SSadaf Ebrahimi }
431*62c56f98SSadaf Ebrahimi
432*62c56f98SSadaf Ebrahimi cleanup:
433*62c56f98SSadaf Ebrahimi
434*62c56f98SSadaf Ebrahimi /* Wrap MPI error codes by RSA check failure error code */
435*62c56f98SSadaf Ebrahimi if (ret != 0 &&
436*62c56f98SSadaf Ebrahimi ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
437*62c56f98SSadaf Ebrahimi ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
438*62c56f98SSadaf Ebrahimi ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
439*62c56f98SSadaf Ebrahimi }
440*62c56f98SSadaf Ebrahimi
441*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&K);
442*62c56f98SSadaf Ebrahimi mbedtls_mpi_free(&L);
443*62c56f98SSadaf Ebrahimi
444*62c56f98SSadaf Ebrahimi return ret;
445*62c56f98SSadaf Ebrahimi }
446*62c56f98SSadaf Ebrahimi
447*62c56f98SSadaf Ebrahimi #endif /* MBEDTLS_RSA_C */
448